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Abstract 
Background and Aims: Mixing effects during litter decomposition could occur 

between two or more different litter species because of the potential nutrient transfer. 

However, evidence of mixing effects is variable and the underlying mechanisms remain 

unclear. Using a three-year decomposition experiment, we aim to examine the effects of 

litter mixing and position on decomposition rates and nitrogen (N) and phosphorus (P) 

dynamics. 

Methods: We studied litter decomposition of Stipa krylovii (Sk) and Astragalus 

galactites (Ag), two dominant species with contrasting litter quality in a typical steppe 

of northern China in single decomposition and three mixing treatments. The three 

mixing treatments included thorough mixing (Sk-Ag), Ag over Sk (Ag/Sk), and Sk over 

Ag (Sk/Ag).  

Results: Both the Sk-Ag and the Sk/Ag mixture had negative mixing effects on the 

mass loss of the litter mixture, while the Ag/Sk mixture had a neutral mixing effect. The 

percent mass loss was higher when the litter species was placed at the top (25.0% and 

51.9% of mass remaining for Ag and Sk) than at the bottom (38.3% and 61.8% of mass 

remaining for Ag and Sk). The Sk/Ag mixture had negative effects on the release of N 

while all three mixing treatments had positive effects on the release of P.  

Conclusions: Our results indicate that: (1) mixing treatments can induce different 

mixing effects; (2) environmental factors likely play an important role in controlling the 

mixing effect; (3) litter-mixtures have different non-additive effects on N and P, which 

may further increase the heterogeneity of N and P availability as the two litter species 

may fall differentially in terms of space and time.  

Keywords: Litter decomposition, mixing effects, mass loss, nitrogen release, 

phosphorus release
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Introduction 

In most terrestrial ecosystems, litter decomposition is a fundamental ecological 

process that provides soil nutrients for plant biological activity (Swift et al. 1979). 

Due to its importance in nutrient cycling, the dynamics of plant litter decomposition 

and the controlling factors have been the focus of a considerable number of studies. 

Previous studies have revealed that litter decomposition could be affected by a series 

of abiotic factors, such as precipitation (Austin and Vitousek 2000), UV-radiation 

(Austin and Vivanco 2006), water table depth (Moore et al. 2007), and soil nutrient 

availability (Dent et al. 2006; Hobbie and Vitousek 2000). In addition, biotic factors, 

such as litter quality (Berg and Ekbohm 1991), soil animals (Bradford et al. 2002), 

and soil microbes (Daniel and Anderson 1992) could have great impact on litter 

decomposition. In semiarid environments, litter decomposition is more complex and 

additional factors such as vegetation structure and soil moisture could also play 

important roles (e.g., Throop and Archer 2009; Wang et al. 2009). Among these 

factors, it is often believed that litter quality, i.e., nitrogen (N) content, C/N ratio and 

lignin/N ratio, is the most important factor in determining the rate of litter 

decomposition especially in a terrestrial ecosystem (Aerts 1997; Vivanco and Austin 

2006). 

Most of the previous studies, however, have only focused on the decomposition 

of single litter species, while litter layer in natural ecosystems is in fact a mixture of 

different plant species. Decomposition of one litter species is inevitably influenced by 

the presence of adjacent litter species, resulting in so-called mixing effects which may 

either facilitate or inhibit the rate of overall litter decomposition (Jonsson and Wardle 

2008; McTiernan et al. 1997; Wardle et al. 1997). Such mixing effects can also be 

regulated by environmental factors (Gartner and Cardon 2006; Madritch and 
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Cardinale 2007) and litter quality of the component species, though the results are 

inconsistent among different studies (Hättenschwiler and Vitousek 2000; Hector et al. 

2000; Hobbie et al. 1999; Hoorens et al. 2003). Most studies compared the observed 

with the expected mass loss rate based on the decomposition rates of single 

component litter; few of these studies explored the underlying mechanisms inducing 

the mixing effects (Hättenschwiler et al. 2005; Wardle et al. 1997). Even fewer studies 

attempted to separate the component litter species from the litter mixture to 

investigate how the identity of the neighboring litter species affected decomposition 

interactively (Barantal et al. 2011; Hoorens et al. 2010; Wardle et al. 2003). 

