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I
ntegral membrane proteins (IMPs) and membrane-associated 
proteins (MAPs) are essential for a number of cellular processes 
such as signaling and vesicular trafficking, and this makes them 

important therapeutic targets1,2. Their function often relies on 
homo- and hetero-oligomerization3,4, and this complexity, com-
bined with the need for lipid bilayers, makes it particularly challeng-
ing to accurately characterize the stoichiometries and kinetics of the 
biomolecular interactions underlying IMP and MAP function and 
regulation. Advances in single-molecule fluorescence-based micros-
copy methods5,6 have enabled in vivo and in vitro investigations of 
IMP interactions, such as dimerization of G-protein-coupled recep-
tors7,8 and nano-clustering9, and MAP interactions, such as the 
coordination of Min proteins during bacterial cell division10, and 
the mechanism of amyloid-β plaque formation on cell membranes, 
which is associated with Alzheimer’s disease11. The main chal-
lenges to fluorescence-based methods, however, arise from quan-
titative uncertainties caused by incomplete labeling of the sample, 
photochemical and photophysical effects such as photoblinking, 
photobleaching and quenching, and the distinct labeling required 
to detect multiple species simultaneously. These limitations have 
made it challenging to accurately quantify processes such as mem-
brane (un)binding of MAPs and the dynamics and stoichiometries 
of protein–protein interactions for both MAPs and IMPs. Although 
numerous approaches aimed at molecular subunit counting exist12–

14, the analysis and interpretation of the resulting oligomeric dis-
tributions is complicated and the number of heterogeneous species 
that can be detected simultaneously remains limited. Given the crit-
ical functional importance of homo- and hetero-oligomeric interac-
tions for membrane-associated processes, there is an urgent need 
for a quantitative and dynamic approach that is capable of comple-
menting the information accessible from existing methods.

Mass photometry is a label-free method that detects single bio-
molecules in solution and measures their mass with an overall mass 
accuracy and resolution of 2% and 20 kDa, respectively15. These 
capabilities enable the quantification of protein–protein interactions  

in solution with sufficient sensitivity to accurately determine 
stoichiometry and rate of reactions16. As such, mass photometry 
could be ideally suited to address the shortcomings of existing 
fluorescence-based techniques for in vitro applications to studying 
IMPs and MAPs. Existing implementations of mass photometry 
rely on the stationary binding of individual molecules to a surface, 
usually a glass coverslip. By averaging images taken before a bind-
ing event and subtracting them from averaged images taken after a 
binding event, the signal due to glass surface roughness is removed 
and the shot noise is lowered sufficiently to detect individual mol-
ecules binding to the surface17–19. When molecules remain mobile 
after binding to the surface, however, the resulting signals are a con-
volution of the positions of the molecules over the averaged time 
frame, which makes their detection and quantification difficult. 
Here, by implementing a new background processing methodology, 
we show that the capabilities of mass photometry can be extended 
to in vitro studies of individual protein complexes diffusing on sup-
ported lipid bilayers (SLBs).

To explore the suitability of mass photometry to study processes 
on an SLB, we chose the 100 kDa MAP wild-type dynamin-1 (WT) 
on a 60–40 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)–
1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) bilayer, 
in line with previous in vitro investigations20–28. Dynamin is a 
multi-domain, large GTPase that can catalyze membrane fission dur-
ing clathrin-mediated endocytosis29. Its role in membrane constric-
tion and fission relies on its (dis)assembly on lipid bilayers, with our 
current understanding of the underlying molecular mechanisms of 
dynamin polymerization based predominantly on structural infor-
mation and bulk behavior30. Single-molecule fluorescence studies 
on dynamin have struggled to resolve oligomeric distributions31,32, 
making dynamin a particularly attractive system for mass pho-
tometry. By applying an alternative background-removal approach 
to mass photometry, referred to as dynamic mass photometry, to 
images of dynamin diffusing on an SLB, we achieve sufficient sensi-
tivity to track individual dynamin oligomers while simultaneously 
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measuring their mass. Due to the label-free nature of mass photom-
etry, the observation time of individual molecules is limited only by 
the time in which they remain bound to the SLB and/or in the field 
of view. Furthermore, we achieve sub-50 kDa mass resolution while 
also enabling quantification of oligomer-specific diffusion coeffi-
cients and membrane affinities, making dynamic mass photometry 
a powerful method for studying membrane-associated biomolecu-
lar processes.

results
Label-free imaging of mobile dynamin oligomers. Raw mass 
photometry images of dynamin on an SLB exhibited an optical 
background caused by the roughness of the microscope coverslip  
(Fig. 1a; raw images). By implementing a sliding median back-
ground subtraction33, we obtained a nearly shot noise-limited imag-
ing background, revealing diffraction-limited features arising from 
individual WT complexes diffusing on the SLB (Extended Data  
Fig. 1 and Supplementary Video 1). The sliding median background 
subtraction involves estimating the static imaging background from 
the temporal median of a series of frames around each frame of 
interest (see Methods). Importantly, this approach avoids the con-
volution of scattering contrast and particle motion inherent in the 
background subtraction used in standard mass photometry, and 
reduces the imaging background at equivalent imaging speeds due 
to the larger number of frames contributing to the background 
image (Extended Data Fig. 1 and Supplementary Fig. 1).

For the chosen system, the detected particles exhibited clearly dif-
fering signal intensities (Fig. 1a, filtered images, and Supplementary 
Video 1). Filtering for trajectories that remained bound to the SLB 
for at least 50 frames, corresponding to a residence time of 151 ms 
(Supplementary Fig. 2), and plotting the mean contrast of the 
remaining 425 trajectories revealed a contrast distribution with 
equally spaced peaks, as expected for different oligomeric states 
(Fig. 1b). The contrast values of these particles increased linearly 
with mass (Fig. 1c) and matched well with the expected contrasts 
of WT dimers, tetramers, hexamers and octamers based on stan-
dard mass photometry measurements (Extended Data Fig. 2a,b and 
Supplementary Table 1), demonstrating that dynamic mass pho-
tometry can simultaneously image, track and measure the mass of 
diffusing biomolecular complexes on SLBs. Additionally, the oligo-
meric distribution of WT on the SLB displayed a shift to higher 
oligomeric states compared with the solution distribution measured 
using standard mass photometry (Extended Data Fig. 2c,d).

