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The authors propose a nonrigid image registration approach to align two computed-tomography
�CT�-derived lung datasets acquired during breath-holds at two inspiratory levels when the image
distortion between the two volumes is large. The goal is to derive a three-dimensional warping
function that can be used in association with computational fluid dynamics studies. In contrast to
the sum of squared intensity difference �SSD�, a new similarity criterion, the sum of squared tissue
volume difference �SSTVD�, is introduced to take into account changes in reconstructed Hounsfield
units �scaled attenuation coefficient, HU� with inflation. This new criterion aims to minimize the
local tissue volume difference within the lungs between matched regions, thus preserving the tissue
mass of the lungs if the tissue density is assumed to be relatively constant. The local tissue volume
difference is contributed by two factors: Change in the regional volume due to the deformation and
change in the fractional tissue content in a region due to inflation. The change in the regional
volume is calculated from the Jacobian value derived from the warping function and the change in
the fractional tissue content is estimated from reconstructed HU based on quantitative CT measures.
A composite of multilevel B-spline is adopted to deform images and a sufficient condition is
imposed to ensure a one-to-one mapping even for a registration pair with large volume difference.
Parameters of the transformation model are optimized by a limited-memory quasi-Newton minimi-
zation approach in a multiresolution framework. To evaluate the effectiveness of the new similarity
measure, the authors performed registrations for six lung volume pairs. Over 100 annotated land-
marks located at vessel bifurcations were generated using a semiautomatic system. The results show
that the SSTVD method yields smaller average landmark errors than the SSD method across all six
registration pairs. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3193526�
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I. INTRODUCTION

Image registration is a process of determining an optimal
spatial mapping that matches images collected at different
times or using different imaging modalities.1 It is becoming a
key tool in medical image analysis as one seeks to link im-
ages across modalities, across time, or between lung volumes
in the use of pulmonary investigations. Registrations of volu-
metric lung datasets have been applied in establishing lung
atlases,2 segmenting lungs with pathology,3 linking four-
dimensional lung datasets,4 and tracking the motion of lung
tissues.5–7 There is an important additional motivation to reg-
ister datasets acquired in one study, whereby the subject is
imaged at full inspiration �total lung capacity �TLC�� and at
end expiration �functional residual capacity �FRC� or re-
sidual volume �RV��. TLC provides information related to
airway and parenchyma structure, while FRC or RV provides

information related to air trapping.
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A registration algorithm usually consists of three main
components:1 A transformation model, a similarity measure,
and an optimization step. The transformation model specifies
the spatial mapping of corresponding points between two
images. The similarity measure defines how well those two
images match and it provides a quantitative criterion for an
optimization step to optimize the parameters of a transforma-
tion model. According to similarity measures, registration
techniques can be divided into feature-based approaches and
intensity-based approaches. In the feature-based approach,
pairs of corresponding anatomical features, including desig-
nated landmarks, contours, and surfaces, are used to define
the transformation from one image to the other. Although
several groups applied feature-based registrations to lung
datasets,2,8,9 two main difficulties limit its wide application.
First, identification of the corresponding features in the im-

ages to be registered is a difficult and time-consuming task.
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Second, good alignment of features does not guarantee a
good correspondence for all lung regions since lung motion
is nonrigid. Alternatively, intensity-based registration uses
mathematical or statistical criteria from intensity patterns of
images to define similarity measures. A common similarity
measure used in registrations of computed tomography �CT�
lung images is the sum of squared intensity difference
�SSD�.2,4–6,10–13 The assumption of SSD is that the corre-
sponding points in both images have the same intensity. The
assumption is also implied in the intensity-based registration
using optical flow, another common method used to register
lung images.7,14–17 However, this assumption is not valid for
the lung which changes voxel intensity due to changes in
densities associated with inflation. In addition, normalized
correlation9,18 and mutual information �MI�19–21 have been
used in registering CT lung images. Although these criteria
are insensitive to changes in the voxel intensity, they are
based on global statistical models of the intensity relation-
ships between voxels in the two images. Since changes in the
voxel intensity vary from apex to base and ventral to dorsal,
a global model may not be appropriate to capture the non-
uniform expansions of the lung. Recently, Sarrut et al.4 pro-
posed a priori step to take into account changes in the voxel
intensity by artificially adjusting voxel intensity in one image
according to the intensity in the other. Although it is only a
preprocessing step, their results show an improved registra-
tion. This work suggested the importance of taking into ac-
count such intensity changes when registering CT lung im-
ages.

