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Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosyn-

thesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from

mammograms.

Methods: A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes

were collected with IRB approval. The mass of interest on the images was marked by an experienced

breast radiologist as reference standard. The data set was partitioned into a training set (2282

mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test

set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing

the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at

prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072

mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of

non-uniformity in the ROIs across heterogeneous data was achieved using a background correction

method applied to each ROI. A DCNN with four convolutional layers and three fully connected

(FC) layers was first trained on the mammography data. Jittering and dropout techniques were used

to reduce overfitting. After training with the mammographic ROIs, all weights in the first three

convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly

initialized again and trained using the DBT training ROIs. The authors compared the performances

of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other

used their previously developed feature-based approach for FP reduction. The prescreening stage was

identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the

feature-based CAD system, 3D clustering and active contour method was used for segmentation;

morphological, gray level, and texture features were extracted and merged with a linear discriminant

classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive

slices centered at each candidate were passed through the trained DCNN and a mass likelihood score

was generated. The performances of the CAD systems were evaluated using free-response ROC

curves and the performance difference was analyzed using a non-parametric method.

Results: Before transfer learning, the DCNN trained only on mammograms with an AUC of 0.99

classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with

DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for

the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT

volume. The difference between the performances for the two systems was statistically significant

(p-value < 0.05).

Conclusions: The image patterns learned from the mammograms were transferred to the mass detec-

tion on DBT slices through the DCNN. This study demonstrated that large data sets collected from

mammography are useful for developing new CAD systems for DBT, alleviating the problem and

effort of collecting entirely new large data sets for the new modality. C 2016 American Association

of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4967345]
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1. INTRODUCTION

Deep convolutional neural networks (DCNNs) have been

successful in classifying natural scene images with consid-

erable complexity into thousands of classes.1 Using a deep

architecture, the DCNNs have the ability to decompose an

image into low-to-high level features inside a hierarchical

structure. In this analogy, the layers adjacent to the input layer

are more generic and the layers adjacent to the output layer

are more specific to the source image.2 The present study

exploits this property of the DCNN and aims to train the

generic layers using mammography and the specific layers

using digital breast tomosynthesis (DBT), thereby achieving

“transfer learning” for detection of masses.
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Mammography has been a standard two-dimensional (2D)

imaging modality for breast cancer screening for many

decades. Large clinical trials have shown that screening

mammography improves early detection and increases sur-

vival.3–5 DBT is a new modality for breast imaging in which

a quasi-3D volume is reconstructed from a small number

of low-dose mammograms acquired over a limited angular

range around the breast.6–8 The cancer detection sensitivity in

DBT has been shown to be higher than that in mammograms,

especially for dense breasts, because tissue overlap is reduced

and masses are better visualized. Because of less superposition

of structures, there is also potential for reduction in recall

rates with DBT. On the other hand, the masses appear similar

between DBT and mammography to a certain extent, with

differences in the overlapping tissue and the low frequency

background structures. Since DBT is an improvement over

mammography, it is possible that the similarities between the

two can be learned by the generic layers in a DCNN and

the distinctive features of DBT can be learned by the specific

layers. In DCNN training, the image patterns and features to be

recognized or differentiated are learned from the training data

and incorporated into the millions of parameters or weights.

Thus, a large number of samples are required to effectively

train the parameters without overfitting and, with more training

samples, the DCNN can acquire robust knowledge that is

more generalizable.9,10 This is a challenge given that DBT is a

new imaging modality and a collection of thousands of cases

will take time and resources. We therefore adopt the transfer

training approach by pretraining DCNN on an available large

mammography data set and then training on the DBT data

for the small number of specific layers. This kind of transfer

learning has been previously attempted between natural scene

images and medical images.11–14

Convolutional neural networks (CNNs) have been used

for microcalcification and mass classification in computer-

aided detection (CAD) for mammography previously15–19

and were shown to be successful at solving other medical

image pattern recognition problems.18–22 Advances in GPUs,

availability of large labeled data sets, and corresponding

novel optimization methods have led to the development of

CNNs with deeper architecture. The DCNNs have recently

shown success in various medical image analysis tasks such

as segmentation, detection, and classification in mammog-

raphy,23 urinary bladder,24 thoracic-abdominal lymph nodes

and interstitial lung disease,11,25 and pulmonary perifissural

nodules.26 Because of the local connectivity, shared weights,

and local pooling properties of DCNNs, feature learning, i.e.,

feature extraction and selection, is inherently embedded into

the training process. The availability of large mammography

data set coupled with the transfer learning capability and

efficient implementation of DCNNs provides an opportunity

to explore the potential application of DCNNs to learning

the complex and varied patterns of breast masses from

mammograms and improving CAD performance in DBT.

Commercial CAD systems have been widely accepted

in screening mammography. The growth of DBT use in

breast imaging clinics and the substantial increase in reading

time compared to digital mammogram (DM) (Refs. 27–30)

stipulate the need for development of robust CAD systems

that can handle the increased search space in DBT while

maintaining a low number of false positives (FPs). We have

previously developed a CAD system for mass detection in

DBT.31–33 In this work, we investigated the usefulness of

a DCNN with transfer learning from mammography data,

including digitized screen-film mammograms (SFMs) and

DMs, for the classification of true masses and FPs in DBT,

and compared its FP reduction performance with that of a

feature-based method in the CAD system.