Localization precision and effect of imaging speed. Localization 
precision and imaging speed are key performance parameters for 
single-particle tracking and contribute decisively to the type of 
information that can be extracted from individual trajectories. The 
nature of the sliding median background subtraction prevented the 
assessment of localization precision by repeated measurement of 
the location of surface-immobilized particles, as is commonly done 
in fluorescence-based methods34. Nevertheless, we could estimate 
the localization precision by extracting the error of our point spread 
function (PSF)-fitting procedure (Fig. 1d). At the imaging speed 
of 331 Hz (3 ms total exposure time), the fit error for WT dimers 
(200 kDa particles) was 16 nm, which compares well with the local-
ization precision in single-molecule fluorescence imaging at similar 
speeds (18 nm) (ref. 35), and improved with increasing mass (8, 6 
and 5 nm for WT tetramers, hexamers and octamers, respectively). 
Localization errors improved by up to 20% when lowering the effec-
tive imaging speed to 110 Hz, beyond which there was no further 
improvement. On average, we found that the slope of the contrast–
mass calibration curve in dynamic mass photometry was 8% lower 
than in standard mass photometry, in which particles are station-
ary. This drop in contrast matched well with the contrast decrease 
expected from particle movement during image acquisition, that is, 

motion blur (Extended Data Fig. 3 and Supplementary Tables 1–3). 
This trend became more pronounced as we lowered the effective 
imaging speed from 331 Hz to 66 Hz, resulting in a drop in contrast 
precision of 20% and a further 15% decrease in particle contrast 
(Extended Data Fig. 4). As such, we attribute these effects to motion 
blurring of the PSFs, which results in decreased particle contrast 
and diminished improvements in localization precision at lower 
imaging speeds. We thus chose to image at 331 Hz to minimize the 
effects of motion blurring. As a result, however, we were unable to 
detect WT monomers on the SLB, and in some cases it was difficult 
to distinguish WT dimers from background noise. We therefore 
excluded dimeric particles from the mobility and membrane affin-
ity analysis.

Quantifying oligomer-specific mobility and membrane affinity. 
Given that dynamic mass photometry is not subject to photobleach-
ing, the time limit on observing particle trajectories is in principle 
determined only by how long the particles remain bound to the mem-
brane and/or within the field of view. The longest trajectory we could 
identify lasted more than 6,000 frames with robust localization preci-
sion and mass measurement (Fig. 1e,f and Supplementary Video 2).  
From these data, we could compute the diffusion coefficient by fitting 
multiple-mobility models to the cumulative probability distribution 
of particle displacement (Supplementary Fig. 4a) during a defined 
lag time, t (equations 3–5) (ref. 5). For the WT decamer particle in 
Fig. 1e,f, a two-component fit was determined to be the most suitable 
(see Methods), and produced major and minor diffusion coefficients 
of D1 = 0.58 μm2 s−1 and D2 = 0.22 μm2 s−1 with relative weightings of 
0.56 and 0.44, respectively, using t = 3 ms (Fig. 1g).

Applying this approach to 20 nM WT, a concentration chosen 
to achieve a suitable particle density for single-molecule measure-
ments, we were able to measure the diffusion coefficients of differ-
ent oligomeric species, resulting in a mass resolution of <50 kDa  
(Fig. 2a). More than 95% of species exhibited only one type of diffu-
sive behavior (Supplementary Figs. 4b and 5), as expected for simple 
Brownian motion. Further repeat measurements with WT (Extended 
Data Fig. 5, Supplementary Figs. 6, 7 and Supplementary Table 4) 
and its 90 kDa mutant, ΔPRD (Fig. 2b, Supplementary Figs. 8,9 and 
Supplementary Table 5), which is more oligomerization prone than 
WT23, revealed a reproducible inverse proportionality of the diffu-
sion coefficient with the number of oligomeric subunits. Given that 
the diffusion of membrane-bound proteins has been reported to 
depend primarily on their contact area with the SLB and the number 
of bound lipids36–38, our results suggest that the contact between the 
SLB and the oligomers of WT and ΔPRD in the range observed here 
increases linearly with oligomeric state. Additionally, we observed 
an increase in calculated diffusion coefficients of all oligomeric spe-
cies when increasing the lag time from 3 to 12 ms (Extended Data 
Fig. 6), most probably caused by the dynamic error originating from 
a combination of the relatively fast particle motion with nanometer 
localization precision39. At longer lag times there was little change in 
the diffusion coefficients, again confirming that dynamin undergoes 
Brownian motion on the timescales relevant to this study.

We were also able to quantify the residence times of dynamin 
species bound to the SLB (a measure of the affinity of dynamin to the 
SLB) and their dependence on oligomeric state. We found that the 
distribution of residence times of both the WT and ΔPRD oligomers 
was well described by an exponential model (Fig. 2c), as expected for 
a first-order process, from which we could extract the dissociation 
rate for each oligomeric species (Supplementary Figs. 10 and 11). 
The majority of trajectories lasted less than 300 ms and, similarly 
to the diffusive behavior, the dissociation constants were inversely 
proportional to the number of subunits (Fig. 2d, Extended Data  
Fig. 7 and Supplementary Tables 4 and 5), that is, to oligomeric mass, 
suggesting that SLB contact increases linearly with oligomeric state. 
Additionally, we found instances of dynamin oligomers dissociating  
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into subunits on the SLB (Fig. 2e and Supplementary Video 3) and 
vice versa (Fig. 2f and Supplementary Video 4). Such events were 
rarely observed in our experiments (in less than 0.1% of trajecto-
ries), suggesting that they tend to happen on timescales longer than 

