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Mass of a Galaxy and Dissipative Process 

in the Hot Universe 
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Decay of the acoustic motions in an early stage of the hot universe is studied in detail. 

Considering a growth of density perturbation by gravitation and its decay by dissipative 

processes, i.e. viscosity and thermal conductivity, we can get a gross feature of the size 

spectrum of density inhomogeneity at the stage of recombination of the cosmic plasma. The 

size spectrum has a flat maximum between 1012-13 Me and 1Q17-1B ·Me. After the time of 

decoupling, the density perturbation evolves into a galaxy or a cluster of galaxies by the 

hydrodynamical instability. The maximum mass formed by this mechanism is given as 

1014- 15 Me, assuming the density perturbation lJpj p:::::1o-1• 

§ I. Introduction 

It is an important problem to explain why a galaxy and a cluster of galaxy 

have characteristic masses such as l010rvl015Me. This strong inhomogeneity in 

matter distribution of the universe is generally considered to result from the 

evolution of small departures in the strictly homogeneous universe. To explain 

the characteristic mass of these objects, therefore, we must consider a size spec

trum of weak inhomogeneity in the early stage of the universe. In this paper, 

we give a discussion about the size spectrum in relation to dissipative processes 

in the hot universe model proposed by Gamow.1
> 

The evolution of the weak inhomogeneity in density, velocity and metric has 

been studied by Lifshitz2
> and many other authors.2

a) In their treatment, cosmic 

fluid is regarded as an ideal fluid, and dissipative processes such as viscosity or 

thermal conduction are neglected. However, Misner3
> took notice of an impor

tant role of the dissipative process at the early stage of the hot universe. Silk4
> 

studied a decay of acoustic motions by thermal conduction. Based on this theory, 

Silk4
> and Harrison5

> could find a reasonable value as the minimum mass of the 

density inhomogeneity. Following the turbulence hypothesis for galaxy formation 

proposed by Ozernoi and Chernin,6
> we estimated the minimum mass from a dis

sipation time of vortical motions and the maximum mass from a growth time of 

density perturbation.7
> We also studied heating of the matter resulting from the 

dissipation of turbulent motions.8
> Recently, Peebles and Yu9

> studied, in more 

detail, the size spectrum of density inhomogeneity. In this paper, we consider 

the evolution of size spectrum and the heating due to the dissipation of acoustic 
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Mass of a Galaxy and Dissipative Process in the Hot Universe 371 

motions. Our discussions of the size spectrum are similar to those by Peebles 

and Yu, 9) but may be more instructive than theirs though their treatment on the 

interaction between radiation and matter is more complete than our treatment by 

diffusion approximation. 

In § 2, we treat a decay of acoustic motions in radiative gas based on the 

relativistic hydrodynamics with dissipation, a formulation of which is given in 

the Appendix. In § 3, we consider an applicability of the :fluid approximation of 

the radiation in the hot universe model. In § 4, a gross feature of the size spec

trum and its evolution is discussed. In § 5, the heating of matter by the dissi

pation of acoustic motions is discussed and, in § 6, mass range of the astronomi

cal objects resulting from the inhomogeneity is given. 

§ 2. Dissipation of acoustic motions in radiative gas 

In the early stage of the hot universe model, radiation energy density is very 

large in comparison with matter energy density. In this section, we clarify the 

dissipation of acoustic motions at this stage. 

The set of hydrodynamic equations ·with dissipation is given by Eqs. (A· 5), 

(A·6), (A·9) and (A·10) in the Appendix. We approximate them by neglect

ing gravitation and assuming non-relativistic velocity. Further, we linearize these 

equations assuming small departures from the static and homogeneous medium as 

follows:*) 

~ 8 ; + ( s + p) 17 · u + 17 · q = 0 , (2·1) 

(s + p) au 1 aq . ( 2 1 ) 
c2 at +17pl+? at -r; 17u+ 31717-u =0, (2·2) 

q= -K (17Tl + T l_ au), 
c2 at 

(2·3) 

apl r7 0 -+pr •U= 

at ' (2·4) 

where the subscript 1 denotes the perturbed quantities. The third term on the 

left-hand side of Eq. (2 · 2) and the second term on the right-hand side of Eq. 