The reconstructed Hounsfield units �HU� of CT lung im-
ages can be used to estimate the amount of air or tissue in
each voxel.22,23 It is assumed that the HU of lung is primarily
contributed by two components: Tissue �parenchyma plus
blood� and air. Any unit of lung may be considered a linear
combination of these two compartments. Thus, the fractional
air and tissue contents in a region can be estimated from the
HU. Based on this theory, Guerrero et al.7 estimated changes
in the regional air content using an intensity-based registra-
tion method between two volumetric CT datasets. In addi-
tion, this technique was also used by Sarrut et al.4 to link
four-dimensional lung datasets. In their work, registration
was first done between two inhale and exhale breath-hold CT
scans to get the deformation field. The voxel intensity in an
intermediate artificial CT image was then estimated from the
Jacobian value of the deformation based on the assumption
that the mass of tissue between matched regions is constant.

The Jacobian value of the deformation reflects the local
contraction or expansion. A Jacobian value of 1 corresponds
to no expansion or contraction. It is greater than 1 if there is
local expansion and less than 1 if there is local contraction. It
is negative if local folding of the deformation exists. The
Jacobian value has been used previously in nonrigid image
registration. Christensen and Johnson24 used the Jacobian
value to check for folding of the deformation. They moni-
tored the Jacobian value during their consistent image regis-
tration to ensure a one-to-one transformation. Rohlfing et
al.25 penalized the deviations of the Jacobian value from 1 to

develop a volume-preserving nonrigid registration algorithm.
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The Jacobian value is also used to estimate the local lung
tissue contraction or expansion once the deformation field is
obtained from the registrations.5,6

In this work, we propose a nonrigid image registration
method to align two CT lung datasets acquired during
breath-hold at two different lung volumes in the same scan-
ning session or over short periods of time. In order to take
into account changes in the voxel intensity with inflation, we
introduce the sum of squared tissue volume difference
�SSTVD� as the similarity criterion. In contrast to previous
similarity criteria, SSTVD is based on quantitative CT mea-
sures and aims to minimize the local tissue volume �TV�
difference within lungs between matched regions. The per-
formance of the new similarity measure is evaluated using
six pairs of CT volumetric datasets acquired near TLC and
FRC.

II. METHODS

Given two images If and Ir, referred to as the floating and
reference images, the goal of the registration is to determine
a spatial transformation that can match the two images. We
assume that If�x� and Ir�x� are continuous functions of inten-
sity values at the position x, with x= �x ,y ,z�, for the floating
and reference images, respectively.

II.A. Transformation model

Lung motion is too complicated to be captured by a
simple rigid or affine transformation and nonrigid transfor-
mation is required. One of the most common nonrigid trans-
formation models is the free-form deformation �FFD� based
on cubic B-spline.26,27 Compared to other transformation
models, B-spline-based FFD is locally controlled and, thus, it
is computationally efficient even for a large number of con-
trol nodes.

Let � denote a nx�ny �nz uniform grid with �i,j,k as the
displacement of the ijkth control node. The spacings between
the control grids in the x, y, and z directions are denoted by
�x, �y, and �z, respectively. The transformation function
T�x ;�� is defined in terms of control nodes as

T�x;�� = x + �
l=0

3

�
m=0

3

�
n=0

3

Bl�u�Bm�v�Bn�w��i+l,j+m,k+n, �1�

where i= �x /�x�−1, j= �y /�y�−1, k= �z /�z�−1, u=x /�x− �i
+1�, v=y /�y − �j+1�, and w=z /�z− �k+1�. Functions B0

through B3 are basis functions of cubic B-spline and are de-
fined as follows:

B0�t� = �− t3 + 3t2 − 3t + 1�/6,

B1�t� = �3t3 − 6t2 + 4�/6,

B2�t� = �− 3t3 + 3t2 + 3t + 1�/6,

B3�t� = t3/6, �2�

where 0� t�1. These basis functions have two important

mathematical properties. First, they have a limited support,
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which allows efficient computation of the transformation
function. Second, they are C2 continuous, which allows the
analytical computation of first-order derivatives of the trans-
formation function. The second property ensures efficient
computation and minimization of the new similarity measure
described below, which is based on the first-order deriva-
tives.