the SLB residence times for dynamin in its apo state (<200 ms on 
average). Upon the addition of GTP, which is essential to dynamin 
function and disassembly from the membrane, we found that the 
overall particle density of WT immediately decreased (Fig. 2g and 
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Fig. 1 | Principle and performance of dynamic mass photometry. a, Schematic diagram of dynamic mass photometry of protein complexes diffusing 

on an SLB. The images were acquired at 331 Hz and processed with a sliding median filter, which showed individual protein complexes on the bilayer as 

diffraction-limited spots. This procedure consistently gave similar results (n > 30). b, Histogram of mean trajectory contrasts detected in a dynamic mass 

photometry movie (n = 1 movie, 4 min) of WT diffusing on an SLB (considering only trajectories of at least 151 ms in length; n = 425 trajectories). c, Contrast–

mass calibration curve of the dynamic mass photometry measurement shown in b (n = 1 dynamic mass photometry movie, 4 min) yielding a contrast to 

mass ratio of 4.40 % MDa−1. Error bars represent the mean contrast ± s.e.m. of each oligomeric species (ndimer = 34, ntetramer = 85, nhexamer = 184, noctamer = 23 

trajectories). d, 2D localization error of our PSF-fitting procedure of WT dimers, tetramers, hexamers and octamers plotted as a function of effective 

exposure time. Data are given as the mean localization errors in 2D ± the combined s.d. of the mean errors in x and y of particle trajectories detected during 

the dynamic mass photometry movie in b (n = 1 movie, 4 min), processed with different amounts of frame averaging (ndimer = 34, 51, 60, 52, 73; ntetramer = 82, 

102, 98, 97, 94; nhexamer = 177, 229, 224, 208, 173; noctamer = 22, 29, 37, 38, 33 trajectories for total exposure times of 3.0, 6.0, 9.1, 12.1 and 15.1 ms, respectively). 

e, Mass trace and histogram of a WT decamer trajectory (n = 6,061 frames). f, Corresponding particle trajectory. g, Corresponding cumulative probability of 

particle displacements during 1 frame (t = 3 ms) and the fits to a two-component model (equation 4). Scale bars, 500 nm.
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Supplementary Fig. 12). Addition of the non-hydrolysable analog 
5′-guanylyl imidodiphosphate (GMPPNP) had the same effect 
(Extended Data Fig. 8), suggesting that GTP binding triggers a 
decrease in the SLB affinity of dynamin oligomers.

Discussion
We have demonstrated accurate and resolved mass measurement of 
proteins diffusing on supported lipid bilayers at the single-molecule 
level without extrinsic labels. We were able to quantify key  
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parameters such as oligomeric distribution, residence times (that is, 
membrane affinity) and diffusion coefficients, and observed (dis)
association events all at a temporal resolution of 3 ms. The ability 
to quantify mass, diffusion coefficients and membrane affinities 
also allowed us to validate our observation of dynamin dimers, 
tetramers, hexamers, octamers and decamers on the SLB, suggest-
ing that dynamin oligomerization proceeds by dimer addition, in 
agreement with fluorescence and structural-based studies23,24,31,40, 
instead of being based on exclusively tetrameric subunits, which is 
the predominant species in solution41. As such, our results suggest 
that single-molecule studies could further our understanding of 
the importance of tetrameric particles in the dynamics of dyna-
min polymerization. Our observation of decreased membrane 
affinity caused by GTP binding is intriguing considering that 
dynamin can tubulate membranes effectively both in the apo and 
GTP-bound states25,40. A possible explanation for this observation 
could be that GTP-binding-induced conformational change42,43 
imparts curvature sensitivity to dynamin oligomers, leading to 
their dissociation from flat, supported bilayers, although further 
experiments on curved membranes are necessary to validate this 
hypothesis. To examine the mechanism of dynamin assembly 
in more detail, comparison of the oligomeric (dis)assembly of 
dynamin-1 and of the mutants that affect dynamin assembly44, 
along with disease-associated mutants45–47, on SLBs containing 
phosphatidylinositol 4,5-bisphosphate (PIP2), which specifically 
recruits dynamin21,48, could provide extremely valuable insights. 
Similarly, these experiments would benefit from the quantifica-
tion of oligomeric distributions in a more physiologically relevant 
setting such as curved membranes, although we would expect the 
kinetics, not the mechanism of the assembly, to be affected given 
that the rates of dynamin polymerization are controlled by mem-
brane curvature21.

The potential shortcomings of our approach include a limita-
tion on the concentration range, that is, to reliably resolve and 
quantify single molecules the particle densities on the SLB should 
be <1 μm−2. Currently, the need for SLBs excludes studies of inte-
gral membrane proteins due to the unavoidable interaction with the 
supporting glass substrate. In the future, we expect that the use of 
cushioned, suspended or tethered lipid bilayers49 will expand the 
demonstrated capabilities to include integral membrane proteins. 
This advance will enable quantitative and stoichiometric studies of 
homo- and heterotypic interactions of IMPs and MAPs with each 
other and with other soluble proteins, and the effect of therapeutics 
in near native environments. Currently, the detection limit and the 
mass resolution of dynamic mass photometry are limited by back-
ground fluctuations and particle-like features present on the SLB 
(Extended Data Fig. 9). As such, further improvements in SLB for-
mation will result in improved mass sensitivity and resolution, and 
provide access to the majority of protein–protein interactions in and 
on lipid membranes. More generally, we expect that single-protein 
detection and mass measurement on lipid bilayers will prove power-
ful for the specific, label-free detection of biomolecules in complex 
mixtures, and has the potential for further improvements in the 
capabilities of mass photometry through prolonged observation of 
individual molecules.
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Methods
Stocks, reagents, and instruments. For the list of stocks, reagents and instruments 
that were used in this study and their suppliers, as well as how the bu�er stocks 
were prepared, please refer to the Materials section in the Supplementary 
Information.

