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Abstract

The development of biomarkers for autoimmune

diseases has been hampered by a lack of understanding

of disease etiopathogenesis and of the mechanisms

underlying the induction and maintenance of

inflammation, which involves complex activation

dynamics of diverse cell types. The heterogeneous

nature and suboptimal clinical response to treatment

observed in many autoimmune syndromes highlight

the need to develop improved strategies to predict

patient outcome to therapy and personalize patient

care. Mass cytometry, using CyTOF®, is an advanced

technology that facilitates multiparametric, phenotypic

analysis of immune cells at single-cell resolution. In this

review, we outline the capabilities of mass cytometry

and illustrate the potential of this technology to

enhance the discovery of cellular biomarkers for

rheumatoid arthritis, a prototypical autoimmune disease.

Introduction

Rheumatoid arthritis pathogenesis and patient response

to treatment are heterogeneous

Rheumatoid arthritis (RA) is a chronic, systemic, inflam-

matory autoimmune disorder that attacks diarthrodial

joints leading to cartilage destruction and bone erosion

[1]. Similar to other rheumatic diseases, the pathogenesis

of RA is multifactorial, multi-staged and characterized

by heterogeneous disease manifestations and variations

in patient response to therapy [2,3]. The etiopatho-

genesis of RA is unknown, but numerous factors, such

as gene polymorphisms, physiology [4,5], environment,
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lifestyle [6], the microbiome [7] and gender [8], are im-

plicated in the susceptibility, onset, progress and prog-

nosis of disease. Early diagnosis and treatment improve

clinical outcome and may prevent irreversible damage to

joints [9]; however, diagnosis tends to occur later in dis-

ease and current diagnostics lack sensitivity and specifi-

city [10]. Treatment options for RA patients remain far

from optimal as the prescription of ‘biologics’ or small

molecules is not guided by molecular diagnosis. Thus,

therapies are not tailored to suit the immune status of

individual patients. Response rates to treatments range

from 60 to 70% and are associated with side effects,

while suboptimal treatment regimens and missed oppor-

tunities for early treatment may exacerbate symptoms.

Most, if not all, autoimmune diseases share a similar de-

gree of heterogeneity in pathogenesis and patient out-

come. For many of these diseases, such as systemic

lupus erythematosus and primary Sjögren’s syndrome,

few approved therapies are currently available.

Few available biomarkers for rheumatoid arthritis

Several advances have been made in diagnostic and

prognostic biomarker research for RA [9], particularly in

serological (autoantibody) diagnostics and imaging of in-

flammation [11]. Serum autoantibodies and cytokines

can be used to identify asymptomatic individuals prior

to the manifestation of clinical disease [12-14], while

predictive markers of severe disease include anti-cyclic

citrullinated peptide (CCP), serum rheumatoid factor, el-

evated levels of acute phase reactants in the presence of

cartilage destruction and bone erosion [15]. Autoanti-

body profiling may guide early intervention; for example,

methotrexate treatment of RA patients decreased the in-

cidence of progression from undifferentiated arthritis to

clinical RA in anti-CCP-positive individuals [16]. Anti-

CCP antibodies have been implicated as a potential
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biomarker of the response to B-cell depletion therapy in

RA patients. miR-146a expression is also upregulated in

interleukin (IL)-17-expressing T cells, B cells and ma-

crophages in the synovium and in peripheral blood

mononuclear cells of individuals with RA [17]. Cellular

biomarkers for rheumatic diseases include activated

monocytes in RA [18,19]; however, the sensitivity and

specificity of cellular biomarkers in the clinic have yet to

be determined. For a comprehensive summary of the

status of biomarkers available for RA the reader is re-

ferred to several published reviews on this topic [20,21].

The dearth of validated biomarkers for RA and other

autoimmune diseases warrants the use of more system-

atic and comprehensive biomarker discovery approaches.