2. METHODS AND MATERIALS

The two CAD systems for detection of masses in DBT

to be compared in this study are shown in Fig. 1. Module

A is common to both the feature-based CAD system and

the DCNN-based CAD system. An input reconstructed DBT

volume first undergoes preprocessing and prescreening of

mass candidates using a combination of first-order and second-

order based features. The mass candidates are then passed onto

the next module for FP reduction. Module B is our previously

developed feature-based FP reduction approach that extracts

morphological, gray level, and texture features and combines

the selected features with a classifier for discrimination of FPs.

Module C is the new DCNN-based FP reduction approach

that uses a trained DCNN to differentiate true masses and FPs.

F. 1. Flow chart of CAD systems using feature and DCNN approaches.

Module A: preprocessing and prescreening, which is a common module

for both approaches. Module B: conventional CAD methods using feature

extraction and false-positive reduction. Module C: lesion recognition and

false-positive reduction using DCNN.
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In the following, we will describe briefly the prescreening

process and in detail the transfer training of the DCNN as well

as the comparison of the performance of the DCNN-based

CAD system to that of the feature-based CAD system in an

independent test set.

2.A. Data sets

SFM and DM cases were collected in the Department of

Radiology at the University of Michigan Health System (UM)

with Institutional Review Board (IRB) approval. Additional

SFM cases were collected from the University of South Florida

(USF) digitized mammogram database.34 The mammograms

in the SFM-UM and SFM-USF sets were digitized using

a Lumisys 200 laser scanner with an optical density (OD)

range of 0–3.6 and a LUMISCAN 85 laser scanner with an

OD range of 0–4.0, respectively, with 4096 gray levels. All

SFMs were digitized at a pixel resolution of 50×50 µm and

were downsampled to 100×100 µm by averaging every 2×2

neighboring pixel. DM images at UM were acquired with

a GE Senographe 2000D FFDM system at a pixel size of

100×100 µm. The GE system uses a CsI phosphor/a:Si active

matrix flat panel digital detector and the raw images were

acquired at 14 bits/pixel.

The DBT data set included cases collected at UM and cases

at Massachusetts General Hospital (MGH)31,32,35 with IRB

approval of the respective institutions. At UM, the DBT cases

were acquired in craniocaudal (CC) and mediolateral oblique

(MLO) views with a General Electric (GE) GEN2 prototype

DBT system using a total tomographic angular range of 60◦,

3◦ increments, and 21 projection views (PVs). At MGH, DBT

cases were acquired in MLO view only with a prototype GE

DBT system using a 50◦ tomographic angle, 3◦ increments,

and 11 PVs. Both sets of DBTs (DBT-UM and DBT-MGH)

were reconstructed to 1-mm slice spacing and an in-plane

resolution of 100× 100 µm using simultaneous algebraic

reconstruction technique (SART),36 and the reconstructed

slices were outputted at 12 bits/pixel. The DBT-UM set

consisted of 186 views from 94 breasts with 179 masses, of

which 61 masses were malignant and 118 masses were benign.

The mass were either out of the field of view or occult in seven

views, resulting in a fewer number of masses than the number

of views. Two breasts had only single views. The DBT-MGH

set consisted of 138 views from 138 breasts, of which 87 were

malignant and 51 were benign. The details of the data sets

are described in Table I. Figure 2 illustrates examples of the

extracted region-of-interest (ROI) from the five data sets. All

the ROIs are processed with background correction method as

described in Sec. 2.D.3.

The data sets were partitioned into training and test subsets

for DCNN training and CAD performance evaluation. Images

from the same case were assigned to the same subset to keep

the two subsets independent. The mass in each view was

marked by a Mammography Quality Standards Act (MQSA)

radiologist with a 2D or 3D bounding box for mammogram

and DBT, respectively, as reference standard. The best slice

of each mass in the DBT cases was also marked. The number

of views, masses, true positive (TP) ROIs, and FP ROIs are

shown in Table I. For the training of the DCNN, heterogeneous

mass candidates from SFM, DM, and DBT were used. All

images or slices were downsampled to 200× 200 µm by

averaging every 2×2 adjacent pixel; ROIs of 128×128 pixels

containing the masses were then extracted. For DBT, ROIs

were extracted from the best slice plus two slices above and

T I. Data sets used for DCNN training and testing.

