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Abstract

Pre-training and fine-tuning, e.g., BERT (De-

vlin et al., 2018), have achieved great success

in language understanding by transferring knowl-

edge from rich-resource pre-training task to the

low/zero-resource downstream tasks. Inspired

by the success of BERT, we propose MAsked

Sequence to Sequence pre-training (MASS)

for encoder-decoder based language generation.

MASS adopts the encoder-decoder framework

to reconstruct a sentence fragment given the re-

maining part of the sentence: its encoder takes

a sentence with randomly masked fragment (sev-

eral consecutive tokens) as input, and its decoder

tries to predict this masked fragment. In this way,

MASS can jointly train the encoder and decoder to

develop the capability of representation extraction

and language modeling. By further fine-tuning

on a variety of zero/low-resource language gen-

eration tasks, including neural machine transla-

tion, text summarization and conversational re-

sponse generation (3 tasks and totally 8 datasets),

MASS achieves significant improvements over

baselines without pre-training or with other pre-

training methods. Specially, we achieve state-of-

the-art accuracy (37.5 in terms of BLEU score)

on the unsupervised English-French translation,

even beating the early attention-based supervised

model (Bahdanau et al., 2015b)1.

1. Introduction

Pre-training and fine-tuning are widely used when target

tasks are of low or zero resource in terms of training data,
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while pre-training has plenty of data (Girshick et al., 2014;

Szegedy et al., 2015; Ouyang et al., 2015; Dai & Le, 2015;

Howard & Ruder, 2018; Radford et al., 2018; Devlin et al.,

2018). For example, in computer vision, models are usually

pre-trained on the large scale ImageNet dataset and then fine-

tuned on downstream tasks like object detection (Szegedy

et al., 2015; Ouyang et al., 2015) or image segmenta-

tion (Girshick et al., 2014). Recently, pre-training methods

such as ELMo (Peters et al., 2018), OpenAI GPT (Radford

et al., 2018) and BERT (Devlin et al., 2018) have attracted a

lot of attention in natural language processing, and achieved

state-of-the-art accuracy in multiple language understanding

tasks such as sentiment classification (Socher et al., 2013),

natural language inference (Bowman et al., 2015), named

entity recognition (Tjong Kim Sang & De Meulder, 2003)

and SQuAD question answering (Rajpurkar et al., 2016),

which usually have limited supervised data. Among the

pre-training methods mentioned above, BERT is the most

prominent one by pre-training the bidirectional encoder rep-

resentations on a large monolingual corpus through masked

language modeling and next sentence prediction.

Different from language understanding, language generation

aims to generate natural language sentences conditioned on

some inputs, including tasks like neural machine translation

(NMT) (Cho et al., 2014; Bahdanau et al., 2015a; Vaswani

et al., 2017), text summarization (Ayana et al., 2016; Suzuki

& Nagata, 2017; Gehring et al., 2017) and conversational re-

sponse generation (Shang et al., 2015; Vinyals & Le, 2015).

Language generation tasks are usually data-hungry, and

many of them are low-resource or even zero-source in terms

of training data. Directly applying a BERT like pre-training

method on these natural language generation tasks is not fea-

sible, since BERT is designed for language understanding,

which are usually handled by just one encoder or decoder.

Therefore, how to design pre-training methods for the lan-

guage generation tasks (which usually adopt the encoder-

decoder based sequence to sequence learning framework) is

of great potential and importance.

In this paper, inspired by BERT, we propose a novel ob-

jective for pre-training: MAsked Sequence to Sequence

learning (MASS) for language generation. MASS is based

on the sequence to sequence learning framework: its en-

coder takes a sentence with a masked fragment (several

consecutive tokens) as input, and its decoder predicts this
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masked fragment conditioned on the encoder representa-

tions. Unlike BERT or a language model that pre-trains

only the encoder or decoder, MASS is carefully designed to

pre-train the encoder and decoder jointly in two steps: 1) By

predicting the fragment of the sentence that is masked on the

encoder side, MASS can force the encoder to understand

the meaning of the unmasked tokens, in order to predict

the masked tokens in the decoder side; 2) By masking the

input tokens of the decoder that are unmasked in the source

side, MASS can force the decoder rely more on the source

representation other than the previous tokens in the target

side for next token prediction, better facilitating the joint

training between encoder and decoder.