Rheumatoid arthritis pathogenesis is mediated by

immune cell infiltrates

Disease severity, progression and response to therapy in

RA patients are mediated by the activation of inflamma-

tory cells in lymphoid tissues and their infiltration into

joints. In RA patients, the synovium is infiltrated with acti-

vated T and B lymphocytes, macrophages, mast cells and

mononuclear cells that differentiate into multinucleated

osteoclasts. This immune infiltrate is accompanied by

angiogenesis [22,23], the generation of inflammatory cyto-

kines, including IL-1 and tumor necrosis factor (TNF)-α,

an increase in reactive oxygen and nitrogen species in the

bone and synovium, activation of chondrocyte catabolic

pathways, matrix destruction, and inhibition of new cartil-

age formation [1,24]. Polymorphonuclear leukocytes in

the synovial fluid also contribute to this process [25]. Cy-

tokines such as TNF-α, IL-1 and IL-17 regulate expression

of receptor activator of nuclear factor kappa-B ligand,

which, when bound to its cognate receptor, receptor ac-

tivator of nuclear factor kappa-B, on pre-osteoclasts,

stimulates osteoclast differentiation and activation. The

prolonged activation of osteoclasts can lead to bone de-

struction in RA patients [26,27]. Moreover, the sustained

overproduction of proinflammatory cytokines is a key

mechanism contributing to chronic inflammation and

progression in RA. This is underscored by the success of

neutralizing monoclonal antibodies against these cyto-

kines, or their receptors, such as those that block TNF or

IL-6, for effective treatment of RA patients.

RA pathogenesis is associated with T cell activation

and proliferation, leading to the secretion of cytokines

such as IL-2, interferon-γ, TNF-α and IL-4 [1,28-31],

which lead to a stimulation cascade in which other cell

types, such as B cells, are activated [32]. B cells are

found in the synovium and can differentiate into

antibody-secreting plasma cells, and produce a number

of cytokines such as IL-10, IL-6 and IL-35 [33]. B cells

also interact directly with other cells, such as T cells,

and serve as antigen-presenting cells to T cells. B cell

aggregates, and their associated cytokines and che-

mokines, may contribute to the formation of tertiary

lymphoid-like structures [34]. The role of B cells in RA

pathogenesis is demonstrated in the efficacy of rituxi-

mab, which eliminates circulating CD20+ B cells but ex-

erts less of an impact on plasmablasts [35] and serum

autoantibodies, with some variation according to the

specificity [36,37].

Macrophages are key effectors in RA pathogenesis

through the production of proinflammatory cytokines

such as TNF-α, IL-1, IL-6, IL-8 and granulocyte macro-

phage colony-stimulating factor (GM-CSF) [38-40] that

stimulate cells in the local microenvironment, including fi-

broblasts and osteoclasts, as well as in distant sites in the

body. Macrophages secrete cytokines that stimulate he-

patocytes to produce acute phase response proteins, such

as C-reactive protein. In addition, macrophages secrete

prostaglandins, leukotrienes, nitric oxide, and other pro-

inflammatory mediators with local and systemic effects. A

decrease in the number of macrophages in the sublining

of synovial tissue obtained by needle biopsy may serve as

an early biomarker of therapeutic efficacy in RA patients

[41]. Synovial fibroblasts secrete inflammatory cytokines

such as IL-6, IL-8 and GM-CSF, and produce proteases

and collagenases [30,42]. Activated neutrophils in the syn-

ovial fluid promote joint damage by releasing oxygen-

derived free radicals that depolymerize hyaluronic acid

and inactivate endogenous inhibitors of proteases [43,44].

In summary, distinct lymphoid and myeloid immune

cell types and their functions contribute to RA patho-

genesis. Technologies that probe the phenotypic and

functional status of a broad range of cell types may im-

prove cellular biomarker discovery for RA.

The CyTOF platform

Mass cytometry, using the CyTOF® platform (Fluidigm,

South San Francisco, CA, USA), relies on the use of anti-

bodies tagged with stable metal isotopes that are used to

stain cells, which are in turn analyzed by a time of flight

(TOF) mass spectrometer [45,46]. The mass detection

range of CyTOF® covers close to 100 mass detection chan-

nels (CyTOF® instrument release 1), and offers an increase

in the number of measurable parameters per cell, while

obviating the need to perform compensation across chan-

nels. Since most stable metal isotopes are absent or

present in low abundance in biological samples, the back-

ground signal associated with this approach is minimal.