Protein expression and purification. For details on the expression of WT and 
ΔPRD, purification, size-exclusion chromatography and storage conditions, please 
refer to the Supplementary Information.

Supported lipid bilayer preparation. Liposomes were prepared by dissolving 
DOPC (Avanti Polar Lipids; 850375 P) and DOPS (sodium salt) (Avanti Polar 
Lipids; 840035 P) in chloroform and mixing them in a clean glass tube at a 60–40 
molar ratio (500 μM total lipid concentration). The mixture was then dried under a 
constant nitrogen stream via rotary evaporation, and further dried under vacuum 
for 1 h at room temperature (22–23 °C). A total of 500 μl HKS-150 (20 mM HEPES, 
pH 7.4, 150 mM KCl; see buffer preparation in the Supplementary Information) 
was added to the dried lipids and the mixture was covered with parafilm, 
incubated at 50 °C in a water bath for 1 h, briefly vortexed, and stored overnight at 
room temperature. The resulting liposome mixture was transferred into a 1.5 ml 
Eppendorf tube and kept in ice-water and sonicated using a 3 mm probe at 25% 
amplitude with a 1 s on–3 s off sonication cycle (Sonics & Materials) for 10 min 
(that is, 40 min in total). Sonicated liposomes were then spun at 20,000 ×g for 
30 min at 4 °C and the supernatant was collected in an Eppendorf tube, stored at  
4 °C, and used within 3 d.

To prepare fluid SLBs, glass coverslips (24 × 50 mm, Menzel Gläser, VWR 630-
2603) were cleaned by sonication in Milli-Q water for 5 min, isopropanol for 5 min, 
and Milli-Q water again for 5 min in an ultrasonic bath, dried using a nitrogen 
stream and stored in a dry place until use. Before SLB preparation, coverslips were 
treated with oxygen plasma for at least 8 min using a Zepto plasma cleaner (Diener 
eletronic) at maximum power. Silicone gaskets (6 mm × 1 mm, GBL103280, Grace 
Bio-Labs) were rinsed sequentially with Milli-Q water, isopropanol and Milli-Q 
water, dried under a nitrogen stream, and placed on the freshly plasma-cleaned 
coverslips along with 30 μl freshly reconstituted HKS-150 containing 1.7 mM 
MgCl2. A total of 20 μl sonicated liposomes was then added to the gasket, followed 
by mixing with a micropipette and incubation at room temperature for at least 
30 min. Before use of the SLBs for measurements, 15 μl fresh HKS-M (20 mM 
HEPES, pH 7.4, 150 mM KCl, 1 mM MgCl2) was added to the gasket to account  
for the loss of volume due to evaporation. Unfused vesicles were washed away  
with HKS-M and then with reaction buffer (20 mM HEPES, pH 7.4, 100 mM KCl, 
1 mM MgCl2).

Mass photometry setup. All data except for the trajectories in Figs. 1a,e–g and 
2e,f were acquired on a Refeyn OneMP mass photometer with a 10.8 × 2.9 μm2 
(128 × 35 pixels) field of view. The microscope used to acquire the data in Figs. 
1a,e–g and 2e,f was custom-built with a 9.4 × 6.2 μm2 field of view (138 × 88 pixels 
with a binned pixel size of 70.3 nm) and is similar to that described previously18. 
The custom-built setup is illustrated in Supplementary Fig. 15 and the differences 
to the setup used in our previous work are highlighted in the figure caption.

Data acquisition. Dynamic mass photometry. To acquire dynamic mass 
photometry movies, the SLBs were placed on the sample stage to optimize the 
focus of the microscope. A�er locking the focus of the microscope, WT or ΔPRD 
was added to the SLB by replacing 3–6 μl bu�er from the silicone gasket with 
3–6 μl (total volume, 60 μl) 200 nM WT or ΔPRD (in reaction bu�er) solution and 
mixing well with a micropipette to achieve a �nal concentration of 10–20 nM. Data 
acquisition was started ≤10 s a�er the addition of protein. Images were collected 
at 994 Hz and saved a�er the binning of pixels into blocks of 4 × 4 and the binning 
of frames into groups of 3, resulting in an e�ective frame rate of 331 Hz and a 
�nal pixel size of 84.4 nm (for the data used in Extended Data Figs. 2, 3, 8 and 
Supplementary Figs. 3 and 13 the pixel size was 77.4 nm).

Data acquisition was briefly paused (~5–10 s) once every minute 
(20,000 frames) to readjust the microscope focus to account for drift over time 
before resuming acquisition. This resulted in sets of multiple 1 min movies for each 
SLB and sample combination. For experiments on the effect of GTP, 3–4 movies of 
WT (10–20 nM) were recorded as described above, after which image acquisition 
was briefly paused and 1.2 μl GTP (50 mM) was added (total gasket volume, 60 μl), 
followed by mixing to obtain a final concentration of ~1 mM before the resumption 
of acquisition. For the data shown in Extended Data Fig. 8, GTP or GMPPNP was 
added at the beginning of the measurement together with WT (20 nM), that is, 
each sample condition was measured on a separate SLB. The number of replicate 
measurements is indicated in figure captions and corresponds to the number of 
sets of movies that were taken for each sample. We used the same purified batch of 
WT and ΔPRD for all data collected on the OneMP setup.

Standard mass photometry. Unless otherwise stated, standard mass photometry 
measurements (landing assays) were carried out in silicone gaskets (3 mm × 1 mm, 
GBL103250, Grace Bio-Labs) on microscopy slides that had been cleaned by 
consecutive sonication in Milli-Q water, isopropanol, and Milli-Q water. Protein 

solutions (20 μl) were added to the gaskets containing 4 μl buffer and images were 
acquired for 60 s at 331 Hz, except for the data in Supplementary Fig. 14c, which 
were acquired at 250 Hz. Landing assays were analyzed using DiscoverMP (Refeyn 
Ltd) to extract particle contrasts.