MASS just needs to pre-train one model and then fine-tune

on a variety of downstream tasks. We use transformer as the

basic sequence to sequence model and pre-train on the WMT

monolingual corpus2, and then fine-tune on three different

language generation tasks including NMT, text summariza-

tion and conversational response generation. Considering

the downstream tasks cover cross-lingual task like NMT, we

pre-train one model on multiple languages. We explore the

low-resource setting for all the three tasks, and also consider

unsupervised NMT which is a purely zero-resource set-

ting. For NMT, the experiments are conducted on WMT14

English-French, WMT16 English-German and WMT16

English-Romanian datasets. For unsupervised NMT, we

directly fine-tune the pre-trained model on monolingual

data with back-translation loss (Lample et al., 2018), in-

stead of using additional denoising auto-encoder loss as

in Lample et al. (2018). For low-resource NMT, we fine-

tune our model on limited bilingual data. For the other two

tasks, we conduct experiments on: 1) the Gigaword corpus

for abstractive text summarization; 2) the Cornell Movie

Dialog corpus for conversational response generation. Our

method achieves improvements on all these tasks as well

as both the zero- and low-resource settings, demonstrating

our method is effective and applicable to a wide range of

sequence generation tasks.

The contributions of this work are listed as follows: 1) We

propose MASS, a masked sequence to sequence pre-training

method for language generation; 2) We apply MASS on a

variety of language generation tasks including NMT, text

summarization and conversational response generation, and

achieve significant improvements, demonstrating the effec-

tiveness of our proposed method. Specially, we achieve a

state-of-the art BLEU score for unsupervised NMT on two

language pairs: English-French and English-German, and

outperform the previous unsupervised NMT method (Lam-

ple & Conneau, 2019) by more than 4 points on English-

French and 1 point on French-English in terms of BLEU

2The monolingual data for each language is downloaded from
http://www.statmt.org/wmt16/translation-task.html.

score, and even beating the early attention-based supervised

model (Bahdanau et al., 2015b).

2. Related Work

There are a lot of works on sequence to sequence learning

and the pre-training for natural language processing. We

briefly review several popular approaches in this section.

2.1. Sequence to Sequence Learning

Sequence to sequence learning (Cho et al., 2014; Bahdanau

et al., 2015a; Wu et al., 2016; Gehring et al., 2017; Vaswani

et al., 2017) is a challenging task in artificial intelligence,

and covers a variety of language generation applications

such as NMT (Cho et al., 2014; Bahdanau et al., 2015a;

Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017;

Tan et al., 2019; Artetxe et al., 2017; Lample et al., 2017;

2018; He et al., 2018; Hassan et al., 2018; Song et al., 2018;

Shen et al., 2018), text summarization (Ayana et al., 2016;

Suzuki & Nagata, 2017; Gehring et al., 2017), question

answering (Yuan et al., 2017; Fedus et al., 2018) and con-

versational response generation (Shang et al., 2015; Vinyals

& Le, 2015).

Sequence to sequence learning has attracted much attention

in recent years due to the advance of deep learning. How-

ever, many language generations tasks such as NMT lack

paired data but have plenty of unpaired data. Therefore, the

pre-training on unpaired data and fine-tuning with small-

scale paired data will be helpful for these tasks, which is

exactly the focus of this work.

2.2. Pre-training for NLP tasks

Pre-training has been widely used in NLP tasks to learn

better language representation. Previous works mostly fo-

cus on natural language understanding tasks, and can be

classified into feature-based approaches and fine-tuning ap-

proaches. Feature-based approaches mainly leverage pre-

training to provide language representations and features

to the downstream tasks, which includes word-level rep-

resentations (Brown et al., 1992; Ando & Zhang, 2005;

Blitzer et al., 2006; Collobert & Weston, 2008; Mikolov

et al., 2013; Pennington et al., 2014) and sentence-level rep-

resentations (Kiros et al., 2015; Logeswaran & Lee, 2018;

Le & Mikolov, 2014), as well as context sensitive features

from the NMT model (McCann et al., 2017) and ELMo (Pe-

ters et al., 2018). Fine-tuning approaches mainly pre-train

a model on language modeling objective and then fine-

tune the model on the downstream tasks with supervised

data (Dai & Le, 2015; Howard & Ruder, 2018; Radford

et al., 2018; Devlin et al., 2018). Specifically, Devlin et al.

(2018) proposed BERT based on masked language modeling

and next sentence prediction and achieved a state-of-the-art
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Figure 1. The encoder-decoder framework for our proposed MASS. The token “ ” represents the mask symbol [M].

accuracy on multiple language understanding tasks in the

GLUE benchmark (Wang et al., 2018) and SQuAD (Ra-

jpurkar et al., 2016).

There are also some works pre-training the encoder-decoder

model for language generation. Dai & Le (2015); Ra-

machandran et al. (2016) leverage a language model or

auto-encoder to pre-train the encoder and decoder. Their

improvements, although observed, are limited and not as

general and significant as the pre-training methods (e.g.,

BERT) for language understanding. Zhang & Zong (2016)

designed a sentence reordering task for pre-training, but

only for the encoder part of the encoder-decoder model.