Data type

No. of

views

No. of

lesions

No. of TP

ROIs

No. of FP

ROIs

Total no. of ROIs after data

augmentation

Mammography–DCNN training

SFM-UM 1665 1802 1802 — 14 416

SFM-USF 277 322 322 — 2 576

DM 340 337 337 3 173 28 080

Total mammography

training set

2282 2461 2461 3 173 45 072

DBT–DCNN training

DBT-MGH 138 138 690 — 5 520

DBT-UM (training) 92 90 450 28 330 31 930

Total DBT training set 230 228 1140 28 330 37 450

DBT–CAD performance evaluation (independent test)

DBT-UM test set 94 89 1125 27 180 28 305

Note: For both TP and FP objects in DBT, 5 consecutive slices centered at the computer-detected object centroid or at

the radiologist-marked best slice (for the TPs in the training set) were used for each object. For the training set, each TP

ROI was augmented by rotation in 4 directions and flipping, resulting in 8 ROIs. The FP ROIs were not rotated or flipped.

For the test set, all mass candidates were obtained from the prescreening step and a mass candidate might be split into

multiple objects (ROIs). The entire set of available ROIs including mammography training, DBT training and DBT test

sets was given by the sum of the 3 boldface values, totaling 110, 827.
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F. 2. Example ROIs of 128×128 pixels in size extracted from images with a pixel size of 200×200 µm. Rows 1 and 2: SFM-UM set, rows 3 and 4: from

SFM-USF set, rows 5 and 6: DM, rows 7 and 8: DBT-MGH set, and rows 9 and 10: DBT-UM set. All the ROIs are background corrected.

two slices below. The TP class was represented by the ROIs

extracted from the radiologist-marked locations. The FP class

was represented by the ROIs extracted from the prescreening

step of the CAD systems (see Sec. 2.B) developed for DM

(Ref. 37) and DBT.33,35 The DCNN training set included

2461 lesions from 2282 SFM and DM views and 228 lesions

from 230 DBT views. To augment the training patterns, each

ROI was rotated and flipped to generate eight patterns. After

data augmentation, total mammography training set included

19 688 TPs and 25 384 FPs ROIs. For the DBT training set,

the FP ROIs were not rotated and flipped because of the

large number of FPs obtained from prescreening so that it

included 9120 TPs and 28 330 FPs ROIs. In total there were

over 82 000 SFM, DM, and DBT ROIs for DCNN training.

Testing was only performed in the DBT CAD systems. The

independent test set consisted of UM cases only with a total

of 94 views from 47 breasts with 89 lesions, of which 30

are malignant and 59 benign. Both TP and FP objects were

detected by the prescreening module. Five slices were obtained

from each detected object, resulting in a total of 28 305 ROIs,

of which 1125 were considered TPs when compared with the

radiologist-marked mass location. The DCNN trained with

transfer learning was evaluated by an independent test set of

DBT cases. The distributions of breast density, subtlety rating,

and the longest diameter of the masses in the test set are shown

in Fig. 3.

2.B. Prescreening

The prescreening stage of the CAD system identifies mass

candidates in the reconstructed DBT volume (Module A in

Fig. 1). This module is common to both the feature-based CAD

and DCNN-based CAD systems. For this step, the DBT slices

are further downsampled to a pixel size of 400×400 µm by

averaging every adjacent 2×2 pixel. The downsampled DBT

volume is preprocessed using a 3D Laplacian operator, and

the breast region is detected using a breast boundary detection

algorithm.38,39 The potential mass candidates are detected and

ranked using first-order and second-order based features as

follows. At every pixel location, the gradient field is calculated

over a circular region of 12 mm (30 pixels) in radius centered

at the pixel. Within the circle, three concentric annular rings

are defined and the gradient vector at each pixel is computed

and projected along the radial unit vector from the pixel to

the center pixel. The average radial gradient within each ring

is estimated over the pixels in the ring. The maximum of the

average radial gradients among the three rings is used as a

Medical Physics, Vol. 43, No. 12, December 2016
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F. 3. Histograms of (a) BI-RADS breast density categories, (b) subtlety rating, and (c) the longest diameter of the masses in the DBT test set (median

= 12.5 mm, range: 5.5–28.4 mm). A subtlety rating of 1 refers to the most conspicuous lesion.

first-order gradient field feature at the center pixel. The first-

order gradient field feature is calculated for all pixels on the

image and normalized to a range between 0 and 1 to form a 2D

gradient field convergence map. Similarly, a 3D gradient field

convergence map at every voxel is obtained by performing

the above procedures in 3D spherical shells in the breast

volume. The maximum within a local neighborhood of voxels

having gradient field convergence values above a threshold

of 0.3 in the 3D gradient field convergence map is identified

as a potential mass candidate location. For each identified

candidate location, a 12×12×5 mm box centered at that voxel

is defined. The Hessian matrix (H) containing partial second-

order derivatives is calculated and the eigenvalues of H , λ1, λ2,

and λ3 (λ1 < λ2 < λ3), are derived at each voxel in the box. Two

mean eigenvalue features, µλi (i = 1, 2), for the mass candidate

are obtained by averaging the corresponding eigenvalues over

the voxels in the box. A linear discriminant classifier is used

to combine the 2D and 3D gradient field convergence features

and the two eigenvalue features to generate a candidate-

likelihood score. By combining the first- and second-order

features of the mass candidates, the TP objects would acquire

higher ranking in the list of candidate objects and therefore

increase the chance of the true masses being kept as mass

candidates without retaining a large number of FPs.40 The top

N highest candidate-likelihood score locations are identified

as mass candidates and pass onto the feature-based or the

DCNN-based FP reduction module.