Data processing. Background subtraction. Dynamic mass photometry movies were 
processed by treating each frame with a sliding median background subtraction 
algorithm. In brief, each frame was divided by its local median, that is, the median 
of a pre-de�ned frame interval (here, 201 frames or 607 ms) centered around the 
frame of interest, to calculate the background-subtracted frames, F:

F

i

=

x

i

X

i−100:i+100

(1)

where xi is the current raw frame and Xi−100:i+100 represents the median 
pixel values of raw frames, from i − 100 up to (and including) i + 100. 
Each background-subtracted frame was then additionally treated with a 
two-dimensional (2D)-median noise filter to remove any large dynamic 
background sources (for example, fluctuations in illumination, if present). The 
window size of 201 frames for the sliding median algorithm was chosen because 
it was the smallest window size that did not detrimentally affect particle contrast 
or contrast precision (Extended Data Fig. 10). For smaller window sizes, particle 
contrast values and contrast precision decreased significantly, especially for larger 
particles that were less mobile, while larger window sizes increased processing 
times without an additional increase in sensitivity or performance. We anticipate 
that for slower moving particles (D < 0.3 μm2 s−1), it may be necessary to further 
increase the window size to avoid detrimental effects on performance. Moreover, 
the sliding median filter may have detrimental effects on the mass resolution 
at high particle densities, for example ≫0.4 μm−2 (Supplementary Fig. 3 and 
Supplementary Table 2). We also found that contrary to theoretical shot noise 
calculations, increasing the sliding median window size resulted in increasing 
baseline noise from 44 kDa at the minimum window size to 52 kDa at a window size 
of 201 frames, where it plateaued (Extended Data Fig. 9a). This trend is most likely 
a result of the background noise in dynamic mass photometry movies appearing 
as small particle-like features, which are subtracted out by the sliding median filter 
at small window sizes (along with particles of interest) but not at large window 
sizes. In practice this particle-like background noise resulted in a quantitative 
detection limit of ~150 kDa (Extended Data Fig. 9b,c), which prevented us from 
reliably quantifying dimeric particles of WT and ΔPRD. At present we have not yet 
identified the origin of these background features.

Particle detection. Particle candidates were identified by treating each processed 
frame with a Laplacian of Gaussian filter that matched the size of the PSFs in our 
mass photometry setups (Supplementary Fig. 16). From this filtered image two 
binary maps were constructed by applying a manually set threshold (0.0011 for 
all data except the data in Extended Data Figs. 2, 3, 8 and Supplementary Figs. 3 
and 13, for which the threshold was set to 0.0014), and applying a local maximum 
filter. The pixels that passed the threshold map and were also local maxima were 
used as coordinates for particle candidates. For each pair of candidate coordinates, 
a 13 × 13 pixel region of interest was constructed with the candidate pixel at the 
center, and this region of interest was passed through our PSF-fitting procedure 
to quantify particle contrast and location. If a particle candidate was too close to 
an edge of the field of view to construct a 13 × 13 region of interest, that is, within 
6 pixels of an edge, it was discarded. In some cases, background noise features were 
identified as particle candidates and this could lead to the PSF fit converging onto 
a nearby particle in the region of interest, which resulted in duplicate fits. To avoid 
problems with trajectory linking, only the first instance of a fitted particle was 
retained and duplicates were deleted.

Particle quantification and the point spread function model. The location and 
contrast of the particle candidates were quantified through least-squares 
minimization of the residual between the 13 × 13 region of interest and our PSF 
model (for details on how the fitting error in particle locations was extracted 
please refer to the Supplementary Information). Due to the interferometric 
nature of dynamic mass photometry, we based our PSF model on the shape 
of a jinc function50 rather than its square, which is more commonly used in 
fluorescence-based techniques:
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The first jinc function models the light scattered by a small particle, which is 
clipped by the circular objective aperture, where r is the distance from the PSF 
center, w the width of the jinc function and a its amplitude. In mass photometry 
setups a partial reflector positioned in the back focal plane helps to increase 
particle contrast by attenuating the light reflected by the coverslip18, which we 
account for by including a second jinc function. This combination of two jinc 
functions is then multiplied by a Gaussian with standard deviation σ, which is an 
empirical adjustment to reflect the appearance of the PSFs in our setups, which 
appear to have weaker outer lobes than we can account for with jinc functions 
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alone. We calibrated this PSF model using standard mass photometry landing 
assays that were carried out ≤2 h before or after the dynamic mass photometry 
experiments. We then extracted and saved the ratio of the amplitudes of the two 
jinc functions (a1/a2), the width of the first jinc function (w1) and the standard 
deviation of the Gaussian (σ). The width of the second jinc function (w2) is 
calculated using prior knowledge of the dimensions of the back aperture and 
partial reflector (here, w2 = 2.27w1). The analysis of these landing assays was carried 
out using DiscoverMP (Refeyn Ltd), and the extracted parameters used for each 
measurement are supplied with the raw data.

Trajectory linking. The successfully fitted particles were linked into trajectories 
using the open-source Python package trackpy51. More specifically, we used the 
trackpy.link_df function with a maximum search distance of 4 pixels from frame to 
frame and a ‘memory’ of 3 frames. The memory parameter refers to the maximum 
number of frames during which a feature can vanish (as a result of unsuccessful 
PSF fitting, for example) and reappear and still be considered the same particle. 
Due to this memory parameter, our linked trajectories can contain gaps of up to 
3 frames in length each. To obtain accurate trajectory lengths, the missing frames 
were treated as trajectory points at which the contrast and position could not be 
determined.