In this study, we selected two dominant species, Stipa krylovii (Sk) and 

Astragalus galactites (Ag) with contrasting litter quality in terms of N content from a 

typical semiarid steppe ecosystem in Inner Mongolia, China to examine whether there 

were significant mixing effects on the decomposition of litter mixtures. In order to 

understand which factors determined the observed litter mixing effects, the two litter 

species in the litter mixture were mixed in three different treatments (thorough mixing, 

Sk on top of Ag, and Ag on top of Sk). We hypothesized that 1) the three mixing 

treatments would have different mixing effects as position could play an important 

role; 2) the high quality Ag litter would release nutrients while the low quality Sk 

litter would immobilize nutrients; and 3) the presence of Ag litter would facilitate the 

nutrient release whereas the Sk litter induce immobilization in the mixture.

 4 



Materials and methods 

Study site 

The experimental site was located at a temperate steppe in Duolun County, Inner 

Mongolia (42°02′N, 116°17′E, 1324 meters above sea level), China. This area is in a 

typical temperate zone characterized by a semiarid continental monsoon climate. 

Long-term mean annual precipitation is 385 mm, and mean annual temperature is 

2.1oC with monthly mean temperature ranging from -17.5oC in January to 18.9oC in 

July. Annual rainfall is 198.5 mm in 2007, 314.4 mm in 2008, and 172.6 mm in 2009, 

and small daily rainfall events (0-2 mm) account for 67%, 50%, and 68% of total 

rainfall from 2007 to 2009, respectively (Fig. 1). The sandy soil of the study site is 

classified as chestnut according to the Chinese classification, or Haplic Calcisols 

according to the Food and Agriculture Organization (FAO) classification. The surface 

10 cm soil layer is slightly alkaline (pH=7.2) and contains 20.4 g kg-1 total C, 1.63 g 

kg-1 total N with 10.35 mg kg-1 total available N, and 0.31 g kg-1 total phosphorus (P) 

(Liu et al. 2010). Mean soil bulk density is 1.31 g cm-3. 

Experimental design 

The selected species in this study, Stipa krylovii (Sk) and Astragalus galactites (Ag), 

are two dominant species in this typical steppe ecosystem in Inner Mongolia grassland. 

S. krylovii is a perennial bunchgrasses, and A. galactites is a perennial forb and an 

important legume species in the studied grassland system (Yang et al. 2011). The two 

litter species have quite different chemical and physical properties. The initial N 

concentration of the litter of Ag is about four times of that of Sk, and the initial P 

concentration of Ag is also significantly higher than that of Sk (Table 1). 

In late September 2006, the senescent leaf litters from the current year of the two 

species were collected, air-dried and placed in polyethylene litterbags (15×20cm, 
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1mm mesh). Each bag was filled with 15g litter either from a single litter species (Ag 

or Sk), or a 1:1 mixture of the two litter species. Two litter species were either mixed 

thoroughly (Sk-Ag) or separated by a polyethylene sheet (0.20mm in mesh size) in the 

litterbags. For the two mixing treatments with a divider, either Sk or Ag was placed on 

top of the other (Sk/Ag and Ag/Sk). In total there were five treatments: two single 

litter treatments (Ag and Sk) and three litter mixing treatments (Sk-Ag, Sk/Ag and 

Ag/Sk). The initial litter weight (15g air-dried litter) in each bag was chosen based on 

the following considerations: (1) experimental duration (~3 years), (2) potential 

decomposition rate in this area, and (3) sufficient remaining mass for chemical 

analyses after decomposition. The choice of the litterbag size was constrained by the 

limited space among plant clumps in the studied community, i.e., it would be difficult 

to use litterbags larger than15cm x 20cm. 

On October 27 2006, 200 litterbags were deployed in five replicate plots, with 40 

in each plot. Litterbags were retrieved after 162, 252, 341, 620, 706, 911, 991, and 

1072 days, respectively, during the following three years. At each collection date, one 

set of litterbags, i.e., one litterbag of each single litter species and of each of the three 

mixing treatments from each replicate plot (25 total each time), was randomly 

collected, and then transported back to the laboratory. 

