
Abstract: The use of mass points eases the definition of a branch of a hyperbola in the Euclidean plane
based on a Rational Quadratic Bézier Curve. In the space of spheres, any circular cone, circular cylinder,
torus, pencil of spheres or Dupin cyclide is represented by a rational quadratic Bézier curve that is conic
arc seen as circle arc. The limit points of the Poncelet pencil or the singular points of the Dupin cyclide can
be determined using the asymptotes of this circle. This article shows that the use of mass points simplifies
the modelling of these pencils or these Dupin cyclides in the space of spheres. The determination of the
Dandelin spheres ends this work as an application.
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1 Introduction
Among the three known problems coming from
Antiquity, the trisection of an angle is one of them.
It requires the construction of the cubic root of 2.
And leads Ménechme to set up the intersection be-
tween a parabola and a hyperbola. Since the IV th

century B.C. Ménechme and Aristée knew that the
section between a cone and a plane perpendicu-
lar to a generatrix of the cone provides different
curves depending on the angle of the cone. This
angle can be acute, right or obtuse and it gives
an ellipse, parabola or hyperbola respectively as
the conic section [1]. Apollonius was the first who
noticed that all conic sections can be determined
from the same oblique cone with a circular base.
One must wait till XIXth century and the Dan-
delin and Quételet theorems to link the different
definitions of the conic sections [2]. The first one
was the intersection between a cone and a plane,
the second one was the definition with two foci
and the third one was based on one focus and a
directrix line. Depending on the problem, these
definitions are used in the geometric modeling do-
main. An algorithm that provides the Dandelin

spheres allows to get from a conic representation
to another one. The invariants of any conic are
thus completed by an algorithm.

The computer aided design and the computer
aided manufacturing are dealt with the sketch
of conic arcs. Their representation with control
points is very useful when the dimension space is
at least 3. A classical solution consists in the use
of polynomial or rational quadratic Bézier curves.
These curves were invented by Pierre Bézier [3]
from Renault. Their iterative construction are
based on the algorithm founded by Paul de Castel-
jau [4] from Citroën. See also [5, 6, 7, 8, 9, 10, 11,
12, 13, 14].

Anyway, a rational quadratic Bézier curve,
called BR curve is defined by the three Bern-
stein polynomial of degree 2 and three weighted
points (P0, ω0), (P1, ω1) and (P2, ω2) with non-
zero weights or non negative weights as the most
frequent case. From a geometrical point of view,
such an arc is defined as the set of barycentres
of weighted points. The weight of this barycen-
tre equals the sum of the product of the weights
of control points times adequate Bernstein poly-
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nomials. Moreover, some problem exists with the
non bounded curves as parabola or hyperbola arcs.
In order to fix it, a smart and efficient solution
consists in gathering in a same space the set of
weighted points and the set of vectors considered
as points assigned with a null weight. The space is
thus denoted the mass points space [15, 16]. Thus,
an adequate representation of rational quadratic
Bézier curve allows to obtain the invariant of the
defined conic [17, 18, 19]. Moreover, some re-
searchers use homogenous coordinates to model
a semi-circle [20, 21, 22], but L. Piegl men-
tions this problem in [21]: ”A point in projec-
tive space is what mathematicians call an equiva-
lence class. This means that −→

Pj (xj , yj , zj , 0) and
−→
Pj

∗ (αxj , αyj , αzj , 0) are two representations of
the same point in projective space. However, sub-
stituting −→

Pj and −→
Pj

∗ into Eq (7.34) clearly results
in two different curves.” So, the use of homoge-
neous coordinates is not possible. On one hand,
the metric structure , Euclidean or not of the plane
can not be considered in its projective closure. On
second hand, the choice of any representative ele-
ment from an equivalent class is changing the sta-
tus of the curve [9]. By the use of homogeneous
coordinates, a proper conic not differ from another
if the line of infinity is not known [23].

Using mass points, we choose the vector which
allows to obtain a semi-circle, this circle can be
Euclidean, Figure 1 or not, Figure 2. This vector
is defined by using perpendicular conditions and
pseudo-metric conditions to determine a Bézier
curve which models a given hyperbola seen as a
circle (for the non-degenerate indefinite quadratic
form). Let us give the conditons to obtain a semi-
circle.

Theorem 1 :
Let (ω0, ω2) ∈ R∗ × R∗. Let (P0, ω0),

(−→
P1, 0

)
and (P2, ω2) be three control mass point of a
quadratic Bézier curve γ.

The curve γ is a semi-circle if and only if{ −−−→
P0P2 ⊥

−→
P1

ω0 ω2
−−−→
P0P2

2 = 4
−→
P1

2
(1)

In the Figure 1, the basis vectors verify{ −→ı 2 = −→ȷ 2 = 1
−→ı �−→ȷ = 0

and the equation of the circle, in blue line, is

x2 + y2 = 1 (2)

To obtain the semi-ellipse, the second control
point is −→

Q1 = −1
2

−→
P1.

qp

qp

ut
−→ı

−→ȷ

(−→
P1; 0

)

(−→
P1; 0

)

(−→
Q1; 0

)

(−→
Q1; 0

) (P0; 1)

(P2; 1)

Ω

Figure 1: An Euclidean semi-circle and a semi-
ellipse of center Ω.

In the Figure 2, consideing the quadratic form

Q (x, y) = x2 − y2

the basis vectors satisfy to
−→ı 2 = 1

−→ȷ 2 = −1
−→ı �−→ȷ = 0

and the equation of the circle1 is

x2 − y2 = 1 (3)

From the examples given in Figure 1 and 2, the
table 1 gives the computations of Formula (1).

The formalism in the description of Bézier
curve based on mass control points is spreading
to any dimension. It does not depend on the con-
sidered quadratic form. That facilitates their use
in the space of spheres we are focusing on.

