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We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de
Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined
analogously to the AdS/conformal field theory correspondence, our methods compuyEittidean stress
tensor of the dual. We compute the masses of Schwarzschild—de Sitter black holes in four and five dimensions,
and the masses and angular momenta of Kerr—de Sitter spaces in three dimensions. All these spaces are less
massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to
the degeneracy of possible dual field theories. Our results in general dimensions lead to a codjegture:
asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity
Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormaliz€g@roup
equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The
RG evolution of thec function is then related to changes in accessible degrees of freedom in an expanding
universe.
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I. INTRODUCTION niscent of the computation of conserved charges in a confor-
mal field theory(CFT). If de Sitter space is dual to a Euclid-
There is no good local notion of energy in a gravitatingean CFT[6—10] defined in a manner analogous to the AdS/
spacetime. Nevertheless, there is a notion of mass, or tot@FT correspondencgll,12 we are computing the energy
energy, which can be computed from the effects of matter omnd charges of states of the dual.
spacetime geometrl]. Heuristically, the deviation of the We use our stress tensor to display the asymptotic confor-
metric and other fields near spatial infinity from their form in mal isometries of dgand compute the central charg® of
the vacuum provides a measure of mass, angular momentutine symmetry algebra. In three dimensions, with a positive
and other conserved charges. Equivalently, these charges ce@smological constant, there are no black holes, but there is
be computed from the asymptotic symmetries of a spacea spectrum of spinning conical defe¢fs3]. We derive these
time; e.g., the eigenvalue of an asymptotic timelike Killing solutions as quotients of g&nd then compute their masses
vector will give a measure of mass. (M) and angular momental). The conical defects aress
There are two basic obstacles to applying this well-massive than de Sitter space. Remarkably, naively enteying
understood philosophy to de Sitter space. First, there is nb, andJ into the Cardy formula of a hypothesized 2D CFT
spatial infinity—the asymptotic regions of de Sitter space arelual exactly reproduces the entropy of the cosmological ho-
Euclidean surfaces at early and late temporal infinify)  rizon of these spaces. Related uses of the Cardy formula to
[2]. Second, there is no asymptotic Killing vector that is study dS entropy appear in work by Pafk3] and, more

globally timelike. recently,[14]. Here we point out several subtleties that face
In this article, we will evade these obstacles by computinghis reasoning, and some potential resolutidns.
the quasilocal stress tensor of Brown and Y8 on the We proceed to compute the masses of the

Euclidean surfaces &, and by using this quantity to de- Schwarzschild—de Sitter black holes in 4 and 5 dimensions.

fine a novel notion of mass, and other charges appropriate téee[15] for related discussionsWe find that de Sitter

the asymptotic symmetriésOur methods are strongly remi- space is more massive than the black hole spacetimes. In
fact, this is a qualitative feature necessary for de Sitter en-
tropy to have an interpretation in terms of the degeneracy of

*Electronic address: vijay@endive.hep.upenn.edu a dual field theory defined in the AdS/CFT mode. As Bousso
'Electronic address: jdeboer@wins.uva.nl has emphasized, the entropy of de Sitter space is an upper
*Electronic address: dminic@vt.edu bound on the entropy of any asymptotically de Sitter space-

Other interesting approaches to defining mass in de Sitter space
include [4] and[5] which investigate possible positive mass theo-
rems. The latter works define mass by using timelike conformal 2Other approaches to de Sitter entropy have been suggested in
Killing vectors of de Sitter space. [16-19.
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time [20]. Since field theories generically have entropies thaHere M is the bulk manifolddM * are spatial boundaries
increase with energy, a dual description of dS entropy shouldt early and late timegy;; is the metric in the bulk of space-
map larger Schwarzschild-dS black holes into states of lowefime, andh,,, andK are the induced metric and the trace of
energy, precisely as we find here. Indeed, the largest blacke extrinsic curvature of the boundaries. In de Sitter space
hole in de Sitter spacéthe Nariai black hold21]) has the  the spacetime boundari@s" are Euclidean surfaces at early

least mass. . o oMt o
Following Boussd20] we expect that asymptotically de and late time infinity. The notatiorfi;,, -d°x indicates an

Sitter spaces with entropy greater than de Sitter entropy ditegral over the late time boundary minus an integral over
not exist. Therefore, since our mass formula increases mondpe early time boundary which are both Euclidean surfdces.
tonically with entropy, we arrive at a conjectuteny asymp- The extrinsic curvature boundary term is necessary to allow
totically de Sitter space whose mass exceeds that of de Sittarwell-defined Euler-Lagrange variation.

space contains a cosmological singularity. It will be convenient to define a length scale
Given a holographic dual to asymptotically de Sitter
space, the trace of our stress tensor computes the dual renor- /d(d—1)
malization group(RG) equation. We therefore arrive at a I= oA 2

remarkable picture: RG evolution of the dual is time evolu-

tion in an expanding univeréeThe evolution of the central |n terms ofl, the vacuum de Sitter solution to equations of

charge in the dual is directly related to the changing numbepotion derived from Eq(1) is

of accessible degrees of freedom in spacetime. The field

theoryc-theorem is related to properties of the Raychaudhuri ds?= —dt?+12 cosf?(t/l)(dﬂﬁ) 3

equation in gravity, in analogy with the properties of holo-

graphic RG flows in the AdS/CFT correspondefi28-26.  where equal time sections atespheres. The same space
We conclude the paper with a discussion of prospects foadmits a coordinate system where equal time surfaces are

finding a holographic dual to de Sitter space. The material iff|at:

this article has been presented at a variety of conferences and

workshops(see the AcknowledgmentsWhile the text was L .
being prepared, we received a number of unpublished works ds’=—dr*+e*"'dx’=—[—dy*+dx’], 4
addressing various related aspects of de Sitter phy2ids Y
Il. BOUNDARY STRESS TENSOR, MASS AND with TE[—OO,"FOC] while ne (0,00]. This patch onIy covers
CONSERVED CHARGES half of de Sitter space, extending from a “big bang” at a past

horizon to the Euclidean surface at future infinity. By replac-
To date there is no completely adequate proposal for meang r by — r a patch which covers the other half of de Sitter
suring the mass of asymptotically de Sitter spaces. The clagpace(from past infinity to a future horizorcan be obtained.
sic work of Abbott and Deser remains the basic techniquepne will refer to these two patches as the “big bang” and the
[28], but is a perturbative approach measuring the energy ofpig crunch” patches. Finally, an inertial observer in de Sit-
fluctuations. In AdS space, the Brown-York boundary stresser space sees a static spacetime with a cosmological hori-
tensor[ 3], augmented by counterterms inspired by the dual<on:
ity with a CFT [29-31], led to a particularly convenient
method of computing the mass of asymptotically AdS space- 2
time. Here we argue that a similar approach applies to de dsz=—<1— -
Sitter space. !
In d+ 1 dimensions, spaces with a positive cosmologica

constant solve equations of motions derived from the action, ) .
g diagrams are presented in Hawking and Elf$ and refer-

1 41 ences therein.
lg=— med x=g(R+2A) We can formally “Wick rotate” from a positive to a nega-
tive cosmological constant by the analytic continuation
1 (om* —il. This formal transformatiorisometimes accompanied
+% M- dxyhK. () by additional Wick rotations of some of the coordinates
takes patches of de Sitter into patches of anti—de Sitter space.
For example, the static patb) rotates to global AdS. Like-

3As we will see below, we could have chosen to define the cIasW'TQ'e’ rEd_ef'mr_]geT” - r/l and Carryjng out some formal f”ma'
sical stress tensor of de Sitter space with the opposite sign. WitwtIC contln'uatlo'ns gives the Pomcavaftch of AdS. Tracklng
this definition, we would find that de Sitter space has a lower mastl€S€ continuations through the classic computations of prop-
than the black hole spacetimes and our conjecture becomes a po§itties of AdS spaces gives a powerful method of inferring
tive mass conjecture for non-singular asympototically de SitteSOMe aspects of de Sitter physics.
spacetimes, i.e., that de Sitter space itself has the lowest mass
among such spaces.