Since displacements of control nodes act as parameters of
the transformation function, the ability of FFD to capture
nonrigid deformation depends on the resolution of the con-
trol grid. A coarse control grid allows for modeling global
nonrigid deformations, while a fine control grid allows for
modeling highly local deformations.

The basic FFD algorithm described above may cause
folding of the deformation field, leading to negative Jacobian
values. The folding could happen in two ways. First, it hap-
pens when the B-spline grid contains a self-intersection. Sec-
ond, the folding may also happen locally within a control
block even if the B-spline grid is not self-intersecting �see an
example presented in Ref. 28�. To ensure a one-to-one map-
ping, namely, to avoid the folding of the deformation field,
Choi and Lee29 proposed a sufficient condition for three-
dimensional cubic B-spline transformation. According to
their analysis, a transformation function is locally invertible
over the entire domain if components of the displacement of
each node in the x, y, and z directions satisfy that �x

��x /K, �y ��y /K, and �z��z /K, where K is a constant and
is approximately 2.479 472 335. With this condition, a point
can be deformed at most ��x /K ,�y /K ,�z /K� if and only if all
4�4�4 surrounding control nodes are displaced by
��x /K ,�y /K ,�z /K�. From this view, a control grid with large
spacing is required to model large global deformations for a
TLC-FRC registration pair. However, as we discussed above,
a fine control grid is required to capture the highly local
deformation. To overcome the conflicting requirements of
coarse and fine control grids for global and local deforma-
tions, respectively, a multilevel B-spline technique30,31 is
adopted in this work.

In the multilevel B-spline algorithm, a hierarchy of con-
trol grids, �0 ,�1 , . . . ,�n, is used to derive a sequence of
transformations with the FFD manipulation described above.
The algorithm starts with the coarsest control grid �0. A
smooth and one-to-one transformation can be obtained by a
FFD manipulation with the displacement constraints. This
transformation only has the ability to capture the global mo-
tion of lungs. The local motion is then progressively handled
by the subsequent transformations with finer control grids.
Given T0 ,T1 , . . . ,Tn as the sequence of transformations, the
final transformation is defined by a composite operation

T = Tn � Tn−1 � ¯ � T0. �3�

To implement the composite operation, we introduce a
warping image �, which is a discretized version of the trans-
formation function. The value of each voxel is equal to the
physical coordinates of the transformed point of that voxel.
Given a voxel p and its corresponding physical coordinates
x0, the value at p in the warping image is initially equal to x0
and then sequentially equal to the transformed point of x0
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after the sequence of transformations. Thus, the composite
operation is simplified as a recursive algorithm: �←Ti���.

Since the composition operation will not change the prop-
erty of invertibility of the transformation, we can get a final
one-to-one mapping by imposing the displacement con-
straints for each FFD manipulation. In addition, as demon-
strated in Ref. 31, the multilevel B-spline technique may
sufficiently achieve a smooth deformation.

II.B. Cost function

Intensity-based registration tries to match intensity pat-
terns in each image by using mathematical or statistical cri-
teria, also referred to as cost functions. A common cost func-
tion is SSD, which is defined as

SSD��� = �
x��

�Ir�x� − If�Tc�x;����2. �4�

It is noted that Tc is used here to distinguish it from T in
Sec. II A since the multilevel B-spline technique is adopted.
Given a transformation level i, Tc�x ;�� is a compound func-
tion defined by

Tc�x;�� = Ti���x�;�� , �5�

where Ti�x ;�� is the transformation function at the current
level and ��x� is the warping image obtained at the previous
level.

The assumption of SSD is that voxel intensities are the
same for corresponding points in both reference and floating
images. However, this assumption is not valid for the lung
which changes voxel intensity with inflation.

We can assume that the HU of lung is primarily contrib-
uted by two components: Tissue, which includes parenchyma
plus blood, with approximately 55 HU, and air with
−1000 HU.22 Any unit of lung may be considered a linear
combination of these two compartments. Let 	�x� denote the
volume of a voxel at position x. The volume of tissue in that
voxel can be estimated as

V�x� = 	�x�
I�x� + 1000

1000 + 55
= 	�x�Ĩ�x� , �6�

where Ĩ is introduced for notational simplicity.
Similarly, the air volume �AV� can be estimated as

V��x� = 	�x�
55 − I�x�
1000 + 55

. �7�

Based on this technique, we define a new cost function as
the sum of squared local tissue volume difference,

E��� = �
x��

�Vr�x� − Vf�Tc�x;����2, �8�

where Vr�x� and Vf�x� are tissue volumes in a voxel in the
reference image and its corresponding region in the floating
image, respectively. � denotes the overlap lung regions be-
tween the two images.