(2 · 3) represent a relativistic effect of thermal conduction. To complete the set 

of equations, we require the equations of state; 

(2·5) 

A coefficient of viscosity10
) r; and a coefficient of thermal conductivity K due to 

the scattering of photons are given as 

*) The velocity ua is related to the four velocity Ua in the Appendix as ua=cUa. 
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4 cbT 4 

'Yj=---, 
15 ICP 

H. Sato 

K= _! cbT
3 

3 ICP 

where /C is the opacity of electron scattering. 

' 
(2·6) 

Using Eqs. (2·1) and (2·4), Eqs. (2·2) and (2·3) are rewritten as 

(2·7) 

(2·8) 

where ~=TJ/T, ij=q/4bT4 and the sound velocity Cs Is given as 

Cs=cJ ~ a!p . (2·9) 

Taking the perturbation of wave number k, i.e. 17 2 ~ =- k 2 ~, Eqs. (2 · 7) and (2 · 8) 

give 

82
~ + c 2k2

C: + 2t -l f)~ + 0 (_1_) = 0 
~2 If 'i.- d, ~ 2 ' 
ut ut ~ 

where ta Is the decay time of acoustic motions defined as follows: 

ta-l= t;;,J + t;;,J , 

5 ( c )
2 

tav=- - tdift', 

2 Cs 

and 

(2 ·10) 

(2·11) 

(2 ·12) 

(2 ·13) 

(2 ·14) 

tav and tac denoting the decay times by viscosity and by conductivity, respectively, 

and tdift' being the diffusion time of a photon. 

Comparing tav and ta,c, we can say that the dissipation is mainly due to the 

viscosity in the state of bT 4':;Ppc2 and due to the conductivity in the state of 

pc2';;PbT 4. If we express the total decay time ta as 

(2 ·15) 

a is nearly constant for any states, i.e. a= 15/2 for bT 4';;Ppc2 and a= 6 for pc2 

';;PbT 4
• 

Now, we notice that the dissipation by conductivity is suppressed as C8 tends 

to cjJ3.*) The suppression factor {1-3(cs/c?}-2 in Eq. (2·13) exactly corre-

*> See the footnote on page 373. 
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Mass of a Galaxy and Dissipative Process in the Hot Universe 373 

sponds to the two relativistic terms in Eqs. (2 · 2) and (2 · 3) . As seen from 

Eqs. (2 · 7) and (2 · 8), these terms suppress the effect of heat flow and the heat 

flow itself by the factor {1-3(c8/cY}- 1 respectively. Then, if one of the rela

tivistic terms is neglected, tac = 6 {1- 3 (cs/ cY}-1
tdift'• which just corresponds to the 

decay time by the conduction obtained by Silk.4
) This difference arises because 

Silk neglected incorrectly the relativistic effect of the conduction in Eq. (5) in 

his paper,4
) which corresponds to Eq. (2 · 2) in our equations. 

§ 3. Decay of acoustic and vortical motions 

in the expanding hot universe 

Now, we give a set of equations governing the evolution of weak inhomo

geneity in the expanding hot universe. Considering a weak gravitational field due 

to a perturbed distribution of matter superposed on the Friedman metric, we take 

a metric such as 

ds2 
=- (1 + h00) c2dt2 + (a2tJap +hap) dxadxP + hoacdtdxa, 

where a denotes the expansion factor and hab denotes the perturbed metric ten

sors. Using the above metric under the coordinate conditions11
) hoa = 0 and haa 

= 0 and approximating for non-relativistic velocity, the linearized equations are 

given, corresponding to Eqs. (2 ·1) rv (2 ·14), as 

1 aa3
c1 1 da3 

as~+ (s+p)17·u+pl as dt+l7·q=O, (3·1) 