4As this paper was being typed, the same point was made by °We follow the conventions of Brown and Yofg] for the bound-
Strominger[22]. ary terms and those ¢80] for the bulk term.

2

-1
dt?+ 1—|—2> dr2+r2dQ3_,. (5

he relations between these coordinate patches and Penrose
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A. A finite action glect it here. Se¢29,32 for a detailed discussion of this
In general the actiofi) is divergent when evaluated on a issue in the framework of the AAS/CFT correspondence. It

solution to the equations of motion, because of the largdvould be interesting to repeat the analysig 8] to derive
volume at early and late times. For example, the late timé® countertermg9) for general dimensions from the Gauss-

region of the inflationary big bang patch makes a divergenf0d@zzi equations for spaces with a positive cosmological
contribution to the action. Specifically, if we cut time off at a consStant. Likewise, the analysis of logarithmic divergences
large timet, the leading term in the 3 dimensional action !N [32] should be extended to de Sitter space.
(d+1=3) is

B. Boundary stress tensor
-1

I +finite (6) In AdS space, the Brown-York prescriptidi3,30] was

| = 1 j d?xe?/!
87G used to compute a quasilocal boundary stress tensor that
measures the response of the spacetime to changes of the

which diverges as—. (The same applies to the early ime p,,nqary metric. We can carry out an analogous procedure
region of the inflationary big crunch patgiMottola and Ma- i, 4e sitter space to compute a Euclidean boundary stress

zur [33] have shown that the results of Fefferman and Grajengor on the spacetime boundary. First, write the spacetime

ham([34] and Henningson and Skendeff29] on the asymp-  atric in Arnowitt-Deser-MisnetADM) form as
totics of spaces with a negative cosmological constant can be

extended to spaces with a positive cosmological constant. dgzgijdxidxi

Combining their results with the reasoning[i9,30 shows 2o

that the divergences of the actidfh) can be canceled by =—Nfdt“+h,,(dx*+V#dt)(dx"+V*dt). (10)
adding local boundary counterterms that do not affect the ) . ) )
equations of motion. Thenh,,, is the metric induced on surfaces of fixed time, and

For example, in three dimensions the improved action choosingu* to be the future pointing _unit normal to these
surfaces, we can compute the extrinsic curvature

1 1 .
— 2 —
I=lg+ 5= &M+d x\/ﬁl— K,=—h,Vu, (11
1 1 and its traceK. (Here the index orn,, is raised by the full

+n 7d2x\/ﬁ|— (7) metric g;;.) The Euclidean quasilocal stress tensor of de
maJom Sitter space is given by the response of the action, evaluated

has the same solutions as but is finite for asymptoti- O € space of classical solutions, to variations of the
) ymptot boundary metric. We can evaluate these variations either on

cally de Sitter spaces. Indeed, the counterterms in(EQg. | late time bound tting the st A
clearly cancel the divergent terms of the bare action in infla 2N €arly or fate ime boundary, getling the stress tensors

tionary coordinates. In analogy with AdS, if we place bound-

ary conditions requiring asymptotically dS spaces to ap- -|-+;w:i_5l
proach the de Sitter background sufficiently quickly at early Jh oh,,
and late times, the divergences of the classical action will
cancel. _ KA — K hAr — (d_l)h,w
In all dimensions the action has a class of divergences that 87G |
are powers of the conformal time coordinageappearing in |
Eqg. (4). In 3, 4 and 5 dimensions these are canceled by the _ GrY (12)
counterterms (d=2) ’
1 1 2 4
| =—f d2x\hL +—f d?xvhLy, (8) v 2 9
T 8mG ) mt " 8wG o~ ot T Jh oh,,
] _(d-1) 12 . o 1 v (d—l)hw
o 2(d=2) ©) = gag, (KR

The second counterterm only applies whieh1>3. HereR B | GHY 13
is the intrinsic curvature of the boundary surface, and calcu- (d—2) ’ (13

lations are performed by cutting off de Sitter space at a finite

time, and then letting the surface approach infinity. In oddwhere the term proportional tG*”, the Einstein tensor of
dimensions there is one additional divergence that is logathe boundary geometry, only appears wteth1>3. The
rithmic in the conformal timey. This divergence cannot be last two terms in Eqs(12) and (13) come from variation of
canceled without including an explicit cutoff dependence inthe counterterms in Eg8). To obtain the boundary stress
the counterterm action, thereby leading to a conformatensor we evaluate E¢L2) at fixed time and send the time to
anomaly. In the situations we study the anomaly and thénfinity so that the surface approaches the spacetime bound-
associated logarithmic divergence vanish and so we will neary. The two Eqs(12) and(13) appear to give different stress
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tensors because of the relative signs of terms. In fact, in 41
empty de Sitter space they are evaluating identical Q= fﬂd P\onHERT,,. 17
guantities—the difference in signs occurs because the extrin-

n our computatiorp will always be the coordinate associ-
dted with the asymptotic Killing vector that is timelike inside
Rhe static patch, but spacelike &t . It would be interesting

to compare this notion of a conserved charge in de Sitter
space to that defined by Abbott and Deg2S].

An important difficulty facing the definition of mass in de
ter space is the absence of a globally timelike Killing
ctor. However, as is evident from E®), there is a Killing
Ps%ctor that is timelike inside the static patch, while it is
. ; ) . acelikeoutside the cosmological horizon and therefore on
in Egs. (12) and (_13) with i the ) opposite sign as 7= Any space that is asymptotically de Sitter will have such
(—2ih) 81/6h,,,. This alternative sign does not change 5, asymptotic symmetry generator. We can adapt the coordi-
any essenpal physms—we_ will point out the slightly different nates(16) so that “radial” normaln* is proportional to the
interpretations that follow in various places. relevant (spacelik¢ boundary Killing vectoré“. Then, we

Itis worth working out some examples of the Stress tensop,ge that an interesting and useful notion of the niass
which we will have use of later. An equal time surface of theof an asymptotically de Sitter space is:

inflating patch(4) in 3 dimensions is the infinite Euclidean
plane. Evaluating the stress tengb®2) on this surface gives

and late time surfaces. For this reason, we will simply dro
the = and useT,,=T"*” in the examples we study. Note
also that there are some sign differences between(Ej.
and the quasilocal stress tensor in AdS spg8@. These
arise, following Brown and York3], from some differences Sit
between the treatment of timelike and spacelike boundarie%e
Since we are working on the Euclidean surfac& at we
could equally well have chosen to define the stress tenso

M= #5 d"tpJoNe, e=n“n'T,,, (18)
s
THY= — 1 e—2t/|+ . e—2t/|:0. (14)
887Gl 87GlI . - .
where we normalized the Killing vector in E¢L7) as &*

Here the bare stress tensor canceled exactly against the counN,n*. Likewise, we can define momenta
terterm. By contrast, in global coordinates, the boundary

stress tensor of d9s P, = j; dd—lx\/;ja’ ja= 0rapn  To. (19)
et/ 1 0 >
™ :87TG|3 cosR(t/1)\ 0 1/sirfo)’ We compute this formula on a surface of fixed time and then
send time to infinity so that it approaches the spacetime
1 ot boundaries af *.