Zoph et al. (2016); Firat et al. (2016) pre-train the model

on similar rich-resource language pairs and fine-tuned on

the target language pair, which relies on supervised data on

other language pairs. Recently, XLM (Lample & Conneau,

2019) pre-trained BERT-like models both for the encoder

and decoder, and achieved the previous state of the art re-

sults on unsupervised machine translation. However, the

encoder and decoder in XLM are pre-trained separately and

the encoder-decoder attention mechanism cannot be pre-

trained, which are sub-optimal for sequence to sequence

based language generation tasks.

Different from previous works, our proposed MASS is care-

fully designed to pre-train both the encoder and decoder

jointly using only unlabeled data, and can be applied to

most language generations tasks.

3. MASS

In this section, we first introduce the basic framework of

sequence to sequence learning, and then propose MASS

(MAsked Sequence to Sequence pre-training). We then

discuss the differences between MASS and previous pre-

training methods including the masked language modeling

in BERT and standard language modeling.

3.1. Sequence to Sequence Learning

We denote (x, y) ∈ (X ,Y) as a sentence pair, where

x = (x1, x2, ..., xm) is the source sentence with m to-

kens, and y = (y1, y2, ..., yn) is the target sentence with

n tokens, and X and Y are the source and target do-

mains. A sequence to sequence model learns the param-

eter θ to estimate the conditional probability P (y|x; θ),
and usually uses log likelihood as the objective function:

L(θ; (X ,Y)) = Σ(x,y)∈(X ,Y) logP (y|x; θ). The condi-

tional probability P (y|x; θ) can be further factorized accord-

ing to the chain rule: P (y|x; θ) =
∏n

t=1 P (yt|y<t, x; θ),
where y<t is the proceeding tokens before position t.

A major approach to sequence to sequence learning is the

encoder-decoder framework: The encoder reads the source

sequence and generates a set of representations; the decoder

estimates the conditional probability of each target token

given the source representations and its preceding tokens.

Attention mechanism (Bahdanau et al., 2015a) is further

introduced between the encoder and decoder to find which

source representation to focus on when predicting the cur-

rent token.

3.2. Masked Sequence to Sequence Pre-training

We introduce a novel unsupervised prediction task in this

section. Given an unpaired source sentence x ∈ X , we

denote x\u:v as a modified version of x where its fragment

from position u to v are masked, 0 < u < v < m and m is

the number of tokens of sentence x. We denote k = v−u+1
as the number of tokens being masked from position u to

v. We replace each masked token by a special symbol [M],
and the length of the masked sentence is not changed. xu:v

denotes the sentence fragment of x from u to v.

MASS pre-trains a sequence to sequence model by predict-

ing the sentence fragment xu:v taking the masked sequence

x\u:v as input. We also use the log likelihood as the objec-

tive function:

L(θ;X ) =
1

|X |
Σx∈X logP (xu:v|x\u:v; θ)

=
1

|X |
Σx∈X log

v∏

t=u

P (xu:v
t |xu:v

<t , x
\u:v; θ).

(1)

We show an example in Figure 1, where the input sequence

has 8 tokens with the fragment x3x4x5x6 being masked.

Note that the model only predicts the masked fragment

x3x4x5x6, given x3x4x5 as the decoder input for position

4− 6, and the decoder takes the special mask symbol [M]
as inputs for the other positions (e.g., position 1 − 3 and
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(a) Masked language modeling in BERT (k = 1)
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(b) Standard language modeling (k = m)

Figure 2. The model structure of MASS when k = 1 and k = m. Masked language modeling in BERT can be viewed as the case k = 1
and standard language modeling can be viewed as the case k = m.

7 − 8). While our method works for any neural network

based encoder-decoder frameworks, we choose Transformer

in our experiments, considering that it achieves state-of-the-

art performances in multiple sequence to sequence learning

tasks.

Actually, the masked language modeling in BERT (Devlin

et al., 2018) and the standard language modeling (Bengio

et al., 2003; Mikolov et al., 2010) in GPT (Radford et al.,

2018) can be viewed as special cases of MASS. We have

an important hyperparameter k, which denotes the length

of the masked fragment of the sentence. Our method with

different k values can cover the special cases that are related

to previous pre-training methods, as shown in Table 1.

When k = 1, the masked fragment in the source sentence

contains only one token, and the decoder predicts this token

without any tokens as input but conditioned on the unmasked

source tokens, as shown in Figure 2a. It becomes the masked

language modeling as used in BERT. One may argue that

the model structure is a little bit different from the masked

language model. However, since all the input tokens of the

decoder are masked, the decoder is itself like a non-linear

classifier, analogous to the softmax matrix used in BERT.