This new similarity measure is based on the assumption
that the tissue �parenchyma plus blood� volume of the lungs

is preserved during respiration/static lung volume changes.
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We recognize that the tissue volume changes slightly due to
pulmonary blood volume changes with lung inflation, but
this assumption we make have been proven reasonable since
volume change of “tissue” is small and such changes are
much smaller than those of air �see Table I for changes in
tissue and air volumes between TLC and FRC for all six
pairs of datasets used in this work�. In addition, the assump-
tion used here has been successfully used in estimating re-
gional specific volume32 and linking four-dimensional lung
datasets.4 Although changes in the tissue volume due to
blood volume changes are taken into consideration by a cor-
rection step,7 such small change appears to be of minimal
consequence to our registration process, taking into account
the considerable improvement shown in registrations using
our new method.

By substituting Eq. �6�, Eq. �8� is recast as

E��� = �
x��

�	r�x�Ĩr�x� − 	 f�Tc�x;���Ĩ f�Tc�x;����2. �9�

Given a transformation function, If can be interpolated
from the floating image using a linear interpolation and 	 f

can be calculated from the Jacobian value of the deformation
by

	 f�Tc�x;��� = J�x;��	r�x� , �10�

where J�x ;�� is the Jacobian value and it is defined as the

TABLE I. The TLV, AV, and TV for all six registration
measures. The percentage change in the tissue volum
�l�.

Registration
pair Volume

TLC
�l�

TLV 5.31
A AV 4.62

TV 0.69

TLV 5.11
B AV 4.51

TV 0.60

TLV 5.94
C AV 5.23

TV 0.71

TLV 6.41
D AV 5.58

TV 0.83

TLV 7.18
E AV 6.31

TV 0.87

TLV 7.28
F AV 6.41

TV 0.87

Overall
determinant of derivative matrix of the deformation
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J�x;�� = det�D� with D =�
�Tx

c

�x

�Tx
c

�y

�Tx
c

�z

�Ty
c

�x

�Ty
c

�y

�Ty
c

�z

�Tz
c

�x

�Tz
c

�y

�Tz
c

�z

� . �11�

It is noted that the Jacobian value in Eq. �10� must be
positive. This condition is satisfied if the transformation is
invertible, which is ensured by the combination of the multi-
level B-spline technique and displacement constraints in this
work.

Thus, the final form of the new cost function reads as

E��� = �
x��

�	r�x��Ĩr�x� − Ĩ f�Tc�x;���J�x;���	2. �12�

Calculation of the gradient of the cost function is neces-
sary for its efficient and robust minimization. For a given
transformation variable �, the gradient of cost function is
calculated by

�E

��
= 2 �

x��

�	r�x��2C
�C

��
, �13�

where C is introduced for notational simplicity. C and its

are estimated from the HU based on quantitative CT
lso listed for reference. The unit for volumes is liter

C Difference
�l�

Percentage change

TLC−FRC
 /TLC

�%�

1 2.40
7 2.45
4 −0.05 7.2

8 2.43
7 2.44
1 −0.01 1.7

0 2.54
7 2.56
3 −0.02 2.8

0 3.21
3 3.25
7 −0.04 4.8

6 3.42
7 3.44
9 −0.02 2.3

7 3.91
2 3.89
5 0.02 2.3

3.5
pairs
e is a

FR
�l�

2.9
2.1
0.7

2.6
2.0
0.6

3.4
2.6
0.7

3.2
2.3
0.8

3.7
2.8
0.8

3.3
2.5
0.8
derivative with respect to � are given as
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C = Ĩ f�Tc�x;���J�x;�� − Ĩr�x� ,

�C

��
= Ĩ f�Tc�x;���

�J�x;��
��

+
J�x;��
1055

�If�Tc�x;���
�Tc

�Tc�x;��
��

, �14�

where �If /�Tc is the intensity gradient of the floating image.
In contrast to SSD, two more terms, the Jacobian value and
its derivative with respect to transformation variables, are
required. According to Eq. �5�, the derivative matrix D in Eq.
�11� can be expanded as the product of two derivative matri-
ces

D = DTD�, �15�

where DT and D� denote the derivative matrices of the trans-
formation Ti�x ;�� and the warping image ��x�, respectively.
They are defined as follows:

DT =�
�Tix

�x

�Tix

�y

�Tix

�z

�Tiy

�x

�Tiy

�y

�Tiy

�z

�Tiz

�x

�Tiz

�y

�Tiz

�z

� and

D� =�
��x

�x

��x

�y

��x

�z

��y

�x

��y

�y

��y

�z

��z

�x

��z

�y

��z

�z

� . �16�

The derivatives of � at a voxel can be derived from its
neighbors by using central-difference approximation. For ex-
ample, ��x /�x= ��x

+−�x
−� / �2
x�, where superscripts � and

� denote the two neighbors of the current voxel in the x
direction and 
x is the spacing of the warping image in that
direction. In addition, since the cubic B-spline transform is
the tensor product of independent one-dimensional functions,
the entries of DT can be analytically calculated. For example,
the derivative of its x component with respect to x is given as

�Tix�x;��
�x

= 1 +
1

�x
�
l=0

3

�
m=0

3

�
n=0

3
dBl�u�

du
Bm�v�Bn�w��i+1,j+m,k+n.

�17�

The remaining derivatives have an analogous form. Com-
putation of these derivatives is very similar to computing Ti

itself with differences that basic functions B0,1,2,3 are re-
placed by their respective derivatives, which are computed as

follows:
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dB0�t�/dt = �− t2 + 2t − 1�/2,

dB1�t�/dt = �3t2 − 4t�/2,

dB2�t�/dt = �− 3t2 + 2t + 1�/2,

dB3�t�/dt = t2/2. �18�

The final terms to discuss from Eq. �14� are derivatives of
both the transformation function and the Jacobian value with
respect to transformation parameters: �Tc /�� and �J /��.
Since � is not a function of � at the current FFD level, both
terms are only contributed by Ti. Equations �1�, �11�, and
�17� show that Tc and J have a linear relationship with �.
Thus, it is straightforward to compute those two terms:
�Tc /�� and �J /��.

II.C. Optimization

An efficient and robust optimization algorithm is required
to minimize the cost function by adjusting transformation
parameters. Similar to Ref. 33, a limited-memory quasi-
Newton minimization method with bounds on the variables
�L-BFGS-B�34 is adopted considering its two advantages.
First, it is well suited to handle the high dimensionality of
parameter space. Second, it allows bound constraints on the
independent variables, making it easy to implement the dis-
placement constraints for a one-to-one mapping discussed in
Sec. II A. The parameters given in Ref. 34 are used here.

Multiresolution strategy helps improve the computational
efficiency and avoid some local minima. In addition to hier-
archical transformation models, multiresolution strategy is
also used on images. A pair of image pyramids is built with
sequences of gradually reduced resolution images for both
the floating and reference images. Here, we use three differ-
ent levels in both the image pyramids and the hierarchy
transformation models. The whole registration is composed
of six levels and starts with the coarsest versions of both
images and control grid. The images and control grids are
then alternatively refined until the finest versions. On each
level, optimization is used to minimize the cost function and
the displacement constraint is imposed to ensure a one-to-
one mapping. The warping image is calculated once the con-
vergence criterion is reached. The warping image is then
propagated to the next finer level and is used as a starting
transformation at that level. It is noted that upsampling of the
warping image is required if the image resolution level
changes. The basic idea of the multiresolution strategy is
illustrated in Fig. 1.

III. EXPERIMENTS AND RESULTS

III.A. Image data

Datasets from six normal human subjects were used in
this study to evaluate the performance of the proposed simi-
larity measure. The subjects were examined under a protocol
approved by the University of Iowa’s Institutional Review
Board. Two volumetric scans were acquired with a Siemens

Sensation 64 multidetector row CT scanner �Forchheim, Ger-
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many� during breath-holds near FRC and TLC in the same
scanning session for each subject. Each volumetric dataset
contains 550–760 image sections with a section spacing from
0.5 to 0.7 mm and a reconstruction matrix of 512
�512 pixels. In-plane pixel spatial resolution is approxi-
mately 0.6�0.6 mm2. For each dataset, an automatic lung
segmentation is performed using the algorithm of Hu et al.35

Experimental studies using human lung CT images have
shown that this segmentation algorithm can accurately ex-
tract the lung with a root mean square difference between the
computer and human analysis of 0.8 voxels and the compu-
tational time is 2–3 min on a PC workstation with
300 MHz.35 Once the lung is extracted, we can estimate the
total lung volume �TLV�, tissue volume, and air volume,
among which the total lung volume is the sum of voxel vol-
umes in the lungs, tissue, and air volume can be estimated
from HU using Eqs. �6� and �7�. Table I lists these volumes
for all datasets. We can find that changes in the tissue volume
between TLC and FRC are small for all six registration pairs
with an average percentage change of 3.5%. Thus, it is rea-
sonable to assume that the tissue volume is preserved.