Trajectory analysis. Unless otherwise stated, linked trajectories were processed as 
described here. Only trajectories that lasted at least 151 ms (50 frames) were used 
for analysis, given that this effectively reduced the amount of background noise 
features and incorrect linking, and improved contrast resolution (Supplementary 
Fig. 2), while also providing sufficient data points to calculate diffusion coefficients 
with high confidence. Additionally, particle trajectories that had coordinates that 
were within 5 pixels of the edge of the field of view were discarded to avoid artificial 
trajectory shortening caused by particles leaving (and sometimes re-entering) the 
field of view. Next, we constructed a contrast histogram for each trajectory and 
applied a Gaussian fit to extract the mean and standard deviation of the contrast of 
each trajectory. These mean trajectory contrasts were then filtered by their standard 
deviation to further eliminate poorly linked or noisy trajectories (Supplementary 
Fig. 17). For this filtering step, we used a contrast versus standard deviation trend 
obtained from a standard mass photometry landing assay of ΔPRD on the same 
instrument with eightfold frame averaging (Supplementary Fig. 17a), and applied it 
with an appropriate contrast offset to the trajectories obtained after length filtering 
(Supplementary Fig. 17b). This offset was identified by inspection to account for 
the additional variation caused by operating at a faster frame rate compared with 
standard mass photometry (offset, 0.0015 at 331 Hz). Examples of trajectories that 
were kept and rejected based on this filtering step are shown in Supplementary Fig. 
17d,e. After these two filtering steps, the mean trajectory contrasts were plotted 
in histograms for WT and ΔPRD. We then used Gaussian fitting to the resulting 
contrast distribution to extract the mean contrast of each oligomeric species and self-
calibrated the data to convert contrast to mass, and then allocated particle trajectories 
to the oligomeric states (that is, a trajectory was identified as belonging to a particular 
oligomer if its mean mass was within 2 s.d. of the mean mass of one of the oligomeric 
species; see Supplementary Figs. 6, 8 and 12 for examples of this selection range).

Diffusion analysis. For each trajectory that passed the filtering steps, the 
cumulative probability distribution of a particle’s displacement during a lag time 
of 4 frames (t = 12 ms) was calculated (except in Fig. 2a and Supplementary Fig. 
4a, where t = 3 ms was used to resolve multiple mobility components, if present). 
This lag time was chosen to reduce the influence of motion blurring, which is 
often referred to as a dynamic measurement error39, on our measurements of 
particle displacement. This dynamic error results in an underestimation of particle 
displacements at short lag times, which we observed at lag times below 12 ms 
(Extended Data Fig. 6). To calculate diffusion coefficients we fitted the following 
one-, two-, and three-component models to the calculated cumulative probability 
distribution, P(r, t) (ref. 5).
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where r represents particle displacement during the chosen lag time, t; D1, 
D2 and D3 represent the diffusion coefficients and w1 and w2 represent their 
weightings (with boundary conditions set so that the exponential weightings 
sum to 1); σ represents the 2D localization error (Fig. 1d), which is included 
here to avoid overestimation of particle motion at short lag times. The data in 
Fig. 1g and Supplementary Fig. 4a were not corrected for the localization error 
because corrections were found to be negligible in this case. A trajectory was 
characterized as having more than one mobility component if adding an additional 
component improved the mean squared residual of the fit by more than one order 
of magnitude. Using this criterion, <5% of trajectories measured in this study 
displayed two mobility components and none displayed three mobility components 

at t = 3 ms or 12 ms (Supplementary Figs. 4a and 5). Trajectories that satisfied at 
least one of the following three criteria were excluded from diffusion analysis: 
more than 20% of the trajectory points were gaps; the mean of all contrast values 
of a trajectory differed by more than 20% from the value determined by Gaussian 
fitting; and the trajectory was too stationary (characterized by having a fast and 
slow mobility component and a weighting factor of <0.3 for the fast component).

For example, in the WT dataset shown in Fig. 2a, of 343 trajectories used in 
the analysis, six trajectories had too many gaps (criterion 1), two trajectories had 
mean contrasts that differed significantly from the trajectory contrast determined 
by Gaussian fitting (criterion 2), and two were too stationary (criterion 3). These 
criteria helped eliminate trajectories that were strongly influenced by background 
fluctuations or were a result of incorrect trajectory linking (Supplementary Fig. 
18). Using this approach, histograms of the diffusion coefficients were plotted 
for each oligomeric species (Supplementary Figs. 4b, 7 and 9) and the mean 
diffusion coefficient of each oligomer was calculated by fitting a Gaussian to these 
distributions. For the small number of trajectories that displayed two diffusion 
components, only the major component was included in these histograms. The 
number of histogram bins was determined using the Freedman–Diaconis rule.

Residence time analysis. To calculate the dissociation rate constants of each 
oligomeric species from the SLB, we slightly modified the trajectory filtering 
procedure described above (Supplementary Information). After filtering the 
detected trajectories, contrast histograms (70 bins) were plotted and trajectories 
were sorted by oligomeric species as described above. The distribution of trajectory 
lengths of a given oligomeric species was fitted to the probability density function 
of a 1-component exponential distribution and the rate parameter was optimized by 
maximum likelihood estimation. To correct for the threshold of 33 ms (10 frames) 
that was applied in prior filtering steps, it was necessary to scale the probability 
density function by incorporating the threshold as an additional parameter:

p(k|t, t
d

) = ke

−k(t−t

d

)
(6)

where k is the dissociation rate constant from the membrane, td is the time 
threshold applied during filtering, and t is the trajectory length. This process was 
repeated for each oligomeric species detected in the dynamic mass photometry 
measurements of WT (7 repeats) and ΔPRD (4 repeats) taken at 10–20 nM 
(Supplementary Figs. 10 and 11).

GTP data analysis. For details on how the data examining the effect of GTP and 
GMPPNP on the oligomeric distribution of WT were analyzed (for example, 
modified trajectory filtering), please refer to the Supplementary Information.