In a typical CyTOF® experiment, panels of specific

metal-tagged antibodies measuring both surface and intra-

cellular markers are used to stain cells in a workflow simi-

lar to that of fluorescence-based flow cytometry (detailed

protocol available at [47]). Cell viability may be assessed

using rhodium- or iridium-conjugated DNA intercalators,

amine-reactive chelators (DOTA-NHS-ester) or cisplatin
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[48,49]. Cell suspensions are nebulized into single cell-

containing droplets, dried in a heated spray chamber and

introduced into an inductively coupled argon plasma

where they are atomized and ionized. The resulting ion

clouds derived from a single cell are analyzed by a TOF

mass analyzer. The signal intensity read out for each iso-

tope indicates a particular antibody, which in turn can be

correlated to levels of analyte molecules associated with

an individual cell [48]. Data from the CyTOF® instrument

are exported in the FCS file format and can be analyzed

with conventional flow cytometry software, such as FlowJo

(TreeStar Inc., Ashland, OR, USA), FCS Express (De Novo

software, Glendale, CA, USA) or using web-based data

analysis tools such as Cytobank [50].

A typical mass cytometry experiment contains up to 40

measured parameters per cell, yielding a high-dimensional

and quantitative analysis of complex cellular networks,

and may span multiple patient groups, conditions and

time points. The organization, analysis and visualization of

mass cytometry datasets are therefore both a challenge

and an active area of development. Manual gating is used

to verify reliable reporting of markers and to analyze bulk

cellular subsets. However, the analysis of multiparametric

data using biaxial plots and histograms is tedious, subject-

ive and often fails to reveal unexpected cell populations

'hidden' in high-dimensional data (such as cells expressing

unusual marker combinations outside of expected norms).

A number of algorithms have been developed or applied

to the mass cytometry platform to analyze these complex

datasets [51-53]. Here we provide brief descriptions of

some of these analytic tools.

SPADE

SPADE (spanning-tree progression analysis of density nor-

malized events) was one of the first algorithms developed

to analysis mass cytometry data [46,54,55]. In SPADE,

density-dependent downsampling and hierarchical, agglom-

erative clustering of cells are performed. Similar cells clus-

ter together and are arranged into a minimum-spanning

tree for two-dimensional visualization. Thus, SPADE pro-

vides an instant overview of relative marker expression

levels across all cell populations captured by the clustering.

The user can switch between markers and different sam-

ples analyzed. The advantages of SPADE are that it pre-

serves rare cell types, it can be used to explore the

expression of various parameters between clusters and it

offers the ability to compare clusters across samples. A

drawback of SPADE (and other related algorithms) is the

lack of reproducibility since data are randomly sampled

from the entire dataset.

CITRUS

At present, CITRUS (cluster identification, characterization

and regression) is perhaps the most important tool to mine

data for biomarker discovery initiatives. Similar to SPADE,

CITRUS identifies clusters of phenotypically similar cells

in an unsupervised manner and generates maps of cell

subsets based on hierarchical clustering [56]. Different stat-

istical tools are implemented in CITRUS, which permit the

generation of predictive models based on input data and

user-defined stratification criteria, such as patient clinical

outcome or disease activities. The cell cluster(s), which are

used to form the predictive model, can be traced, their

phenotype can be determined and cells of a particular clus-

ter can be further analyzed. The advantage of CITRUS is

that it provides a predictive model that can be used to

analyze or test newly acquired samples.

Principal component analysis

Principal component analysis (PCA) is an established

statistical tool that has been applied to mass cytometry

datasets [57,58]. PCA calculates linear vectors through

all measured parameters and identifies parameter combi-

nations that capture the most variance in the data as

well as relationships between samples. This approach de-

rives summary variables, called principal components,

that capture as much variation as possible in as few

terms as possible to facilitate dimensionality reduction

and data visualization. Its limitations are in its inability

to capture non-linear relationships and to fully separate

many distinct cell populations.

viSNE and ACCENSE

Two t-distributed stochastic neighbor embedding (tSNE)-

based algorithms are available to visualize high-dimensional

single-cell data; namely, viSNE and ACCENSE [59,60].

tSNE is a non-linear dimensionality reduction approach to

visualize CyTOF data. viSNE and ACCENSE generate

two-dimensional maps, similar to a biaxial scatter plot,

that reflect the proximity of cells to one another in high-

dimensional space.