(15 Below we will investigate the meaning of the de Sitter
stress tensor and conserved charges in various dimensions.

whereT is the trace of the stress tensor. Notice that the stress
tensor vanishes exponentially for . [Il. THREE DIMENSIONAL COSMOLOGICAL
SPACETIMES

T= 242Gl cosht/l)’

C. Mass and other conserved charges A. More on classical solutions

In a theory of gravity, mass is a measure of how much a \ye seek an interesting class of solutions te12dimen-

metric deviates near infinity from its natural vacuum behav—iona gravity with a positive cosmological constant on

ior; i.e., mass measures the warping of space. The boundajyhich to test our stress tensor and definition of mass. In 3

stress tensof12) computes the response of the spacetim&imensions black holes only exist when there is a negative

action to such a warping and thereby encodes a notion Qfogmoiggical constant, but when>0 we can find a class of
mass. Inspired by the analogous reasoning in AdS Spacg,inning” conical defects which we will refer to as the

[3,30], we propose a notion of mass for an asymptotically d&er_ge sitter spaces following Pafid3]. These spaces

Sitter space. We can always write the metii¢, on equal  haye peen discussed befaisee, e.g.[36,13,17), but we
time surfaces in the form will derive them below as quotients of g3 or convenience

h  dx“dx’=N2dp2+ do?+Nad we will set the qle Sitter sca_le to 1€ 1) and will restore it
pdXEAXT =N, dp™+ oap(d$7+ N3 dp) later by dimensional analysis.
X (d¢pP+N2dp) (16) Three dimensional de Sitter space is the quotient

SL(2,C)/SL(2,R), and any solution of the field equations
where the¢? are angular variables parametrizing closed surdooks locally the same. Thus the general solution will locally
faces around an origin. L&t* be a Killing vector generating look like SL(2,C)/SL(2,R), but can be subject to various
an isometry of the boundary geometry. Followir&j30] we  global identifications. In particular, we can consider solutions
can define the conserved charge associated tas follows.  of the formI'\SL(2,C)/SL(2,R) for some discrete subgroup
Let n* be the unit normal on a surface of fixpdand define I' of SL(2,C). If the discrete subgroup is generated by a
the charge single element oEL(2,C), there are two possibilities. Up to
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conjugation, the generator can be of the form
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The Kerr-dS metric derived from this reads

a 0 1 a (r2+r2)(r2 —r?
. 2 = 2
(O ql) or (0 1) (20 ds? = dt
The second case appears to correspond to solutions that look r2
like the inflationary patch4), but with the complex plane + dr?

. . . . 20 ,2\(p2 _ 2
replaced by a cylinder. We will restrict our attention to solu- (retro)(ri—ro

tions that correspond to identifications of the first type.

An element of dg=SL(2,C)/SL(2,R) can be written as

u ia o
M=|. —1|, uutaB=1l, a,BeR, (21
iB u
in terms of which the metric is simply
ds?=dudu+dadg. (22)
SL(2,C) acts onM as
a b d - 03
M — c d M = ) (23

Setting q=exp(w(r _+ir,)), the identificationsl" im-

poses on d$are, in terms of the two by two matrix param-

etrization, given by

e2'n’ir+u

U ia
(lﬂ U)~<iﬁe—2wr

i eZ’JTr - )
. (24

Ue— 2qrir 4

2
ror_
+r2| dp+ — dt) (28)

r2

which looks very similar to that of the Bados-Teitelboim-
Zanelli (BTZ) black hole[37] of 3D gravity with A<0.

There is a horizon at=r_ of circumference zr_. The

metric can be continued t¢>r2 , where the roles of and

r are interchanged, so that the metric looks like

r2

P=— dr2+r?
(r2+r2)(r>-=r?)

2
ror_
dep+ — dt)

r2

(r2+r2)(r2—r?)
+

5 dt?. (29

r

At large |r| this resembles the region close To- in the
Penrose diagram of dSAltogether, the Penrose diagram of
the Kerr—de Sitter space is similar to the Penrose diagram of
de Sitter space, with static patches of the fq&8), and two
regions near past and future infinity. N&ar the metric(28)
becomes

To achieve such an identification, we parametrize the two by

two matrix as

( u e\ [e+?J1-apB ie"%a
| igeT-?

i u e“”‘f’\/l—aﬁ) @9

and take¢ to be a periodic variable with period=2 The
coordinatesy, B have to satisfya8<1.
The metric of Eq.(25) is of the form
ds?=[r2 —apB(r2 +r?)]d¢?+ ... (26)

from which we see that in the regiomg>r2 (r% +r2)~*

the circle parametrized by becomes timelike. Therefore,

we should remove this unphysical region.
The region GsaB=<r2(r2+r2)~* with «,8>0 can be
parametrized as

s 5]

1
Jr2+r?
(a1 t) [ZoeZ iar bt t 2 o2
e+t r24r2 jer-4-"+trd —r
jer-otrt /r?+_r2 efi(r+¢+r_t) /r2+r?7 ’

(27)

2

dsz~—d—r2+r2(d¢2+dt2) (30)
r

and the spacelike slices are cylinders. In contrast to the case
of dS;, the points at— * <« of the cylinder are not part of
spacetime. The topology of Kerr—de Sitter spac®is S,
whereas the topology of global de Sitter spac®isS?.

The metric(28) withr_=0

2

d52=—(r2+—r2)dt2+—(r2Olr 2)+I’2d¢2 (31)

+

is a conical defect, with deficit anglerd1—r ), describing
a world with a positive cosmological constant and a pointlike
massive observer. When =1 we reproduce global dSAs
in AdS;, it is interesting to ask whether the spacetimes with
r,>1 (in effect, “conical excesseg"make sense. In AdS
the AJS/CFT correspondence tells us such spaces should be
unphysical, so we might expect that the situation in @S
similar.

