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Abstract. The study of mass problems and Muchnik degrees was originally motivated
by Kolmogorov’s non-rigorous 1932 interpretation of intuitionism as a calculus of problems.
The purpose of this paper is to summarize recent investigations into the lattice of Muchnik
degrees of nonempty effectively closed sets in Euclidean space. Let Ew be this lattice. We
show that Ew provides an elegant and useful framework for the classification of certain foun-
dationally interesting problems which are algorithmically unsolvable. We exhibit some spe-
cific degrees in Ew which are associated with such problems. In addition, we present some
structural results concerning the lattice Ew. One of these results answers a question which
arises naturally from the Kolmogorov interpretation. Finally, we show how Ew can be applied
in symbolic dynamics, toward the classification of tiling problems and Zd -subshifts of finite
type.
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1. Introduction.
1.1. Turing degrees. In his ground-breaking 1936 paper [115], Turing proved the

existence of mathematical problems which are algorithmically unsolvable. Actually Turing
exhibited a specific algorithmically unsolvable problem, known as the halting problem. Dur-
ing the years 1950–1970 it was discovered that algorithmically unsolvable problems exist in
virtually every branch of mathematics: group theory [80, 1], number theory [24], analysis,
combinatorics [5, 82], geometry [73, Appendix], topology, mathematical logic [112], and
even elementary calculus [81]. Among the specific, natural, unsolvable problems which were
discovered during this period are: the Entscheidungsproblem for logical validity in the pred-
icate calculus, the triviality problem for finitely presented groups, Hilbert’s Tenth Problem in
number theory [39], the domino problem, the homeomorphism problem for finite simplicial
complexes, the diffeomorphism problem for compact manifolds, and the problem of integra-
bility in elementary terms.

In an influential 1954 paper [56], Kleene and Post introduced a scheme for classifying
unsolvable mathematical problems. Informally, by a real we mean a point in an effectively
presented complete separable metric space. For instance, a real in our sense could be a real
number, or a set of natural numbers, or a sequence of natural numbers, or a set of finite
strings of symbols from a fixed finite alphabet, or a point in d-dimensional Euclidean space
[0, 1]d where d is a positive integer, or a (code for a) point in C([0, 1]d) or Lp([0, 1]d) for
1 ≤ p < ∞, or (a code for) an infinite sequence of real numbers, or a (code for a) Borel
probability measure on [0, 1]d , etc.

Two reals are said to be Turing equivalent if each is computable using the other as a
Turing oracle. (We follow the terminology of Rogers [83].) According to Kleene and Post
[56], the Turing degree of a real is its equivalence class under this equivalence relation. Each
of the specific unsolvable problems mentioned in the previous paragraph is a decision problem
and may therefore be straightforwardly described or “encoded” as a real. (More specifically,
each of the mentioned problems amounts to the question of deciding whether a given string of
symbols from a fixed finite alphabet belongs to a particular set of such strings. For instance,
the triviality problem for finitely presented groups may be described in terms of the set of all
finite presentations of the trivial group.) Once this has been done, it can be shown that each
of these problems is of the same Turing degree as the halting problem. This Turing degree is
denoted 0′. Thus the specific Turing degree 0′ is extremely useful and important.

Let DT be the set of all Turing degrees. For each real x, the Turing degree of x is denoted
degT(x). If a and b are the Turing degrees of reals x and y respectively, we write x ≤T y or
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a ≤ b to mean that y is “at least as unsolvable as” x in the following sense: x is computable
using y as a Turing oracle. We also write x <T y or a < b to mean that x ≤T y and y �T x.
Kleene and Post proved that ≤ is a partial ordering of DT and every finite set of Turing
degrees in DT has a supremum with respect to ≤. They also proved that there are infinitely
many Turing degrees which are less than 0′, and there are uncountably many other Turing
degrees which are incomparable with 0′. Thus DT has a rich algebraic structure. However,
the Turing degrees which are less than 0′ or incomparable with 0′ have turned out to be almost
useless for the classification of specific algorithmically unsolvable problems.

Given a real x, let x ′ be a real which encodes the halting problem relative to x, i.e., with
x used as a Turing oracle. If a is the Turing degree of x, let a′ be the Turing degree of x ′.
It can be shown that a′ is independent of the choice of x. The operator a �→ a′ from Turing
degrees to Turing degrees is known as the Turing jump operator. Generalizing Turing’s proof
of the unsolvability of the halting problem, one may show that a < a′. In other words, a′
is “more unsolvable than” a. See for instance [83, §13.1]. Inductively we write a(0) = a
and a(n+1) = (a(n))′ for all natural numbers n. Extending this induction into the transfinite,
it is possible to define a(α) where α ranges over a rather large initial segment of the ordinal
numbers. We then have a(α) < a(β) whenever α < β. See for instance [86, Part A] and
[47, 92].

Let 0 be the bottom degree in DT. Thus 0 is the Turing degree of any computable real.
By repeatedly applying the Turing jump operator, we obtain a tranfinite hierarchy of specific,
natural Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α ranges over a large initial segment of the ordinal numbers including all of the con-
structibly countable ones [47, 92]. Moreover, this hierarchy of specific, natural Turing degrees
has been somewhat useful for classifying unsolvable mathematical problems. See for instance
[83, §14.8] and [74]. However, no other specific Turing degrees have been useful in this re-
gard.