Utility of mass cytometry for biomarker research

In combination with data analysis tools and algorithms,

mass cytometry is expected to facilitate the discovery of

cellular biomarkers. Based on CyTOF® data, immune cell

populations can be quantified at single-cell resolution

according to their phenotype and can be defined using

over 30 parameters. Antibodies that detect the phos-

phorylated states of proteins allow for the readout of

functional parameters after in vitro activation or 'treat-

ment' with drugs. Bodenmiller and colleagues [61] pro-

vide an example of how a combination of surface

markers and phosphoepitope-specific markers, in con-

junction with cell barcoding, can be applied to generate

more than 18,000 data points from a single blood sam-

ple. Another example of the utility of this platform for

biomarker identification is illustrated by Bendall and
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colleagues [46] in a study in which CyTOF® was used to

immunophenotype healthy human hematopoiesis and to

identify differential signaling in distinct cell populations

in response to cytokines and kinase inhibitors. Signaling

phenotypes among specific cell populations induced by

clinically meaningful physiologic stimuli were analyzed,

and signaling readouts were localized to pathway and

cellular subsets. This approach yielded a system-wide

view of signaling behaviors in response to drug action

and can be adapted to virtually any disease.

Some limitations to the mass cytometry platform prevent

its wide-scale adoption. These include the cost of equip-

ment and instrument maintenance. Moreover, light

scatter-based measures of cell size and granularity (forward

and side scatter) used for exclusion of cellular debris, cell

aggregates and discriminating lymphocytes from granulo-

cytes in flow cytometry, are not currently available. In

addition, metal reporters do not reach the sensitivity

achieved by phycoerythrin or allophycocyanin conjugates

used in conventional flow cytometry [52]. Sample collec-

tion speed is slower than in conventional flow cytometry

(roughly 500 events per second). Furthermore, roughly two

thirds of cells ejected from the mass cytometer nebulizer

do not reach the detector as ion clouds [53]. Finally, since

the cells introduced into the CyTOF® instrument are

atomized and ionized, recovery of cells for downstream

functional or transcriptional analysis is currently not

possible.

Mass cytometry analysis of solid tissues

Interactions between cells during normal and pathogenic

immune responses largely occur in solid tissues rather

than in the blood. However, tissue-based biomarkers are

more difficult to establish and to transfer into the clinic

as sampling requires significant intervention. Analysis of

the cellular composition of lymphoid organs and sites of

autoimmune attack will aid in understanding the patho-

genesis of human autoimmune diseases. The principle of

mass cytometry has been applied to immunohistochem-

istry and imaging analysis [62,63] to facilitate high-

dimensional analysis of tissue specimens. Secondary ion

mass spectrometry has been used to image antibodies

tagged with isotopically purified elemental metal re-

porters. This multiplexed ion beam imaging (MIBI)

technology is capable of analyzing up to 100 targets sim-

ultaneously and can be applied to the analysis of stand-

ard formalin-fixed, paraffin-embedded tissue sections.

MIBI has been used to image breast tumor tissue [62]

and may be applied to solid tissues important in auto-

immune pathogenesis, such as the bone marrow, spleen,

Figure 1 Mass cytometry identification of cell activation and signaling signatures in a rheumatoid arthritis patient treated with tumor necrosis factor-α

inhibitor. Whole blood was obtained from a rheumatoid arthritis (RA) patient with a responsive clinical outcome (American College of Rheumatology

criteria ACR70) prior to and 1 month following the first application of tumor necrosis factor (TNF)-α inhibitor (TNFi) therapy. A healthy donor was used

as a control. Whole blood cells were stimulated in vitro with 100 ng/ml TNF-α for 15 minutes at 37°C. Unstimulated cells from the same patient were

used as a control. Cells were stained with a panel of 19 metal-tagged antibodies specific to cell surface and intracellular molecules and analyzed by

CyTOF. SPADE (spanning-tree progression analysis of density normalized events) was used to cluster cells based on expression of cell surface lineage

markers. SPADE analyses shows the level of p38 phosphorylation across annotated cell subsets in unstimulated (top panel) and in vitro TNF-α stimulated

(bottom panel) cells in healthy donor (left), and RA patient prior to (middle) and 1 month following TNFi treatment (right). Each circular node represents

a phenotypically similar population of white blood cells, with the relationship between nodes reflecting the most similar phenotypes to adjacent nodes.