Another interesting limit is . — 0, where the deficit angle
becomes zr. In this limit, the parametrization we used so far
is inadequate. A convenient alternative is

u ia elv\1+1t? ie' -t
i u/ | ie "%

e "1+t?) 32
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Here, bothy and ¢ are periodic variables. The metric de- of large fixedr which therefore lieoutsidethe cosmological
rived from Eq.(32) reads region accessible to the observer creating the conical defect
in Eq. (31).
1 ) PP, An equal time surface of the conical defect spacetimes
ds*=— mdt +(1+t9)dep +ridys. (33 outside the cosmological horizom*1./8Gm) has a metric

r2
The geometry represents a torus that is contracted to a circle ds?=| ——8Gm
ast—0. The metric for—o<t=<0 is a kind of big crunch 12

solution, the metric for &t<« is a big bang type solution. | h hi ; q
The topology in each case is that of a solid two-torus, exactlyVe €an evaluate the stress tenébg) on this surface an

dt®+r2de>. (36)

the same as that of the BTZ black hole. compute the maskl8); each step is almost identical to the
More general big bang/big crunch solutions exist, with a@n@l0gous AdS computatiofi80]. Asr — e (recallr is time-
metric of a form identical to Eq29), like now) we find
5 B 1 BGm_BGm_
dszz— t dt2 M—% dﬁT—ﬁ—m. (37)

(t2+r2)(t2—r2)

Setting &m=1 we find that d§ is assigned a mass of
2ot (2-r2) 1/8G.
+ 2 dre. Surprisingly, we are finding that the conical defects have

lower mass than pure de Sitter space. We might interpret this
(34  as follows. Even if the matter making up the defects itself
has positive energy, the binding energy to the gravitational
[Herer is periodic, and so the solution cannot be continuechackground can decrease the total energy. In particular, a
through a horizon unlike Ed29).] It would be interesting to  conical defect “swallows up” a part of the spacetime and
see whether there exists a change of coordinates which takﬂfiereby appears to reduce the net amount of energy stored in
this metric to a form similar to the static patch of de Sitterthe cosmological constant.
space. An important difference is that we now require that The computation of the Brown-York boundary stress ten-
both r and ¢ are periodic variables. Therefore, the metricsor for the general Kerr—de Sitter spacetime parallels the
cannot be extended tor  <t<r, . Fort<—r_ the metric  analogous computation for the BTZ black h§89]. Specifi-
(34) is again some kind of big crunch solution, with a torus cally, if
contracting to a circle, whereas foer , it is a big bang like
solution. T M
The metric for the Kerr—de Sitter solution can be conve- ds?=— r—zdr + I_Z(dT +dx%) + dgundx"dxY (38
niently rewritten as

+12

rar_
do+ 2 dr)

one finds that the mass and the angular momentum are given

r2 (8GJ)? by the following expressions:
dg— | som- =+ B8 ) 4 y g exp
12 4r? | 4 .
2 (8G6J)2) M=g5-c| 9 Eégrr'l' T 990~ 57909 (39)
+|8Gm- — r?
2 4r2
and
+r2 8GJdt+d¢>2 (35) I 1 r
r2l ——— .
2 - — -
2r I:)X 87TG dX | 5g’TX 2| &rﬁgrx} (40)
B. Mass and angular momentum of Kerr-dS spacetimes where in the case of the Kerr—de Sitter solution
We begin by studying the Kerr-dS metric with=0. sGml*

These are the conical defect spacetimes appearing in Eq. 60 =
(31), approaching empty de Sitter wheG&=1. For these

spaces, there is a basic subtlety in evaluating the boundary. ' .
stpress tensor of dsthat enters t?]le candidate ?nass formula\%'th x=1¢ and¢<[0,27]. Thus the final result is

(18). In the regionr <Iy8Gm, equalt surfaces of Eq(35) M=m, P,=J. (42)
approach the cosmological horizorather tharZ = at early

and late timep By contrast, whem>1/8Gm, r becomes As a cross-check, note that we recover the nMss1/8G of
timelike while t is a spatial direction, and largesurfaces de Sitter space if we s€t=0 andm= 1/8G.

approachZ “. Since we propose to define the stress tensor Our computation of the mass and angular momentum of
and mass af *, we will evaluate these quantities on surfacesthe Kerr-dS spaces is strongly reminiscent of the techniques

— 99,=8Gm, 49,4=—4GJ (4]
r
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of Euclidean conformal field theory. The massive spinningSL(2,C) isometry group on the coordinates via H@3).
defect intersects a point on the Euclidean surfaceZ at  From this we get the relevant Virasoro action in the different
which is inside the cosmological horizon and excised frompatches. Notice that the actual real generators are of the form
the exterior region. We find the charges carried by the defect|, + oL, whereL, is the complex conjugate &f . For the
performing a contour integral around this excised point. Thisylobal patch we get

computation mimics the usual CFT procedure of inserting an

operator at the origin around which we integrate to compute i ” tanht ”
— ! - | H
charges. Ly 5€ (cot0+ Sno n 5€ sinéd,
IV. CONFORMAL SYMMETRIES AND ENTROPY OF dS ;4 1 .
—5e '$(cosht + cosé sinht) 4, (46)
We will now employ the boundary stress tensor developed
in the previous section in the study of the symmetry group of ) 1 1
asymptotically d$ spaces. We will first study th8L(2,C) L :'_(9 + Zc0sd.— —singtanhtd 4
isometry group and then the group of asymptotic conformal 0727 2 ) t (47
symmetries.
i o tanht 1 6o 1 i
We will set the de Sitter scalgo 1, restoring it as needed X (—cosht +cos@ sinht) 4, . (48)

by dimensional analysis. In Eq&1),(22) we indicated how
dS; can be represented as the group manifold
SL(2,C)/SL(2,R). We can represent each of the three met-
rics for de Sitter space that we discussed eafligftating, L ——9 (49)
global and staticin terms of the matrixM. Global coordi- -1 z
nates for d§ (3) correspond to parametrizirg as

In the inflationary patch we obtain

1
L0=§at—z&z (50

( cosht singe'¢ i(sinht+ cosht cos&))

i (—sinht+ cosht cos6) cosht sinfe "¢ ) o

3 L,=z0,—z°9,—e <9, (51
with induced metric ds?= —dt®+ costt(d?+sirf6dé?).  and in the static patch

The big bang inflationary patct4) corresponds tax>0.

This is parametrized as 1 :
P Loi=— 5 (1-r3)Y%e (g -2ra))

( e'z |et)
M=|_ b — ir :
i(e"'—ezz ez +§(1_r2)71/2etf|¢(9qu (52
=ds?
1 [
= —dt*+e?dzdz (44) Lo=50t 594 (53

Similarly, one can parametrize the big bang/big crunch and 1
inflationary patches corresponding to<0, >0, and 8 Li==—(1-r?)Y2e "¢+ 2r4,)
<0. A static patch5) is covered bye>0,8>0. The matrix 2r
M is parametrized as

e'¢r iety1—r2
M = .
in—t [1_,2 —i¢ —
lemyl-r e In particular, we see that in the static patEy;+Ly=2¢; .
=ds°

ir ,
—5(1—r2)_1lze_t+'¢(9¢. (54)

B. Asymptotic conformal symmetry

2 12 1 5 2o Brown and Henneaul38] specified boundary conditions
=—(1-r9dt"+ pdr tredes. (45 for asymptotically AdS spaces that admitted a well defined
' algebra of diffeomorphisms. These continue to boundary
SL(2.C) action conditions at future or past infinity of dSdefining an as-