In this case, the conditional probability is P (xu|x\u; θ) and

u is the position of the masked token, which is exactly the

formulation of masked language modeling used in BERT3.

When k = m where m is the number of tokens in sen-

tence x, all the tokens on the encoder side are masked and

the decoder needs to predict all tokens given previous to-

kens, as shown in Figure 2b. The conditional probability

is P (x1:m|x\1:m; θ), and it becomes the standard language

modeling in GPT, conditioned on null information from the

encoder as all the tokens in the encoder side are masked.

3.3. Discussions

MASS is a pre-training method for language generation.

While its special cases are related to the previous methods

including the standard language modeling in GPT and the

masked language modeling in BERT, it is different from

3One may argue that the masked language modeling in BERT
randomly masks multiple tokens rather than just one token at a
time. However, the key idea behind masking language modeling
in BERT is to leverage bidirectional context information. Masking
multiple tokens at a time is mainly for training speedup.

Length Probability Model

k = 1 P (xu|x\u; θ) masked LM in BERT

k = m P (x1:m|x\1:m; θ) standard LM in GPT

k ∈ (1,m) P (xu:v|x\u:v; θ) methods in between

Table 1. Masked language modeling in BERT and standard lan-

guage modeling, as special cases covered in MASS.

these methods in general.

• Standard language modeling has long been used for

pre-training, and the most prominent ones are the re-

cently proposed ELMo (Peters et al., 2018) and Ope-

nAI GPT (Radford et al., 2018). BERT introduces

two pre-training tasks (masked language modeling and

next sentence prediction) for natural language under-

standing, and uses one encoder to extract the repre-

sentation for a single sentence or a pair of sentences.

Both standard language modeling and BERT can just

pre-train the encoder or decoder separately. While

achieving promising results on language understand-

ing tasks, they are not suitable for language genera-

tion tasks which typically leverage an encoder-decoder

framework for conditional sequence generation.

• MASS is designed to jointly pre-train the encoder and

decoder for language generation tasks. First, by only

predicting the masked tokens through a sequence to

sequence framework, MASS forces the encoder to un-

derstand the meaning of the unmasked tokens, and

also encourages the decoder to extract useful infor-

mation from the encoder side. Second, by predicting

consecutive tokens in the decoder side, the decoder

can build better language modeling capability than just

predicting discrete tokens. Third, by further masking

the input tokens of the decoder which are not masked

in the encoder side (e.g., when predicting fragment

x3x4x5x6, only the tokens x3x4x5 are taken as the in-

put and other tokens are masked with [M]), the decoder

is encouraged to extract more useful information from

the encoder side, rather than leveraging the abundant

information from the previous tokens.
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4. Experiments and Results

In this section, we describe the experimental details about

MASS pre-training and fine-tuning on a variety of language

generation tasks, including NMT, text summarization, con-

versational response generation.

4.1. MASS Pre-training

Model Configuration We choose Transformer (Vaswani

et al., 2017) as the basic model structure, which consists

of 6-layer encoder and 6-layer decoder with 1024 embed-

ding/hidden size and 4096 feed-forward filter size. For

neural machine translation task, we pre-train our model on

the monolingual data of the source and target languages. We

respectively conduct experiments on three language pairs:

English-French, English-German, and English-Romanian.

For other language generation tasks, including text summa-

rization and conversational response generation, we pre-

train the model with only English monolingual data re-

spectively. To distinguish between the source and target

languages in neural machine translation task, we add a lan-

guage embedding to each token of the input sentence for the

encoder and decoder, which is also learnt end-to-end. We

implement our method based on codebase of XLM 4.

Datasets We use all of the monolingual data from WMT

News Crawl datasets5, which covers 190M, 62M and 270M

sentences from year 2007 to 2017 for English, French, Ger-

man respectively. We also include a low-resource language,

Romanian, in the pre-training stage, to verify the effective-

ness of MASS pre-trained with low-resource monolingual

data. We use all of the available Romanian sentences from

News Crawl dataset and augment it with WMT16 data,

which results in 2.9M sentences. We remove the sentences

with length over 175. For each task, we jointly learn a

60,000 sub-word units with Byte-Pair Encoding (Sennrich

et al., 2016) between source and target languages.

Pre-Training Details We mask the fragment by replac-

ing the consecutive tokens with special symbols [M], with

random start position u. Following Devlin et al. (2018), the

masked tokens in the encoder will be a [M] token 80% of

the time, a random token 10% of the time and a unchanged

token 10% of the time. We set the fragment length k as

roughly 50% of the total number of tokens in the sentence

and also study different k to compare their accuracy changes.