In the laboratory, five sub-samples of each type of the original litter were 

oven-dried at 70oC for 48 h before initial deployment to determine the ratio of 

air-dried versus oven-dried mass. This ratio was used to calculate the initial 

oven-dried mass of each litterbag from the air-dried mass. After the litterbags were 

collected, extraneous matter such as in-growth plant materials and small animals were 

removed from the decomposing litter, when the mixture of Sk/Ag and Ag/Sk were 

separated by species. The soil mixed with the litter sample was rinsed off in cold 

 6 



water, and the litter was then oven-dried at 70oC for 48 h to determine remaining dry 

mass.  

Chemical analyses 

To determine the initial litter chemistry, total C, N and P of the five original 

non-decomposed sub-samples were measured. Only N and P concentrations were 

examined for litter samples harvested during decomposition. All the litter samples 

were ground using a ball mill (Retsch MM 400, Retsch GmbH & Co KG, Haan, 

Germany), and passed through a No. 4 sieve. Total C content was determined using 

H2SO4-K2Cr2O7 oxidation method (Nelson and Sommers 1996), and total N 

concentrations with an Alpkem autoanalyzer (Kjektec System 1026 Distilling Unit, 

Sweden). After sub-samples were digested in the mixture of H2SO4 and H2O2, total P 

was measured using molybdenum blue colorimetric method at 880 nm. 

Statistical analyses 

The expected percent mass remaining of each litter mixture (Sk-Ag, Sk/Ag and Ag/Sk) 

was calculated as: 

Expected percent mass remaining (%) = [M1/( M1+M2)] × R1 + [M2/( M1+M2)] × R2  

where R1, R2 are the percent remaining mass (%) of the singly decomposed litter 

species 1 and 2, respectively, and M1 and M2 are the estimated initial dry mass of each 

litter species in the mixture (Hoorens et al. 2003). 

The expected percent N and P mass remaining in the litter mixtures were 

determined similarly based on N and P concentrations of each single litter species at 

each collection date. Any significant deviation from expected values indicates an 

interactive effect, either positive or negative, between the mixing litter species. 

Repeated measures ANOVA was used to test the significance of the overall 

differences between the observed and the expected percent mass remaining values and 
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between different litter mixing treatments (i.e., Sk-Ag, Sk/Ag and Ag/Sk) across the 

whole decomposing period, where time was treated as within-subject factor. Repeated 

measures ANOVA was also used to test the differences of the mass loss and nutrient 

concentration of the same litter species placed at different positions (top or bottom) 

during the whole decomposing period. One-way ANOVA was used to test the nutrient 

concentration differences between the two positions in the litterbag at each collection 

date. The regressions between time and the ratios of the percent remaining mass of the 

top and bottom treatments of the same species were also conducted. The significant 

level of α= 0.05 was used. Data analyses were performed using SPSS (version 16.0). 

 

Results 

Mass loss of single-component litter and the mixtures 

After 1072 days, an average of 74.3% of the initial mass of the singly decomposed Ag 

litter was lost, compared with a 48.7% loss of the single Sk litter (Fig. 2a).  

Among the three types of litter mixing treatments, Sk-Ag had a significant 

negative mixing effect on mass loss (P=0.031). The amount of the observed percent 

mass remaining of the Sk-Ag treatment was 42.8% compared with the expected value 

of 41.0% at the end of this study. Sk/Ag also had a significant negative mixing effect 

on the mass loss (P<0.001), and the observed percent mass remaining was 45.1%, 

higher than the expected value of 41.0%. In contrast, Ag/Sk did not show significant 

mixing effect on the mass loss (P>0.05) (Fig. 2b, Table 2).  

Litter placed on the top, either Sk or Ag, decomposed much faster than that at the 

bottom. There were significant differences in the percent mass remaining between the 

top and the bottom positions for both Sk and Ag at all collection dates except the one 

at day 162 (Fig. 3a,b). The ratios between top and bottom percent remaining mass 
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showed a significant exponential decrease with time for both Sk and Ag, and tended to 

level off at the end of this study (r2
Sk=0.84, r2

Ag=0.69, Fig. 3a,b).  