2.C. Feature-based CAD

In our feature-based CAD system,31,33 the mass candidates

identified at prescreening will undergo segmentation and

feature extraction in the DBT volume with a pixel size of

200×200 µm in the in-plane direction. At each mass candidate

location, a volume-of-interest (VOI) with a fixed in-plane

size of 51.2×51.2 mm and an adaptive size along the depth

direction is centered at that location.33 The adaptive size in

the depth direction is estimated from the object size obtained

by an initial 3D clustering. Three-dimensional active contour

segmentation is then performed within the VOI using the initial

object from 3D clustering for initialization.

In the feature extraction step, three types of features are

extracted from the segmented object: (a) morphological, (b)

gray level, and (c) texture features. Morphological features

include the volume of the segmented object, volume change as

a result of 3D morphological opening, surface area, maximum

perimeter, longest diameter, and compactness. Gray level

features include the gray level statistics, contrast, and histo-

gram features. Texture features are extracted using run-length

statistics on the rubber-band straightening transformed41

2D image of the object margin. A detailed description of

the features can be found elsewhere.31 A stepwise linear

discriminant analysis (LDA) method for feature selection

based on F-statistics is used to select the best features and

weights42,43 within each type of features, resulting in three

LDA classifiers. FP reduction is performed sequentially in

three steps, using thresholds based on LDA discriminant

scores from the morphological, gray level, and texture features

in this order.

2.D. DCNN-based CAD

2.D.1. DCNN architecture and hyperparameters

DCNNs are a type of artificial neural networks composed

of convolutional layers and fully connected layers within a

deep architecture. During training, a DCNN learns patterns

through the kernels in each convolution layer. The feature

maps in one layer are generated by convolving the kernels

with the feature maps in the previous layer and combining

them with weights. Each feature map is connected to an

activation function. The generality and the levels of abstraction

of the learned patterns can vary across the layers between

the input and output layers, depending on the design of the

local connectivity and shared weights. To achieve rotation and

translation invariance to the input patterns, the feature map

is subsampled through max-pooling.44 This is critical because

during prescreening of mass candidates, the mass is not always

centered. For the DCNN used in this study, max-pooling is

performed by taking the maximum of a patch of 3×3 pixels

centered at each pixel in the feature map with a distance (stride)

of 2 pixels to the neighboring pixels. Max-pooling selects the

most responsive invariant features to represent mass margins
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and spiculations that are important for mass detection. All

the convolution layers use rectified linear units (ReLUs) as

activation function given by f (x)=max(0,x). Normalization

within a local neighborhood of 3×3 regions along with ReLU

results in boosting of high frequency patterns such as mass

spiculations while dampening of homogeneous background

regions.

There are many possible architectural combinations for

DCNN and the selection of which for a given task depends on

the type and size of the input data. For the mass detection task,

we have designed a DCNN architecture inspired by the work

of Krizhevsky et al.45 on ImageNet46 as well as our previous

work on segmentation of bladder in CT urography24,47–51 and

detection of microcalcifications in DBT.52 The network in

Fig. 4 has four convolution layers (C1, C2, C3, and C4) with

two sets of pooling and normalization layers between C1 and

C2, and C2 and C3. The four convolutional layers have 32,

32, 32, and 16 filter kernels of sizes 11× 11, 7× 7, 5× 5,

and 5×5, respectively. The three fully connected layers, fca,

fcb, and fc2 contain 1024, 100, and 2 neurons, respectively. A

softmax regression layer is used to calculate the cross-entropy

loss during the training phase. All the weights are initialized

randomly by sampling from Gaussian distribution. A learning

rate of 0.002 was experimentally chosen and used for all the

layers. The - developed by Krizhevsky et al.45

was used for designing the DCNN architecture and training.

The DCNN is first trained on the mammographic ROIs to

differentiate the TP and FP classes. True lesions are labeled

as 1 and FPs are labeled as 0 in the training set. The DBT

training set is used as a validation set to monitor over-

fitting. The area under the receiver operating characteristic

(ROC) curve (AUC) is used as a performance metric for

the classification task during the training process. After

pretraining with mammogram ROIs, the weights in the layers

C1, C2, and C3 are frozen with learning rate set to 0. The

weights in the C4 and the fully connected layers are randomly

initialized again. The DBT ROIs from the training set are then

used to continue training of the DCNN.

2.D.2. Regularization of DCNN

Regularization of DCNN during training is achieved

through jittering in the input layer and dropout of nodes

(or neurons) in all hidden layers. For the input layer, the

probability of jittering is set at 0.2, i.e., from the input ROI

size of 128×128, a 115×115 ROI is randomly cropped for

training. The ROI is also flipped vertically with a probability

of 0.5. Dropout is a method of randomly dropping a node in

a hidden layer and all the input and output connections of

this node during training of each input training sample. The

dropout probability for all the hidden nodes is set at 0.5. The

method has been proven to reduce overfitting by preventing co-

adaptation of nodes.53 In addition to the jittering and dropout

techniques, the network when training on mammography data

is monitored for overfitting through validation on the DBT

training set.