Simulations of dynamic mass photometry movies. For details on how 
simulations of dynamic mass photometry movies were carried out, please consult 
the Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw and processed data have been deposited in the University of Oxford 
Research Archive (https://doi.org/10.5287/bodleian:Qm2vgeo5z). This dataset 
contains all raw movies that were used in this study, along with the corresponding 
background-subtracted dynamic mass photometry movies. Additionally, 
it contains spreadsheets with the data of all particles that were successfully 
detected, quantified, and linked into trajectories by our software for each movie. 
Details on the raw data, processed data and data points used for each Figure and 
Supplementary Figure and the mass photometry landing assays used to calibrate 
the point spread function model for dynamic mass photometry (along with the 
calibration settings) can be found in the summary spreadsheet. All Figures except 
Fig. 1a and Supplementary Figs. 1, 15 and 16 have associated raw data. Source data 
are provided with this paper.

Code availability
The Python software used for image processing, and for particle identification, 
fitting and trajectory linking is available on request, along with the jupyter 
notebooks that outline the use of this package, from raw movies to linked particle 
trajectories, as well as the manual settings used for every dataset. We can also 
provide the jupyter notebooks that were used to extract mass distributions, 
diffusion coefficients and dissociation rate constants from the spreadsheet of linked 
trajectories, which includes all filtering steps as described in the Methods section. 
From these notebooks, all quantitative Figures and Supplementary Figures in this 
paper can be generated.
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ARTICLES NATURE METHODS

Extended Data Fig. 1 | Background subtraction in standard mass photometry (MP) vs dynamic MP. Zoom on three consecutive raw images from a 

dynamic MP movie of WT dynamin in contact with an SLB containing a particle diffusing upwards through the image (top row), which is masked by the 

large signal from the glass surface roughness. In standard MP (left), images are divided by preceding images to remove the large static signal due to 

surface roughness. This background subtraction relies on stationary binding of small particles to the surface to visualise them. When particles bind to 

and diffuse on the surface, the background subtraction used in standard MP results in a signal that is a convolution of the particle’s position at ti-1 and ti, 

(blue and red, respectively), which is challenging to reliably detect and quantify. A sliding median filter (right), that is subtracting each image’s temporal 

median background obtained from a defined window of images around the image of interest, reveals signals of only the particles in the image of interest (ti, 

red). For further explanation see ‘Data processing’ in the Methods section. Scale bar = 500 nm. The effect illustrated in this figure was reproducible in all 

measurements shown in this study (n > 30).

NaturE MEtHoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | Comparison between Wt in solution and on the SLB. (a) Mean contrast vs mass calibrations obtained from n = 3 standard MP 

measurements of WT (40 nM, nmonomer = 832, ndimer = 2637, ntetramer = 2404 and nhexamer = 263 particles) and (b) from n = 6 independent 2 min dynamic 

MP movies (using only trajectories that lasted at least 20 frames) of 20 nM WT on an SLB (ndimer = 227, ntetramer = 1079, nhexamer = 2482 and noctamer = 311 

trajectories) acquired on the same day. The error bars in (a) and (b) represent the mean ± s.d. of the contrast of each oligomeric species from the repeat 

measurements. In some cases the standard deviation was less than 1% causing the contrast error bars to overlap. (c) Oligomeric distribution of WT 

(100 nM) in HKS-100 buffer measured by standard MP (n = 4 combined measurements with a total of n = 16794 particles). The peaks represent WT 

monomer (0.5%), dimer (1.0%), tetramer (2.0%) and hexamer (3.0%). (d) Oligomeric distribution of 10 nM WT in HKS-100 buffer diffusing on an 

SLB obtained from n = 2 combined sets of 3 min dynamic MP movies considering only trajectories that lasted at least 50 frames (n = 1187 trajectories). 

The contrast measured in dynamic MP movies was consistently ~8% lower than that measured in standard MP. This effect is likely a result of particle 

motion during image acquisition, which results in motion blurring of the PSF (Supplementary Fig. 3 and Extended Data Fig. 3). This effect increased as we 

increased frame averaging in dynamic MP movies (Extended Data Fig. 4). The standard MP measurements were acquired at 331 Hz and then processed at 

a final integration time ~24 ms (effective frame rate ~41 Hz), which enabled the detection of WT monomer. *Peak due to background noise.
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Extended Data Fig. 3 | Contrast decrease in dynamic MP vs standard MP. Drop in contrast of different WT oligomers (dimer, 0.2 MDa; tetramer, 0.4 

MDa; hexamer, 0.6 MDa; octamer, 0.8 MDa) when comparing dynamic MP measurements to standard MP measurements (blue circles) and drop in 

contrast observed in simulated dynamic MP movies (Supplementary Fig. 3). For experimental data the contrast drop represents the mean reduction in 

the average contrast of each oligomeric species measured in n = 6 dynamic MP measurements (2 min each, considering only trajectories that lasted at 

least 20 frames resulting in a total of ndimer = 227, ntetramer = 1079, nhexamer = 2482 and noctamer = 311 trajectories) compared to the average contrast measured 

in n = 3 standard MP measurements (Supplementary Table 1, total of ndimer = 2637, ntetramer = 2404 and nhexamer = 263 particles). For simulated data, the 

contrast drop represents the decrease in contrast of each species detected in n = 3 processed simulated movies compared to the contrast value that was 

used to simulate the point spread functions onto the raw images (1.00-4.00% for dimer-octamer, Supplementary Table 2, ndimer = 1780, ntetramer = 2302, 

nhexamer = 2618 and noctamer = 2745 trajectories). Data is presented as mean values ± s.d.. *In dynamic MP movies the contrast of dimer particles partially 

overlaps with that of background signal, which most likely causes underestimation of the dimer contrast and an exaggerated decrease in contrast 

compared to standard MP measurements. †WT octamer was not detected in standard MP measurement and the contrast was extrapolated using the 

contrast vs mass calibration.
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Extended Data Fig. 4 | Effect of frame averaging on particle contrast. (a) Mean contrast of WT dimer (red circles), tetramer (orange squares), hexamer 

(purple crosses) and octamer (blue diamonds) trajectories, (b) mean contrast vs mass calibration slope obtained from the dynamic MP movie in (a) 

vs single frame length after averaging and (c) contrast precision of our PSF-fitting procedure for each oligomer (same symbols as in (a)) all plotted vs 

total exposure time of 1 frame after averaging. These trends are most likely a result of particle motion during image acquisition, which becomes more 

pronounced as more raw images are averaged together and the frame length increases. The plots were obtained from the same movie of WT used in Figs. 

