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Abstract

We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with

low (∼ 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we

compute the distributions of events versus neutrino energy Eν and zenith angle θz, and study their

dependence on yet unknown neutrino parameters. The (Eν − θz) regions are identified where the

distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the

2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measure-

ments of the neutrino parameters and explore dependence of this significance on the accuracy of

reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters

on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy

and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high

confidence level. We find that the hierarchy can be identified at 3σ – 10σ level (depending on the

reconstruction accuracies) after 5 years of PINGU operation.
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I. INTRODUCTION

Atmospheric neutrino studies have enormous physics potential which has not been fully

explored yet. Atmospheric neutrinos can be used (i) to explore different effects of neutrino

propagation: oscillations in vacuum and in matter, MSW resonance of neutrino oscillations

[1, 2], as well as parametric enhancement effects [3], etc.; (ii) to determine neutrino oscillation

parameters: mass squared differences, mixing angles, CP violation effects, mass hierarchy;

(iii) to search for new physics beyond the standard framework with 3 light neutrinos: new

neutrino states, non-standards interactions, violation of fundamental symmetries, etc.; (iv)

to perform, in principle, the oscillation tomography of the Earth.

Among major results obtained with the atmospheric neutrinos are the discovery of neu-

trino oscillations [4], first measurements of θ23 and ∆m2
32 [5] and various bounds on new

physics [6].

The physics potential of atmospheric neutrino studies with existing and forthcoming

experiments has been widely discussed before (see, e.g., [7] and references therein). In

particular, the potential of the IceCube’s DeepCore (the currently existing detector within

the inner core of IceCube with an energy threshold Eν ∼ 10 GeV [8]) for studying neutrino

oscillations has been explored in Refs. [9–11]. The first experimental results on atmospheric

neutrino oscillations in DeepCore have been reported in Ref. [12].

Although at the probability level the effects of the neutrino mass hierarchy, deviation

of the 2-3 mixing from the maximal one, and CP-violation in specific oscillation channels

can be of order 1, there are a number of factors which substantially reduce the effects

at the level of observable events. As a result, determination of the neutrino parameters

becomes difficult if possible at all. The main challenges include (1) relatively low statistics,

especially at energies above a few GeV; (2) the presence of both neutrinos and antineutrinos

in the original neutrino flux and the difficulty of experimental separation of the signals from

neutrinos and antineutrinos, especially in large (megaton scale) detectors; (3) the existence

of both νe and νµ in the original fluxes; (4) a significant smearing of the signal over the

energies and zenith angles, related to large uncertainties in reconstruction of the neutrino

energy and direction.

Recently, the idea has been entertained that large statistics of events that can be col-

lected over a wide energy range in multi-megaton detectors with low (a few GeV) thresh-
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olds, supplemented by relatively mild technological improvements, can alleviate or remove

the above-mentioned shortcomings [13–15]. High statistics will allow one to make specific

selections of events with different geometries from certain ranges of energies and zenith an-

gles in order to enhance the sensitivity of the experiment to various neutrino parameters,

to resolve degeneracies between those parameters, and to reduce the effects of uncertainties

of the input parameters (such as the neutrino fluxes and experimental resolutions). Re-

cent considerations and discussions of the multi-megaton ice detector PINGU (the proposed

upgrade of the IceCube detector) [16] show that this hope may actually be realized.

In this paper we explore the possibilities of studying the neutrino parameters in multi-

megaton scale ice or water Cherenkov detectors with energy thresholds as low as a few GeV.

We study the energy and zenith angle distributions of events and their dependence on the

neutrino mass hierarchy (ordering), the deviation of the 2-3 mixing from the maximal one

and on the CP-phase. We identify the geometry of the events and the kinematic regions in

the (Eν − cos θz) plane where the dependence on a specific neutrino parameter is maximal.

We compute significance of measurements of these parameters and explore dependence of the

significance on the energy and zenith angle resolutions of the detector, i.e. on the accuracy

of reconstruction of the neutrino energy and direction.

In our calculations we use some provisional characteristics of the PINGU detector, in

particular the effective volume and its energy dependence. At the same time, we perform

our analysis with an effort to make it as much as possible independent of specific experimental

features, which are yet to be determined.

The paper is organized as follows. In sec. II we summarize relevant information about

the oscillation probabilities. In Sec. III we present distributions of events in the Eν − cos θz

plane as well as significance plots for determination of various neutrino parameters. In

sec. IV we perform smearing of the event densities using neutrino energy and direction

reconstruction functions. In this section we also study dependence of the significance of the

determination of the neutrino mass hierarchy on the energy and angular resolutions (the

widths of the reconstruction functions) of the detector. In addition, we discuss here the

issue of degeneracy of neutrino parameters. Sec. V contains discussion of our results and

conclusions.
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II. OSCILLATION PROBABILITIES

In this section we discuss dependence of the oscillation probabilities on the neutrino

mass hierarchy and on the deviation of the 2-3 mixing from the maximal one. We consider

the evolution of three neutrino flavors νf ≡ (νe, νµ, ντ )
T in the propagation basis, νprop =

(νe, ν̃2, ν̃3)
T , defined as νf = U23Iδνprop. We use the standard parameterization of the PMNS

mixing matrix, UPMNS = U23IδU13U12, where Uij is the matrix of rotations in the ij− plane

and Iδ = diag(1, 1, eiδ) is the matrix with CP-violating phase.

We consider the neutrino energy range Eν > (2−3) GeV which includes the 1-3 resonances

and parametric enhancement ridges, and where the sensitivity to the neutrino mass hierarchy

is expected to be maximal. Also in this range one expects small CP-violation effects, so that

their degeneracy with the effects of the mass hierarchy is small. In this energy range we

can neglect the effects of 1-2 mixing and mass splitting in the first approximation. Then

the oscillation probabilities can be written in the following forms, which are convenient for

discussion of the neutrino mass hierarchy [17]:

Pee = 1− PA , (1)

Pµe = Peµ = s223PA , (2)

Peτ = c223PA , (3)

Pµµ = 1− 1

2
sin2 2θ23 − s423PA +

1

2
sin2 2θ23

√

1− PA cosφX , (4)

Pµτ =
1

2
sin2 2θ23 − s223c

2
23PA − 1

2
sin2 2θ23

√

1− PA cosφX , (5)

where PA ≡ |Ae3̃|2 and

φX ≡ arg[A2̃2̃A
∗
3̃3̃
].

Here Aij are the amplitudes of ν̃i → ν̃j transitions between the states of the propagation

basis. From these formulas one immediately sees correlations between different probabilities.

The amplitudes can be represented as

A3̃3̃ = |A3̃3̃|eiφ33 =
√

1− PAe
iφ33 , A2̃2̃ = eiφ22 ,

so that φX = φ22 − φ33.

In the case of neutrino propagation in matter of constant density we obtain explicitly

φX = arctan
(

cos 2θm13 tan
φm
31

2

)

+
V +∆

2
x,
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where

cos 2θm13 =
cos 2θ13∆− V

√

(cos 2θ13∆− V )2 +∆2 sin2 2θ13
,

φm
31 = x

√

(cos 2θ13∆− V )2 +∆2 sin2 2θ13

and

∆ ≡ ∆m2
31

2Eν

.