’ ymptotically de Sitter geometry. Working in the inflating co-
One convenient feature of the parametrization in terms obrdinate systen{4) we obtain that an asymptotically ¢S
the matrixM is that it is easy to describe the action of the space has a metric that satisfl@§)]
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g2l generate dilatations of the boundary. As we will see later, if
9+-=—— *t0(1), g++.9--=0(1), there is a holographic dual to de Sitter space, this leads to a
correspondence between the renormalization group of the
g..=—1+0(e 2™, g.,,g_ ,=0(e3"). (55) dual anq time translation in de Sitter space. .
We will compute the central charge of the asymptotic con-
The diffeomorphisms that respect these conditions are giveformal symmetry using the methods[&0]. We have shown
in terms of functionsé*(z") and ¢ (z7), and take the in this section that there is an asymptotic group of conformal
asymptotic form10] symmetries. However, as we will see, the acti@his not
left invariant by these conformal transformations; there is an
anomaly produced by the procedure of cutting off the space

2

I
z+—>z+—§+—5e e 56 o regulate divergences and then removing the cufdthis
anomaly is intimately connected to the logarithmic diver-
|2 gences discussed below E®). Such divergences and the
z‘—>z‘—§‘—5e‘27"ai§+ (57)  resulting conformal anomlies were discussed for asymptoti-
cally AdS spaces if29,32.] The stress tensd@fL.2) computes
el the change in the action to variations of the boundary metric.
eT"eeT"+7((9+§++&,§‘). (58 Hence we can measure the central charge of the conformal

symmetry group of dg$by computing the anomalous trans-
Jormation of this stress tensor under the diffeomorphisms
(56)—(58), which produce the transformed metii59). We
showed in Eq.(14) that the boundary stress tensor of the
inflating patch vanishes. After the diffeomorphisms
(56),(57), the boundary stress tensor becomes

To understand the meaning of these diffeomorphisms, co
sider the metricy,, induced on an equal time surface of
large 7 in Eq. (4). To leading order inr, Egs.(56) and(57)
produce a conformal transformation of this metric. The re-
sulting conformal factor iny,, is undone by the effective
Weyl transformation induced by E¢68), leaving the leading

I
asymptotic metric unchangedO]: T,,=— Rai&, T__=- m&%g—. (62)
2
d2— —d2+e2"'dzdz + I_(&s £5)(dz)? Using the standard formulas for the anomalous transforma-
27 tion of the stress tensor in a two dimensional conformal

|2 theory, we read off the central charge — 31/2G, which has
+—=(R &) (dz) (590 the same formal dependence on the cosmological length
2 scale as the central charge of Ad$he negative sign dof is
We | f his that th . fnot problematic here since we are dealing with a classical
e learn from this that the asymptotic symmetry group Ofgyesg tensor. If, as metioned before, we had chosen to define
dS;, subject to the boundary conditiofs9), is the wo di- 5 gyress tensor with the opposite overall sign as

mensional Euclidean conformal group, which contains th%_ 21\h) 31/5h,,,. the resulting object would of course have

Itzti)llrandeg:]e; g:icgfséfgwib:r\ﬁ ::n?]esubg]r%l;% gg?gfnﬂéltlhe ‘positive central charge under conformal transformations.
y alBe Y " The same result for the central charge is obtained by exam-

analytically C(_)ntinued to arrive at a_\/irasoro symmetry .alge'ining the trace of the stress tensor in global coordinates as
bra, but we will not present the details here. Clearly, a S|m|la|:[_>C>O (15). Remembering thal = — (c/247)R, whereR is

analysis can be C"’%”'ed out to show that _th(_erg IS & conformq e scalar curvature of the spherical boundary, we again find
group of asymptotic symmetries at past infinity also. o= —31/2G

In summary, the asymptotic symmetry group of de Sitter The analysis outlined above can be repeated in four and

_space_is th_e conformal group. Interestingly, time translat_ior}ive dimensions. We can compute the Brown-York stress ten-
n Fhe inflating patch of de Sitter space is re"?‘t.ed to th_e dlla'sor on the spac.etime boundary, and the anomalous variation
tation generator of the conformal group. Explicitly, the isom- !

. . : . of this tensor for five dimensional de Sitter space will yield a
etry generato(50) in the static patch shows that a dllatat|on central charge. However, the absence of such an anomaly for

of the boundary can be undone by a time translation. It 'Sour dimensional de Sitter space prevents use of this tool in

also illuminating to rewrite the isometry generatd#9)— . ; .
(51) using the conformal time introduced in E@). They Eggﬁ case. All computations proceed in analogy to those in

become:

7 C. Brown-York, Cardy and Bekenstein-Hawking

Loi==0z, Lo=—59,=20;, The Kerr-dS spacetime85) have cosmological horizons
giving rise to a Bekenstein-Hawking entrof39—-41]

Li=—2z9d,—2%d,~ n°d;. (60)

2
It is then clear that agy— 0, reaching the boundary of de SngS:@ \/(8Gm)+ \/(8Gm)2+ (8G9 _
Sitter space, the isometries reduce to standard conformal 4G 2

transformations of the plane, whilg, and the conjugate, (62
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In particular when)=0, the horizon is at=18Gm and the 1 ) — 1 .

entropy isS=l8GnM/2G. As illustrated in the previous L0=5(ml+|J), L0=§(ml—|J). (64)
sections(also se€q33,9,10,19) there is an asymptotic con-

formal algebra in dgin detailed analogy with the AdS  (also sed[10] for details relating the Brown-York stress ten-
symmetry algebra uncovered by Brown and Hennd@8  sor to the Virasoro generatorahenJ=0, naive applica-

Therefore, if there is a holographic dual to de Sitter spacesgn of a Cardy-like formula for the asymptotic density of
we might expect it to be a Euclidean conformal field theorygiates of a unitary CFT,

[9,10]. Alternatively, the dual theory might be in fact a
Lorentzian conformal field theory with a Euclidean signature oL o/,
Virasoro algebra. In addition, Strominger has emphasized Sc=2m [0 oA o (65)
that the results of Brown and Henneaux can be understood as 6 6
saying that states of any well defined quantum gravity on
AdS; transform in representations of the conformal groupdives the entropy
and that the same applies todS

If there is a duality between de Sitter space and a CFT it /8Gm
is not yet on a solid footing—we neither know how to realize S=l oG
de Sitter space in string theory, nor how the gravitational
data could be related to a dual. However, it might be naturajn exact agreement with the entropy of the conical defects
to suppose that in analogy with AdS, the dS stress tensor i®1) (also sed14]).5
related to the stress tensor of a dual. Indeed, the actual defi- Now observe that the spinning Kerr-dS Spacetimes give
nition of spacetime conserved charges in E43),(18),(19) T

(66)

is in f | | h dard definit : ise to complex eigenvalues fbg andLy. A CFT with these
IS in formal analogy to the standard definition of conserveqgg ong right energy levels therefore cannot be unitary. Nev-

charges in a Euclidean CFT. In effect our treatment excises g aless we naively apply a Cardy-like formu6) and
point onZ* where the static patch meets future or past i”'find that '

finity and the contour integral in Eq17) is carried out
around this point. We might imagine that from the perspec- - —

tive of a dual theory the operator responsible for creating the S=271 /w+ 20 /M (67)
spacetime state is placed at this excised point and our for- 12 12
mula computes the charges of the state after mapping the

plane to the cylinder. 27l (8GJ)?
- . . e ~ v
However, in making such an identification there are sev :f (8Gm) + \/(86m)2+ _

eral subtle issues. First of all, there are various possible sign E

flips that may be relevant. For example, if we want to follow

the radial quantization analogy given above, the Euclideal .