III.B. Experimental setup

Given a registration pair, the dataset with the smaller lung
volume is taken as the floating image and the one with the

64x64x64
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256x256x256
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7x7x7
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Level 4

Level 5

Level 6

Up-sampling

FIG. 1. Framework of the multiresolution strategy.
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larger lung volume is the reference image. Both reference
and floating images are first downsampled by a factor of 2 in
each dimension, so eight times less voxels, in order to reduce
the computational time. The downsampled images are then
registered in the multiresolution framework shown in Fig. 1.
Once the registration is done, the warped image is up-
sampled so that it has the same size as the reference image.

In order to evaluate the new similarity measure, we per-
form registrations with both SSD and SSTVD for compari-
son. The cost function for the SSD method is evaluated by
Eq. �4�, whereas for the SSTVD method it is computed by
Eq. �12�. Lung segmentations of reference and floating im-
ages are used as masks for both methods. The mask of the
floating image is then dilated by 5�5 voxels in order to
improve the matching at lung boundaries. The potential in-
fluence of the segmentation on registration results is yet to be
investigated. However, we expect that the influence might be
small by considering the accuracy of segmentation as dis-
cussed previously and that the lung boundary has an obvious
contrast with high value of tissue volume for the body and
low value inside the lung.

III.C. Results

Landmarks located at vessel bifurcations are used to
evaluate registration accuracy. A semiautomatic landmark
annotating system36 is used to guide the observer to generate
the corresponding landmarks in TLC and FRC images. Each
registration pair has 120-210 landmarks and approximately
20–40 are located in each lobe. Figure 2 shows an example
of the landmark locations.

A linear mixed model analysis was used to compare mean
landmark error of the SSTVD method with the SSD method
and further with the MI method �see the description in the
last paragraph in this section�. The fixed effects of the model
were method �SSTVD, SSD, and MI�, initial distance s �s
�20 mm, 20�s�40 mm, 40�s�60 mm, s60 mm�, and
method�distance interaction, with subject as the random ef-
fect. To satisfy the assumption of normal distribution for the

FIG. 2. Locations of the landmarks
�marked by spheres� at �a� TLC and
�b� FRC for registration pair A. Sur-
face rendering of five lobes and ma-
jor vessel branches is shown for
reference.
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dependent variable, the natural log transformation was ap-
plied to landmark error to normalize the data distribution.

The test of fixed effects from the fitted model shows a
significant method�distance interaction �p value=0.006�
which indicates that the mean difference in landmark error
between methods varies with the initial distance. Thus, pair-
wise comparison of the SSTVD method with the SSD
method and with the MI method was done at each distance
interval. The tests for these pairwise comparisons were per-
formed using test of mean contrast based on parameter esti-
mates from the fitted model. Since multiple tests were per-
formed, the p values for the pairwise comparisons were
adjusted using Bonferroni’s method to account for the num-
ber of tests performed �which are eight tests, two pairwise
comparisons at four distances�. The estimate of the mean
landmark error for each method computed from the fitted
linear mixed model and the mean ratio are shown in Table II.
Landmark error for the SSTVD method compared to the
SSD method is, on average, 69%+13% smaller at initial dis-
tances of s�20 mm and 74%+11% smaller at 20�s
�40 mm. Significantly smaller landmark error for the
SSTVD method compared to the SSD method was observed
at 40�s�60 mm and s60 mm, with the SSTVD method
error being smaller by 83%+7% and 85%+8%, respectively.