The space of spheres has been introduced in dif-
ferent ways. For example, in [24, 25] M. Berger is
putting himself in the projectif space of quadratic

1The rigorous term is pseudo-circle which is an hyperbola
with an Euclidean point of view.
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Point, vector and calculus Figure 1 Figure 2

P0

(
0
−1

) ( √
2
1

)
P2

(
0
1

) (
−
√
2

−1

)
−→
P1

(
1
0

) (
1√
2

)
−−−→
P0P2

(
0
2

) (
−2

√
2

−2

)
−−−→
P0P2

2 4
(
−2

√
2
)2 − (−2)2 = 4

ω0ω2
−−−→
P0P2

2 4 1×−1× 4 = −4

−→
P1

2 1 12 −
√
2
2
= −1

−−−→
P0P2 �

−→
P1 0× 1 + 2× 0 = 0 −2

√
2× 1− (−2)×

√
2 = 0

ω0ω2
−−−→
P0P2

2 − 4
−→
P1

2 4− 4× 1 = 0 −4− 4×−1 = 0

Table 1: Formula 1 and circles generated by Bézier curves with control mass points (P0, 1),
(−→
P1, 0

)
and

(P2, 1) in Figure 1 and (P2,−1) in Figure 2.

rs

qp

qp

ut

(P0, 1)

(P2,−1)

(−→
P1; 0

)

Ω
−→ı

−→ȷ

Figure 2: A non-Euclidean semi-circle of center Ω.

forms on the Euclidean space. M. Paluszny [26]
is working in a 4-dimension projective space us-
ing the Mœbius hypersphere. U. Hertrich-Jeromin
[27], T. Cecil [28], R. Langevin, J. O’Hara [29, 30]
and P. Walczak [31] are using a 4-dimension

quadric on the 5-dimension Lorentz space. This
space generalises the Minkowski time-space. The
following is based on this last theme. The inside
or outside area of a sphere is defined by its ori-
entation. This structure offers to solve unsolved
problems in R3 as well as in others representations
of the sphere space [32, 33, 34]. Moreover, the
Lorentz space allows to use the powerful structure
of geometric algebra [35, 36]. In the space of ori-
ented spheres, a Dupin cyclide, a circular cone, a
circular cylinder, a torus is represented by two con-
ics on a 4-dimensional unit sphere of the Lorentz
space. In this space, a pencil of spheres is an unit
circle (for the Lorentz structure) on the previous
unit sphere [37, 10, 35, 32, 31, 30]. This space
eases the handling of surfaces. They are thus lin-
earized because considered as the intersection of a
unit sphere with a 2 dimension plane. The singu-
larities of Dupin cyclides or the limit points of a
spheres pencil are represented by isotropic vectors
for the quadratic form of Lorentz. The use of a
rational quadric Bézier curve for the representa-
tion of any circle arc in the spheres space will take
account of vectors in the Bézier curve [38, 13, 14].
The article is composed as follows. The rational
quadratic Bézier curve representation with mass
control points, the modeling of hyperbola branch
and the spheres space are proposed to the reader
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in paragraph 2. In section 3, oriented spheres and
orthogonal spheres are introduced in the usual Eu-
clidean 3D affine space. The Minkowski-Lorentz
space and the space of the oriented spheres are
defined in the paragraph 4. Rational quadratic
Bezier curve with mass control points are thus ap-
plied to the representation of a spheres pencil with
limit points or any Dupin cyclide with two singu-
lar points including a circular cone having a point
at infinity, section 5. Before conclusion and future
works, the Dandelin spheres using the Minkowski-
Lorentz space and the space of spheres are com-
puted in paragraph 6. Two appendices propose a
proof of a lemma and numerical results.

2 Rational quadratic Bézier curves in
the set of the mass point P̃

In the following (O;−→ı ;−→ȷ ) designates a direct ref-
erence frame in the usual Euclidean affine plane
P and −→P the set of the vector plane. The set of
mass points is defined by :

P̃ = (P × R∗) ∪
(−→P ×

{−→
0
})

and
(
P̃,⊕,⊙

)
is a vector space [19]. So, a mass

point is a weighted point (M,ω) with ω ̸= 0 or
a vector (−→u , 0). The three quadratic Bernstein
polynomials defined by :

B0 (t) = (1− t)2

B1 (t) = 2 t (1− t)

B2 (t) = t2

(4)

where , t ∈ [0, 1]. provide the definition of ratio-
nal quadratic Bézier curve (BR curve) in P̃ given
below.
Definition 1

Let ω0, ω1 and ω2 be three real numbers.
Let (P0;ω0), (P1;ω1) and (P2;ω2) be three

mass points in P̃, these points are not collinear.
Define two sets

I = {i | ωi ̸= 0} and J = {i | ωi = 0}

Define the function ωf as follows

ωf : [0; 1] −→ R
t 7−→ ωf (t) =

∑
i∈I

ωi ×Bi (t) (5)

A mass point (M ;ω) or (−→u ; 0) belongs to the
quadratic Bézier curve defined by the three control
mass points (P0;ω0), (P1;ω1) and (P2;ω2), if there
is a real t0 in [0; 1] such that:

• if ωf (t0) ̸= 0 then

−−→
OM =

1

ωf (t0)

(∑
i∈I

ωiBi (t0)
−−→
OPi

)

+
1

ωf (t0)

(∑
i∈J

Bi (t0)
−→
Pi

)
ω = ωf (t0)

(6)

• if ωf (t0) = 0 then

−→u =
∑
i∈I

ωiBi (t0)
−−→
OPi +

∑
i∈J

Bi (t0)
−→
Pi (7)

Such a curve is denoted
BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)}

If J = ∅, this definition leads to the usual ra-
tional quadratic Bézier curve.

This kind of curve can model a non-Euclidean
circular arc as the example shown in the
Monkowski-Lorentz space.

3 The oriented spheres in the 3D
usual Euclidean affine space E3

In the Euclidean affine space E3, each sphere S,
of centre C, with a non-negative radius r, defines
two oriented spheres S+ and S−. We distinguish
the inside space and the outside space of S. If the
interior (resp. exterior) of the sphere is bounded
(resp. non-bounded), the radius of the oriented
sphere S+ (resp. S−) is ρ = r (resp. ρ = −r).
The sphere S+ (resp. S+) is such that the unit
normal vector −→

N at the point M is in the same
direction (resp. opposite direction) as the vector
−−→
CM . Then, the same formula matches two cases

−−→
ΩM = ρ

−→
N (8)

where |ρ| = r. The power of a point with respect
to a sphere is thus defined.