Nutrient concentrations of the component litter species and their nutrient release 

patterns 

N concentration of the litter species placed on the top was much higher than that of 

the same species placed at the bottom for both Sk and Ag (P=0.011 for Sk; P<0.001 

for Ag, Table 3, Fig. 4a,b) during decomposition. However, results of one-way 

ANOVA showed that significant difference in N concentrations of the two positions 

for the Sk litter was found only at the last collection date (Fig. 4a), while significant 

difference was found for the Ag litter retrieved at day 252, 341, 706 and 991 (Fig. 4b). 

N concentrations of Sk in Sk/Ag and Ag/Sk showed a small decrease at the beginning, 

increased continuously afterwards, and decreased again when it approached the end of 

the observation period (Fig. 4a). N concentrations of Ag in Ag/Sk and Sk/Ag showed 

remarkably large fluctuations during the decomposition period although there was an 

overall increasing trend after a dip at the beginning (Fig. 4b). Because the two 

component species could not be separated from each other in the thorough mixture 

Sk-Ag, we were unable to investigate separately the change of N and P concentrations 

of each decomposing litter species in the mixture. 

 Repeated measures ANOVA showed that there was no overall difference in P 

concentrations between the top and the bottom positions for both species (P=0.535 for 

Sk; P=0.163 for Ag, Table 3, Fig. 4c, d). In addition, there was no significant 

difference in P concentrations of the two positions for the Sk litter at any collection 

date (Fig. 4c, d). However, one-way ANOVA results showed that the P concentration 

of the Ag litter on the top was significantly higher than that of the Ag litter at the 

bottom collected at day 620, 706 and 911 (Fig. 4d). 
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For both single decomposition and mixing treatments, there was a releasing phase 

for both N and P of the Ag litter. A leaching phase of N and P was found followed by 

immobilization and then a release phase for the Sk litter (Fig. 5a-d). When Sk 

decomposed with Ag, a stronger immobilization of N was found at both top and 

bottom positions (Fig. 5a, P=0.006). There was no significant difference in P release 

between the Sk litter decomposing singly and at the bottom position of the mixture, 

but the percent P remaining of the Sk litter at the upper position was significantly 

lower than the above two positions (Fig. 5b, P=0.002). For the Ag litter, the release of 

N was the fastest when Ag was placed above Sk. It became the slowest when Ag was 

placed below Sk (Fig. 5c, P<0.001). The release of P during the Ag litter 

decomposition showed similar pattern to that of N (Fig. 5d, P<0.001). 

Neither Sk-Ag nor Ag/Sk showed a significant mixing effect on N release (Table 

2, P>0.05). However, there was a negative effect of the Sk/Ag mixture on N release 

(Table 2, P<0.001), which was indicated by the higher observed percent N remaining 

value compared to the expected value over the whole decomposing period. Overall, N 

of the litter in the three mixtures was continuously released throughout the whole 

study period (Fig. 5e). All three mixtures had an overall significantly positive mixing 

effect on P release (Table 2). In addition, P was released throughout the study period 

with the exception of a large increase in the percent remaining after first year’s 

decomposition and a small increase for the last ~200 days of decomposition (Fig. 5f). 

 

Discussion 

Mass loss in the mixtures 

In natural terrestrial ecosystems, litter species in the litter layer usually decompose in 

mixtures rather than singly, and the decomposition of litter mixture may be either 
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enhanced or retarded by the component litter species. Previous studies have indicated 

that there were mixing effects on the decomposition of different litter species in fen 

ecosystems (Hoorens et al. 2003), boreal forests (Nilsson et al. 1999), grasslands and 

agricultural systems (Wardle et al. 1997). In this study, consistent with our first 

hypothesis, there were different mixing effects for different mixing treatments. We 

found significant negative mixing effects on the mass loss of the Sk/Ag mixture, 

significant but weaker negative mixing effects on the mass loss of the Sk-Ag mixture, 

while no significant mixing effect on the mass loss of the Ag/Sk mixture (Table 2). 

We also found that the percent mass remaining was significantly different between the 

two mixing positions for both Sk and Ag after 162 days (Fig. 3). The ratios of percent 

mass remaining between the top and the bottom litter species, for both Sk and Ag, 

decreased exponentially with time but tended to level off later (Fig. 3 inset). The 

average difference of the eight collection dates showed that Sk in the Ag/Sk treatment 

was 5.4% higher in percent mass remaining than that of the single Sk, while Ag in the 

Ag/Sk treatment was 5.0% lower in percent mass remaining than that of the single Ag. 