2.D.3. Background correction

Data normalization is an important and data-dependent

process for DCNN training. In our application, we normalized

the data as follows. The DM images were accessed in raw

format to avoid dependence on manufacturer’s processing

method. The raw DM images were subjected to a sim-

ple inverted logarithmic transformation54 before background

correction. The DM and DBT images were downsampled

to a 200×200 µm image by averaging every 2×2 adjacent

pixel. The digitized SFM-UM and SFM-USF images were

F. 4. The deep CNN architecture designed for this study. The DCNN is composed of four convolutional layers, pooling, normalization layers, and three fully

connected layers. The input is 13 225 dimensional and the number of neurons in the consecutive convolutional layers is 380 192, 86 528, 18 432, and 7744.

The fully connected layers have 1024, 100, and 2 neurons for fca, fcb, and fc2, respectively. The architecture shown on the top is used during training with

mammography data. The architecture at the bottom is used during transfer learning with DBT data, for which the layers C1, C2, and C3 are frozen with learning

rate set to 0.

Medical Physics, Vol. 43, No. 12, December 2016



6660 Samala et al.: DBT mass detection using deep convolutional neural network 6660

downsampled to a 200×200 µm image by averaging every

4×4 adjacent pixel from the original 50×50 µm pixels size.

An ROI of 128×128 pixels centered at the object of interest

(mass or FPs) was then extracted from the downsampled

image. The five types of heterogeneous data (SFM-UM, SFM-

USF, DM, DBT-UM, and DBT-MGH) have different grayscale

distributions. To reduce this variability, all the ROIs are

subjected to background correction.16,55 This process also has

the advantage of correcting the variations in the background

gray levels that depend mainly on the overlapping breast tissue

and the x-ray exposure conditions. Initially, a background

image is calculated from the ROI,

B(i, j)=



L

dl

+
R

dr

+
U

du

+
D

dd



/



1

dl

+
1

dr

+
1

du

+
1

dd



,

where B(i, j) is the calculated gray value at pixel (i, j) of the

background image, L, R, U , and D are the average gray values

inside four boxes of size 8×8 pixels at the left, right, upper,

and bottom periphery of the ROI, weighted inversely by the

perpendicular distance of dl,dr ,du, and dd from the pixel (i, j)

to the respective boundary of the ROI. The background image

is then subtracted from the ROI to obtain the background-

corrected ROI. Figure 5 shows the gray level histograms of all

the pixels in the ROIs from the five data sets before and after

background correction.

F. 5. Histograms of the gray levels of all ROIs within each type of data.

The area under the histogram is normalized to 1 for all histograms. (a) Before

background correction and (b) after background correction.

2.D.4. Mass detection

The trained DCNN is incorporated into the DCNN-based

CAD system for FP reduction (Module C in Fig. 1). At the

prescreening step of the CAD system, the top 100 objects

with the highest likelihood scores are kept as mass candidates.

For each prescreened and ranked mass candidate location, a

128×128 pixels ROI at a pixel size of 200×200 µm is extracted

from five DBT slices centered at the object centroid. The ROI

from each slice is background corrected and input into the

DCNN network to obtain a score. The maximum of the five

scores from the five slices is assigned as the object score. These

objects may result in lesion candidates that overlap with one

another. As a final step, all objects are checked for overlap and

the objects are merged into one if the centroid of the bounding

box of one object overlaps with another. The maximum of the

individual object scores is retained as the lesion-likelihood

score of the merged object.

2.E. Performance analysis

2.E.1. Free-response ROC (FROC) analysis

The final set of retained objects after merging is compared

to the reference mass location marked by the experienced

radiologist. If the centroid of a detected object is inside the

radiologist-marked box or vice versa, the object is marked as

a TP. A FROC curve is used to assess the performance of mass

detection and localization. For the DCNN-based CAD, the

DCNN lesion likelihood score is used as a decision variable

to generate the FROC curve. For the feature-based CAD, the

LDA score from the texture features is used as the decision

variable to generate the FROC curve. Two sets of FROC curves

are generated: (a) lesion-based, where the same lesion imaged

in the CC and MLO view is considered to be a different target

for detection, and (b) breast-based, where the same lesion

imaged in the two views of the breast is considered to be a

single target and detection of one or both is considered a TP.

2.E.2. Non-parametric method for FROC comparison

The non-parametric method compares the performance of

two CAD systems using the difference in the areas under the

FROC curves as a performance metric.56,57 The method uses

bootstrap test to resample ranks of the CAD output scores

while making no parametric assumptions. For each sample, the

“bootstrapped” difference performance metric is calculated.