To reduce the memory and computation cost, we removed

the padding in the decoder (the masked tokens) but keep the

positional embedding of the unmasked tokens unchanged

(e.g., if the first two tokens are masked and removed, the

4https://github.com/facebookresearch/XLM
5While we choose the WMT monolingual data in the current

setting, pre-training on Wikipedia data is also feasible.

position for the third token is still 2 but not 0). In this way,

we can get similar accuracy and reduce 50% computation

in the decoder. We use Adam optimizer (Kingma & Ba,

2015) with a learning rate of 10−4 for the pre-training. The

model are trained on 8 NVIDIA V100 GPU cards and each

mini-batch contains 3000 tokens for pre-training.

To verify the effectiveness of MASS, we fine-tune the pre-

trained model on three language generation tasks: NMT,

text summarization and conversational response generation.

We explore the low-resource setting on these tasks where

we just leverage few training data for fine-tuning to simulate

the low-resource scenario. For NMT, we mainly investigate

the zero-resource (unsupervised) setting, as unsupervised

NMT has become a challenging task in recent years (Artetxe

et al., 2017; Lample et al., 2017; 2018).

4.2. Fine-Tuning on NMT

In this section, we first describe the experiments on the

unsupervised NMT, and then introduce the experiments on

low-resource NMT.

Experimental Setting For unsupervised NMT, there is

no bilingual data to fine-tune the pre-trained model. There-

fore, we leverage the monolingual data that is also used in

the pre-training stage. Different from Artetxe et al. (2017);

Lample et al. (2017; 2018), we just use back-translation

to generate pseudo bilingual data for training, without us-

ing denoising auto-encoder6. During fine-tuning, we use

Adam optimizer (Kingma & Ba, 2015) with initial learn-

ing rate 10−4, and the batch size is set as 2000 tokens for

each GPU. During evaluation, we calculate the BLEU score

with multi-bleu.pl7 on newstest2014 for English-French, and

newstest2016 for English-German and English-Romanian.

Results on Unsupervised NMT Our results are shown

in Table 2. On all the 6 translation directions, our method

outperforms all of the previous results, including the meth-

ods without pre-training (Lample et al., 2018) and with

pre-training (Lample & Conneau, 2019). XLM (Lample

& Conneau, 2019) is the previous state-of-the-art method

which leverage BERT like pre-training in encoder and de-

coder, which covers several pre-training methods: masked

language model (MLM) and causal language model (CLM).

Our method still outperforms XLM by 4.1 BLEU points on

en-fr.

Compared with Other Pre-training Methods We also

compare MASS with the previous pre-training methods for

language generation tasks. The first baseline is BERT+LM,

6MASS is better than denoising auto-encoder as we will show
in Table 3.

7https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl
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Method Setting en - fr fr - en en - de de - en en - ro ro - en

Artetxe et al. (2017) 2-layer RNN 15.13 15.56 6.89 10.16 - -
Lample et al. (2017) 3-layer RNN 15.05 14.31 9.75 13.33 - -
Yang et al. (2018) 4-layer Transformer 16.97 15.58 10.86 14.62 - -
Lample et al. (2018) 4-layer Transformer 25.14 24.18 17.16 21.00 21.18 19.44
XLM (Lample & Conneau, 2019) 6-layer Transformer 33.40 33.30 27.00 34.30 33.30 31.80

MASS 6-layer Transformer 37.50 34.90 28.10 35.00 35.20 33.10

Table 2. The BLEU score comparisons between MASS and the previous works on unsupervised NMT. Results on en-fr and fr-en pairs are

reported on newstest2014 and the others are on newstest2016. Since XLM uses different combinations of MLM and CLM in the encoder

and decoder, we report the highest BLEU score for XLM on each language pair.

which use masked language modeling in BERT to pre-train

the encoder and the standard language modeling to pre-train

the decoder. The second baseline is DAE, which simply

uses denoising auto-encoder (Vincent et al., 2008) to pre-

train the encoder and decoder. We pre-train the model with

BERT+LM and DAE, and fine-tune on the unsupervised

translation pairs with same fine-tuning strategy of XLM

(i.e., DAE loss + back-translation). These methods are also

configured with the 6-layer Transformer setting.

As shown in Table 3, BERT+LM achieves higher BLEU

score than DAE, and MASS outperforms both BERT+LM

and DAE on all the unsupervised translation pairs. While

DAE usually leverages some denoising methods like ran-

domly masking tokens or swapping adjacent tokens, the

decoder can still easily learn to copy the unmasked tokens

through encoder-decoder attention8. On the other hand, the

decoder in DAE takes the full sentence as the input, which

is enough to predict the next token like the language model,

and is not forced to extract additional useful representation

from the encoder.