time coordinate obtained by continuation out of the staticq-he complexl_p elg_enval_ues suggest that the Cardy formula
atch flows in the wrong direction dt*. (After mapping to cannot be V"’?“d’ since it does not generally apply to non-

P ; SrRA unitary theories, but we have nevertheless exactly repro-

the plane it flows towards the radial origin where the opera-

: = “duced the Kerr-dS entropi2).
tor onZ* would be inserted rather than towards radial infin- ;
ity.) For similar reasons, CFT stress tensorsZonandZ - In fact, there is a further subtlety. The complete Cardy

that describe the same space might be related to our dS str formula for the asymptotic density of states of a unitary 2D

tensor with opposite signs. Issues of this kind can be solve FTis:
properly if an actual technical definition of a dS/CFT corre-
spondence is devised. Here we content ourselves with the Sc=27r\/E(Lo—c/24)+27r\/E(fo—c/24) (69)
following tempting numerological observation. 6 6

The considerations above, coupled with Strominger’s .
well-known observations regarding the entropy of the BTZand we might expect large corrections whieg,L,~ c/24.

black hole[42], suggest that the entropy of Kerr-dS spacesg, dS, M=1/8G and soL,=L,=1/16G=|c|/24 and so
could be explained by applying a Cardy-like formula to ajt js syrprising that dropping thie|/24 shift still gives the
CFT with left and right energy levels measured by the €igen=right" answer for the entropy. The important point is that
values of thel; andL, conformal generators in static coor- the entropy of d$(and of the conical defecdtscales linearly
dinates, as defined in E¢3). From their definition, we see

that thesd_ andL, eigenvalues are related to the mékg)

and angular momentuifi9) by %We have placed absolute value signs aroendecause in our
definition of the spacetime stress tengsr0. As we mentioned

o . above there are several subtle issues in relating the signs of the
Lot+Lo=Im, Lg—Lg=iJ. (63)  spacetime stress tensor to possible duals and one hopes that these

issues could be resolved given a technical definition of a full-
fledged duality. Regardless, the numerological observation made

Formally, this gives here remains interesting.

(68)
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with the central charge. We have in fact found that in genericdegrees of freedorf¥4,45. It is worth examining how this
CFTs with a central charge, when Ly~c/24, the degen- might be reconciled with the proposition that a Euclidean

eracy of states behaves as conformal field theory may be dual to de Sitter space, since
‘e any local field theory has an infinite number of degrees of
d~e (70 freedom. The picture emerged above is that de Sitter space

with a non-universal coefficient. Also, if the CFT dual to  Should be described by an ensemble of states ith L,

ds; is related to the D1-D5 CFT which was dual to AdS =|c|/24._ The finite degeneracy of such states would account
one might be able to udd duality to show that the formula for de Sitter entropy(This is reminiscent of46].) Likewise,

(65) applies even wheh y~ c/24. states of lowelLq contribute to ensembles that describe the

Actually, in the above discussion we have been somewhdtlassical conical defects. In this picture it is natural that the
imprecise regarding the Hermiticity conditions and realitycon'cal defects and Kerr-dS spaces have masses smaller than

" that of dS.
conditions onlL andLy. As one can see fr(T)m Eqe52)- But Wsﬁat about states with the real part lof>|c|/24?
(54), the L satisfy the Hermiticity condition.,=—L. On  These correspond to spacetimes with mass bigger than that
the other hand, the eigenvalues given in E6f}) are not  of ds,. Consider such a universe, which is asymptotically
compatible with this Hermiticity condition. The reason is dS; at early times and in which the mass form(d®) atZ ~
that cpnventionally, the energy or mass is t_he eigenvalug,easures a magel >1/8G. It is likely that such a space
associated to the operaterid;, while the mass is computed gy|ves to a singularity and is not asymptotically de Sitter—
from the Brown-York tensor using thﬂ Killing vector. In ke in the future. Hence, most states, having Rg(
our case, the operatofid; is —i(Ly+Lo), as is clear from  >|c|/24, would not lead to de Sitter—like evolution and
Egs.(52)—(54). Therefore, we could have identifiéh with  therefore the specification of de Sitter boundary conditions
—i(Lo+fo)v and iJ with —i(l-o—fo), which givesL, Wwould restrict the dual theory to a finite number of states. In
=i/2(ml+iJ) andLy=i/2(mI—iJ). At the same time, the turn this implies that the conical parametés81<<1.
modes of the stress tensor as we defined it would not be
identified withL,, but rather withiL . This implies that the V. HIGHER DIMENSIONAL de SITTER SPACE
central charge should have been equal-il /2G. Putting AND A MASS BOUND

these values fokg,Lo andc into the Cardy formula repro- - \we can test the picture of de Sitter entropy that emerged
duces the Kerr-dS entropy; they are also identical to the valy, the previous section by examining what our mass formula

ues obtained from a Chern-Simons theory analysis by Par’éays about black holes in higher dimensions. Widenl

[13]. The central lesson to be learned here is that while re< 3 e action(1) admits Schwarzschild-dS black hole solu-
lating a Lorentzian bulk to a Euclidean boundary there argjons of the form

factors ofi and unusual reality conditions which will be im-

portant to understand for the definition of a possible dS/CFT d2= —V(r)dt2+V(r) " tdr2+r2dQq_,, (73)
correspondence.

It is interesting to note that similar conclusions can be s 2
reached by naively continuing the AdS result§4®] to dS V(r)=1- 2Gm _ 2Ar 1 2Gm T (74)
by complexifying the scald:—il . The central charge arid, rd-2 d(d—-1) rd=2 |2

eigenvalues become imaginary, but conspire to correctly give
the entropies of the de Sitter conical defects in a naive apThis space has horizons at locations whé(e)=0.
plication of the Cardy formula. Whenm=0 we recover static coordinates for empty de
Finally, the expression for the Brown-York mass of aSitter space with a single cosmological horizorr atl and
conical defect allows us to compute the Hawking temperaan entropyS=19"2V,_,/4G whereV,_, is the volume of
ture from the first law of thermodynamics, the unit d—2) sphere. Asnincreases, a black hole horizon
B appears, increasing in size with Simultaneously the cos-
dE=TdS (72) mological horizon shrinks in size, pulled inwards by the
and the fact thatE=,%8G, while the entropy isS gravitational attraction of the black hole. As a result there is
— y71/2G. (We have writteny?=8Gm,) By considering the largest black hole, the Nariai solution, which occurs

variations overy we deduce that when
dE _ [ 1 )[d=1)(d—2)]@e
=48~ 21 (72 m_mN_(dG) 20 79

as it should b¢43,40,41. In the limit wheny=1 we obtain  For this critical choice of mass, the black hole and cosmo-
the correct expression for the Hawking temperature of déogical horizons coincide at a radiug=(d—1)(d—2)/2A
Sitter space. =12(d—2)/d, giving rise to a Bekenstein-Hawking entropy

Banks has emphasized that the finite entropy of de Sitteof S=19"2V,_,(1—2/d)(@~2/24G. Spaces withm>my
space leads us to expect that quantum gravity in a univerdeave unacceptable naked singularities. The Nariai solution
with a positive cosmological constant has a finite number otan also be reparametrized @sg., sed53])
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ds?= —W(r)dt2+W(r)‘1dr2 A bound on de Sitter masses
(d—1)(d—2) Bousso has shown that, under suitable positive energy
+ d (76)  conditions on matter fields, the entropy of de Sitter space is