This difference between the two component litter in the Ag/Sk treatment 

counterbalanced each other. However, Sk in the Sk/Ag treatment was 3.5% lower in 

percent mass remaining than the single Sk, while Ag in this mixture was 12.1% higher 

than the single Ag, resulting in a lower overall mass loss in the Sk/Ag mixture. 

Therefore, the difference in mixing effects on mass loss in different litter mixtures 

might be a result of the change in mixing positions. 

Studies have shown that litter quality and the environmental factors regulated 

mixing effects. Litter chemistry can influence the decomposition rates of the 

component litter species through the transfer of nutrients and secondary chemicals 

among different litter species. This movement of materials can simply be caused by 
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leaching (Fyles and Fyles 1993; McArthur et al. 1994), and may also be mediated by 

the growth of fungi (McTiernan et al. 1997). Rainfall and soil moisture also play an 

important role in dryland decomposition (e.g., Wang et al. 2009; Yahdjian et al. 2006). 

The frequency of small rainfall events (less than 2 mm) accounted for more than 50% 

of the total rainfall in this semi-arid steppe area over the three years of observation, 

and may induce little effects on N leaching from the top litter to the bottom litter. 

Under this situation, the rain water might rarely reach the bottom litter species, and 

might hardly produce sufficient moisture conditions for the decomposition of the 

bottom litter species. Wardle et al. (2003) found that positive mixing effect was 

largely caused by low quality component litter due to its contribution to enhancing the 

moisture status in the litter layer. Their study results, supported by others, also 

suggested that the changes in environmental conditions affected the progress of 

decomposition and litter-mixing effects (Gartner and Cardon 2006; Jonsson and 

Wardle 2008; Madritch and Cardinale 2007). 

Mixing effect in this study could be affected by our specific litterbag design as 

the top and bottom layers of the two species were separated by a polyethylene barrier 

with 0.2 mm mesh size. This separation could lead to difference in moisture content 

of the top and the bottom litter as the upper litter might receive more water than the 

bottom litter when the amount of rainfall was small. At the same time, this was a full 

factorial experimental design, i.e., Ag/Sk treatment, Sk/Ag treatment, and thorough 

mixing (Sk-Ag). The same negative mixing effect was detected in both Sk/Ag and 

Sk-Ag treatments. Therefore, the effect of the experimental design on the mixing 

effects may not be significant. 

Our results showed that the litter placed on the top, which received more rainfall 

and solar radiation, decomposed much more quickly at the early period than the same 
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litter species placed at the bottom. Berg and Laskowski (2006) also showed that early 

stage mass loss could be stimulated by climatic factors and the availability of nutrients 

such as N and P. Since there was no difference in chemical concentrations between the 

two positions at the beginning of the decomposition, we concluded that the 

environmental factors might induce significant differences in mass loss between the 

two positions since the very beginning of the decomposition. Besides, the overall 

higher decomposition rate of the component species on the top could be mainly due to 

the faster mass loss at the early stage, as the effect of position seemed to level off at 

the later stage (Fig. 3 inset). 

Nutrient dynamics during decomposition 

Studies have shown a typical triphasic pattern for nutrient release during litter 

decomposition. However, not all three phases will occur during decomposition. For 

example, only phase III will occur in the decomposition of litter species with high 

nutrient concentration (Berg and Laskowski 2006; Prescott 2005). Sometimes, only 

phase II and III occur during the decomposition of nutrient-poor litter species. 

The increase in N concentrations of the remaining litter during decomposition is 

common in most previous studies, and this has generally been interpreted as microbial 

immobilization. In this study, we also found that there was significant increase in N 

concentrations of both the Sk and the Ag litter (Fig. 4a,b). Fewer studies have shown 

that litter P concentrations also increase during litter decomposition as most studies 

only focused on N. Results from this study indicated that P concentrations of the Sk 

litter also increased throughout the decomposition (Fig. 4c). However, there was not 

much net immobilization as the remaining P did not exceed the initial litter P content 

(Fig. 5b). According to some of the previous studies, the increase in P concentrations 

and percent remaining have also been interpreted as microbial immobilization, 
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especially when the availability of P is high due to fertilization (Liu et al. 2006; 

McGroddy et al. 2004) or high P content in the co-existing litter (e.g., Ag in this 

study). 