For matter of constant density

PA = sin2 2θm13 sin
2 φ

m
31

2
.

In the limit θ13 → 0, we obtain

φX ≈ φ32 ≡
∆m2

32x

2E
. (6)

At the MSW resonance, tan2 θm13 = 1, and the phase φX is again given by (6) (up to a

factor cos2 θ13 ≈ 1). The phase φX approximately equals φ32 also at energies far above the

resonance energy and coincides with φ32 in vacuum. Eq. (6) is therefore violated only in the

resonance region, except at the resonance point itself. This is a consequence of the smallness

of the mixing angle θ13.

The probabilities for antineutrino channels can be obtained from the expressions in eqs.

(1 - 5) by substituting PA → P̄A and φX → φ̄X , where

P̄A = PA(V → −V ), φ̄X = φX(V → −V ).

In the case of normal mass hierarchy (NH), the 1-3 antineutrino mixing in matter is sup-

pressed, consequently, P̄A ≈ 0 and φX nearly equals the vacuum phase difference (6).

In the approximation of zero 1-2 splitting, for the inverted neutrino mass hierarchy (IH)

we obtain

P IH
A = P̄NH

A , φIH
X = −φ̄NH

X ,

where φ̄NH
X = φNH

X (V → −V ) (see the Appendix). Therefore

P IH
αβ = P̄NH

αβ , P̄ IH
αβ = PNH

αβ . (7)

The equalities in eq. (7) receive corrections from non-zero 1-2 mass splitting and mixing.

The information about the neutrino mass hierarchy is encoded mainly in PA and also in

φX . If PA = 0 and φX = φ32, the oscillation probabilities for the IH and NH coincide.
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FIG. 1: Dependence of the oscillation probabilities in various channels on neutrino energy for a

number of values of the zenith angle. Normal mass hierarchy is assumed. Left panel is for the

νµ → νx channels, and right panel is for the νe → νx channels, where νx = νe (blue lines), νµ (red

lines) and ντ (black lines). We use the values of the neutrino parameters defined in the text and

δ = 0.

Let us consider in more detail eq. (4) for the probability Pµµ, which plays a crucial role

in our analysis (a similar analysis can be performed for Pµτ as well.) The first two terms

in (4) correspond to P̄ , the average 2ν probability with vacuum oscillation depth, which

is due to 2-3 mixing. The probability PA is an oscillatory function of the neutrino energy

(and the zenith angle), but in the resonance region the period of oscillations is determined

by the oscillation length in matter lm13 ≈ l23/ sin 2θ13 ≈ (3− 4)l23, which is much larger than

the oscillation length l23 responsible for φX . The effects of the 1-3 mixing (and therefore

the matter effects) (i) reduce the average probability, the third term in (4); (ii) reduce the

depths of oscillations by the factor
√
1− PA, the fourth term in (4); and (iii) change the

oscillation phase φ32 → φX . The third and fourth terms lead to a change of the depths of

the oscillations. These features are well seen in Fig. 1, where we show the dependence of

the oscillation probabilities in various neutrino channels on the neutrino energy for different
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FIG. 2: Probabilities of oscillations of neutrinos of various flavors (blue lines for νµ, red lines for

νe) to νµ vs. neutrino energy for a number of values of the zenith angle. The solid and dashed lines

are for NH and IH, respectively. Left panel is for neutrinos, and right panel is for antineutrinos.

All the parameters are the same as in Fig. 1.

values of the zenith angle. Figure 2 shows the oscillation probabilities for both the neutrino

and antineutrino channels and for the two mass hierarchies.

We use the values of the neutrino parameters ∆m2
32 = 2.35 · 10−3 eV2, ∆m2

21 = 7.6 · 10−5

eV2, sin2 θ23 = 0.42, sin2 θ12 = 0.312 and sin2 θ13 = 0.025, which are close to the current best

fit values [18], and the PREM density profile of the Earth [19] for numerical computations.

The strongest modifications of the oscillation probabilities due to matter effects are in

the resonance region Eν ∼ (4 - 8) GeV, where PA has a peak due to the MSW resonance in

the mantle of the Earth. For the selected values of the oscillation parameters the maximum

of the peak is at Eν = 6.2 GeV and cos θz = −0.68. In addition, at this point the oscillation

phase φm
31 = π. In the region | cos θz| > 0.83 and Eν < 7 GeV strong modifications of the

oscillation probabilities are due to the parametric enhancement of the oscillations for the

neutrino trajectories crossing the Earth’s core, and also due to the MSW resonance in the

core [13, 14]. Notice that Pµµ, and consequently the mass hierarchy effects, strongly depend

on the 2-3 mixing: the probability PA enters Pµµ with the factor s423.
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FIG. 3: Neutrino oscillograms of the Earth (lines of equal probabilities in the Eν − cos θz plane)

for different oscillation channels and for the values of the oscillation parameters indicated in the

text. Shown are the oscillation probabilities normalized by their maximal values in the parameter

space of the panels: Pα,β/P
max
α,β , with Pmax

ee = Pmax
µµ = 1. Eν is in GeV. Normal mass hierarchy is

assumed.

In Fig. 3 we show the neutrino oscillograms – curves of equal oscillation probability in

the (Eν – cos θz) plane – for the νµ → νx and νe → νx channels. The probabilities increase

monotonically from darker-shaded to lighter-shaded regions.

III. NUMBERS OF EVENTS IN THE NEUTRINO ENERGY AND ZENITH AN-

GLE PLANE

We consider first the numbers of events of different types produced by neutrinos with

energies and zenith angles in small bins ∆(Eν) and ∆(cos θz). These would correspond

to real observables if the neutrino energy and zenith angle could be reconstructed from
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the measurements with negligible errors. In the next section we will study the effects of

smearing of these distributions due to uncertainties of the neutrino energy and zenith angle

reconstructions.

A. Distributions of the νµ-like events

The νµ-like events (tracks) correspond to interactions νµ+N → µ+X, ν̄µ+N → µ++X.

There are also some contributions from ντ which produce τ with subsequent decay into µ.

The number of νµ-like events in the ij-bin is

NNH
ij,µ = 2πNAρT

∫

∆i cos θz

d cos θz

∫

∆jEν

dEν Veff(Eν)Dµ(Eν , θz), (8)

where T is the exposure time, NA is the Avogadro’s number, ρ is the density of ice, Veff

is the effective volume of the detector, and the number density of events per unit time per

target nucleon is given by

Dµ(Eν , θz) =
[

σCC
(

Φ0
µPµµ + Φ0

ePeµ

)

+ σ̄CC
(

Φ̄0
µP̄µµ + Φ̄0

eP̄eµ

)]

. (9)

Here Φ0
α = Φ0

α(Eν , θz), are the original fluxes of neutrinos να. We use the effective volume

of PINGU with 20 strings [20] which can be parameterized as

ρVeff(Eν) = 14.6× [log(Eν/GeV)]1.8 Mt. (10)

The volume increases from 2 Mt at Eν = 2 GeV to 20 Mt at Eν = 20 GeV. (In general

Veff depends also on θz.) We have found PA and the probabilities Pαβ = Pαβ(Eν , θz) by

performing numerical integration of the evolution equation for the complete 3ν−system.