~ l; _j_ [ a6 
( s + p) u] + 1__ [17 P1 + 8 + p 17 ¢] 

c a at a2 c2 

r; [ 1 J 1 aa4 

-- l72u+ -1717 ·u +- -q=O, 
a 2 3 a4 at 

where the gravitational potential ¢ = c2h00/2 is given by 

1__172¢ + 3 a a¢ + 6 a ¢ = 4rcG (cl + 3pl) I C2
• 

a 2 a at a 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

For the acoustic motions such as 17 ·u=f=O, the above equations reduce to 

*) For the general equation of state, tac becomes as 

tac= Tsr !_!'_ PPP+Pr(c+p-Epp)/cr(l- crT )-t(l- cr _q__)-1 
k 2K Pr s+p-EpP s+p-sPp Pr c2 ' 

where c8 is the sound velocity, Er=8c/8T, pp=8p/8p and so on. This expression shows that the 

dissipation by the conduction is generally suppressed as c8 reaches the light velocity. 
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374 H. Sato 

(3·6) 

where k is a wave number in the comoving coordinate, t is a time since the 

start of the cosmic expansion, ta has been given by Eqs. (2 ·11) rv (2 ·13), putting 

taiff= a2tep/ (Pc), and Jeans wave number kJ is given as 

kJ 2n j ( 8bT
4

) 

a=;..J=. 4nG P+3e2/cn (3·7) 

AJ being the Jeans wave length. 

Equation (3 · 6) reduces to Eq. (2 ·10), if we consider the cases 

and (3·8) 

t 8 being a period of sound wave given by 

ts= 2na . (3·9) 
Csk 

We can easily see that t>ts implies also k>kJ. Under the assumption of Eq. 

(3 · 8), Eq. (3 · 6) is solved as 

~rva-r exp (ik st ~ dt- st ~:)' (3 ·10) 

where r=O for bT 4";>pc2 and r=1/4 for pc2";>bT 4
• 

For vortical motions such as 17 ·u=O, the temperature as well as the density 

is uniform, and a fundamental equation is8
> 

(3 ·11) 

Taking the vortical motion with wave number k, i.e. l72u = - k2u, the decay time 

by viscosity tat is given as 

5 ( c )
2 

tat = - - . tdiffrv tav · 
3 C8 

(3 ·12) 

A change of the vortica1 velocity with wave number k by the inertia term in 

Eq. (3 ·11) takes a time of the order of 

A 2n 
tu=~=-' 

v ku 
(3 ·13) 

where A= 2najk and v =au are a proper wave length and a proper velocity, re

spectively. The ratio (tat/tu) represents the Reynolds number and, if (tat/tu) ";>1, 

the fluid motions may be generally in turbulent motions. Therefore, the decay 

of velocity cannot be described only in terms of the viscosity. Elsewhere, we 

have studied the decay of turbulence in the expanding universe.8
> 

In Fig. 1, we give a comparison among t, t 8 and ta for the acoustic motions 
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Mass of a Galaxy and Dissipative Process zn the Hot Universe 375 

I / 
I /' 

I / I 
I_,-' .~~, 

z z 

(a) (b) 

Fig. 1. Comparison among the time scales t, t 8 and td. The ordinate represents the size of the 

density inhomogeneity by the mass in solar mass unit and the abscissa does the stage of the 

expanding universe by the redshift parameter z. z* and zn represent the time at which 

bT4 = pc2 and that of the recombination of plasma, respectively. Q is a parameter to represent 

the matter density at present as p0 =10-29!J g/cm3• MJ is the Jeans mass defined by the radia

tion pressure. 

about the stage of recombination of cosmic plasma.12
) Except t, the time scales 

are dependent on the size of motions. In stead of k, we use a mass M defined 

by 

(3 ·14) 

The stage of evolution is represented by red-shift parameter defined by z + 1 

=·aol a, where a0 is the present value. The model of the universe is specified 

by a parameter .!2= Pol (10- 29 gl cm3
), where Po is the average matter density at 

present. 