Definition 2 : Power of point with respect to a
sphere

Let S be an oriented sphere of centre Ω and
radius ρ. Let M be a point of E3.

The power of the point M with respect to the
sphere S is

χS (M) = ΩM2 − ρ2 (9)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.34

Lionel Garnier, Lucie Druoton, 
Jean-Paul Bécar, Laurent Fuchs, Géraldine Morin

E-ISSN: 2224-2880 288 Volume 21, 2022



The points of the sphere S are the points M
which verify χS (M) = 0. The points of E3 which
belong to the open ball defined by the sphere S
are the points M which verify χS (M) < 0 (resp.
χS (M) > 0) if the algebraic radius is positive
(resp. negative). The other points of E3 are
the points M which verify χS (M) > 0 (resp.
χS (M) < 0) if the algebraic radius is positive
(resp. negative).

Definition 3 : Orthogonal spheres and power of
two spheres

Let S1 and S2 be two oriented spheres of centres
Ω1 and Ω2, Ω1 ̸= Ω2, and radii ρ1 and ρ2. The
power of the two spheres S1 and S2 are

χS1,S2
= Ω1Ω

2
2 − ρ21 − ρ22

The spheres S1 and S2 are orthogonal iff we
have

χS1,S2
= 0 (10)

4 The Minkowski-Lorentz space and
the space of spheres Λ4

The Minkowski-Lorentz space −−→L4,1 is the real space
vector of dimension 5. A bilinear form L4,1 de-
noted by a dot product, is defined on the canonical
basis (−→e−,−→e1 ,−→e2 ,−→e3 ,−→e+) as follows

−→ei �−→ej = 0 if i ̸= j,
−→e− �−→e− = −1
−→ei �−→ei = 1

(11)

with i ∈ {1, 2, 3,+} and j ∈ {−, 1, 2, 3,+}.
Let Q4,1 be the quadratic form associated to

L4,1. The affine Minkowski-Lorentz space L4,1 is
defined by the point O5 = (0, 0, 0, 0, 0) and −−→L4,1.
A new basis (−→eo ,−→e1 ,−→e2 ,−→e3 ,−→e∞) with{ −→eo = −→e− −−→e+

−→e∞ = 1
2 (

−→e− +−→e+)
(12)

eases to embed the usual 3D Euclidean affine space
E3 in the Minkowski-Lorentz space. The reader
will check that

−→eo �−→eo = −→e∞ �−→e∞ = 0

and −→eo �−→e∞ = −1

The origin point O3 of E3 is obtained by

−→eo =
−−−→
O5O3

and the vector −→e∞ represents the point at infinity
of E3.

According to the Minkowski definitions, any
vector −→u ∈

−−→L4,1 such that Q4,1 (
−→u ) is negative,

positive or zero is qualified as a time-like, space-
like or light-like vector respectively. In L4,1, the
light cone Cl is defined by :

Cl =
{
M ∈ L4,1 |

−−−→
O5M

2 = 0
}

(13)

Let P be a point in E3 and −→
P =

−−→
O3P its posi-

tion vector. Then, the representation of the point
P is the point p or the position vector −→p given by

−−→
O5p = −→p = −→eo +

−→
P +

1

2

∥∥∥−→P ∥∥∥2−→e∞. (14)

It can be noticed that the point P defined by
−−→
O5P = −→eo +

−→
P

belongs to the embedding of E3 in L4,1. After some
calculations, it yields

−→p �−→p = 0 (15)

thus −→p representing the point P in E3 lays on the
light cone Cl. In fact, the set of these points p
defines a 3-dimensional paraboloid P on the hy-
perplane defines by the point O3 and the vectors−→e1 , −→e2 , −→e3 , −→e∞. The axis of P is the line defined
by O3 and the light-like vector −→e∞ and then, the
paraboloid P is isometric to E3. Conversely, the
light-like vector −→p (xo;x; y; z;x∞) represents the

point P
(

x

xo
;
y

xo
;
z

xo

)
of E3 if x0 ̸= 0 or the point

at infinity of E3 (i.e. −→p = −→e∞ if x0 = 0. See in
Figure 3.

In the rest of this paper, M designates a point
of E3. Its representation in the Minkowski-Lorentz
space is denoted m or −→m through misuse of lan-
guage.

4.1 The space of spheres Λ4

In the Minkowski-Lorentz space, the representa-
tion of the sphere with centre C and algebraic ra-
dius ρ in E3 is given by [36]:

−→σ =
1

ρ

(
−→c − 1

2
ρ2−→e∞

)
=

1

ρ

(
−→eo +

−→
C +

1

2

(∥∥∥−→C ∥∥∥2 − ρ2
)
−→e∞
) (16)

In the same way, the oriented plane P is defined
by the point P and the unit normal vector −→

N by

−→π =
−→
N +

(−→
N �−→P

)−→e∞
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(a)

(b)

Figure 3: Construction of the 3-dimensional
paraboloid P isometric to the usual 3-dimensional
Euclidean affine space E3. The type of −→e∞, −→eo ,−→
H . The hyperplane −→

H is tangent to Cl. Each
light-like vector −→n2, such as −→n2 and −→e∞ are not
collinear, defines a point of E3 via the paraboloid
P: the point is the intersection between the line
(O;−→n2) and the paraboloid P.

and −→π 2 =
−→
N 2 = 1. Thus, the unit sphere2 of L4,1

Λ4 =
{
σ ∈ L4,1 | −−→O5σ

2 = 1
}

(17)

is called the space of spheres, representing the ori-
ented spheres and the oriented planes of E3. The
planes can be seen as spheres through the point at
infinity of E3.

4.2 Relative positions of two spheres
Theorem 2 : Relative positions of two spheres

Let S and Sx be two oriented spheres in E3. Let
σ and σx be their representations on Λ4.

2Seen as a 4-dimensional one-sheeted hyperboloid.