We use the deep inelastic cross-sections

σCC(Eν) = 7.30 · 10−39(Eν/GeV) cm2,

σ̄CC(Eν) = 3.77 · 10−39(Eν/GeV) cm2,

and we take the cross sections for electron and muon neutrinos of the same energy to be the

same. In our calculations we use the Honda et al. atmospheric neutrino fluxes [21], which

were calculated for the Kamioka site; however, for neutrino energies above a few GeV these

should also give good approximations for the fluxes at the South Pole.
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The fine-binned distribution of events (8) with ∆(cos θz) = 0.025 and ∆Eν = 0.5 GeV is

shown in Fig. 4. The number of events decreases with Eν . The pattern of the event number

distribution follows the oscillatory picture due to the main νµ − νµ mode of the oscillations

with a clear distortion in the resonance region. The maxima and minima are approximately

along the lines of equal oscillation phases Eν ∼ φ32∆m2
32| cos θz|RE (where RE is the Earth’s

radius), again with a distortion in the resonance region Eν = 4− 10 GeV. In the high event

density bins the numbers of event reach ∼200, and the total number of events is about 7·104.
Introducing the ratios of the fluxes,

r ≡
Φ0

µ

Φ0
e

, r̄ ≡
Φ̄0

µ

Φ̄0
e

,

we can rewrite the expression for the density of events (9) as

DNH
µ = σCC(Eν)Φ

0
µ

[(

Pµµ +
1

r
Peµ

)

+ κµ

(

P̄µµ +
1

r̄
P̄eµ

)]

, (11)

where

κµ ≡
σ̄CCΦ̄0

µ

σCCΦ0
µ

.

Recall that the ratio r ≡ Φ0
µ/Φ

0
e depends both on the neutrino energy and zenith angle, e.g.,

in the range Eν = (2−25) GeV and for cos θz = −0.8 the ratio can be roughly parameterized

as r = 1.2 · (Eν/1 GeV)0.65.

B. Hierarchy asymmetry

Let us consider the effects of neutrino mass hierarchy on the distribution of the νµ events.

Using relations (7) we can write the density of the events for the inverted mass hierarchy in

terms of the oscillation probabilities for the normal mass hierarchy as

DIH
µ = σCCΦ0

µ

[(

P̄µµ +
1

r
P̄eµ

)

+ κµ

(

Pµµ +
1

r̄
Peµ

)]

. (12)

Then the difference of the numbers of events for the inverted and normal mass hierarchies

equals

N IH
ij,µ −NNH

ij,µ = 2πNAρT

∫

∆i cos θz

d cos θz

∫

∆jEν

dEνVeff(D
IH
µ −DNH

µ ),

where

DIH
µ −DNH

µ = σCCΦ0
µ

[

(1− κµ)
(

P̄µµ − Pµµ

)

+
1

r
(1− κe)

(

P̄eµ − Peµ

)

]

, (13)
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FIG. 4: The fine-binned distribution of the number of νµ−like events in the (Eν − cos θz) plane

that can be collected by the PINGU detector during 1 year; NH is assumed.

and

κe ≡
σ̄CCΦ̄0

e

σCCΦ0
e

= κµ

r

r̄
.

In the approximation P̄A ≈ 0, which is justified if the true hierarchy is the normal one, we

obtain P̄eµ ≈ 0 and

P̄µµ ≈ 1− 1

2
sin2 2θ23 [1− cosφ32] ,

where we have taken φ̄X ≈ φ32. Consequently,

P̄µµ − Pµµ ≈ 1

2
sin2 2θ23

[

cosφ32 −
√

1− PA cosφX

]

+ s423PA ,

P̄eµ − Peµ ≈ −s223PA. (14)

In this approximation

DNH
µ ≈ σCCΦ0

µ

[(

1− 1

2
sin2 2θ23

)

(1 + κµ)− s223

(

s223 −
1

r

)

PA+

+
1

2
sin2 2θ23

(

κµ cosφ32 +
√

1− PA cosφX

)

]

.

The sensitivity of this quantity to the neutrino mass hierarchy is due to PA 6= 0, and so the

highest sensitivity is expected in the kinematic region where PA is relatively large.
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For the difference of the numbers of events for the two hierarchies (13) we obtain

DIH
µ −DNH

µ ≈ σCCΦ0
µ

{

1

2
sin2 2θ23(1− κµ)

(

cosφ32 −
√

1− PA cosφX

)

+

+ s223

[

(1− κµ)s
2
23 −

(

1

r
− κµ

r̄

)]

PA

}

.

Let us introduce the N-I hierarchy asymmetry for the ij-bin in the (Eν − cos θz) plane as

AN−I
µ,ij ≡

N IH
µ,ij −NNH

µ,ij
√

NNH
µ,ij

. (15)

The moduli of the asymmetries (15) are the measure of statistical significance of the differ-

ence of the number of events for the normal and inverted mass hierarchies: Sij = |Aij|.
Let us consider the condition N IH

ij,µ = NNH
ij,µ which gives the borders of the regions in the

(Eν − θz) plane where the difference of the numbers of events has definite sign. It coincides

approximately with the condition DIH
µ = DNH

µ . The latter determines the lines of zero N-I

hierarchy asymmetry. Using eq. (13) and approximate expressions in (14) we find from this

condition

cosφ32 −
√

1− PA cosφX =
PA

2c223

[

1

r
· 1− κe

1− κµ

− s223

]

. (16)

The phases φ32 and φX are functions of Eν and θz. Since cosφ32 varies with (cos θz/Eν) much

faster than r(Eν , θz), it is this periodic function that determines the lines of zero hierarchy

asymmetry. Our calculations show that eq. (16) determines the zero asymmetry lines rather

well.

In Fig. 5 we show the values of the hierarchy asymmetry in the Eν − cos θz plane. The

maximal asymmetry is achieved in the low energy parts of the domains bounded by the lines

of zero asymmetry (16). The large asymmetry is in the strips along the constant phase lines

in the energy interval Eν ≈ (4− 12) GeV, where these lines are distorted by matter effects.

The asymmetry changes the sign with changing zenith angle. For instance, in the energy

range (7 - 11) GeV there are three distinct zenith angle intervals with the asymmetry sign

being the same within each interval. The number of such intervals increases with decreasing

energy. Therefore, due to the averaging, the region of high sensitivity to hierarchy will

shift to higher energies if the zenith angle reconstruction becomes worse. Furthermore, the

regions of high significance of the hierarchy determination overlap substantially with the

regions of small numbers of events (see Fig. 4). This means that the significance is enhanced
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FIG. 5: The hierarchy asymmetry of νµ events in the Eν − cos θz plane. The absolute value of the

asymmetry in a given bin determines the statistical significance of the difference of the numbers of

events for the inverted and normal mass hierarchies.

due to the smallness of the denominator in eq. (15), and it would be diluted by combining

a given bin with bins which have higher statistics but smaller significance.

There is an important background to the νµ events which comes from ντ interactions.

C. ντ events

The ντ flux appears at the detector due to νµ − ντ oscillations. In Fig. 6 we show the

distribution of the ντ CC events (ντ + N → τ + X) in the Eν − cos θz plane. The figure

is a kind of inversion of Fig. 4, with maxima substituted by minima and vice versa. The

number of events is, however, smaller than the number of νµ events due to the smaller cross-

section near the threshold. Notice that since ντ (as well as νl) from the sequential τ decays

(τ → ντ + X, τ → ντ + l + νl) is not detected, the energy of the original ντ cannot be

reconstructed.