1b-d and 2a (n = 1 movie (4 min) of 20 nM WT) with additional frame averaging of 1, 2, 3, 4 and 5 frames, which corresponds to frame lengths of 3.02, 

6.04, 9.05, 12.07 and 15.09 ms or frame rates of 331, 166, 110, 83 and 66 Hz, respectively (see Supplementary Information). The data in (a) and (c) are 

presented as mean values ± s.e.m. for each oligomeric species. The data in (b) is presented as mean values ± s.d.. For these plots ndimer = 34, 51, 60, 52, 73, 

ntetramer = 82, 102, 98, 97, 94; nhexamer = 177, 229, 224, 208, 173; noctamer = 22, 29, 37, 38, 33 trajectories for total exposure times of 3.0, 6.0, 9.1, 12.1, 15.1 ms, 

respectively.
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Extended Data Fig. 5 | Diffusion coefficient vs inverse of number of subunits of Wt oligomers. Mean diffusion coefficients of each oligomeric species of 

WT from n = 7 independent repeat measurements (ntetramer = 498, nhexamer = 1326, noctamer = 156; data shown in Supplementary Fig. 6-7) vs the inverse of the 

number of subunits of each oligomeric species and a corresponding weighted linear fit (blue dashed line). Error bars are presented as mean values ± s.d..
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Extended Data Fig. 6 | Effect of lag time on calculated diffusion coefficients. (a) Average median diffusion coefficient and (b) corresponding interquartile 

range vs chosen lag time (t) for each oligomeric species from n = 4 independent ΔPRD measurements (ntetramer = 213, ntetramer = 937, nhexamer = 330, ndecamer = 83; 

trajectories data shown in Supplementary Fig. 8-9). As the distribution of diffusion coefficients broadened significantly as the lag time increased, the 

diffusion coefficient of each oligomer was determined by taking the median of the distribution instead of Gaussian fitting. Each data point represents 

the mean diffusion coefficient from the median values determined from four repeats of ΔPRD measurements and the error bars are presented as mean 

values ± s.d..
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Extended Data Fig. 7 | Dissociation constant vs inverse of number of subunits of Wt oligomers. Mean dissociation constant from the SLB of each 

oligomeric species of WT determined from n = 7 independent repeat measurements (ntetramer = 2263, nhexamer = 3264, noctamer = 203 trajectories; data shown 

in Supplementary Fig. 11) vs the inverse of the number of subunits of each oligomeric species and a corresponding weighted linear fit (blue dashed line). 

Error bars are presented as mean values ± s.d..
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Extended Data Fig. 8 | Effect of GtP and GMPPNP on the oligomeric distribution of Wt. Average oligomeric distribution of 20 nM WT in contact with 

an SLB in its apo-state, with 1 mM GTP, with 1 mM of GMPNP (non-hydrolysable GTP analogue) and with 1 mM MgCl2 instead of 2 mM MgCl2. The 1 mM 

MgCl2 measurement was included as a control in case the presence of GTP/GMPNP results in a reduction in free Mg2 + , which could potentially affect the 

membrane affinity of WT dynamin oligomers. Each bar plot was generated by taking the mean oligomeric counts from n = 3 repeat measurements (1 min 

dynamic MP movie each). Error bars are presented as mean values ± s.d..
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Extended Data Fig. 9 | analysis of background noise in dynamic MP movies. (a) Mean baseline noise of the movie of HKS-100 buffer in contact with an 

SLB (black circles) shown in Supplementary Fig. 1 vs window size of the sliding median filter used to process the movie and the corresponding theoretical 

shot noise limit (grey squares). The error bars represent the mean baseline noise ± standard deviation across n = 4599 recorded frames. The inverse 

trend in baseline noise of the buffer movie compared to the theoretical shot noise is a result of particle-like background features in dynamic MP movies, 

which are subtracted out by the sliding median filter at short window sizes (for example 20-100 ms) but not at longer window sizes (> 200 ms). (b-c) 

Mass histogram of n = 182 and n = 30 trajectories, respectively, detected in a single SLB buffer movie processed with the same settings described in the 

Methods section, filtered for trajectories with a minimum length of 10 and 50 frames, respectively. The detected background features have contrasts 

corresponding to ~150 kDa, which prevented the detection of ΔPRD dimer and made reliable detection of WT dimer challenging.
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Extended Data Fig. 10 | Effect of the window size of the sliding median filter on particle contrast. (a) Mean contrast of WT dimer (red circles), tetramer 

(orange squares), hexamer (purple crosses) and octamer (blue diamonds) trajectories, (b) mean contrast vs mass calibration slope obtained from the 

dynamic MP movie in (a) vs single frame length after averaging and (c) contrast precision of our PSF-fitting procedure for each oligomer (same symbols 

as in (a)) all plotted vs total exposure time of 1 frame after averaging. The plots were obtained from the same movie of WT used in Figs. 1b-d and 2a (n = 1 

movie (4 min) of 20 nM WT) with additional frame averaging of 1, 2, 3, 4 and 5 frames, which corresponds to frame lengths of 3.02, 6.04, 9.05, 12.07 

and 15.09 ms or frame rates of 331, 166, 110, 83 and 66 Hz, respectively (see Supplementary Information). The data in (a) and (c) are presented as mean 

values ± s.e.m. for each oligomeric species. The data in (b) is presented as mean values ± s.d.. For these plots ndimer = 34, 51, 60, 52, 73, Ntetramer = 82, 102, 

98, 97, 94; nhexamer = 177, 229, 224, 208, 173; noctamer = 22, 29, 37, 38, 33 trajectories for total exposure times of 3.0, 6.0, 9.1, 12.1, 15.1 ms, respectively.
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