Our results showed that when Sk and Ag decomposed separately, the Ag litter 

generally released N and P over the three-year decomposition. The Sk litter, however, 

released N and P at the early stage of decomposition, followed by an immobilization 

period, and then released nutrients again (Fig. 5a-d). This generally agreed with our 

second hypothesis. Both litter species showed similar N and P release patterns 

regardless of their positions in the mixtures. When they were mixed, N was 

continuously released throughout the whole decomposition period regardless of the 

mixing treatments, which was similar to the pattern of individual Ag litter (Fig. 5c, e). 

The release pattern of P in the mixtures, on the other hand, was more similar to the 

pattern of individual Sk litter with short-term immobilization in the middle stage of 

decomposition (Fig. 5b, f). Therefore, the release of N from the mixtures during 

decomposition was primarily determined by the fast decomposing Ag litter while the 

release of P was largely determined by the slow decomposing Sk litter. In particular, 

when Ag litter was placed at the bottom of the litterbags, the decomposition of the 

Sk/Ag mixture was slowed down significantly, resulting in significant negative 

mixing effects on the N release. This also suggests that when the litter layer of a 

natural community has large amounts of Sk over Ag litter, high N retention will likely 

occur. 

Although P was immobilized in the individual Sk litter (Fig. 5c) and in the 

mixtures (Fig. 5f) at the middle stage of decomposition, the immobilization in the 

mixture was not as strong as in the Sk litter of the single decomposition treatment (Fig. 

5b). This indicates that the presence of the Ag litter during the Sk litter decomposition 
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alleviated P limitation for microbial needs. Sk-Ag, Ag/Sk and Sk/Ag mixtures all had 

significant positive effects on P release (Table 2) although the mixing effects on mass 

loss were only found significantly negative for the Sk-Ag and the Sk/Ag mixtures, 

suggesting that the presence of Ag might stimulate P release of the Sk litter. This also 

partially confirmed our third hypothesis. Liu et al. (2006) found that the addition of P 

significantly accelerated the decomposition of Sk, indicating limitations of P in this 

area during litter decomposition. Therefore, mixing of different litter types may have 

different effects on the release of N and P. Litter mixing had different non-additive 

effects on N and P dynamics during litter decomposition, which was also found by 

Ball et al. (2009). This was possibly due to nutrient limitations or different capacities 

of N and P uptake by microbial communities (Hobbie and Vitousek 2000). 

In this typical semiarid steppe ecosystem, litter fall is a gradual process at the end 

of the growing season. Different litter species may be layered randomly either on the 

top or at the bottom position to form different types of litter mixtures, and this was 

generally neglected in most studies on the decomposition of litter mixtures. Gartner 

and Cardon (2004) proposed that the potential for interaction among different litter 

species may be determined by how leaves are mixed in litterbags (i.e., whether the 

leaves are layered in the order of the leaf fall or are thoroughly mixed). The results 

from this study clearly showed that there were different mixing effects with different 

mixing treatments. 

 

Conclusions 

Based on a three-year decomposition experiment, this study demonstrated that 

different mixing treatments of litter species had different mixing effects on the mass 

loss and the release of N. All three mixing treatments had positive effects on the 
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release of P. We found that the release of N from the mixtures was primarily 

determined by the fast decomposing Ag litter while the release of P was largely 

determined by the slow decomposing Sk litter. The fast decomposition at the early 

stage more or less determines the overall rate of the mass loss. Based on these results, 

we think it is necessary to consider the litter placement in the litter layer when 

evaluating the decomposition of the mixtures and the cycling of nutrients. Our results 

also suggest that different mixing positions of litter species will result in different 

non-additive effects on the release of nutrients such as N and P, which may further 

increase the heterogeneity of the nutrient distribution pattern in the studied steppe 

ecosystem. 
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Table 1 Initial litter chemistry for the two grassland plant species, Stipa krylovii (Sk) 

and Astragalus galactites (Ag), data are means ± SE (n=5). Different superscript 

letters in a column indicate significant difference between the two species. 