T op d—2»
2A an upper bound on the total entropy that can be stored in a

space with a positive cosmological constf2®,49. Above
2Ar? 1 dr? . we have shown that our measure of mass increases mono-
(d-1) |_2 77 tonically as the entropy increases, and argued that it would
be natural to map this quantity into the energy of states in a
As we noted above, the Nariai solution has a smaller endual field theory. The entropy of de Sitter space is then un-
tropy than that of de Sitter space. Indeed, the sum of théerstood as the degeneracy of such states. Now, consider a
entropies of black hole horizons, cosmological horizons angpace which is asymptotically de Sitter—like in the past, but
matter fields cannot exceed the entropy of de Sitter spacayhich has a mass measured by Etf) exceeding the mass

W(r)=1-

given suitable energy conditions on the mat2g]. of de Sitter space. From a field theory perspective an en-
We can compute the masses of the black h6I& using ~ semble with this larger energy would have a larger entropy.
Eq. (18). In four dimensions we find that Therefore, in view of the de Sitter entropy bound, we con-
jecture the following: Any asymptotically de Sitter space
My=—m. (78  whose mass as defined in Eq. (18) exceeds that of de Sitter

space contains a cosmological singularilyote that spaces
So dS has a vanishing mass according to our formula whilewith masses less than or equal to de Sitter space may still be
the Nariai black hole ha,= — (1/3G/A). In five dimen-  Singular for other reasorfs.

sions the mass formula becomes A potential counterexample to our conjecture is provided
by the negative-mass Schwarzschild—de Sitter spacetime, in
3712 37m which the timelike singularity always remains within a single

Ms= 36 4 (79  cosmological region. However, this space is nakedly singular

and the Cauchy problem is actually not well defined—hence
it is unclear whether the space can be admitted into consid-
eration. In addition, small fluctuations are likely to lead to
evolution in which the singularity propagates along the null
cone of the past cosmological horizon cutting off the “lower
Pnangular" region outside the cosmological horizon in a Pen-
rose diagram of de Sitter spate.

(Note that this result differs in sign frofii5].) So the mass
of dSs is 271%/32G, and, pleasantly, the mass of the 5D
Nariai black hole is 0. This is parallel to the three dimen-
sional case where the biggest conical defect had a mass
zero.

If there is a CFT dual to dSand dS, defined in the style
of the AdAS/CFT correspondendé&1,12,6—10, the masses
that we have computed translate into the energies of a dual
Euclidean conformal field theory. Generically such theories Finally, we would like to consider the meaning of the

have entropies that increase with energy. Therefore, if theholographic[SO] UV/IR relation[51] in de Sitter space. Our
are also to reproduce the decreasing entropy of larger blackiscussion is motivated by a possible dS/CFT correspon-
holes, these spaces should map into ensembles of decreasighcd 6,8—14 in the manner of the AAS/CFT dualif9,10].
energy. Our resultér8), (79) have precisely this property. In | analogy with the AdS/CFT correspondence the prescrip-
this regard, the fact that the 4D masses are negative need n@n for the computation of the boundary stress tensor, as
be worrisome because there can easily be a shift in the folyresented above, leads quite naturally to the relation between
mula relating energies to entropy. the trace of the stress tensor and the RG equation of a puta-
It is also interesting that the numerical mass of de Sittetive dual field theory. In particular, the precise relation be-
space in all three examples that we have studied is the sam@een the generators of dilatations on the boundary and the
(up to a sign as the numerical mass of AdS spaces in thegenerator of time translations in the bulk, as discussed in
same dimensiof80]. This may be an indication that if duals Sec. IV B, points to a natural relation between the RG flows
to de Sitter space exist, they may be related to the dualsf a possible dual boundary theory and the time evolution in
already known for AdS spaces. Indeed, in the Chern-Simonghe bulk of de Sitter space. This statement is completely
formulation of 2+-1 gravity, intriguing relations are known analogous to the known relation between the RG transforma-
between the theories with positive and negative cosmologicalons and bulk equations of motion in the context of the
constants. Classical Euclidean Ad@ravity and Lorentzian AdS/CET correspondend@4 —2§.
dS; are Chern-Simons theories of the same group, but are
endowed with different Hilbert space structufgs]. (We

hope to return to this in a later publication. . "We have mentioned several times that we could have chosen to
The total entropy of black hole and cosmological horizonsgefine a de Sitter stress tensor as2(yh) sl/sh,,,, thereby revers-

can be computed in gravity for general It would be inter-  ing the sign of our mass formula. With this definition, we would be

esting to test whether a Cardy-Verlinde-like expression fomaking a positive mass conjecture: all non-singular asymptotically

the asymptotic density of states of a higher dimensional CFHe Sitter spacetimes have mass greater than de Sitter space.

[48] could reproduce this entropy. 8We thank Rob Myers for discussions of this point.

|VI. RG FLOW VERSUS COSMOLOGICAL EVOLUTION
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In particular, consider the Wick rotated “kink” solutions space andime evolution. In a theory of gravity, the bulk
of [23] which were found in the context of the AdS/CFT Hamiltonian is zero, and so this is really a map between a
duality. These solutions describe spaces interpolating beiolographic RG equation and the Hamiltonian constraint of
tween two asymptotically AdSspaces and are dual to well the bulk gravitation theory, which at the quantum mechanical
understood RG flows of supersymmetric 4D field theorieslevel becomes the Wheeler-DeWitt equatidithe corre-
Wick rotating these “kink” spaces produces solutions thatspondence between boundary dilatations and bulk time trans-
correspond to Friedmann-Robertson-Walk@gfRW) cos- lations is also an example of the spacetime uncertainty rela-
mologies interpolating between two de Sitter vacua. It is welltion [52].)
known that RG flows discussed 23] are characterized by More precisely, following the treatment of holographic
a positive and monotonic-function provided that a weak RG flows in asymptotically AdS spaces, we fix the gauge so
energy condition is satisfied in the bulk gravitational theory.that the bulk metric can be written as
This holographic-function coincides with the trace anomaly o
of the dual field theory, and thus can be precisely related to ds’=—dt’+g;;dxdx. (82
the trace of the boundary stress tenjs28]. In our situation,
we can analogously postulate a holographfanction deter-
mined by the expression for the trace of the Brown-York
tensor and dimensional analydi26]. The candidate holo-
graphicc-function is proportional to

The Hamiltonian constraint reads
H=0 (83
where in the case of 5D bulk gravity

1

1
N(Ar)sz +—7T|G|J7TJ+£. (84)

2

y 1 .
(80) H= ( i — §7T=7T}

in the case of a Wick rotated kink solution interpolating be-Here 7r;; and , are the canonical momenta conjugateyto
tween twoD-dimensional de Sitter spaces, where the metricand ¢' (¢' denotes some background test scalar fieldsis

of the kink solution is a local Lagrangian density arf@'”? denotes the metric on the
s A o space of background scalar fields.
ds’=—dt*+e"n;dxdx. (81 As in the context of the AdS/CFT dualif@5], the Hamil-

) o ) tonian constraint can be formally rewritten as a Callan-
Here the prime denotes thelerivative. The asymptotic form  symanzik equation for the dual RG flow

of the Wick rotated warp factor if=+/At. Inserting this

expression into the formula for the holograpludunction 111/  ss\?> ss &S 1 5S 8S
gives the correct scaling of the expected number of degrees— 3 g i T i sa. 2 'J—I = \/all,
of freedom in the asymptotic de Sitter regidessentially \/6 9 6g" °9ij o¢ 6¢ @5

determined by the value of the holograplitunction at the
fixed poiny with the cosmological constark, as implied by
the Bekenstein-Hawking entropy formuila.