The distribution of the bootstrap difference metric
�

A∗
X
− A∗

Y

�

is then compared to the difference in the observed metric
�

ÂX− ÂY

�

. If the width of the calculated distribution is much

smaller than the observed metric, then the difference between

the methods is concluded as significant. The fraction of the

bootstrap metrics less than zero is the type I reject probability

p. The method inherently accounts for the correlation of CAD

scores within a patient case and also for unequal number of

CAD marks between two methods within a patient case. The

statistical significance of the performance difference between

the feature-based and DCNN-based CAD systems is estimated

from the breast-based FROC curves.
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3. RESULTS

3.A. DCNN training on mammography data

The DCNN architecture shown in Fig. 4 was trained

using about 45 000 ROIs (44% TPs and 56% FPs) from the

mammography data sets (Table I). The network was trained

for 5000 iterations; at a given iteration, the input ROIs were

randomly divided into minibatches of 256 samples. The ROI-

based AUC was estimated for each iteration during the DCNN

training process. The DBT ROIs from the training set were

used for validation as shown in Fig. 6. A training AUC of 0.99

was achieved at a validation AUC of 0.81. It is seen that the

AUC was relatively stable between 3000 and 5000 iterations.

The AUC at iteration 4070 was about the average and near the

mid point of this region. The weights at iteration 4070 were

chosen for transfer learning. The training of the DCNN was

performed on an NVIDIA Tesla K20 GPU with an execution

time of approximately 8 days, which included the output of the

DCNN status and the calculation of the AUC for monitoring

of the training process.

3.B. Transfer learning from mammography to DBT

The DBT training set included five ROIs from each mass

from the MGH and UM data sets and FPs from the DBT-

UM set. A total of about 37 000 ROIs (26% TPs and 74%

FPs) were used for training (Table I). At a given iteration,

the DBT training ROIs were again randomly divided into

minibatches of 256 samples, similar to the pretraining with

mammographic data. Since only a convolution layer (C4)

and the fully connected layers needed to be trained after

freezing the rest of the architecture and it was observed

by other investigators that fine-tuning of pretrained DCNN

models is typically robust when dropout-backpropagation is

used,58 no additional validation set was used for monitoring

at this training stage. Figure 7 shows the ROC curves and

AUCs of the DBT training set after transfer learning for about

1800 iterations. The ROI-based performance was obtained

by treating each ROI as a sample while the lesion-based

performance was obtained by taking the maximum DLNN

F. 6. Training of DCNN on mammography data and validation on the

DBT training data. The iteration at 4070 with a training AUC of 0.99 and

a validation AUC of 0.81 was selected for transfer learning.

F. 7. ROI-based and lesion-based ROC curves and their AUCs for the DBT

training set after DCNN transfer learning.

score of the five ROIs from each object as a sample for the

ROC analysis.

3.C. Performance evaluation

Figure 8(a) compares the lesion-based FROC curves after

the prescreening objects from the training set and the test

set were assessed by the feature-based and the DCNN-based

FP reduction modules (Fig. 1). For the DBT training set,

the feature-based CAD attained a maximum sensitivity of

85% at 3.6 FPs/view and the DCNN-based CAD attained

94% at 5.5 FPs/view. For the DBT test set, 99% of the

mass objects were detected at the prescreening stage with

60 FPs/volume. The feature-based CAD attained a maximum

sensitivity of 82% at 3.6 FPs/view and the DCNN-based CAD

attained a maximum sensitivity of 90% at 6.0 FPs/view. For

comparison, the performance of the DCNN trained with only

the mammogram ROIs without transfer learning is also shown;

its FROC curve on the test set was substantially lower than

the other two test curves. The breast-based FROC curves are

compared in Fig. 8(b). Only the results for the DBT test set

are shown. Table II lists the mean number of FPs per DBT

volume at several lesion-based and breast-based sensitivities

for the two CAD systems.

Figure 9 shows a comparison of the lesion-based test FROC

curves using the DCNN-based FP reduction module for the

subsets of malignant and benign masses and the entire test set.

A fourfold cross validation was also performed by combining

the DBT-UM and DBT-MGH cases, which were then split

into four subsets with the constraints that the proportion of

malignant and benign cases, as well as the ratio of UM and

MGH cases, were kept approximately equal in the four subsets.

In each fold, three subsets were used for transfer training of

the same DCNN pretrained with mammography ROIs and

one subset for testing. A test FROC curve using only the

DBT-UM cases in the subset was generated as the properties

of the test samples would be closer to those of the test FROC

curve in Fig. 8(a). Figure 10 shows the four test FROC curves

together with an average test FROC curve from the curves of

the subsets.
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F. 8. Comparison of the FROC curves for the feature-based CAD and

DCNN-based CAD systems on the DBT training and test sets. (a) Lesion-

based FROC curves: a lesion in each view was counted as an independent

target. The test FROC curve using the DCNN without transfer training is also

shown. (b) Breast-based FROC curves: each lesion in a breast was considered

to be TP if it was detected in either one or both views. The FP rate per volume

(or view) was plotted. FT: feature-based, NN: DCNN-based, Tr: training, Ts:

testing, TL: transfer learning.

Using the non-parametric method, the difference in the

areas under the FROC curves at a threshold of 2 FPs/view

[i.e., the figures-of-merit (FOM)] between the breast-based

FROC curves for the two methods is statistically significant

(p value = 0.027), as shown in Table III.