 
Species N (mg/g) P (mg/g) C (mg/g) N/P C/N C/P 
Sk 5.54 ± 0.29b 0.96 ± 0.03b 407.46 ± 6.23b 5.78 ± 0.28b 74.40 ± 4.42a 425.75 ±16.12a 
Ag 21.44 ±0.19a 1.59 ± 0.01a 438.19 ± 5.80a 13.46 ± 0.07a 20.44 ± 0.21b 275.20 ± 3.73b 
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Table 2 Summary of the repeated measures ANOVA results for the difference 

between the expected and observed values of percent mass remaining (%), percent N 

remaining (%) and percent P remaining (%) in the three mixtures. Sk, Stipa krylovii; 

Ag, Astragalus galactites. 

 
     Sk-Ag    Ag/Sk    Sk/Ag 
  F P F P F P 

Percent Mass remaining (%) 
 
 

Mixing (M) 6.8 0.031 0.1 0.739 76.6 <0.001 
Day (D) 1009.0 <0.001 867.2 <0.001 756.7 <0.001 
M×D 0.3 0.935 1.5 0.234 2.6 0.027 

Percent N remaining (%) 
 
 

Mixing (M) 0.0 0.992 0.3 0.576 78.8 <0.001 
Day (D) 38.9 <0.001 125.3 <0.001 98.6 <0.001 
M×D 0.5 0.666 0.8 0.598 1.9 0.090 

Percent P remaining (%) 
 
 

Mixing (M) 17.9 0.003 8.4 0.020 7.0 0.030 
Day (D) 34.5 <0.001 39.2 <0.001 38.8 <0.001 
M×D 6.7 <0.001 2.2 0.044 2.8 0.025 

Notes: Sk-Ag means a thorough mixing, Ag/Sk means Ag on the top, Sk/Ag means Sk on the 

top.
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Table 3 Summary of the repeated measure ANOVA results for the difference between 

N and P concentration of the same species under different positions during 

decomposition. Sk, Stipa krylovii; Ag, Astragalus galactites. 

Species 
 N (mg/g) P (mg/g) 
 F P F P 

Ag 
 
 

Position (P) 137.217 <0.001 2.359 0.163 
Day (D) 34.581 <0.001 5.035 0.003 
P×D 2.55 0.042 0.543 0.706 

Sk 
 
 

Position (P) 10.705 0.011 0.42 0.535 
Day (D) 35.658 <0.001 23.087 <0.001 
P×D 0.99 0.448 0.541 0.787 
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Figure legends 

Fig. 1 The frequency distribution of the daily precipitation amount and the monthly 

precipitation distribution (inset) during the three years (2007-2009). 

Fig. 2 Percent mass remaining (% of initial litter mass) in decomposition of Sk (Stipa 

krylovii) and Ag (Astragalus galactites) in single decomposition and mixtures during 

decomposition. a, decomposing singly; b, decomposing in mixtures 

Fig. 3 Percent mass remaining of the component species in the two mixing treatments. 

a, Sk from Sk/Ag (means Sk on the top) and Ag/Sk (means Ag on the top), 

respectively; b, Ag from Ag/Sk and Sk/Ag, respectively. Inset figure in each panel 

indicates the regressions between time and the ratios of the percent mass remaining of 

the top and bottom treatments. All the data are mean ± 1 SE, n =5. Sk, Stipa krylovii; 

Ag, Astragalus galactites. 

Fig. 4 The N and P concentration of the component species Sk and Ag in the litter 

mixture across the decomposition period (mg.g-1), a, N concentration of Sk; b, N 

concentration of Ag; c, P concentration of Sk; d, P concentration of Ag. Data are 

means ± 1 SE, n =5. * = P<0.05; ** = P<0.01; *** = P<0.001. Sk, Stipa krylovii; Ag, 

Astragalus galactites. 

Fig. 5 The nutrient dynamics (% of initial values) in the Sk and the Ag single 

decomposition and the three mixing treatments. a, b, Percent N and P remaining of 

the Sk litter decomposing in single decomposition and in mixtures with Ag; c, d, 

Percent N and P remaining of the Ag litter decomposing in single decomposition and 

mixtures with Sk. e, f, Percent N and P remaining of the observed and the expected 

values of the mixing litter. Values are mean ± 1 SE, n =5. Sk, Stipa krylovii; Ag, 

Astragalus galactites. 
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