The hatched region in Figs. 1 (a) and (b) represents the sizes of the den

sity inhomogeneity satisfying the condition in Eq. (3 · 8). The mass M (t = t 8 ) of 

the upper boundary of this region· is related to Jeans mass, MJ= pJ..}, as 

MJ= 1029
"

1.Qz-3M 0 = 102
•
4M (t = ts) 

MJ= l016
•
7.Q- 2MG= l02

•
6M(t=ts) 

for bT 4
~pc

2
, 

for pc2";;PbT 4
• (3 ·15) 

The mass M Cts = ta) of the lower boundary IS related to a mass within the mean 

free path, Mm.f.p. = p (tep)-3
, as 

M (ts = ta) I Mm.f.p. = 102
"

3
"

2
"

5 (cl Cs)2
• (3 ·16) 
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376 H. Sato 

For the case of small size such as M <Mm.f.p,, the fluid approximation of the ra

diation is invalid. After the epoch of the recombination of plasma, the fluid ap

proximation becomes also invalid. 

In Fig. 2, we show a comparison among t, tu and tat for the vortical mo

tions. Such a consideration has already been given by us/),B) but Fig. 2 is given 

here for comparison with Fig. 1 in the case of acoustical motions. The vorti

cal motion with M <P ( vtY will decay into motions with smaller sizes in contrast 

to the acoustic motions, in which the motion is frozen for M> M (ta = t). 

-----+-------· 

z 

(a) (b) 

Fig. 2. Comparison among the time scales t, tu and tav· In these Figures, tu is calculated assum

ing v=1010 em/sec at the stage bT4jppc2, during which stage the velocity remains constant. The 

other notations are the same with those in Fig. 1. 

§ 4. Size spectrum of density inhomogeneity 

We consider the evolution of density inhomogeneity with a fixed mass M. 

In an early stage, M is larger than Jeans mass MJ, and its amplitude is growing 

monotonically by the self-gravity. As MJ is increasing with time, MJ soon over

comes M and it begins to oscillate by the pressure of the radiation as a sound 

wave. Thereafter, its sound wave suffers a strong decay by dissipation after the 

stage t = ta (M) . From these considerations, a gross feature of the evolution of 

the size spectrum can be drawn schematically. 

(a) Damping by dissipation 

We consider the Fourier components ~k of the perturbed quantity defined as 

follows: 
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Mass of a Galaxy and Dissipative Process in the Hot Universe 377 

. Equation (3 ·10) gives 

(4·2) 

and 

(4·3) 

where l~k£1
2 denotes the value at k=kJ and /1=4/45 for bT

4'}>pc2
, /1=1/10 for 

pc2'}>bT 4
• 

Denoting the spatial average by < ), we define a size spectrum F(k) as fol

lows: 

(4·4) 

Denoting the size by M instead of k, Eqs. ( 4 · 4), ( 4 · 2) and (3 ·14) give 

and 

(2rca) 3 

Ma(z)=p k. 

= 101a.4 (~)3.75M 

Q5f4 z+ 1 0 

Ma relates to the mass M(t=ta) in Fig. 1 as 

Ma/M(t=ta) = (2rcY(aSYI2
• 

(b) Growing by gravitation 

(4·5) 

(4·6) 

As seen from Fig. 1, the dissipation is ineffective in the course of growing 

by gravitation. Therefore, the theory of adiabatic gravitational instability is ap

plicable. In reference to the results of this theory, we put a gross feature of 

evolution of density inhomogeneity as follows, 2
),

2
a) in the state bT 4'}>pc2 

ocConstant 

for k<kJ 

for k>kh*> (4·7a) 