Experiments on Low-Resource NMT In the low-

resource NMT setting, we respectively sample 10K, 100K,

1M paired sentence from the bilingual training data of

WMT14 English-French, WMT16 English-German and

WMT16 English-Romanian, to explore the performance of

our method in different low-resource scenarios. We use the

same BPE codes learned in the pre-trained stage to tokenize

the training sentence pairs. We fine-tune the pre-trained

model on the paired data for 20,000 steps with Adam op-

timizer and the learning rate is set as 10−4. We choose

the best model according to the accuracy on development

set. We report the BLEU scores on the same testsets used

in the unsupervised setting. As shown in Figure 3, MASS

outperforms the baseline models that are trained only on

the bilingual data without any pre-training on all the six

8The popular encoder-decoder based model structures (Wu
et al., 2016; Gehring et al., 2017; Vaswani et al., 2017) all adopt
residual connection (He et al., 2016). Therefore, the token genera-
tion in the top layer of the decoder side can directly depend on the
token embedding in the encoder side through residual connection
and attention.

Method en-fr fr-en en-de de-en en-ro ro-en

BERT+LM 33.4 32.3 24.9 32.9 31.7 30.4
DAE 30.1 28.3 20.9 27.5 28.8 27.6

MASS 37.5 34.9 28.1 35.0 35.2 33.1

Table 3. The BLEU score comparisons between MASS and other

pre-training methods. The results for BERT+LM are directly taken

from the MLM+CLM setting in XLM (Lample & Conneau, 2019)

as they use the same pre-training methods.

translation directions, demonstrating the effectiveness of

our method in the low-resource scenarios.

4.3. Fine-Tuning on Text Summarization

Experiment Setting Text summarization is the task of

creating a short and fluent summary of a long text document,

which is a typical sequence generation task. We fine-tune the

pre-trained model on text summarization task with different

scales (10K, 100K, 1M and 3.8M) of training data from the

Gigaword corpus (Graff et al., 2003)9, which consists of

a total of 3.8M article-title pairs in English. We take the

article as the encoder input and title as the decoder input for

fine-tuning. We report the F1 score of ROUGE-1, ROUGE-

2 and ROUGE-L on the Gigaword testset during evaluation.

We use beam search with a beam size of 5 for inference.

Results Our results are illustrated in Figure 4. We com-

pare MASS with the model that is trained only on the paired

data without any pre-training. MASS consistently outper-

forms the baseline on different scales of fine-tuning data

(more than 10 ROUGE points gain on 10K data and 3

ROUGE points gain on 100K data), which demonstrates

that MASS is effective in low-resource scenarios with dif-

ferent scale of training data on this task.

Compared with Other Pre-Training Methods We fur-

ther compare MASS with the pre-training methods of

BERT+LM and DAE described in Section 4.2, with 100K

data on the text summarization task. As shown in Table 4,

9https://github.com/harvardnlp/sent-summary
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(a) en-fr (b) fr-en (c) en-de (d) de-en (e) en-ro (f) ro-en

Figure 3. The BLEU score comparisons between MASS and the baseline on low-resource NMT with different scales of paired data.

(a) RG-1 (F) (b) RG-2 (F) (c) RG-L (F)

Figure 4. The comparisons between MASS and the baseline on

text summarization task with different scales of paired data. The

results are reported in ROUGE-1 (RG-1), ROUGE-2 (RG-2) and

ROUGE-L (RG-L) respectively. F stands for F1-score.

Method RG-1 (F) RG-2 (F) RG-L (F)

BERT+LM 27.63 10.40 25.32
DAE 28.11 11.25 25.69

MASS 29.79 12.75 27.45

Table 4. The comparisons between MASS and two other pre-

training methods in terms of ROUGE score on the text summariza-

tion task with 100K training data.

MASS consistently outperforms the two pre-training meth-

ods on the three ROUGE scores.

4.4. Fine-Tuning on Conversational Response

Generation

Experimental Setting Conversational response gener-

ation generates a flexible response for the conversa-

tion (Shang et al., 2015; Vinyals & Le, 2015). We conduct

experiments on the Cornell movie dialog corpus (Danescu-

Niculescu-Mizil & Lee, 2011)10 that contains 140K conver-

sation pairs. We randomly sample 10K/20K pairs as the

validation/test set and the remaining data is used for training.

We adopt the same optimization hyperparameters from the

pre-training stage for fine-tuning. We report the results with

perplexity (PPL) following Vinyals & Le (2015).

Results We compare MASS with the baseline that is

trained on the available data pairs. We conduct experiments

on the 10K pairs (randomly chosen) and the whole 110K

10https://github.com/suriyadeepan/datasets/tree/master/seq2seq/
cornell movie corpus

pairs, and show the results in Table 5. MASS achieves lower

PPL than the baseline on both the 10K and 110K data.