Figure 3 shows an example of the distribution of land-
mark distances along the z axis �from apex to base� before
and after registrations using both the SSTVD method and the
SSD method. The initial landmark distance increases as land-
marks are closer to the base �see Fig. 3�a�� since the defor-

TABLE II. Statistical comparison of landmark errors b
method for all six registration pairs.

s
�mm�

SSTVD
�mm�

SSD
�mm�

MI
�mm�

s�20 0.56�0.04 1.84�0.76 0.54�0
20�s�40 0.76�0.06 2.90�1.20 0.70�0
40�s�60 0.81�0.07 4.66�1.94 0.92�0
s60 1.90�0.39 12.47�6.08 8.11�2

aBonferroni adjustment p value.
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mation of the lung is mainly driven by the diaphragm. How-
ever, with the SSTVD method, the landmark distances
decrease and all landmarks have an approximately uniform
error distribution from apex to base in Fig. 3�b�. This means
that the SSTVD method shows good registration for both
small and large deformations within the same lung indepen-
dent of lung location. Also note in Fig. 3�b� that the land-
marks have a large deviation of errors for the SSD method.

Figures 4�a� and 4�b� show surface distance maps of the
warped TLC major vessel tree to the FRC major vessel tree
for the SSTVD method and the SSD methods, respectively.
The FRC major vessel tree is also shown in white for refer-
ence. The warped TLC major vessel tree is obtained by ap-
plying the transformation to the surface mesh of the TLC
tree. Vessel trees at both TLC and FRC images are automati-
cally extracted by using the algorithm of Shikata et al.37

implemented in the Pulmonary Workstation �VIDA Diagnos-
tics, Coralville, Iowa�. The major vessel trees are then ob-
tained by applying morphology opening with a structure el-
ement of 3�3�3 voxels, followed by a connected
component process on the segmented vessel trees to remove
small branches. Figure 4�a� demonstrates that the surface dis-
tances are less than 2 mm for the SSTVD method. Large
distances of some segments are possibly due to the inconsis-
tent tree structure between TLC and FRC caused by segmen-
tation or morphology operation steps. Examples are marked
as A and B in Fig. 4�a�, which show cases with missing
segments in the FRC major trees. In contrast to the SSTVD,
the SSD method yields an obvious mismatch in several re-

n the SSTVD method, the SSD method, and the MI

SSTVD vs SSD SSTVD vs MI
SSTVD/SSD p valuea SSTVD/MI p valuea

0.31�0.13 0.243 1.04�0.15 �0.99
0.26�0.11 0.151 1.08�0.16 �0.99
0.17�0.07 0.050 0.88�0.14 �0.99
0.15�0.08 0.021 0.23�0.08 0.0002

FIG. 3. Distribution of landmark dis-
tance along the z axis �from apex to
base� �a� before and �b� after regis-
trations using the SSTVD method
�filled diamond� and the SSD method
�unfilled circle� for registration pair
A. Note that all landmarks have an
approximately uniform error distri-
bution from apex to base for the
SSTVD method while they have a
large deviation of error for the SSD
method in �b�.
etwee

.07

.09

.12

.06
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gions, marked as C, D, and E in Fig. 4�b�. One can see that
the white unwarped segments misalign with the color coded
tree in these regions.

Figures 5 and 6 show a slice from registration pairs A and
F, respectively. These two registration pairs are chosen be-
cause one has the smallest lung volume difference and the
other has the largest �see Table I� among all registration pairs
tested here. In each figure, the slice from the reference image
is shown in �a�, the corresponding slice from the warped
image obtained from the SSTVD method is shown in �b�,
and the corresponding slice from the warped image obtained
from the SSD method is shown in �c�. Although both meth-
ods yield a good alignment of the overall shapes of lungs, it
can be seen that the SSTVD approach improves the align-
ment of structures within the lungs, such as the vessels and
fissures.

The proposed SSTVD similarity measure is further com-
pared to MI using the same statistical method described ear-
lier for the SSTVD vs SSD comparison. For MI, we used a
publicly available registration package elastix
�http://elastix.isi.uu.nl/�.21,38,39 The optimal parameters speci-
fied in elastix include five levels of resolution for both the
images and the transformation, a stochastic gradient descent
optimization method38 using a decaying function of the itera-
tion number k: ak=a / �A+K�� with user-defined constants
A=50 and �=0.6. a was set to 50 000.0, 30 000.0, 10 000.0,
10 000.0, and 5000.0 for the five resolutions. The statistical

(a) (b)(a) (b)
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comparisons of landmark errors between the SSTVD method
and the MI method can be seen in Table II. Mean landmark
error does not differ between the two methods at initial dis-
tances of s�20 mm, 20�s�40 mm, and 40�s�60 mm.
At initial distances of s60 mm, the mean landmark error
for the SSTVD method is 77%+8% smaller than the MI
method �p value=0.0002�. This is consistent with our hy-
pothesis that the SSTVD provides registration improvements
for large deformations such as occur when comparing TLC
and FRC image datasets as done in this study.