The ντ interactions

ντ +N → τ + h → µ+ ν + ν + h (17)

13



FIG. 6: Same as in Fig. 4, but for ντ CC interactions.

will contribute to the main sample of νµ events with a muon and a hadronic cascade in the

final state. However, the number of these events is relatively small, and in addition these

events have certain features which can be used to discriminate them from the true νµ events.

Indeed, on average the two neutrinos which appear in the process (17) will take about

1/3 of the energy of the initial neutrino. Therefore, for a given observed total energy

Eµ + Eh, the energy E0(ντ ) of the original neutrino in the process (17) should be about

1.5 times larger than the energy E0(νµ) of the true νµ event: E0(ντ )/E0(νµ) ≈ 1.5. If

only Eµ is used to reconstruct the energy of the original neutrino the rescaling coefficient is

E0(ντ )/E0(νµ) = 2.5. On average we can take a factor of 2 for our estimates. Furthermore,

the branching ratio of tau decay into muon is Bµ = 0.17. Consequently, the number of νµ

events due to the reaction chain (17) is suppressed with respect to that of the true CC νµ

events of the same energy by a factor

Bµ

(

E0(ντ )

E0(νµ)

)−1.3
στ

σµ

(18)

(provided that the initial νµ and ντ fluxes are equal). The power of the second factor follows

from the energy dependences of the neutrino flux (∝ E−3), the cross-section (∝ E) and the

effective volume (which we take to be ∝ E0.7 here; note that in the energy range Eν = 10−35
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GeV such a simple power law approximates eq. (10) within 5% error). The last factor takes

into account the threshold effect for the τ production. For the energy rescaling factor of 1.5

- 2 we obtain a suppression factor for the number of ντ -induced νµ events to be 0.05− 0.08.

Due to the missing energy and momentum taken by the two neutrinos in the final state of

reaction (17), the smearing effects in the energy and angle of the original neutrino around

the average values will be stronger than for the true νµ events. Therefore, the observed

energy Eµ + Eh will have a bigger spread for ντ -induced νµ events. Furthermore, they will

be characterized by a larger average angle between the momenta of the original neutrino

and the muon.

There are other properties of reaction (17) which can be utilized to disentangle it from

the CC νµ detection reaction. In particular, correlations between Eµ and Eh are different for

these two cases. Furthermore, one can select Eν − θz regions in which the νµ − ντ transition

probability, and consequently the ντ flux, are suppressed. Such regions can be readily found

with the help of Fig. 6. The corresponding restriction of the Eν−θz parameter space will, of

course, result in a loss of the overall statistics, but would provide us with cleaner events. The

resulting statistics loss should be affordable because of the extremely high overall statistics

in multi-megaton detectors.

In principle, one could also sum up the νµ and ντ events and consider them in the

θµ − (Eµ + Eh) plane. However, to determine whether or not a useful information can be

extracted from such data would require an additional analysis which is outside the scope of

the present paper.

For the above reasons, in what follows we do not explicitly consider the contributions of

the ντ → τ → µ events and simply treat them as a 5% systematic error.

D. Cascade events and the mass hierarchy

Following the IceCube terminology, we will call the events in which the muon track is not

identified as cascade events. There are several different contributions to the cascade events,

including even νµ events with faint muon tracks which can not be identified. All ντ -induced

CC events, except those when the tau decays into a muon, contribute to the cascade events.
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FIG. 7: Same as in Fig. 4 but for νe CC interactions; NH is assumed.

For the cascade events νe +N → e+X and ν̄e +N → e+ +X we have

NNH
ij,e = 2πNAρT

∫

∆i cos θz

d cos θz

∫

∆jEν

dEνVeff(Eν)De(Eν , cos θz),

where

De(E, cos θz) = σCCΦ0
e

[

(Pee + rPµe) + κe

(

P̄ee + r̄P̄µe

)]

.

In terms of the probability PA the number density of events can be written as

DNH
e = σCCΦ0

e

{

1 + PA(rs
2
23 − 1) + κe[1 + P̄A(r̄s

2
23 − 1)]

}

.

The event distribution is shown in Fig. 7. Notice that here the distribution is weakly affected

by the oscillations due to a substantial screening effect: the oscillatory part of the number

of events contains terms proportional to rs223 − 1 and r̄s223 − 1 which are nearly zero at low

energies.

The difference of the number densities of events for the inverted and normal mass hier-

archies is

DIH
e −DNH

e = σCCΦ0
e (P̄A − PA)

[

(rs223 − 1)− κe(r̄s
2
23 − 1)

]

. (19)

The expression in the square brackets here can be rewritten as

rs223(1− κµ)− (1− κe) = (1− κµ)

[

rs223 −
1− κe

1− κµ

]

. (20)
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Thus, there is a double suppression of the difference of numbers of events: (i) due to the

neutrino-antineutrino factor (1 − κµ) related to the presence of both the neutrino and an-

tineutrino fluxes, and (ii) due to the flavor screening (the last term in eq. (20)) related

to the presence of both νe and νµ in the the original atmospheric neutrino flux [17], more

precisely, due to the ratio of these fluxes being close to 1/2 at low energies. The difference

DIH
e − DNH

e can be further suppressed by the smallness of PA (or of the difference of the

neutrino and antineutrino probabilities P̄A − PA).

The numbers of events for IH and NH are equal, N IH
ij,e = NNH

ij,e , in the bins for which both

sides of eq. (20) vanish. From this we obtain

s223(r − r̄κe) = (1− κe).

For r ≈ r̄ it gives

r(Eν , θz) =
1

s223
.

So, in this approximation we have only one line of zero asymmetry.

The hierarchy asymmetry in the νe CC events is shown in Fig. 8. Maximal asymmetry is

in the resonance region Eν = (4− 8) GeV where it has essentially the same sign, so that the

suppression due to averaging is absent. Unfortunately, other contributions to the cascade

events have different pattern in the Eν − θz plane. The number of cascades induced by νe

quickly decreases with the increase of the neutrino energy.

The dominant contribution to the cascade events comes from the ντ flux which appears

at the detector due to the oscillations:

DNH
τ = σCC

τ (Eν)Φ
0
µ

{

1

2
sin2 2θ23[1−

√

1− PA cosφX ]− c223PA(s
2
23 − 1/r)

}

.

For the ντ events the screening due to the flavor composition of the original neutrino flux is

absent.

The neutral current interactions of all neutrino species contribute to the total numbers

of the cascade events but do not affect the NH-IH differences of events. This reduces the

hierarchy asymmetry:

Acascades =
N IH

e+τ −NNH
e+τ

√

NNH
e+τ +NNC

.

As we will see, analysing only νµ events will be sufficient to establish the neutrino mass

hierarchy. We therefore do not include cascade events in our discussion. Clearly, cascade
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FIG. 8: Same as in Fig. 5 but for νe induced events.

events can give additional information, but taking them into account would require a more

sophisticated analysis. Notice that possible identification of τ events in a large liquid argon

detector and its consequences have been discussed in [22]; should such an identification turn

out to be possible also in PINGU, it would increase PINGU’s sensitivity to the neutrino

parameters.