The node size represents frequency of that cell population and the node color displays the signal intensity of phosphorylated p38 expression according

to the scale. SPADE trees were generated in Cytobank [50]. NK, natural killer; rTNF, recombinant TNF.
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Figure 2 (See legend on next page.)
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lymph nodes, chronically inflamed tissues such as the in-

flamed synovium, central nervous system lesions in mul-

tiple sclerosis, glandular tissues in Sjögren’s syndrome,

inflammatory lesions in autoimmune vasculitis or skin

and kidneys in systemic lupus erythematosus.

Altered signaling response to exogenous TNF-α stimulation

after TNF inhibitor treatment measured in a whole blood

assay

Up to 40% of individuals with RA demonstrate an inad-

equate response to anti-TNF-α therapy [64-66]. An even

larger proportion of RA patients lose responses over

time due to drug resistance or adverse events. Predictive

biomarkers may enable identification of non-responders

before TNF-α inhibitor (TNFi) therapy is initiated, thereby

lowering costs and preventing unwanted complications as-

sociated with a therapy that would ultimately not prove

effective.

In a preliminary experiment, we utilized the CyTOF®

platform to analyze the patient immune response to

TNF-α prior to and after TNFi treatment. To under-

stand the mechanism of action of TNF blockade (TNFi),

we used CyTOF to analyze the key pathways activated in

response to TNF signaling and how the activation of

these pathways are modulated in response to successful

TNFi therapy in different cell subsets in whole blood,

prior to and following TNFi treatment. Whole blood

was obtained from a healthy donor (untreated) and an

RA patient prior to initiation of TNFi treatment. Both

subjects were matched in terms of age and sex. The RA

patient was receiving steroids and methotrexate at the

time of enrollment into the study and was initiated on

TNFi therapy (Humira). One month following the first

application of therapy, blood was obtained from the pa-

tient. The patient’s overall clinical outcome, measured at

3 months after the first TNFi application, was responsive

to treatment based on the American College of Rheuma-

tology criteria (ACR70 responder). Peripheral whole

blood from the healthy donor and the RA patient (pre-

and post-TNFi therapy) was stimulated with recombinant

TNF (rTNF; 100 ng/ml) for 15 minutes at 37°C. Unstimu-

lated cells from the same RA patient were used as a con-

trol. The cells were stained using a panel of metal-tagged

antibodies specific to 19 cell surface markers as well as

phosphorylated states of intracellular signaling molecules

and then analyzed by CyTOF. SPADE was used to cluster

phenotypically similar cells based on the expression of 19

cell surface lineage markers. Major immune cell subsets

(granulocytes, monocytes, B cells, natural killer cells, CD8

T cells, naïve CD4 T cells and memory CD4 T cells) were

annotated and displayed based on the expression of

lineage markers (Figure 1). The expression of phosphory-

lated p38 was analyzed among clusters within annotated

immune cell subsets in unstimulated and in TNF-α-

stimulated cells in the healthy donor and in the RA patient

prior to and 1 month following the first TNFi application.

A higher basal activation of the TNF receptor (TNFR)

pathway(s), reflected by phosphorylation of p38, was ob-

served in the RA patient. Signaling responses to exogen-

ous rTNF were greater in the RA patient than in the

normal donor prior to therapy (Figure 1). After a month

of TNFi therapy, both the basal activation of TNFR

pathways and the response to exogenous rTNF in the

patient dropped to levels that were comparable to those

observed in the healthy control. In addition, analysis of

cell cluster size in the unstimulated samples revealed

that the frequency of granulocytes and CD8 T cells was

higher in the RA patient prior to TNFi therapy, com-

pared with the healthy donor. One month following the

first application of TNFi therapy in the RA patient, the

size of cell clusters decreased in the CD8 T-cell com-

partment but not in the granulocytes in the RA patient.

Thus, SPADE was able to reveal quantitative as well as

qualitative changes induced by TNFi therapy in this

patient.