4. DISCUSSION

We trained a DCNN for mass detection using a deep

architecture with four convolutional layers and three fully

connected layers (Fig. 4). The DCNN was trained first

using mammography data from SFM and DM modalities and

subsequently underwent transfer learning with masses in DBT.

Both the mammography and DBT training stages had the

same output classes, true masses, and FPs. The heterogeneous

data used for DCNN training were matched to a consistent

gray level range. As shown in Fig. 5, the different gray level

distributions of the ROIs were adjusted to a common reference

T II. Mean number of FPs per DBT volume at several sensitivities from

the FROC curves of the DBT training and test sets.

Feature-based DCNN-based

Mean number of FPs per

DBT volume

Mean number of FPs per

DBT volume

Sensitivity (%) Lesion-based Breast-based Lesion-based Breast-based

Training

60 0.50 — 0.23 —

70 0.85 — 0.50 —

80 2.00 — 1.14 —

85 3.60 — 1.40 —

Test

60 0.96 0.49 0.71 0.05

70 1.29 0.70 1.06 0.07

80 2.70 0.97 2.94 0.29

85 — 1.44 4.60 0.34

90 — — — 0.82

range by background correction. The background correction

also has the advantage of reducing the non-uniformity of the

ROIs due to variations in the low-frequency gray levels from

overlapping breast tissue and x-ray exposure.16,55 To assess the

effect of background correction, we trained a smaller DCNN

with four convolution layers and a fully connected output

layer,59 where the first two convolution layers were connected

by max-pooling and normalization layers. We followed the

trends of the training and validation AUCs as the number

of iterations increased at several learning rates. The results

using this smaller DCNN indicated that normalization of

the data, i.e., background correction for the ROIs in this

study, could improve the stability of training and the trained

DCNN could generalize better in terms of AUC. Because

of the hyperparameter space and the numerous possible

combinations of parameters for both the with- and without-

background correction conditions, we did not attempt to

F. 9. Comparison of the lesion-based FROC curves for the DCNN-based

CAD system on the entire DBT test set and the malignant (30 masses

in 34 views) and benign (59 masses in 60 views) DBT test subsets. NN:

DCNN-based, Ts: testing.
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F. 10. Comparison of the lesion-based FROC curves for the DBT-UM

cases in the test subsets obtained by using the DCNN trained and tested by

fourfold cross validation. An average curve of the four curves is also shown.

investigate the effect of background correction on performance

(AUC) again with the large DCNN shown in Fig. 4.

Training of neural networks usually requires a validation

set to monitor overfitting, and even more so with DCNN

that is a very large network with hundreds of thousands of

parameters. When the DCNN performance for the validation

set reaches a stable plateau, training should be terminated or

overfitting to the training samples may occur. Some interesting

results can be observed from the training of DCNN with

mammography data in Fig. 6, which shows that, at a training

AUC of 0.99, the DCNN reached a validation AUC of 0.81 on

the DBT training set. In other words, the average sensitivity

of detecting a randomly chosen DBT mass was about 80%

when a DCNN is trained only with mammography data. This

indicates that there is a substantial degree of similarity in

the low-level features, as recognized by the DCNN, between

masses in mammography and DBT. However, DBT has some

unique patterns that are different from those on SFM and DM.

The reduced overlapping of the fibroglandular tissue in DBT

results in clearer mass margins than those in mammography

and more homogeneous background. These detailed features

are learned by training the last (C4) convolution layer as well

as the three fully connected layers with DBT masses during

transfer learning. Moreover, due to the nature of limited-

angle tomography, DBT suffers from intraslice and interslice

artifacts. These artifacts in DBT contribute to differences in

the appearance of masses from those in mammography. This

preliminary study shows that the transfer learned DCNN after

training with the DBT data set achieved an ROI-based and

T III. Comparison of the breast-based FROC curves for the DBT test

set between the feature-based CAD and the DCNN-based CAD by the

non-parametric method. The FOM is the difference in the area under the

FROC curve between the two methods at a threshold of 2 FPs/view; CI: 95%

confidence interval.

CAD FOM CI p value

Previous feature-based CAD
0.325 (0.0334, 0.6055) 0.027*

Current DCNN-based CAD

lesion-based AUC of 0.90 and 0.92, respectively (Fig. 7),

which was a substantial improvement from the AUC of 0.81

before the additional training with DBT. Further studies are

needed to assess the differences between mass features in

mammography and DBT and to investigate if the knowledge

from one modality can be learned and transferred to another

modality more efficiently and effectively by the DCNN.

In the CAD systems, the potential mass candidates are

detected through a combination of first- and second-order

features at the prescreening stage. The top N candidates

from the ranked list based on the candidate likelihood

score are passed to the DCNN. Figure 8 shows that the

lesion-based test FROC curves for the two methods are

comparable in differentiation of individual masses from FPs

but the DCNN-based method can differentiate TPs and FPs

more accurately than the feature-based method in breast-

based detection performance. The non-parametric method in

Table III shows that the difference in the breast-based FROC

curves between the two methods is statistically significant.