E. Effects of deviation of the 2-3 mixing from the maximal one

We describe deviation of the 2-3 mixing from the maximal one by

d23 ≡
1

2
− s223.

From eqs. (11), (2) and (4) we find

DNH
µ (θ23) − DNH

µ (π/4) ≈ σCCΦ0
µ

{

2d223

[

1−
√

1− PA cosφXκµ(1− cosφ32)
]

+ d23

(

1− 1

r
− d23

)

PA

}

. (21)

Notice that both terms in (21) are positive for θ23 < π/4.

In Fig. 9 we plot statistical significance of the determination of a deviation of the 2-3

mixing from the maximal one. Here again high significance regions coincide with the regions
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FIG. 9: Statistical significance of the determination of the deviation of the 2-3 mixing from the

maximal one. The difference of the tracking events for two values of the 2-3 mixing: sin2 θ23 = 0.5

(NNH
µ,1 ) and 0.42 (NNH

µ,2 ).

of low density of events (compare Figs. 9 and 4). This means that an integration over large

Eν − cos θz domains would lead to a dilution of the significance.

F. CP-violation effects

We can write the oscillation probabilities in the presence of a Dirac-type CP-phase δ as

Pαβ = P 0
αβ + P δ

αβ . (22)

Here P 0
αβ and P δ

αβ are the δ-independent and δ-dependent parts of the oscillation probability

Pαβ, respectively (note that P 0
αβ 6= P δ=0

αβ ). In a matter with symmetric density profile one

has Pβα = Pαβ(δ → −δ).

Now the 1-2 mass splitting and mixing should be taken into account. The state ν̃2 does

not decouple and the oscillation probabilities depend on the matrix elements Ae2̃, A2̃3̃ of the

evolution matrix A in the propagation basis. Since the amplitude A2̃3̃ is doubly suppressed

(by small ∆m2
21/∆m2

31 and s13), the terms that are quadratic in A2̃3̃ can be neglected. We
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have then [15]:

P δ
ee = 0,

P δ
eµ = sin 2θ23|Ae2̃Ae3̃| cos(φ+ δ) , (23)

P δ
µµ = − sin 2θ23 cos δ

{

|A
e2̃
A

e3̃
| cosφ+ cos 2θ23Re[A

∗
2̃3̃
(A

3̃3̃
− A

2̃2̃
)]
}

, (24)

where φ ≡ arg(A∗
e2̃
A

e3̃
). We will also use the notation |A

e2̃
| ≡

√
PS, |Ae3̃

| ≡
√
PA (where PA

now depends also on the parameters of the 1-2 sector).

Note that the last term in the curly brackets in eq. (24) is small if the 2-3 mixing is

sufficiently close to the maximal one, and in addition the amplitude A2̃3̃ is small. We shall

therefore use for our estimates the approximation

cos 2θ23Re[A
∗
2̃3̃
(A

3̃3̃
− A

2̃2̃
)] ≈ 0 . (25)

The δ-dependent part of the expression for the number density of the µ-like events is

Dδ
µ ≡ σCCΦ0

µ

[(

P δ
µµ +

1

r
P δ
eµ

)

+ κµ

(

P̄ δ
µµ +

1

r̄
P̄ δ
eµ

)]

. (26)

Next, we notice that in the case of normal hierarchy one has P̄S ≈ 0, P̄A ≈ 0, and in the

approximation (25) we therefore have P̄ δ
eµ ≈ P̄ δ

µe ≈ 0, P̄ δ
µµ ≈ 0. From eqs. (23) and (24) we

find

Dδ
µ −Dδ=0

µ = σCCΦ0
µ sin 2θ23

√

PAPS

[

r − 1

r
cosφ(1− cos δ)− 1

r
sinφ sin δ

]

. (27)

This, in particular, means that the difference N δ
µ − N δ=0

µ should nearly vanish whenever

PS = 0 or PA = 0, i.e. along the so-called solar and atmospheric “magic” lines [15, 23–

25]. The vanishing of the difference N δ
µ − N δ=0

µ is, however, not exact, as it relies on the

approximation (25). In Figs. 10 - 11 we show statistical significance of measurements of

the CP-phase. The strongest effect is at low energies: E ∼ 3 − 5 GeV. Notice that with

increasing δ the size of the asymmetry increases, but the regions of different signs of the

asymmetry do not change. This is in agreement with eq. (27). Indeed, in this equation the

dependences of the right-hand side on φ and δ effectively factorize, because in most of the

parameter space either the first or the second term dominates. For the νe-like events we

obtain similarly

Dδ
e ≡ σCCΦ0

e

[(

P δ
ee + rP δ

µe

)

+ κe

(

P̄ δ
ee + r̄P̄ δ

µe

)]

≈ σCCΦ0
e r

√

PAPS cos(φ− δ) . (28)
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FIG. 10: The difference of the numbers of events for δ = π/2 and δ = 0. Statistical significance

of measurements of the CP-phase.

Here we have taken into account that Pee and P̄ee are δ-independent and that P̄µe is strongly

suppressed in matter. For the difference of the densities of νe-like events we then find

Dδ
e −Dδ=0

e = σCCΦ0
er sin 2θ23

√

PAPS [cosφ(cos δ − 1) + sinφ sin δ] . (29)

The lines of zero PA and PS (the atmospheric and solar “magic” lines) form a grid, which

leads to a domain structure in the (Eν − cos θz) plane. For maximal 2-3 mixing the domain

structure of the distribution of the events becomes sharper (Fig. 12). As discussed in ref. [15],

in the full 3ν framework there is no crossing of the “magic” lines determined by the solar,

atmospheric and an additional phase condition, and instead there is a smooth transition of

lines of different types into each other.

IV. DETERMINATION OF THE NEUTRINO MASS HIERARCHY

The fine-binned event distributions computed in the previous section allow us to identify

the regions of high sensitivity to the neutrino mass hierarchy as well as to other neutrino

parameters. They show the lines of zero asymmetry which separate the regions of same

sign asymmetry. These distributions also allow one to identify the regions of high and
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FIG. 11: Same as in Fig. 10 but for the phases δ = π/4 and δ = 0 .

low degeneracy between different parameters. By using them one can select the regions

of integration over the neutrino energy and zenith angle in such a way that the hierarchy

asymmetry is enhanced while the effects of the uncertainties due to the incomplete knowledge

of the other neutrino parameters are canceled or suppressed. Obviously, one should avoid

integrating over regions with different signs of the hierarchy asymmetry.

A. Summation of events over different bins

Since one needs to integrate over certain regions of the neutrino energy and zenith angle,

the significances of determination of the neutrino mass hierarchy and of other neutrino

parameters will be modified in comparison to those found for small individual bins. The

combined statistical significance resulting from a summation over n bins is given by

Sn =
n

∑

i=1

Si

√

NNH
i

∑n

k=1 N
NH
k

.

If the individual NNH
k do not differ significantly, we have approximately

Sn ≈ 1√
n

n
∑

i=1

Si.
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FIG. 12: Same as in Fig. 10 but for phases δ = π/2 and δ = 0 and sin2 θ23 = 0.5.