Then, we have three cases:

• S∩ Sx is a circle if and only if∣∣∣−−→O5σ �−−−→O5σx

∣∣∣ < 1

• S and Sx are tangent if and only if∣∣∣−−→O5σ �−−−→O5σx

∣∣∣ = 1

• S∩ Sx = ∅ if and only if∣∣∣−−→O5σ �−−−→O5σx

∣∣∣ > 1

Proof: see [39].
■
Moreover, we can state

Corollary 1 : Let S and Sx be two tangent spheres
in E3. Let σ and σx be their representations on Λ4.
If the orientations of the spheres S and Sx are the
same, then

• −−→
O5σ �−−−→O5σx = 1;

• −−→σσx2 = 0 and the point of tangency is defined
by the light-like vector −−→σσx via the paraboloid.

4.3 Linear pencils of spheres and their
correspondence in Λ4

In [31], the authors recall that any linear pencil of
spheres of E3 is represented in L4,1 by the section
of the quadric Λ4 by an affine 2-plane P passing
through O5. Given the type of the plane −→

P , we
have different types of pencil of spheres.

Proposition 1 :

• The section of the quadric Λ4 by a space-like
plane P matches a pencil of spheres with a
base circle i.e. all the spheres of the pencil
have a common circle, Figure 4(a).

• The section of the quadric Λ4 by a time-like
plane P matches a Poncelet pencil, i.e. the
balls, defined by the spheres, are contained
in each other and tend to two limit points,
Figures 4(b) and 5(a).

• The section of the quadric Λ4 by a light-like
plane P matches a pencil of tangent spheres
in a point is the union of two light-like lines,
Figures 4(c) and 5(b).
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(a)

(b) (c)

Figure 4: Three pencils of spheres in E3. (a): A
pencil of spheres with a base circle. (b): A Pon-
celet pencil. (c): A pencil of tangent spheres at a
point.

5 Application in the space of spheres
5.1 Equation of a pencil of spheres with

limit points
Consider two points as spheres with zeros radices
belonging to the spheres pencil with limit points.
A parameterisation of the pencil is given on Λ4.
In a first case an equation of a hyperbola in the

frame formed by its two asymptotic lines is given
(e.g. y = 1

x). In a second case, an equation of the
hyperbola with respect to its half axes is obtained.

Proposition 2 : Consider the two limit points M1

and M2 of a pencil of spheres S (t).
Let −→m1 and −→m2 the points representation in the

Lorentz space.
Let ε ∈ {−1; 1}.
Any pencil of spheres gets two equivalent para-

metric representations

−→σ (t) = t
1

M2M1

−→m1 −
1

t

1

M2M1

−→m2 (18)

with t ∈ R∗ and

−−→σhyp (t) = ε ch (t)
1

M2M1
(−→m1 −−→m2)

+ sh (t)
1

M2M1
(−→m1 +

−→m2)

(19)

with t ∈ R

Proof: left to the reader.
■
Consider to distinct points M0 et M2 with −→m0

et −→m2 as respective representations by two light
vectors. In the spheres space, this type of pencil
is represented by a circle arc of centre O5 by the
use of a BR curve with intermediate control mass
point (O5;ω1) and (−→m0; 0) and (−−→m2; 0) as edge
points. Let ω1 be the O5 weight. For t ∈ ]0; 1[,
any point of the Bézier curve is defined by the
following equation

−−−−→
O5σ (t) =

1

ω1B1 (t)
(B0 (t)

−→m0 −B2 (t)
−→m2)

+
1

ω1B1 (t)

(
ω1B1 (t)

−−−→
O5O5

)
=

1

ω1B1 (t)
(B0 (t)

−→m0 −B2 (t)
−→m2)

The weight ω1 is determined by
−−−−→
O5σ (t)2 = 1 (20)

that is equivalent to

ω2
1 B

2
1 (t)

−−−−→
O5σ (t)2 = (B0 (t)

−→m0 −B2 (t)
−→m2)

2

Developping and simplifying the right hand side
gives

(B0 (t)
−→m0 −B2 (t)

−→m2)
2
= −2B0 (t) B2 (t)

−→m0 �−→m2

= −B2
1 (t)

2
−→m0 �−→m2
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b

C

Λ4

−→e−

Cl

O5

(a)

b

C
−→e−

Cl

O5

Λ4

(b)

Figure 5: Representation of two pencils of spheres in Λ4, each pencil is the section of Λ4 by a 2-plane. (a):
a Poncelet pencil and the type of the 2-plane is time-like. (b): A pencil of tangent spheres at a point and
the type of the 2-plane is light-like.

thus the Formula (20) is equivalent to

ω2
1 = −1

2
−→m0 �−→m2 =

1

4

−−−−→
M2M0

2

For any non zero real λ, it yields

(λ−→m0)
2
= (λ−→m2)

2
= −→m0

2 = −→m2
2 = 0

the condition −→m0
2 = −→m2

2 given in [17, 19] turns
non valid and is formulated as follows
Condition 1 :
if a BR curve represents a circle arc drawn as
an hyperbola, the edge mass points are two light
vectors −→m0 and −→m2 representing the two points
M0 and M2: the first component of −→m0 and −→m2

equals 1.

Consider the two points M0 (−2; 0; 0) and
M2 (2; 0; 0). The weight ω1 is chosen equal to 2.
In order to obtain a weight equals to 1 for O5, it
is sufficient to replace both light vectors −→m0 and−→m2 by the new both light vectors

−→
W0 =

1

2
−→m0 et −→

W2 = −1

2
−→m2

given that −−−→
O3M2 = −−−−→

O3M0 and O3M0 = 2, it
yields finally
−−−−→
O5σ (t) =

1

2 t (1− t)

(
1− 2 t

2
−→e0 + (1− 2 t)−→e∞

)
+

1

2 t (1− t)

1− 2 t+ 2 t2

2

−−−→
O3M1

The Figure 6 shows some spheres. Let us recall
that for t = 0 (resp. t = 1), the vector −→

W0 (resp.
−→
W2) defines the point M0 (resp. M2).