Method Data = 10K Data = 110K

Baseline 82.39 26.38
BERT+LM 80.11 24.84

MASS 74.32 23.52

Table 5. The comparisons between MASS and other baseline meth-

ods in terms of PPL on Cornell Movie Dialog corpus.

Compared with Other Pre-Training Methods We also

compare MASS with the pre-training methods of BERT+LM

and DAE on conversational response generation. As shown

in Table 5, MASS consistently outperforms the two pre-

training methods with lower PPL on 10K and 110K training

data respectively.

4.5. Analysis of MASS

Study of Different k The length of the masked fragment

k is an important hyperparameter of MASS and we have

varied k in Section 3.2 to cover the special cases of masked

language modeling in BERT and standard language mod-

eling. In this section, we study the performance of MASS

with different k, where we choose k from 10% to 90% per-

centage of the sentence length m with a step size of 10%,

plus with k = 1 and k = m.

We observe both the performance of MASS after pre-

training, as well as the performance after fine-tuning on

several language generation tasks, including unsupervised

English-French translation, text summarization and conver-

sational response generation. We first show the perplexity

(PPL) of the pre-training model on the English and French

languages with different k. We choose the English and

French sentences from newstest2013 of WMT En-Fr as

the validation set, and plot the PPL in Figure 5a (English)

and 5b (French). It can be seen that the pre-trained model

achieves the best validation PPL when k is between 50%
and 70% of the sentence length m. We then observe the

performance on fine-tuning tasks. We show the curve of

the validation BLEU scores on unsupervised En-Fr trans-

lation in Figure 5c, the validation ROUGE scores on text
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(a) (b) (c) (d) (e)

Figure 5. The performances of MASS with different masked lengths k, in both pre-training and fine-tuning stages, which include: the PPL

of the pre-trained model on English (Figure a) and French (Figure b) sentences from WMT newstest2013 on English-French translation;

the BLEU score of unsupervised English-French translation on WMT newstest2013 (Figure c); the ROUGE score (F1 score in RG-2) on

the validation set of text summarization (Figure d); the PPL on the validation set of conversational response generation (Figure e).

Method BLEU Method BLEU Method BLEU

Discrete 36.9 Feed 35.3 MASS 37.5

Table 6. The comparison between MASS and the ablation methods

in terms of BLEU score on the unsupervised en-fr translation.

summarization in Figure 5d, and the validation PPL on con-

versational response generation in Figure 5e. It can be seen

that MASS achieves best performance on these downstream

tasks when k is nearly 50% of the sentence length m. There-

fore, we set k = 50% of m for MASS in our experiments.

Actually, k = 50% of m is a good balance between the

encoder and decoder. Too few valid tokens in the encoder

side or in the decoder side will bias the model to concentrate

more on the other side, which is not suitable for language

generation task that typically leverages the encoder-decoder

framework to extract the sentence representation in the en-

coder, as well as to model and generate the sentence in the

decoder. The extreme cases are k = 1 (masked language

modeling in BERT) and k = m (standard language model-

ing), as illustrated in Figure 2. Neither k = 1 nor k = m

can achieve good performance on the downstream language

generation tasks, as shown in Figure 5.

Ablation Study of MASS In our masked sequence to se-

quence pre-training, we have two careful designs: (1) We

mask consecutive tokens in the encoder side, and thus pre-

dict consecutive tokens in the decoder side, which can build

better language modeling capability than just predicting

discrete tokens. (2) We mask the input tokens of the de-

coder which are not masked in the encoder side (e.g., when

predicting fragment x3x4x5x6 in Figure 1, only the tokens

x3x4x5 are taken as the input and other tokens are masked

with [M]), to encourage the decoder to extract more useful

information from the encoder side, rather than leveraging

the abundant information from the previous tokens. In this

section, we conduct two ablation studies to verify the ef-

fectiveness of the two designs in MASS. The first study is

to randomly mask discrete tokens instead of consecutive

tokens in MASS, denoted as Discrete. The second study

is to feed all the tokens to the decoder instead of masking

the input tokens of the decoder that are not masked in the

encoder side, denoted as Feed. We compare MASS with the

two ablation methods on the unsupervised English-French

translation, as shown in Table 6. It can be seen that both Dis-

crete and Feed perform worse than MASS, demonstrating

the effectiveness of the two designs in MASS.