The DCNN-based method does not require the segmentation

and feature extraction steps compared to the feature-based

method; it is therefore less dependent on the specific methods

and parameters designed for these steps. Nevertheless, the

DCNN-based method depends on the availability of a large and

diverse set of training samples as well as on the architecture

and regularization method of the DCNN to learn the complex

patterns of masses. The DCNN-based method might be less

influenced by lesion-specific features than the feature-based

method, resulting in a better chance of recognizing a mass

in at least one of the views and a significantly better breast-

based detection performance. We will continue to collect a

larger DBT data set for training and testing the systems and

further investigate the learning and generalizabilities of the

two methods.

Figure 11 shows examples of mass ROIs in the training

set, for which the DCNN failed to correctly train in one

or both views. In case#1, two lesions appeared within the

128×128 pixels ROIs. The lesions were seen clearly in the

CC view, but overlapped in the MLO view. The CC-view mass

had lower score and the MLO-view mass had a score closer to

1. Case#2 had microcalcifications on a mass and both views

scored very low, probably because there were very few mass

examples with microcalcifications in the training set and the

DCNN did not learn the pattern well. In case#3, the mass

appeared larger in CC view, which might yield the higher

score than the smaller mass in MLO view. The recognition

of small mass near the breast boundary may be improved if

more training samples with similar features can be included

in the training set. Figure 12 shows examples of mass ROIs

from the test set. In case#4, even though the mass was highly

spiculated, only half of the mass was imaged in the field of

view and the DCNN could not recognize the pattern, resulting

in very low scores. In case#5, the candidate location of the

object in the CC view detected at the prescreening step was a

few slices off the mass center so that the best slice of the object

was missed and the scores in all five slices were relatively low.

The object in the MLO view was correctly detected resulting

in a relatively higher DCNN score. Case#6 is a good example
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F. 11. Examples of TPs from the DBT training set. The DCNN was trained

to give a score of 1 for TPs and a score of 0 for FPs. Each ROI is 128×128

pixels, extracted from DBT slice of 200×200 µm pixels size. Each lesion

was extracted as five slices centered at the prescreening object centroid

location. The lesion likelihood score shown was the maximum of the five

DCNN scores. In case#1, two lesions were connected and appeared clearly

in CC view and had a low score, but appeared as a single overlapped lesion

in the MLO view and obtained a high score.

that the DCNN correctly identified the mass with a high score

in both views.

Fotin et al.60 reported 89% sensitivity at 3.25 FPs/

volume for 344 DBT volumes with suspicious and malignant

lesions. For 123 patients with malignant lesions from three

centers, Morra et al.,61 showed a performance of 89%

sensitivity at 2.7±1.8 FP/volume. Schie et al.62 used a data

set of 192 patients with 49 patients having at least one

malignant mass to develop CAD method for malignant masses,

resulting in 79% sensitivity at 3 FPs/volume. These studies

reported the lesion-based detection performance for malignant

masses. In comparison, our study obtained 80% sensitivity

at 2.94 FPs/volume for 94 DBT volumes with 89 lesions

(30 malignant and 59 benign).

There are limitations in this study. The DBT test set is not

large enough to reliably analyze the performance difference

between malignant and benign masses. Note that the FROC

curves in Fig. 9 may not be generalizable to the population

due to the small number of malignant cases and the CADe

system was trained using both malignant and benign masses.

The DBT was acquired with a prototype system, the geometry

of which is different from clinical systems. The effect of

the number of projection views and tomographic angular

range on the performance of the CAD systems for masses

F. 12. Examples of TPs from the DBT test set. Case#4 and case#6 were

biopsy-proven to be invasive ductal carcinoma and case#5 was fibrocystic

disease. The lesion likelihood score shown was the maximum of the DCNN

scores from the five slices. In case#4, the lesion was close to the chest wall

and only part of the spiculated mass was seen on the right side of the ROIs;

the DCNN failed to recognize the mass and gave very low scores for both

views.

has yet to be investigated in detail.63–65 This study shows

that a convolution-based deep learning technique can be

used to detect masses equally well or better than a feature-

based method. With accumulation of a larger set of DBT

data, we plan to conduct a detailed study to understand

the extent to which mammography data can help a DCNN

learn representative mass patterns observed in DBT. The

effect of DCNN training with and without transfer learning

will be studied. Furthermore, DCNN-based and feature-based

methods might have different strengths and weaknesses. We

will explore the potential of developing a CAD system that

utilizes the complementary information from both methods to

further improve mass detection in DBT.

5. CONCLUSION

Unlike previous studies in which natural scene images

were used for transfer learning to identify specific patterns

in medical images, in this work we demonstrated that

mammography images can be useful for pretraining of a

DCNN for mass detection in DBT. The similarity between

masses in mammography and DBT can be observed from

the ability of the DCNN in recognizing masses in DBT

with an AUC of over 80% when trained solely on masses

from mammograms. We also showed that the DCNN-based
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CAD system outperformed the feature-based CAD system for

breast-based performance and the difference was statistically

significant. The DCNN-based FP reduction has the potential to

replace or substantially augment the segmentation and feature

extraction steps in the CAD system.
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