Figure 6: Some spheres of a spheres pencil with
limit points modeled by a connected circle arc rep-
resented by a BR curve with control mass points

5.2 Canal surface on the space of sphere Λ4

The circular cylinders and the circular cones are
the well known canal surfaces of degree 2. More-
over, these surfaces are defined by two equivalent
families of spheres. The first type uses oriented
spheres as the second is based on planes. The sur-
face canal envelopes includes curvature circles for
the first type and generatrices for the second type

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.34

Lionel Garnier, Lucie Druoton, 
Jean-Paul Bécar, Laurent Fuchs, Géraldine Morin

E-ISSN: 2224-2880 292 Volume 21, 2022



of the quadric surfaces. In the case of a cone, its
vertex -a zero radius sphere- splits the cone in two
parts. A first half cone is composed of spheres
with positive radices. The negative radices are for
the second half cone.

A Dupin cyclide can be defined as the image by
an inversion mapping of a torus, a circular cylin-
der or a circular cone. The three last surfaces can
be considered as degenerated cyclides [40]. Any
Dupin cyclide can be defined as the envelope of a
one-parameter family of spheres in two equivalent
ways. A Dupin cyclide is determined by the sec-
tion of Λ4 with a affine 2-plane which does not con-
tain O5. If it is a time-like type plane, the Dupin
cyclide gets two singular points. Its representation
on Λ4 is a circle drawn as a hyperbola [41, 37].

A circular cone is a degenerated Dupin cyclide
[40] including its vertex S and the point at infin-
ity of E3. These two points are represented in the
Lorentz space by two light vectors, −→mS and −→e∞.
The vector −→e∞ is a shared vector to all cones rep-
resentations on Λ4. Thus a cone is totally deter-
mined by its vertex and a sphere. The Algorithm
1 offers a way to model a cone by a BR curve with
control mass points coming from its vertex and a
sphere.

The assumption χS1
(S) > 0, Formula (9),

guarantees the point is outside (resp. inside) of
the ball defined by the sphere S1 if its radius is
positive (resp. negative). Depending of the ori-
entation of S1, this bounded set means either the
outside or the inside of S1. The centre of the cir-
cle Ω which is the section of Λ4 by the plane P1

generated by σ1, −→mS and −→e∞, is given by
−−→
σ1Ω = α−→mS + β −→e∞

where α et β must be calculated. The point Ω is
the orthogonal projection3 O5 on P1 iff{ −−→

O5Ω �−→mS = 0
−−→
O5Ω �−→e∞ = 0

(23)

Moreover, α and β are calculated from
−−→
O5Ω =

−−−→
O5σ1 + α−→mS + β −→e∞

and the System (23) equivalent to the system{ −−−→
O5σ1 �−→mS + β −→e∞ �−→mS = 0
−−−→
O5σ1 �−→e∞ + α −→mS �−→e∞ = 0

That provides the Formula (21). The BR curve
with control mass points (−→m0; 0), (Ω;ω1) and

3for the Lorentz quadratic form

Algorithm 1 Sketch of a circular cone from a point
and a sphere.
Input : A point S and a sphere S1 such that
χS1

(S) > 0

1. Determine the light vector −→mS that represents
the vertex S

2. Determine σ1 that represents the sphere S1 on
Λ4

3. Determine Ω the centre of the circle that rep-
resents the cone by :

−−→
σ1Ω = −

−−−→
O5σ1 �−→e∞
−→mS �−→e∞

−→mS−
−−−→
O5σ1 �−→mS
−→mS �−→e∞

−→e∞ (21)

4. Determine the weight ω1 root of

ω2
1 =

1

2

−→mS �−→e∞
1−−−→

O5Ω2
(22)

5. Determine the BR curve γ with mass control
points (−→mS ; 0), (Ω;ω1) and (−→e∞; 0) that model
a circle arc.

Output : A one parameter set that models a cone
itself represented by a BR curve with mass control
points (−→mS ; 0), (Ω;ω1) and (−→e∞; 0).

(−→m2; 0), is defined by

−−−−→
O5γ (t) =

1

ω1B1 (t)
(B0 (t)

−→mS +B2 (t)
−→e∞)

+
1

ω1B1 (t)
ω1B1 (t)

−−→
O5Ω

(24)
and for t = 1

2 , it yields

−−−−−−→
O5γ

(
1

2

)
=

2

ω1

(
1

4
−→mS +

1

2
ω1

−−→
O5Ω+

1

4
−→e∞
)

(25)
reduced into
−−−−−−→
O5γ

(
1

2

)
=

1

2 ω1

(
−→mS + 2ω1

−−→
O5Ω+−→e∞

)
(26)

The point γ
(
1
2

)
belongs to Λ4 iff

−−−−−−→
O5γ

(
1

2

)2

= 1

iff
4ω2

1 =
(−→mS + 2ω1

−−→
O5Ω+−→e∞

)2
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that is equivalent to

4ω2
1 = 4ω2

1

−−→
O5Ω

2 + 2−→mS �−→e∞
that proves ω1 is a solution of the equation (22).
Any solution of ω1 provides half a cone with vertex
S given that

−−→
γ (0) = −→mS .

Figure 7: A cone defined by its vertex S and the
sphere S1 shown on Λ4 by a circle arc modelled by
a BR curve with mass control points.

The Figures 7 and 8 show half a cone known
by its vertex S (−5;−1;−1), its point at infin-
ity and the sphere S1- green colored- with centre
O1 (5; 1; 2) and radius 2. In the Lorentz space,
the vertex is represented by the light-like vector−→ms

(
1;−5;−1;−1; 272

)
. Keeping in mind that the

first coordinates must be equal to 1. The sphere
S1 is represented by the point σ1

(
1
2 ;

5
2 ;

1
2 ; 1;

13
2

)
.

the cone is represented by the circle with centre
Ω
(
0; 5; 1; 32 ;−

55
2

)
. The weight equals ω1 =

√
218
109 .