*> In reality, the amplitude is oscillating with time in the case of k>kJ and the periodic size 

spectrum is obtained as shown by Sunyaev and Zeldovich13> and Peebles and Yu.9> However, we 

have not taken into consideration this shortly periodic oscillation, because we mean by a size of 

the inhomogeneity a size of the localized inhomogeneity rather than a wave length of the exactly 

periodic inhomogeneity. To describe the amplitude of the localized inhomogeneity, we should use 

an average of amplitude over an appreciable range of wave number; by this procedure the periodic 

nature of the size spectrum will disappear. 
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in the state of pc2";?>bT 4 

H. Sata 

for k<kJ 

for k>kJ .*) (4·7b) 

The growth time of the adiabatic perturbation Is independent of k, but an 

epoch when k>kJ is attained is dependent on k. For example, the scale factor 

is proportional to k- 1 at the time when k = kJ is attained, in the stage bT 4";?>pc2
, 

and a shape of size spectrum for k>kJ is modified as 

(4·8) 

(a) 

(b) 

Fig. 3. Diagram to demonstrate the evolution of size spectrum. The abscissa represents the size 

of density inhomogeneity by the mass in units of solar masses, and the ordinate does the am

plitude of the inhomogeneity in an arbitrary unit. The size spectra at the stages z=106, 105, 

104, 103•5 are drawn, assuming the initial spectrum as the white noise, i.e. F(k) =ka. The dotted 

curve denoted by P-Y is the shape of the spectrum taken from the initial spectrum such as 

F(k) =k2, proposed by Peebles and Yu.9> 

*> See the footnote on page 377. 
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Mass ·of a Galaxy and Dissipative Process in the Hot Universe 379 

usmg Eq. ( 4 · 7 a). Such considerations about other sizes and other stages enable 

us to obtain the evolution of the size spectrum as shown in Fig. 3. As the ini

tial spectrum, we have assumed a white noise spectrum, i.e. l~kl
2 = const. For 

comparison, an example for the case l~ki
2
ock proposed by Peebles and Yu9

> is 

also given. A characteristic feature is that these spectra have a flat maximum 

between kJ and ka. 

§ 5. Heating by dissipation 

A damping of the inhomogeneous motions by dissipation accompanies a pro

duction of heat. As to the heating by turbulent vortical motions, we have studied 

eleswhere, S) and, in this section, we study the heating by acoustic motions. 

(a) Heating rate 

Equation (A· 8) 1s approximated for the case of sound wave as 

and 

Averaging over space, we have, writing <T) by T, 

and 

where 

a<S>- < Ea) p-----
at T 

(5·1) 

(5·2) 

(5 ·3) 

(5·4) 

To derive Eq. (5 · 4), we have assumed an isotropic inhomogeneity and used re

lations such as 

and so on, (5·5) 

v being a proper velocity defined by v =au. If the spectrum 1s a white noise, 

k2 
= 3kr/ /2, and Eq. (5 · 4) becomes using Eq. ( 4 · 3) 
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2 

::::: 5 p !!._ 
t 

H. Sato 

(5·6) 

If the spectrum is the one given in Fig. 3, k2 is nearly equal to kakJ and (Ea) is 

given by multiplying Eq. (5 · 6) by (kJ/ka). 