The asymmetry has opposite signs in domains separated by the lines of zero asymmetry,

and the ultimate sensitivity to the neutrino mass hierarchy can be estimated as

S =
n

∑

i=1

|Si|
√

NNH
i

∑n

k=1 N
NH
k

.

One can first estimate independently the sensitivities of individual domains with the same

sign of asymmetry and then sum over the domains. The real sensitivity will actually be

lower because of (i) the integration (smearing) over bins with different numbers of events

and significances (which will dilute the significance of the most significant bins) (ii) the

integration (smearing) over parts of domains which have opposite sign of the asymmetry,

(iii) uncertainties of the other oscillation parameters, (iv) degeneracy of parameters, (v)

systematic errors, etc.. We address some of these issues below.

B. νµ− like events and the mass hierarchy

The νµ−events produced by the charged current νµ interaction are observed as muon

tracks accompanied by hadronic cascades. For these events the energy of the muon Eµ and

the direction of its trajectory characterized by the angles θµ and φµ as well as the total energy
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of the hadron cascade Eh can be measured. Using this information one can reconstruct the

neutrino energy:

Er
ν ≈ Eµ + Eh −mN ,

where mN is the nucleon mass. In fact the calorimetric (time integrated) measurement in

IceCube provides directly measurement of Eν .

The reconstruction of the neutrino direction is more complicated. In the first approxi-

mation (at sufficiently high energies) one can simply use θrν ≈ θµ with certain spread which

depends on the neutrino energy. More precise determination is in principle possible if one

uses also the information about the hadron cascades. Knowledge of the energy of the cascade

narrows down the uncertainty in the neutrino direction. Further improvement would be pos-

sible if one determines the plane in which the muon and the original quark were propagating.

In this plane one can introduce the angle between the muon and neutrino trajectories, θν , as

well as the angle between the directions of the quark and neutrino momenta θq. Then, using

the energy and momentum conservation laws and excluding θq, one obtains the expression

for the reconstructed neutrino angle:

cos θrν ≈
Er2

ν + E2
µ − E2

h

2Er
νEµ

,

where we assume that the muons are ultra-relativistic. In turn, the knowledge of θν and

of the muon angles θµ and φµ would allow one to reconstruct the neutrino zenith angle θrz:

θrz = θrz(θν , θµ, φµ).

There is a number of uncertainties in this reconstruction procedure: (i) Errors in the

measurements of Eµ, θµ and φµ; (ii) the uncertainty in the point of the neutrino interaction

(i.e. of the beginning of the muon trajectory); (iii) the uncertainty in the position of the

center of the hadronic shower and (iv) the error in the determination of the energy of the

hadron shower.

We will describe the uncertainties of reconstruction of the neutrino parameters by distri-

bution functions for the reconstructed neutrino energies and zenith angles:

GE(E
r
ν , Eν), Gθ(θ

r
z, θz),

where Eν and θz are the true energy and zenith angle of the neutrinos. The distributions

are normalized in such a way that
∫

dy Gy(y
r, y) = 1 , y = Eν , θz ,
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where the integrations are performed within the appropriate ranges of the parameters. For

Gy we adopt the Gaussian form

Gy(y, σy) =
Ny√
2πσy

e
−

y2

2σ2
y

where Ny is the normalization constant, and σE and σθ are the widths of the energy and

angular reconstruction functions, respectively. Both widths depend on the neutrino energy.

In this way we obtain the unbinned distribution of events in the (Er
ν − cos θrz) plane:

Dα(E
r, cos θr) =

∫

d cos θz

∫

dEν GE(E
r
ν , Eν) Gθ(θ

r
z, θz) Veff Nα(Eν , cos θz), (30)

α = e, µ. Then the binned distributions of events are

NNH
ij,α = 2πNATρ

∫

∆i(cos θrz)

d cos θrz

∫

∆j(Er
ν)

dEr
ν Dα(E

r, cos θrz). (31)

We will explore the dependence of our results on the widths σE and σθ. For the ideal

resolution, Gy(y
r, y) = δ(yr − y), we get from (30) and (31) the same results as before.

Consider the opposite limit of large widths, 2σy ≫ ∆y. In this case it is worthwhile to

interchange the integrations dEr
νd cos θ

r
z and dEνd cos θz. Then for the box-like distribution

functions, Gy = 1/2σy in the intervals y = yr ± σy, formulas (30) and (31) reproduce the

results for large bins ∆y ∼ 2σy.

For a contained νµ event (both the vertex and µ track are contained within the detector)

the error in the reconstructed neutrino energy scales linearly with energy, i.e. σEν
∼ xEν

below ∼ 100 GeV [28]. The error in reconstructing the neutrino arrival direction at low

energies is limited from below by the root mean square value of the scattering angle, θRMS ∼
√

mp/Eν , which corresponds to 17.5◦ at 10 GeV.

In Figs. 13 - 16 we show the hierarchy asymmetry in the distributions of the νµ events

smeared with energy-dependent Gaussian reconstruction functions characterized by different

σE and σθ. After smearing we integrated the event density over the reconstructed energy

and zenith angle bins of the size ∆(Er
ν) = 1 GeV and ∆(cos θrz) = 0.05. The smearing leads

to a substantial decrease of the sensitivity to the neutrino mass hierarchy. This reduction

is a consequence of the integration over regions with different significance and statistics as

well as over the regions with different signs of the asymmetry.

Considering the effect in each bin as an independent measurement, we can find the
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combined significance as

Stot =

√

∑

ij

S2
ij =

√

√

√

√

∑

ij

(N IH
ij −NNH

ij )2

σ2
ij

,

where the sum over bins can be substituted by the integral. For illustration we assume that

the uncorrelated systematic errors are proportional to the number of events: σcorr = fNNH
ij ,

where f depends on the binning. We will use f = 5% and 10%. In general f is a function

of neutrino energy and zenith angle. Therefore the total error in each bin is given by

σ2
ij = NNH

ij + (fNNH
ij )2.

Notice that since here the contribution from the systematic error is proportional to N2, for

the same f the role of systematic error decreases with decreasing size of the bin.

Correlated systematic errors, e.g., those of the overall flux normalization and of the tilt of

the spectrum, apparently can not reproduce the profile of the distribution of events similar

to the difference of distributions for the two hierarchies. Therefore, their effect to a large

extent can be reduced to a reduction of the exposure time and statistics. Moreover, these

correlated systematic errors can be parameterized and reduced with better measurements

of the flux.

Instead of θν , one could consider the angle θµ which is measured directly. Smearing over

the angle θν with σθ ∼
√

mp/Eν essentially corresponds to the transition from θν to θµ.

Again, due to measurements of the cascade energy this uncertainty will be further reduced.

In Fig. 13 we used σE = 0.2Eν and σθ =
√

mp/Eν . It can be seen from the figure that

the region of the highest significance is between the lines Eν/GeV ≈ 20(| cos θz| − 0.2) and

Eν/GeV ≈ 15(| cos θz| − 0.2), and between cos θz = −1 to −0.7. It is shifted towards higher

energies compared to the un-smeared case in Fig. 5.