An inversion maps a spindle or horned Dupin cy-

Figure 8: Few spheres and characteristic circles of
the cone in the figure 7,obtained for some t values
of the BR curve

clide into a horn torus or a circular cone. In case
of the pole inversion does not belong to the initial
circle, a quartic Dupin cyclide is obtained, other-
wise a cubic Dupin cyclide is obtained. In both

cases, such a Dupin cyclide is the envelop of a
one-parameter family of spheres in two ways. The
Dupin cyclide is thus sketched in the sphere space
by two circles. One circle is drawn as an ellipse
while the second is drawn as an hyperbola [41]. A
cubic cyclide is a non bounded surface. It takes
two lines of curvature. The following applies the
quartic Dupin cyclides bacause they are bounded
and the most often used.

The algorithm in this section does not distin-
guish horned or spindle Dupin cyclide [40], cir-
cular cone or horn torus. If the vector −→e∞ is
replaced by a light-like vector −−→m∞, the Algo-
rithm 1 provides a spindle or horned Dupin Cy-
clide. Like the union of the paraboloid with−→e∞ is a Alexandroff compactification of E3, it is
possible to send the point represented by −−→m∞
and then, the Dupin cyclide becomes a circular
cone. The reader can find an animation using
this link : http://ufrsciencestech.u-bourgogne.fr/~garnier/
publications/refigCD4EN2Cone26.gif .

br
r

Λ4

P2

C2

P1

Ω1

−→e−

Cl

O5 Ω2

C1

Figure 9: A Dupin cyclide on Λ4 with two singu-
larities sketched as a connected circle drawn as an
hyperbola and a non connected circle drawn as an
ellipse.

The Figure 10 shows characteristic circles on
a horned Dupin cyclide while changing the light-
like vector inside the algorithm 1. The point
M1 and the sphere belong to Figure 7, the
vector −→e∞ has been substituted by the vector−→m2 (1;−5;−5; 10; 75) that represents the point
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M2 (−5;−5; 10) and

ω1 = 137

√
109

1526

Figure 10: Characteristic circles of a horned Dupin
cyclide.

The figure 11 shows the whole cyclide with a
non zero external crescent.

Figure 11: A horned Dupin cyclide.

6 Computation of the foci and the
directrices of a conic using and
Quételet theorems

A conic is defined as the section of a cone by a
plane which does not contain the apex of the cone.
The Algorithm 2 determines the foci and the di-
rectrices of such a conic, using the geometric char-
acterisation of Dandelin spheres [42, 2].

6.1 Characterisation of the foci and the
directrices based on Dandelin spheres

Given a conic defined as the section of a cone and
a plane P , there exists one or two spheres called
Dandelin spheres both tangent at the cone and at
the plane P . A Dandelin sphere is tangent at the
plane P at a point Fi, and tangent at the cone
in a circle on a plane Pi. Then, the point Fi is a
focus of the conic, and the corresponding directrix
is defined as the intersection of the planes P and
Pi, as illustrated in Figure 12.

Each Dandelin sphere defines a focus. An el-
lipse and a hyperbola have two Dandelin spheres,
tangent at the same nappe of the cone for the
conic, tangent at the two nappes of the cone for
the hyperbola. For a parabola, there exists only
one Dandelin sphere, and therefore one focus point
and a single directrix. Formally, the second focus
is the point at infinity of E3.

Figure 12: An ellipse and the corresponding Dan-
delin spheres : the blue points are the foci and the
directrices are the yellow lines, intersection of the
planes.

6.2 Determining the Dandelin spheres
The Dandelin spheres belong to the family of
spheres whose envelop is the cone. First, note
that, for an arbitrary vector −→m, its first coordi-
nate equals 1 iff

−→m �−→e∞ = −1

The Algorithm 2 requires the calculation of
only a root of a quadratic equation coming from
the Lorentz dot product given that the other
equals 1 according to the point at infinity of the
intersection of the plane and the cone. The Algo-
rithm 2 determines the Dandelin spheres of a conic
defined as the intersection of a cone and a plane.
Indeed, each orientation of the plane P leads to
determine one of the two Dandelin spheres.
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Algorithm 2 Computing Dandelin spheres from a
cone and a plane.
Input : A BR curve t 7→ σ (t) representing a cone
on the space of spheres

1. Fix a plane P that does not contain the apex
of the cone.

2. Compute π, modeling the plane P in Λ4.

3. Compute π−, symmetric of sπ relatively to
O5.

4. Compute t1 in R, solution of the equation: :
−−−−→
O5σ (t) �−−→O5π = 1 (27)

5. Compute t−1 in R, solution of the equation:
−−−−→
O5σ (t) �−−→O5π = −1 (28)

6. If t1 = 1 or t−1 = 1 then: // one of the foci is
at infinity

then if t1 = 1

then F−1 is
−−−−−→
σ (t1)π

−

else F1 is
−−−−→
σ (t0)π

End if
else F1 is

−−−−→
σ (t0)π

F−1 isr
−−−−−→
σ (t1)π

−

End if

Output: One or two Dandelin sphere(s), and the
foci of the conic defined by the cone and the chosen
plane.

When the conic is an ellipse, it is sufficient to
consider only a nappe of the cone, and therefore
the BR curve can be taken on the interval [0, 1].
For the hyperplane, the domain R is considered in
order to model the two nappes of the cone. Alter-
natively, we could have considered two different
BR curves on [0, 1].

Equations (27) and (28) model the fact that the
plane P and the spheres S0 and S1 represented by
σ (t0) and σ (t1) are tangent.

As the focus is characterised as the contact
point between the plane and one of the spheres,
they are modeled by the light vectors

−−−−→
σ (t0)π et

−−−−−→
σ (t1)π

−.
Note that equations (27) and (28) can be

rewritten as linear equations:

Lemma 1 : Simplification of Equations (27) and
(28)

Let ε ∈ {−1; 1}, and let −→
N the unit normal

vector of the oriented plane P and P0 a point on
this plane.