Apparently, < Ea) diverges as t~O. However, it comes from an artificial as

sumption that the initial spectrum is infinitely large at k~ oo. If we put a cutoff 

km for large k, the heating rate in the stage t<tm becomes 

where tm is given by tm/ (a2 (tm.) p (tm)) = JC/ (f3km2c). Therefore, the heating 1s ra

ther in-effective in the early stage such as t<tm· 

(b) Temperature of matter 

In the hot universe model, a thermal equilibrium between matter and radia

tion is not attained generally after the annihilation of electron-positron pairs. As 

the relaxation time of radiative equilibrium is large, we assume the dissipated 

energy to heat the matter. Under this assumption, the entropy of matter Sm. is 

determined by 

p d(Sm.) (fa,)- ( fc) 

dt Tm 
(5·7) 

where Tm is temperature of matter and Ec is cooling rate of matter. The main 

source of the cooling is due to Compton effect,14
) and it is given as 

4bT4(J TP k (T m- Tr)' 
memHC 

where T m• (J T' me, m H and k are radiation temperature, Thomson cross section, 

the electron mass, the proton mass and Boltzmann constant. 

From Eqs. (5 · 7) and (5 · 8), we have 

dTm = _ 2 d Tm-~ bT
4

(J (Tm-Tr) + ~ mH (Ea) . 
dt a 3 m 6c 3 k p 

(5·9) 

If the condition t>mec/ (bT 4
<5 T) is satisfied, the above equation 1s solved as8

) 

*> The expression (5·8) is correct, if the radiation spectrum is the Planck distribution. In more 

general cases, Ec may be smaller than Eq. (5·8). Such an appreciable modification of the spectrum is 

possible only when an amount of energy of order bT r3T m is supplied to the radiation. However, 

an available energy in our case is smaller than the radiation energy, and Eq. (5·8) may remain 

correct in our problem. 
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Mass of a Galaxy and Dissipative Process zn the Hot Universe 381 

(5 ·10) 

Substituting Eq. (5 · 6), we have, writing v9 = v/10 9 
em/sec, 

T - T:::::: 102.s ( 10a )v92 oK 
m r ,Q z+1 

(5 ·11) 

The heating is more effective in a later stage. The last epoch where our theory 

is applicable is the epoch of recombination of plasma at z = zD ( = 1.5 ·103
). There

fore, we have the maximum temperature, considering v<cs, as 

for JJ> 10-1
'
1 

and 

(5 ·12) 

If T m is maintained to be larger than 104 °K by the heating, the matter will re

main in an ionized state by collisional ionization.15
) Such a delay of the recom

bination might occur if v >cs/10 from Eq. (5 ·12). In the case of the spectrum 

as shown in Fig. 3, the maximum temperature of Eq. (5 ·12) is further reduced 

by a factor ka/kJ and it seems impossible to maintain T m> 104 °K after z = zn. 

§ 6. Formation of bound systems and their masses 

In the earlier sections, our consideration has been restricted to the stage be

fore the recombination of plasma. However, the gravitationally bound systems 

such as galaxies or galaxy clusters are considered to be formed at the stage when 

the pressure of the primeval cosil;J.ic radiation was decoupled with the motion of 

matter.16
) By the recombination of plasma, the decoupling of the radiation is 

suddenly realized. At this epoch, the sound velocity decreases from that by the 

radiation pressure C11 into that by the matter pressure C11m= vf5Pm/3p, Pm being 

the matter pressure, and the fluidal velocity of matter changes from subsonic into 

supersonic one if c11>v>csm·6
) The hydrodynamic instability will arise during 

the stage of this sudden decrease of the sound velocity in matter, and the strong 

density inhomogeneity will appear, which evolves into the gravitationally bound 
systems. B),T),l7) 

The criterion of the hydrodynamic instability is given at the time of decoupl

ing as 

(6·1) 
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and 

(6·2) 

Equation (6 ·1) puts a restriction on the size of the formed objects. The maximum 

mass Mma:x has been discussed by us for the vortical motions7
) and by Chernin 

for the acoustic motions.17
) Equation (6 · 2) puts a restriction about the amplitude 

of inhomogeneity before the decoupling. 