Detection of hadronic cascades can in principle improve the determination of the neutrino

angle. In Fig. 14 we therefore use the angular resolution σθ = 0.5
√

mp/Eν . Notice that with

better angular resolution the region of high sensitivity shifts to lower energy and shallower

zenith angle bins, approximately along the lines of high significnace.

To study the effect of the energy dependence of σE on the neutrino mass hierarchy

determination, in Fig. 15 we use the fixed energy resolution σE = 2 GeV and the angular

resolution σθ =
√

mp/Eν . A comparison with Fig. 13 shows that fixed σE leads to a

somewhat higher significance of the hierarchy determination.
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FIG. 13: Statistical significance of the determination of the mass hierarchy after smearing the νµ

events in the (Er
ν–cos θ

r) plane with σE = 0.2Eν and σθ =
√

mp/Eν .

FIG. 14: Same as Fig. 13 but for σθ = 0.5
√

mp/Eν .

27



FIG. 15: Same as Fig. 13 but for σE = 2 GeV.

FIG. 16: Same as Fig. 13 but with σE = 2 GeV and σθ = 0.5
√

mp/Eν .
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FIG. 17: Significance of hierarchy determination vs. exposure time for various smearing schemes

illustrated in Figs. 13, 14, 15 and 16. Different curves correspond to different systematic uncer-

tainties (f) assumed in addition to statistical uncertainties.

In Fig. 16 we used the energy resolution σE = 2 GeV but the angular resolution σθ =

0.5
√

mp/Eν . Figs. 16 and 14 show that with improving angular resolution the significance

of the neutrino mass hierarchy determination increases significantly.

Figure 17 shows the significances of the hierarchy identification, Stot, for different smear-

ing schemes described above and for different uncorrelated systematics (f). The 5-year

significances from the plots can be compared with the results found when no smearing

is performed: Stot = 45.5σ (no systematics), Stot = 28.9σ (f = 5%) and Stot = 18.8σ

(f = 10%). Note that if IH is the true hierarchy, then in the first approximation the re-

sults simply correspond to Figs. 13 – 16 with reversed signs of the asymmetry, although

significances become somewhat lower in general.

C. Effects of parameter degeneracy

In our computations of the hierarchy asymmetry we used the fixed values of ∆m2
32, θ13,

θ23 and δ. In certain kinematic regions, uncertainties in these parameters may lead to the
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FIG. 18: Effect of uncertainty in ∆m2
31. Shown is the difference of numbers of events for ∆m2

31

and ∆m2
31 + 1σ = 2.47 · 10−3 eV2. NH is assumed.

same effects as the hierarchy change. That is, the difference of the event distributions for

the true and assumed values of the parameters may have the same pattern as the difference

of event distributions for the normal and inverted mass hierarchies. The simplest way to

reduce the degeneracy is to select only parts of the Eν − cos θz space where the effect of

hierarchy change dominates over other effects.

1. As follows from the comparison of Figs. 10, 11, 12 and Fig. 5, the effect of CP-phase

δ at high energies is smaller than 10% of the hierarchy effect, and so it can be neglected

in the first approximation. Also, it is characterized by a different pattern, and therefore

one can select the regions in the Eν − cos θz plane in such a way as to further suppress the

effect of the CP-phase (e.g. the selected bins should include domains with different signs of

CP-asymmetry). We computed the hierarchy asymmetry for δ = π/2 and found that indeed

the CP effect can be neglected in the first approximation.

2. Effects of the uncertainty in θ23 are strong in the region along the line Eν/GeV ≈
23| cos θz| (Fig. 9). In the high energy part of this region, E > 10 GeV, the hierarchy

asymmetry is small. There is still an overlap of the regions of large effects of the hierarchy

and θ23 uncertainty at low energies. The bins can be selected in such a way that the
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effect of the uncertainty in θ23 substantially cancels out. Furthermore, one expects some

improvements in the determination of θ23 from the accelerator and combination of reactor

and accelerator experiments, so that the degeneracy will be further reduced. In particular,

combining the reactor data with the forthcoming results from T2K and NOvA will allow us

to determine sin2 θ23 with an accuracy between about 0.04 (for maximal 2-3 mixing) and

0.008 (for sin2 θ23 = 0.4) [26]. This has to be compared with the current uncertainty of this

parameter δ(sin2 θ23) ≃ 0.05 [27] (all numbers correspond to 1σ).

3. The effect of uncertainty in ∆m2
31 is illustrated in Fig. 18, where we show the difference

of numbers of events for the best fit and shifted upwards by 1σ values of ∆m2
31. (A downward

shift by 1σ switches signs in Fig. 18, although with somewhat smaller significances.) In the

limit ∆m2
21 = 0 variations of ∆m2

31 are equivalent to a corresponding shift of the oscillatory

pattern in the energy scale (see Fig. 2) at high energies (E > 8 GeV). Note that the shift

is different for different zenith angles and for neutrinos and antineutrinos. The regions of

the strongest effect of this shift on the hierarchy asymmetry have substantial overlap with

the regions of strong hierarchy asymmetry, and therefore certain selection of the integration

regions (binning) is required in order to reduce the degeneracy and disentangle the two

effects. Clearly, further improvements of the accuracy of measurements of ∆m2
31 by MINOS,

T2K and NOvA will alleviate this problem. In particular, T2K and NOvA will measure

∆m2
31 with an accuracy of 5× 10−5 eV2 (1σ) [26]. This is about a factor of two better than

the current uncertainty of this parameter [27].

To further explore if the uncertainty in ∆m2
31 can mimic the “wrong” hierarchy, we

applied the same σE = 0.2Eν and σθ =
√

mp/Eν smearing as in Fig. 13 to the best-fit

and +1σ deviation of the ∆m2
31 values. The resulting significances are plotted in Fig. 19.

Note that the region of the highest sensitivity to ∆m2
31 has shifted to higher energies and is

concentrated in a narrower, cos θz < −0.8, range as compared to the region of the highest

significance of the hierarchy asymmetry (cf. Figs. 19 and 13).

Figure 20 shows the difference between the significances plotted in Figs. 19 and 13. Notice

that the significances of the hierarchy determination in the region Eν ≃ 6 − 13 GeV are

reduced considerably. The effect of the degeneracy can be suppressed by making summation

of significances only over certain domains in the Eν − cos θz plane.

To estimate the effect of the uncertainty of the value of ∆m2
31 on the significance of

the hierarchy determination, we simulated the data for NH NNH
µ for a fixed “true” value
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FIG. 19: Same as in Fig. 18 but after smearing the νµ events in the (Er
ν–cos θ

r) plane with

σE = 0.2Eν and σθ =
√

mp/Eν .

of ∆m2
31,true and then fitted them with IH, treating ∆m2

23 as a free parameter. We then

minimized Stot with respect to ∆m2
32 and found the corresponding values of ∆m2

23,fit and

Stot
min. Next, we repeated the same procedure for different true values of ∆m2

31,true within its

1σ allowed range. This procedure is illustrated in Fig. 21. The left panel shows Stot versus

∆m2
32,fit for ∆m2

31,true = 2.35 · 10−3 eV2 (vertical line). In the right panel of Fig. 21 we show

the values of Stot
min obtained through this procedure as functions of ∆m2

31,true (solid lines).