The solutions of equations (27) and (28) are:

tε =

−→
N •

−−→
P0S

−→
N • −−→P0S − 2ω1

−−→
O5Ω �−→N + 2ω1 ε

with
−−→
O5Ω �−→N =

−−→
O5Ω �

(
0−→e0 +

−→
N + 0−→e∞

)

Proof: See Appendix A
■
If one of the solutions t1 or t−1 equals 1, a

parabola is obtained and one of the foci is the
point at infinity represented in E3 by the vector−−→
σ (1) = −→e∞. Taking the control point (−→e∞; 0) sim-
plifies (27) and (28) into linear equations instead
of quadratic equations.

6.3 Three numerical examples

In the three following examples shown in Fig-
ures 12, 13 and 14, the cone C is characterised by
its apex S = O3 and the sphere of centre O (0; 0; 2)
and radius ρ = 2 represented in Λ4 by σO. Nu-
merical results are given in B.

In the following, the computation of the foci
and the computation of the directrices are devel-
oped.

6.4 Computing the directrices of the conic
Let us consider S1, one of the Dandelin spheres
represented by −→σ1. The characteristic circle corre-
sponding to S1 is the intersection of the spheres
σ1 and •

σ1 where •
σ1 is the derivative sphere of σ1

and it yields

−→σ1 =
1

ρ1

(
−→eo +

−→
Ω1 +

1

2

(∥∥∥−→Ω1

∥∥∥2 − ρ21

)
−→e∞
)

−→•
σ1 =

1
•
ρ1

−→eo +
−→•
Ω1 +

1

2

∥∥∥∥∥
−→•
Ω1

∥∥∥∥∥
2

− •
ρ1

2

−→e∞


where the center of S1 (resp.

•
S1) is Ω1 (resp.

•
Ω1)

and its radius is ρ1 (resp. •
ρ1). Note that

•
Ω1 is the

cone apex.
These two spheres define a pencil of spheres

containing the circle which is the intersection
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Figure 13: A hyperbola and its two Dandelin
spheres. The foci of the hyperbola are the two
yellow points. The directrices of the hyperbola
are the two golden lines.

between the sphere S1 and its derivative sphere
•

S1. Let P1, be an oriented plane of this family,
represented by −→π1. The vector −→π1 is a linear
combination of −→σ1 and

−→•
σ1 and its coordinate in −→eo

vanishes. So

−→π1 = λ

(
1
•
ρ1

−→σ1 −
1

ρ1

−→•
σ1

)
=

λ

ρ1
•
ρ1

−−−→•
Ω1 Ω1+

λ

ρ1
•
ρ1

1

2

∥∥∥−→Ω1

∥∥∥2 − ∥∥∥∥∥
−→•
Ω1

∥∥∥∥∥
2

+
•
ρ1

2
−ρ21

−→e∞


where λ is given such that π1 is on Λ4, which
leads: (

λ

ρ1
•
ρ1

)2 −−−→•
Ω1 Ω1

2 = 1.

(a)

(b)

Figure 14: Dandelin sphere and a parabola. The
foci are the blue point on both figures and the
point at infinity. The directrix is the intersection
of the two planes. (a): Characteristic circles of
the cone nappe, the Dandelin sphere (in red), fo-
cus and directrix. (b): Different view of the same
elements except the characteristic circles.

The real number λ is chosen equal to

λ =
ρ1

•
ρ1√−−−→•

Ω1 Ω1
2

.

without taking care of the plane orientation. Fi-
nally

−→π1 =
ρ1

•
ρ1√−−−→•

Ω1 Ω1
2

(
1
•
ρ1

−→σ1 −
1

ρ1

−→•
σ1

)
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that is,

−→π1 =
1√−−−→•

Ω1 Ω1
2

−−−→•
Ω1 Ω1

+
1

2

√−−−→•
Ω1 Ω1

2

∥∥∥−→Ω1

∥∥∥2 − ∥∥∥∥∥
−→•
Ω1

∥∥∥∥∥
2
−→e∞

+
1

2

√−−−→•
Ω1 Ω1

2

( •
ρ1

2
−ρ21

)−→e∞
The first directrix line is the intersection of the

planes represented by π1 et π. The second di-
rectrix line is obtained in the same way using the
second Dandelin sphere (if not in the parabola set-
ting).

7 Conclusion and prospect
This article shows the modelling with one degree
of freedom of the families of spheres including two
points by a rational quadratic Bézier curve with
mass control points. A circle on the space of
spheres, represented as a hyperbola leads to three
cases: a cone, a horned or spindle Dupin cyclide,
or pencils of spheres with limit point. The points
in these families define the direction of the asymp-
tote to the circle. Representing such a surface in
3D by a curve in 5D simplifies the computation of
principal spheres of a Dupin cyclide, or the con-
struction of a cone from its apex and a sphere. An
example shows how this formalism simplifies the
computation of Dandelin spheres.

In the space of spheres, this work is going on
with the representation of the revolution cylin-
ders and the singly horned Dupin cyclides or one-
singularity spindle Dupin cyclides by the use of
Bézier curves with mass control points.

Another idea gets up while the use of an inver-
sion that transforms the space of spheres Λ4 into
a hyperplan, sketches a Bézier curve in that hy-
perplan then taking the same inversion to obtain
a Bézier curve on the space of spheres that rep-
resents a canal surface. Such a canal surface is
considered as a C1 curve on Λ4 such that all the
derivative vectors are space-like vectors and the
geodesic vectors are time-like vectors [43].

A last problem must be tackled. That is to
find the conditions for the curve laying on the
hyperplane such the resulting curve in the space
of spheres satisfies both conditions. This work
will be extended to the surfaces with a curvilinear
skeleton. Thus, from a finite number of spheres, a

continuous skeleton can be obtained by the inter-
polation of points in the space of spheres easing
the work with curves rather surfaces.
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A Proof of Lemma 1
A BR curve models a family of spheres whose en-
velop is the cone. A sphere of the rational BR
curve is defined as
−−−−→
O5σ (t) =

1

ω1B1 (t)

(
B0 (t)

−→mS + ω1B1 (t)
−−→
O5Ω

)
+

1

ω1B1 (t)
B2 (t)

−→e∞

The plane is represented by:
−−→
O5π =

−→
N +

(−→
N •

−→
P0

)−→e∞.