5. Conclusion

In this work, we have proposed MASS: masked sequence to

sequence pre-training for language generation tasks, which

reconstructs a sentence fragment given the remaining part

of the sentence in the encoder-decoder framework. MASS

just needs to pre-train one model and then fine-tune on

multiple language generation tasks such as neural machine

translation, text summarization and conversational response

generation. Through experiments on the three above tasks

and total eight datasets, MASS achieved significant improve-

ments over the baseline without pre-training or with other

pre-training methods. More specifically, MASS achieved

the state-of-the-art BLEU scores for unsupervised NMT on

three language pairs, outperforming the previous state-of-

the-art by more than 4 BLEU points on English-French.

For future work, we will apply MASS to more language

generation tasks such as sentence paraphrasing, text style

transfer and post editing. We will also investigate more

of the theoretical and empirical analysis on our masked

sequence to sequence pre-training method.
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danpur, S. Recurrent neural network based language model.

In Eleventh Annual Conference of the International Speech

Communication Association, 2010.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,

J. Distributed representations of words and phrases and their

compositionality. In NIPS, pp. 3111–3119, 2013.

Ouyang, W., Li, H., Zeng, X., and Wang, X. Learning deep

representation with large-scale attributes. In CVPR, pp.

1895–1903, 2015.

Pennington, J., Socher, R., and Manning, C. Glove: Global

vectors for word representation. In EMNLP, pp. 1532–1543,

2014.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,

Lee, K., and Zettlemoyer, L. Deep contextualized word

representations. In NAACL, volume 1, pp. 2227–2237, 2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,

I. Improving language understanding by generative pre-

training. 2018.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:

100,000+ questions for machine comprehension of text.

CoRR, 2016.

Ramachandran, P., Liu, P. J., and Le, Q. V. Unsupervised

pretraining for sequence to sequence learning. CoRR,

abs/1611.02683, 2016.

Sennrich, R., Haddow, B., and Birch, A. Neural machine trans-

lation of rare words with subword units. In ACL, volume 1,

pp. 1715–1725, 2016.

Shang, L., Lu, Z., and Li, H. Neural responding machine for

short-text conversation. In ACL, volume 1, pp. 1577–1586,

2015.

Shen, Y., Tan, X., He, D., Qin, T., and Liu, T.-Y. Dense

information flow for neural machine translation. In Pro-

ceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers),

pp. 1294–1303, June 2018.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D.,

Ng, A., and Potts, C. Recursive deep models for semantic

compositionality over a sentiment treebank. In EMNLP, pp.

1631–1642, 2013.

Song, K., Tan, X., He, D., Lu, J., Qin, T., and Liu, T.-Y.

Double path networks for sequence to sequence learning.

In Proceedings of the 27th International Conference on

Computational Linguistics, pp. 3064–3074, 2018.

Suzuki, J. and Nagata, M. Cutting-off redundant repeating

generations for neural abstractive summarization. In ACL,

pp. 291–297, 2017.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going

deeper with convolutions. In CVPR, pp. 1–9, 2015.

Tan, X., Ren, Y., He, D., Qin, T., and Liu, T.-Y. Multilingual

neural machine translation with knowledge distillation. In

ICLR, 2019.

Tjong Kim Sang, E. F. and De Meulder, F. Introduction to

the conll-2003 shared task: Language-independent named

entity recognition. In NAACL, pp. 142–147. Association for

Computational Linguistics, 2003.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is

all you need. In NIPS, pp. 6000–6010, 2017.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.

Extracting and composing robust features with denoising

autoencoders. In ICML, pp. 1096–1103. ACM, 2008.

Vinyals, O. and Le, Q. V. A neural conversational model.

CoRR, abs/1506.05869, 2015.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and

Bowman, S. R. Glue: A multi-task benchmark and anal-

ysis platform for natural language understanding. CoRR,

abs/1804.07461, 2018.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,

Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,

K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L.,

Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K.,

Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa,

J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and

Dean, J. Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation. CoRR,

abs/1609.08144, 2016.

Yang, Z., Chen, W., Wang, F., and Xu, B. Unsupervised neural

machine translation with weight sharing. In ACL, pp. 46–55,

2018.

Yuan, X., Wang, T., Gulcehre, C., Sordoni, A., Bachman, P.,

Zhang, S., Subramanian, S., and Trischler, A. Machine com-

prehension by text-to-text neural question generation. In

Proceedings of the 2nd Workshop on Representation Learn-

ing for NLP, pp. 15–25, 2017.



MASS: Masked Sequence to Sequence Pre-training for Language Generation

Zhang, J. and Zong, C. Exploiting source-side monolingual

data in neural machine translation. In EMNLP, pp. 1535–

1545, 2016.

Zoph, B., Yuret, D., May, J., and Knight, K. Transfer learning

for low-resource neural machine translation. In EMNLP, pp.

1568–1575, 2016.