For comparison we show also Stot for ∆m2
23,fit = ∆m2

31,true, i.e. without variations of ∆m2
23,fit

(dashed lines). As follows from the figure, variation of ∆m2
23,fit reduces the significance of

the hierarchy identification Stot by ∼ 50%, and this reduction weakly depends on ∆m2
31,true.

The values ∆m2
23,fit,min are within the present 2σ uncertainties of determination of this mass

difference (2.17 · 10−3 − 2.59 · 10−3) eV2 [18]. To calculate the significances presented in the

figure we have smeared the event distributions with σE = 0.2Eν and σθ =
√

mp/Eν as in

Fig. 13.
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FIG. 20: Difference of significances in the (Er
ν–cos θ

r) plane between the ∆m2
31 uncertainty

(Fig. 19) and the mass hierarchy (Fig. 13).

V. CONCLUSIONS

The main goal of our paper was to attract attention to the possibility of determination of

the neutrino mass hierarchy with huge atmospheric neutrino detectors like PINGU, to pro-

pose a method of quick estimation of the sensitivity of such detectors to the mass hierarchy

and to outline challenges on the way of realization of this idea.

1. After the determination of the leptonic 1-3 mixing angle, the structure of the neutrino

oscillograms discussed in refs. [14] and [15] (see also Fig. 3) is well determined, and the

position of the main structures in the Eν − cos θz (kinematic) plane is fixed. For Eν > 1

GeV these include the MSW resonance in the Earth’s mantle domain as well as the MSW

resonance and the three parametric ridges in the core domain of the oscillograms.

2. The multi-megaton ice (water) detectors like PINGU will allow one to reconstruct

the oscillograms and determine yet unknown neutrino parameters: the mass hierarchy (the

sign of ∆m2
31), the deviation of the 2-3 mixing from the maximal one, and in principle, the

CP-violation phase as the next step. In addition, once the neutrino mass hierarchy has

been established, the data from multi-megaton detectors should allow a significantly better
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FIG. 21: Left panel– Significance of determination of the hierarchy as a function of the “fit” values

of ∆m2
23,fit when the “true” value of ∆m2

31,true = 2.35 · 10−3 eV2 (vertical line). Right panel –

Significances as functions of ∆m2
31,true after minimization as in the left panel (solid lines) and when

∆m2
23,fit = ∆m2

31,true (dashed lines). A systematic uncertainty f = 5% and 5-yr PINGU data was

used.

determination of the value of ∆m2
31.

3. At the probability level the effects of the change of the mass hierarchy and of variations

of θ23 can be of order 1. However, there are several factors that substantially reduce the

effects at the level of observable events. We have identified and studied in detail the following

factors:

a) ν− ν̄ summation, which is related to the presence of both neutrinos and antineutrinos

in the original neutrino flux. The hierarchy asymmetry survives due to a factor of ∼2

difference of the neutrino and antineutrino cross-sections as well as some difference of the

original neutrino fluxes.

b) Flavor screening, which leads to the suppression factors like (s223r − 1) and (s223r̄ − 1)

and is related to the presence of both νe and νµ in the original flux.

c) Dilution of the significance: often large significances of the hierarchy asymmetry and

other event number differences appear in bins where numbers of events are small. Then

summation of signals in these high-significance bins and in bins where the numbers of events

are larger but the significance is lower leads to a dilution of the high significance.
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d) Smearing: finite energy and angular resolutions mean that integrations over rather

large domains in the Eν − θz plane have to be performed. These domains usually contain

regions with different signs of the considered effect (e.g., hierarchy asymmetry). Therefore

the integration leads to a significant suppression of the studied effects.

e) Parameter degeneracies.

4. We presented the significance plots for the determination of the neutrino mass hierar-

chy, deviation of the 2-3 mixing from the maximal one and CP-phase.

5. To evaluate the possibility to establish the neutrino mass hierarchy, we performed

smearing of the event number distributions using Gaussian functions for reconstructing the

true neutrino energies and zenith angles. We have studied the dependence of the significances

integrated over certain ranges of Eν and cos θz on the widths of the reconstruction functions.

Our preliminary estimates show that after 5 years of PINGU 20 operation the significance of

the determination of the hierarchy can range from ∼ 3σ to 10σ (with parameter degeneracies

taken into account), depending on the accuracy of reconstruction of the neutrino energy and

zenith angle.

6. The smearing procedure implemented in this paper captures the main uncertainties of

reconstruction of the true neutrino energies and zenith angles rather accurately. The smear-

ing we have adopted gives a good estimate (at least at this stage of knowledge of future

experimental characteristics) of the accuracy of reconstruction of the neutrino parameters.

By varying the smearing parameters in rather wide ranges we covered essentially all possi-

bilities of practical interest and explored the detecor resolutions necessary to achieve a given

significance of the hierarchy determination.

7. The parameter degeneracy effects can be significant, so that similar patterns of event

distribution in the Eν − θz plane or in its parts can be obtained due to either changing

the neutrino mass hierarchy or due to variations of the 2-3 mixing or of ∆m2
31 within their

currently allowed ranges. For each parameter we identified the kinematic regions of the

smallest degeneracy (where the effect we are interested in dominates). The effects of the

parameter degeneracy can be reduced by selecting particular regions of integration over Eν

and cos θz. In addition, forthcoming measurements of neutrino parameters (in MINOS, T2K,

NOvA and in reactor experiments) should provide us with more accurate values of these

parameters and further reduce the effects of parameter degeneracy.
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Appendix. Proof of the relation P̄αβ = Pαβ(∆ → −∆) in the limit ∆m2
21 → 0

Let us prove that in the limit ∆m2
21 → 0 the oscillation probabilities for antineutrinos are

given by those for neutrinos with the substitution ∆m2
31 → −∆m2

31. A slightly different

proof of this statement can be found in [29].

The evolution equation for the neutrino state vector in the propagation basis is

i
d

dx
ν̃ = H̃(x)ν̃ , (32)

where ν̃ = (νe, ν2̃, ν3̃) and the effective Hamiltonian H̃(x) in the limit ∆m2
21 → 0 takes the

form

H̃(x) =











s213∆+ V (x) 0 s13c13∆

0 0 0

s13c13∆ 0 c213∆











. (33)

Here ∆ ≡ ∆m2
31/2E. The evolution matrix (the matrix of the transition amplitudes) then

has the form

A(x) =











Aee 0 Ae3̃

0 1 0

A3̃e 0 A3̃3̃











(34)

From unitarity of this matrix it follows that |A3̃e| = |Ae3̃|. For antineutrinos, one has to flip

the sign of the potential V (x) in eq. (33). Obviously, this is equivalent to flipping the sign
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of ∆ in (33) and additionally changing the overall sign of the Hamiltonian H̃(x). The latter

can be compensated by complex conjugating the evolution equation (32). Thus, we find

A(ν̄,∆) = A∗(ν,−∆) . (35)

Recall now that in the limit ∆m2
21 → 0 the probabilities of various flavour transitions are

expressed only through PA = |Ae3̃|2 and cosφX where φX = arg(A2̃2̃A
∗
3̃3̃
) = arg(A∗

3̃3̃
) (see

eqs. (1)-(5)). Therefore we find that the oscillation probabilities for antineutrinos are given

by those for neutrinos of the opposite neutrino mass hierarchy (i.e. with ∆ → −∆).
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