Then, equations (27) and (28) can be written:
−−−−→
O5σ (t) �−−→O5π = ε (29)

In the product
−−−−→
O5σ (t) � −−→O5π, the remaining

terms are −→e0 � −→e∞ and the remaining terms come
from the 3D Euclidean scalar product defined on−→e1 , −→e2 and −→e3 .
Recall that:

−→mS = −→e0 +
−→
S +

−→
S 2

2
−→e∞

and equation (29) leads to:

B0 (t)
(−→
N • −→P0

)
−→eo �−→e∞ +B0 (t)

−→
S • −→N

+ω1B1 (t)
−−→
O5Ω �−→N = ε ω1B1 (t)

(30)

where:
−−→
O5Ω �−→N =

−−→
O5Ω �

(
0−→e0 +

−→
N + 0−→e∞

)
Formula (30) holds iff:

− (1− t)
(−→
N • −→P0

)
+ (1− t)

(−→
S • −→N

)
+

2ω1
−−→
O5Ω �−→N = 2 ε ω1 t

and
1− t = 0

Since:
−→
S •

−→
N −

−→
N •

−→
P0 =

−→
N •

(−−→
O3S −

−−−→
O3P0

)
=

−→
N •

−−→
P0S

the solution of the first equation is:

tε =

−→
N •

−−→
P0S

−→
N • −−→P0S − 2ω1

−−→
O5Ω �−→N + 2ω1 ε

whereas the solution of the second equation is sim-
ply 1, that is, −→e∞: this is expected since all planes
of E3 contain the point at infinity of E3.

■

B Numerical examples
One nappe of the cone is modeled in Λ4 by the BR
curve of control (mass) points (−→eo ; 0),

(
Ω;

√
6
6

)
and (−→e∞; 0) where Ω(0; 0; 0; 2; 0) is the orthogonal
projection of O5 on the plane defined by σO, −→eo
and −→e∞.

B.1 The ellipse case
Figure 12 show the ellipse intersection of the cone
C with the plane containing P0 (0; 0; 5) of unit
normal vector −→

N
(√

10
10 ; 0; 3

√
10
10

)
which is repre-

sented in Λ4 by π
(
0;

√
10
10 ; 0; 3

√
10
10 ; 15

√
10
10

)
.

The solutions of equations (27) and (28) are
respectively

t1 =
−16200

√
10−56070

√
6+21810

√
15+93525

334129
≃ 0.866

and

t−1 =
16200

√
10−56070

√
6−21810

√
15+93525

334129
≃ 0.667
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So

σ (t1) =

(
6−

√
10

15
; 0; 0; 2;

270− 45
√
10

52

)
and

σ (t−1) =

(
6 +

√
10

15
; 0; 0; 2;

270− 45
√
10

52

)
.

The point σ (t1) characterises the sphere of cen-
tre

O1

(
0; 0;

90 + 15
√
10

13

)
and radius

r1 =
90 + 15

√
10

26
.

The corresponding focus is the point

F1

(
−15 + 9

√
10

26
; 0;

135 + 3
√
10

26

)
i.e.

F1 ≃ (−1.672, 0, 5.557)

The point σ (t−1) characterises the sphere of
centre

O−1

(
0; 0;

90− 15
√
10

13

)
and radius

r−1 =
90− 15

√
10

26
.

The corresponding focus is the point

F−1

(
−15 + 9

√
10

26
; 0;

135− 3
√
10

26

)
i.e.

F−1 ≃ (0.518, 0, 4.827)

B.2 The hyperbola case
Figure 13 shows the hyperbola, intersection of C
and the plane containing P0

(
1
2 ; 0; 3

)
of unit nor-

mal vector −→N
(
5

√
26
26 ; 0;

√
26
26

)
represented in Λ4 by

π
(
0; 5

√
26
26 ; 0;

√
26
26 ; 11

√
26

52

)
.

Solutions of equations (27) and (28) are respec-
tively

t1 =
96

√
26 + 196

√
6− 68

√
39− 369

95
≃ 1, 852

and

t−1 =
−96

√
26 + 196

√
6 + 68

√
39− 369

95
≃ 0, 487.

So

σ (t1) =

(
4− 2

√
26

11
; 0; 0; 2;

−6− 3
√
26

8

)
and

σ (t−1) =

(
4 + 2

√
26

11
; 0; 0; 2;

−6 + 3
√
26

8

)
The point σ (t1) defines the sphere of centre

O1

(
0; 0;−2 +

√
26

2

)
and radius

r1 = −2 +
√
26

4
.

The corresponding focus point is

F1

(
65 + 5

√
26

52
; 0;−39 + 25

√
26

52

)
i.e.

F1 ≃ (1.740, 0,−3.201)

The point σ (t−1) defines the second sphere of
centre

O−1

(
0; 0;

−2 +
√
26

2

)
and radius

r−1 =
−2 +

√
26

4
.

The corresponding focus point is

F−1

(
65− 5

√
26

52
; 0;

−39 + 25
√
26

52

)
i.e.

F−1 ≃ (0, 760; 0; 1, 702)

B.3 The parabola case
Figure 14 shows a setting where the conic is a
parabola, intersection of C with the plane contain-
ing P0 (0; 0; 5) of normal unit vector −→N

(√
3
2 ; 0; 12

)
which representation in Λ4 is π

(
0;−

√
3
2 ; 0; 12 ;

5
2

)
.

Solutions of equations (27) and (28) are respec-
tively

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.34

Lionel Garnier, Lucie Druoton, 
Jean-Paul Bécar, Laurent Fuchs, Géraldine Morin

E-ISSN: 2224-2880 301 Volume 21, 2022



t1 = 1

and
t−1 =

75− 20
√
6

43
≃ 0, 605.

So −−−→
σ (t1) =

−→e∞
and

σ (t−1) =

(
4

5
; 0; 0; 2;

15

8

)
.

The point σ (t−1) defines the sphere of centre

O−1

(
0; 0;

5

2

)
and radius

r−1 =
5

4
.

Thus, the focus point is

F−1

(
−5

√
3

8
; 0;

25

8

)
≃ (−1, 083; 0; 3, 125)
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