IV. DISCUSSION

We have presented a nonrigid image registration method
to align two CT lung datasets acquired during breath-holds at
different lung volumes. Our method is of particular use when
the volume differences between the two image sets are large
as demonstrated in Table II, utilizing TLC and FRC scans. In
order to take into consideration changes in the voxel inten-
sity of lungs with inflation, we introduced the sum of squared
tissue volume difference as the similarity criterion. This new
criterion aims to minimize the local tissue volume difference
within the lungs between matched regions. The local tissue
volume difference is contributed by two factors: Change in
the regional volume due to deformation and change in the
fractional tissue content within a region due to respiration.
The change in the regional volume is calculated from the

FIG. 4. Surface distance maps of the
warped TLC major vessel tree to the
FRC major vessel tree for the �a�
SSTVD method and the �b� SSD
method. The FRC major vessel tree is
shown in white for reference. Note
that the red segments in �a� are caused
by missing segments in FRC major
tree, not by mis-registration. Examples
are marked as A and B. Segments with
large errors in �b�, marked as C, D,
and E, are due to clear mis-
registration, as one can easily see that
the white unwarped segments misalign
with the color coded tree.

(c)(c)

FIG. 5. A slice from the registration
pair A. �a� Slice from the reference
image. �b� Corresponding slice from
the warped image with the SSTVD
method. �c� Corresponding slice
from the warped image with the SSD
method. Notice a misalignment of
vessel trees indicated by the arrow
for the SSD method in �c�.
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Jacobian value of the deformation and the change in the frac-
tional tissue content is estimated from the HU. A composite
of multilevel B-spline transformations is adopted and a suf-
ficient condition is imposed to ensure a one-to-one transfor-
mation even for a pair of datasets with large volume differ-
ences.

To evaluate the effectiveness of the new similarity mea-
sure, we performed registrations for six lung volumetric pairs
which were acquired at near TLC and FRC in the same scan-
ning session. Over 100 landmarks located at vessel bifurca-
tions were generated for each registration pair and the results
show that the SSTVD method yields smaller average land-
mark errors than the SSD method. In addition, visual inspec-
tion shows that the SSTVD approach improves the alignment
of structures within the lungs, although both the SSD and
SSTVD methods give a good alignment of the overall shapes
of lungs.

Recently, Gorbunova et al.40 independently proposed a
similar similarity criterion as our SSTVD to monitor disease
progression in longitudinal image studies where volume dif-
ferences are smaller than those used here and, with pathology
progression, tissue densities can undergo considerable
changes. Different from their work, we seek to apply this
approach to match multiple lung volumes acquired between
TLC and FRC in the same scanning session or over short
periods of time with one goal trying to apply to computa-
tional fluid dynamics studies with moving lung
boundaries.41,42 The registrations are performed to match
those datasets to adjust the geometry of airways for changes
in lung volumes and to estimate the boundary condition by
accounting for regional lung distensibility. In estimating the
regional lung distensibility from a TLC-FRC registration
pair, Yin et al.43 demonstrated that the SSTVD method yields
a much more physiologically consistent ventilation map than
that of SSD. In this work, all datasets were from a well
calibrated scanner, whereby imaged air is −1000 HU and wa-
ter is 0. However, the SSTVD can be extended to the cases
when the scanner is out of calibration. Imaged air and tissue
can be sampled at the center of the trachea �air� and aorta
�blood�. Assuming that the HUs are linear between these
ends of the scale, a voxel-by-voxel shift can be achieved.

(a) (b)(a) (b)
This is an important step as it is becoming well recognized
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that there are fairly significant variabilities between manu-
facturers in regard to the HUs of reconstructed air within the
thorax.22,44

Currently, the total computational time on a single 3 GHz
processor for one registration pair is nearly 4 h for the
SSTVD method and is less than 1 h for the SSD method.
The most time-consuming part for the SSTVD method is to
calculate the Jacobian and the derivative of Jacobian with
respect to the transformation parameter. The computation
time increases dramatically as the image resolution increases
since all voxels inside the masks are used during the regis-
tration. It takes less than 1 h for the first four registration
levels, while it takes 3 h for the last two registration levels
�the finest image resolution�. Work is in progress to improve
the computational efficiency of the SSTVD method by par-
allelization or the use of sample points instead of all
voxels.38
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