For the acoustic motions, the condition v>csm at zD can be written as 

..82:. > v' SJ 10-4
"
1 and 10-4.6 for SJ> 10-1

"
1 and SJ<10-1

"
1 respectively. (6 · 3) 

p 

As the size spectrum has a sharp cutoff at the small mass, the minimum mass 

Mmin is determined. From these discussions, we get the relc~tions 

for the acoustic motions, and 

for the vortical motions, where 

(6·4) 

(6·5) 

(6·6) 

(6·7) 

in solar mass unit. The factor 1/10 of Mmin in Eqs. (6 · 4) and (6 · 5) is not a 

well-founded value. If the degree of inhomogeneity at zD is p1/ p:::::::10-1
'"'-' 10-2 or 

v / c8 :::::::10-1
'"'-' 10-2

, the above rel~tions give a reasonable value as the mass of a 

galaxy or a cluster of galaxies. Apparently these masses is larger than the mass 

of a galaxy, but it is plausible that the loosely bound pre-galactic cloud has a 

larger mass than that of the compactly bound current galaxy. However, we do 

not give any discussion on the problem of whether the pre-galactic cloud is form

ed by the above stated manner in a galaxy or in a cluster of galaxies. 
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Appendix 

Formulation of relativistic hydrodynamics with dissipation has been given by 

Eckartl8
) and many other authors.19

) We summarize this formalism to derive the 
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equation of motion for radiative gas. 

Including viscosity and thermal conduction, the energy-momentum tensor Is 

written as 

yao = 8 uauo + phao + rao + _!_ (qauo + qoUa), 
c 

(A·l) 

where e is energy density, p pressure, hao =gao+ uauo, qa, heat flow vector, u(l, 

four-velocity such as UaUa,= 1 and ra,o viscous tensor defined as 

(A·2) 

where "fj is a coefficient of viscocity. Divergence of the energy-momentum tensor 

· can be written as 

where (/) and 1Jfa are such a scalar and a vector given later. If 1Jfa, satisfies such 

a condition as 

we get from Eq. (A· 3) 

(/)=De+ (e+ p) U~o+ U~crbc+ _!_ (q~o+q 0 DU 71 ) =0, 
c 

1Jf(l,= (e+p)DU(l,+h(1, 71 (P,o+r~;c) + _!_{h(1,71Dqb+ U~oq 71 + U~oqa} =0, 
c 

(A·4) 

(A·5) 

(A·6) 

where De=Ua,e,a, DU(l,=U 71 U~o and so on. As seen from Eq. (A·6), Eq. (A·4) 

requires that 

Next, we rewrite Eq. (A·5) using the specific entropy S as 

(A·8) 

where p and T are mass density and temperature respectively. The second law 

of thermodynamics requires that the right-hand side of Eq. (A· 8) is always posi

tive. The first term representing the heat production by viscosity can be proved 

positive. Requireing Eq. (A· 7) and the positive definiteness of the second term 

of the right-hand side of Eq. (A· 8), we can put an appropriate expression for 

qa, as 

q(l,= -Kha0 (T + TDU:) . ,o 0 ' (A·9) 

where K is thermal conductivity. This generalization of Fourier's law to rela

tivistic thermodynamics was firstly given by Eckart.18
> 

Thus, we have get the basic equations in Eqs. (A·5), (A·6) and (A·9). 
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384 H. Sato 

The full set of equaions is completed by adding them the equation of state and 

the conservation of particle number such as 

(A·10) 

Here, we give a brief comment on a relation between the expression of heat 

flow, Eq. (A· 9), and the thermal equilibrium. If there is not heat flow in some 

region, it implies that a thermal equilibrium is attained between this region and 

the ambient region. If we put qa = 0 in the comoving coordinate (the Greek 

letter denoting a= 1, 2, 3), Eq. (A· 9) gives the temperature gradient in thermal 

equilibrium as 

(A·11) 

where we have assumed Uoa = 0 and used a relation 

Equation (A ·11) has been known from other considerations as a temperature 

gradient at thermal equilibrium.20
> Thus, Eckart's expression for qa is proved to 

be consistent with the condition of thermal equilibrium. 
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