In addition to phosphorylation of p38, the activation sta-

tus of the TNFR pathway was also assessed by probing for

phosphorylated NF-kB and Erk1/2 levels (Figure 2). Levels

of phosphorylated NF-kB were moderately increased by

stimulation with rTNF and were more elevated in the pa-

tient versus the control sample in some cell subsets (nat-

ural killer cells and CD4 T cells) but not in others

(Figure 2B), while phosphorylated Erk1/2 levels (Figure 2C)

recapitulated changes seen in phosphorylated p38

(Figure 2A). The overall response to TNF-α in the healthy

donor was low but evident, characterized by a detectable

phosphorylated p38 response particularly in the granulo-

cyte compartment. A smaller response through MAP-

KAP2 was also detected, whereas Erk showed a low but

detectable response to TNF-α in healthy donors.

As expected, our analysis revealed that all three known

TNF-induced signaling molecules (p38, NF-kB, Erk1/2)

are phosphorylated upon rTNF stimulation in all cell

types to varying degrees (Figure 2) in a healthy control

(See figure on previous page.)

Figure 2 Histogram representation of the levels of phosphorylated p38, NF-kB and Erk1/2. (A-C) Levels of phosphorylated p38 (A), NF-kB (B) and

Erk1/2 (C) responding to in vitro stimulation with recombinant tumor necrosis factor (TNF)-α in healthy donors (top panel), and rheumatoid

arthritis patients prior to (middle panel) and 1 month following TNF-α inhibitor treatment (bottom panel). Lighter colored histograms indicate

higher median signal intensity. Within each box, upper histograms represent the stimulated sample; lower histograms represent the unstimulated

control sample. All plots were generated in Cytobank [50]. NF, nuclear factor; NK, natural killer.
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and an RA patient. The magnitude to which these signal

transducers phosphorylated was enhanced in the RA pa-

tient prior to TNFi therapy compared with the healthy

control or the patient post-TNFi treatment. The level of

activation of all three transducers returned to levels

comparable to those observed in the healthy control

after 1 month of TNFi therapy. TNF-induced p38 phos-

phorylation in the granulocyte subpopulations in the

whole blood of the RA patient was elevated prior to

TNFi treatment, and this level was comparable to that

observed in the healthy donor by 1 month post-TNFi

therapy (Figure 1).

Several explanations may account for these preliminary

observations. The attenuated signal post-TNFi may have

been due to in vitro neutralization of rTNF by the TNFi

drug present in the whole blood. The impact of the cyto-

kine environment in the blood may co-determine the

stimulation outcome in RA prior to treatment compared

with the control, whereby the decrease in inflammation

due to the effect of TNFi treatment reduced the levels of

TNF and other inflammatory cytokines that could account

for the decreased levels of p38, NF-kB and Erk1/2 phos-

phorylation after TNFi treatment in the RA patient. Lastly,

phosphorylation signals for p38, NF-kB and Erk1/2 may

peak similarly but at different time points; this possibility

is not accounted for in our preliminary experiment (RA

pre-treatment versus control). Work is underway to test

these different hypotheses and to extend these initial ana-

lyses. These preliminary data illustrate the potential of

mass cytometry to identify a previously unappreciated cel-

lular subset, such as granulocytes, that displays functional

differences between RA patients compared with healthy

donors. In future experiments, this analysis will be ex-

tended to additional subjects and staining for TNFR1/2

will be included to decipher which cell type has the great-

est response to TNF-α. Our ongoing efforts include the

application of CyTOF® to identify cell activation or signal-

ing patterns that may be predictive of clinical outcome in

response to TNFi treatment in RA patients.

Conclusion

Due to the high level of disease heterogeneity in RA and

the benefit to be gained from early treatment of patients,

the identification of robust biomarkers for diagnosis,

prognosis and prediction of successful therapies is para-

mount. Advances in immune phenotyping technologies,

such as mass cytometry, have introduced an unprece-

dented degree of cell subset resolution that now enables

comprehensive profiling of the phenotypic and func-

tional details of patient immune systems. The CyTOF

platform is expected to enhance and accelerate cellular

and functional biomarker discovery for RA and other

autoimmune diseases.
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