The correspondence between the RG evolution and th
bulk cosmological time evolution offers a nice reinterpreta- S(9,¢)=S0c(9,$)+ (g, ¢). (86)
tion of the monotonicity of our candidate holographic
c-function from a cosmological point of view. In our sce- In that case the Hamiltonian constraint can be formally re-
nario, the IR fixed point corresponds to the period of infla-written as a Callan-Symanzik RG equation
tion which is driven by a large effective cosmological con-
stant A;,—the number of degrees of freedom being 1 . 5
proportional to 1A;,,—in 4D. On the other hand, the UV —|g" —”—B'—,
fixed point corresponds to an asymptotically de Sitter space \/5 69 o
with a small positive cosmological constakg, (as implied
by current observational datarhis in turn, according to the
relation between the-function and the cosmological con-
stant, corresponds to a large number of degrees of freedo
proportional to 1A ,,s. Indeed, this is consistent with a ho-
lographicc-theorem according to whicbyy,>cg.

In the AdS/CFT correspondence, radial flow of the bul

provided the local 5D actios can be separated into a local
%nd a non-local piece

)FzHO (87)

whereHO denotes higher derivative terms. Here the “beta-
function” is defined(in analogy with the AdS situatigrio be
E}'zﬁ,@;' where A denotes the cutoff of the putative dual
uclidean theory.
In Eq. (80) we proposed a holographefunction for as-
kymptotically de Sitter spaces taking a special form. More

. . . ' enerally, in analogy with the AdS/CFT correspondence
spacetime solutions corresponded in the dual field theory t 26], the holographic-function can be related to the extrin-
RG flow [24-2. Here we are proposing a relationship be'sic curvature, or equivalently, to the trace of the Brown-York

tween the RG flow of a putative holographic dual to de Smertensor. In a five dimensional bulk space we would have

) o . . . 1
%These observations were originally made in collaboration with

c~——. (88
Petr Horava. Go®
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Here, as we have seen that the entropy of asymptotically de Sitter spacetime could
: be explained from the density of states of a dual field theory
(Ti)~0 (89 at an energy level equal to the mass that we measure. Indeed,

s our mass formula is strongly reminiscent of the definition of
up to some terms constructed from local intrinsic curvatureenergy in a Euclidean conformal field theory. What is more

invariants of equal time _surfapes. The RG equation is giVeri‘n three dimensions we showed that naive application of a
by the conformal Ward identity for the trace of the StreSSCardy-like formula exactly reproduced the entropies of the
tensor Kerr-dS spacetimes, as also observed18,14. However,

despite this naive agreement, there are two important issues
S (90)  that need to be addressed—there are indications of nonuni-
' tarity (e.g., thelLy eigenvalues are complex in generand

_ . o _ . there is a puzzle regarding neglect of the Casimir energy
The Raychauduri equation then implies the monotonicity ofcontribution to the asymptotic Cardy formula.

o drar
<i~d_A_,3

the trace of the Brown-York stress tensor Our results might be regarded as preliminary evidence
that a Euclidean CFT dual to de Sitter space could exist. At

%goy (91) first sight, this does not seem to jibe with the philosophy,

dt advocated particularly by Banks, that the finite de Sitter en-

. . tropy requires a finite dimensional Hilbert spag&,45.

as long as a form of the weak positive energy condition iSyq\ever, in the picture advocated above, the finite entropy
satisfied by the background test scqlqr fields. This in tu”émerges because de Sitter space has a particular mass and
guarantees the fundamental monotonicity property we woulgy,|y states of quantum gravity with this energy contribute to
require of a holographic-function. o _ the entropy. This observation, and Bousso’s de Sitter entropy

Finally, there might be a holographic reinterpretation Ofbound[ZO], lead to a conjecture: Any asymptotically de Sit-
the known gravitational instabilities of de Sitter spa68]. (o, spacetime with mass greater than that of de Sitter space
One might speculate that the splitting of a de Sitter spac@eyelops a cosmological singularity. In effect, even if the
into two asymptotically de Sitter spacgS3] could be de- jihert space is formally infinite dimensional, the space of

scribed by adding non-linear terms in the Wheeler-DeWitti,jtia| gata giving rise to de Sitter—like evolution may be
equation. It is tempting to conjecture that some non-lineakiite dimensionat:

version of the Wheeler-DeWitt equation can be related to the ¢ emerging picture is that Euclidean conformal field

fully non-linear Wegner-_\lv!lson-PoIc_:h|n;l{54] NONPErtur- - theories do contain information about asymptotic de Sitter
bative RG equations. This in turn might imply an interestinggpaces in various sectors. A fascinating possibility is that
revival of the wormhole ideaf55] in the context of & pos-  hese Euclidean theories are related to the Euclidean confor-

sible dS/CFT correspondence. mal field theories that appear in the AJS/CFT duality. Evi-
dence in favor of this was presented [i8] where it was
VII. DISCUSSION argued that some Euclidean de Sitter spaces have dual de-

In this paper we have computed the Brown-York boung-Scriptions as sectors of the CFTs dual to AdS spaces. Further

ary stress tensor of asymptotically de Sitter spacetimes an%wdence, from the Chern-$|mons descrlptlon of 3D gravity,
used it to define a novel notion of mass and conserve(‘jlppe"’lrecj in the work of Wittef7]. In this work, de Sitter

charges. We were motivated to carry out this procedure i ’?d anti-de Sitter grayity were related by_ a change Qf the
order to study the prospects for a duality between quanturﬁ!]'lbert space structure in the same underlying Chern-Simons

ravity on de Sitter space and a Euclidean field theory del'€0"Y: In our case, we would defing a Hilbert space structure
f%ned )gn the spacelikpe surfaces &f. The quantities vr\ye formally by cutting open the path integral of the Euclidean

compute would be the stress tensor and charges of the du%l‘?ld theory dual to Euclidean anti—de Sitter space. The natu-

theory, if such a theory were defined for de Sitter space in éal conjecture is that choosing a non-canonical Hilbert space
mannér analogous to the AdS/CFT correspondencgtrucwre would yield a dual to Lorentzian de Sitter space. It
[9,10,8,6,12 IS very tempting to adopt this idea as a working hypothesis in

Several interesting results have emerged. In all dimen'grymg to unearth the more precise relation between de Sitter

sions, we found that classical objects like black holes placeapaces and Euclidean conformal field theories.
in a world with a positive cosmological constant have masses

less than the mass of de Sitter space itself, and we conjecture

that all non-singular asymptotically de Sitter spacetimes have ACKNOWLEDGMENTS

mass less than de Sitter spa&hese facts make it possible
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