Summarizing, one may say that the Kleene/Post program of using Turing degrees to
classify unsolvable mathematical problems has met with significant but limited success. The
Turing degrees 0 and 0′ have been extremely useful, and the Turing degrees 0′′, 0′′′, . . . , 0(α),
0(α+1), . . . have been somewhat useful, but the other Turing degrees have not been useful at
all.

1.2. Muchnik degrees. In 1955 and 1963 respectively, Medvedev and Muchnik [67,
71] introduced two extended degree structures based on mass problems. Regrettably, these
alternative structures were largely ignored outside the Soviet Union for a long time. However,
over the past 10 years we have learned that the Muchnik degrees are capable of providing
an elegant and useful framework for the classification of foundationally interesting problems.
Many of these problems are impossible to classify using Turing degrees, and in such cases the
Muchnik degrees have emerged as the appropriate classification tool.
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The essential concepts are as follows. Let P be a set of reals. We may view P as a
mass problem, viz., the problem of “finding” a real which belongs to P . In this sense, a
“solution” of the problem P is any real x ∈ P . Accordingly, a mass problem P is said
to be (algorithmically) solvable if there exists a real x ∈ P which is Turing computable.
Furthermore, a mass problem Q is said to be (algorithmically) reducible to a mass problem
P if each x ∈ P can be used as a Turing oracle to compute some y ∈ Q. This is Muchnik’s
notion of weak reducibility [71], denoted ≤w. Thus we have

P ≥w Q if and only if (∀x ∈ P) (∃y ∈ Q) (x ≥T y) .

We define a Muchnik degree to be an equivalence class of mass problems under weak re-
ducibility. The Muchnik degree of a mass problem P is denoted degw(P ).

The partial ordering of all Muchnik degrees under weak reducibility is denoted Dw. It
can be shown that Dw is a lattice in the sense of Birkhoff [12, 13, 14], i.e., each finite set of
degrees in Dw has a supremum and an infimum in Dw. The top degree in Dw is ∞ = degw(∅)
where ∅ denotes the empty set. The bottom degree in Dw is 0 = degw(S) where S is any
solvable mass problem.

There is an obvious embedding of the Turing degrees into the Muchnik degrees, given by
degT(x) �→ degw({x}). Here {x} is the singleton set consisting of the real x. This embedding
of DT into Dw is one-to-one and preserves essential algebraic structure including 0, ≤, �, the
jump operator, and finite suprema. Accordingly, we identify each Turing degree degT(x) with
its corresponding Muchnik degree degw({x}).

(The jump operator on Dw may be defined as p = degw(P ) �→ p′ = degw(P
′) where

P ′ = {x ′ ; x ∈ P }. Clearly p ≤ p′, but examples show that p < p′ is not always the case.
For instance, let p = infn an where an for n = 0, 1, 2, . . . is a sequence of Turing degrees
with the property that a′

n+1 ≤ an for all n. Then p = p′. The existence of such sequences of
Turing degrees is well known. See for instance [109].)

We end this section by mentioning some foundationally interesting examples of Muchnik
degrees which are not Turing degrees.

First, let T be a consistent theory which is axiomatizable and effectively essentially un-
decidable. (For instance, we could take T = PA = Peano arithmetic, or T = ZFC =
Zermelo/Fraenkel set theory with the Axiom of Choice, or T = Q = Robinson arithmetic
[112], or T = any consistent axiomatizable extension of one of these.) By Gödel’s First In-
completeness Theorem [37] (see also [112]), we know that T is incomplete. Let C(T ) be the
problem of finding a completion of T , i.e., a complete, consistent theory which includes T . By
[112] the problem C(T ) is algorithmically unsolvable, and by [36] it is impossible to assign
a Turing degree to C(T ). However, since C(T ) may be viewed as a mass problem, it is clear
how to assign a Muchnik degree to C(T ). Indeed, by [36, 88, 89] we know that the Muchnik
degree of C(T ) is independent of the choice of T . (Indeed, the recursive homeomorphism
type of C(T ) is independent of the choice of T . See also [79], [97, §3] and [96, §6].) Thus
we have a particular Muchnik degree, denoted 1, which is of obvious foundational interest.
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(By [25] we may also characterize 1 as the Muchnik degree of the problem of finding a prob-
ability measure ν on {0, 1}N which is neutral, i.e., every x ∈ {0, 1}N is Martin-Löf random
with respect to ν.) From [112, 36] it is known that 0 < 1 < 0′. In other words, the problem
of finding a completion of T is unsolvable but not so unsolvable as the halting problem.

Second, consider the problem of finding a real which is random in the sense of Martin-
Löf [66] (see also [98, 76, 28]). This problem is denoted MLR. Clearly each random real is
noncomputable, so the problem MLR is algorithmically unsolvable. Moreover, as in the case
of C(T ), there is no way to associate a Turing degree to MLR. On the other hand, there is
a Muchnik degree r1 associated to MLR, and by [49, Theorem 5.3] (see also [96]) we know
that this Muchnik degree is strictly less than the Muchnik degree of C(T ). Thus we have

0 < r1 < 1 < 0′

where r1 = degw(MLR).
Third, let K be any class of isomorphism types of algebraic and/or relational struc-

tures. There is an obvious Muchnik degree sK ∈ Dw associated with K . Namely, let sK =
degw(StrN (K)) where StrN (K) is the problem of finding a structure M such that (1) the iso-
morphism type of M belongs to K , and (2) the universe of M is N = {0, 1, 2, . . . } = the
set of natural numbers. See for instance [110]. Sometimes sK is a Turing degree, but often
it is not. For example, let K consist of the single isomorphism type ωCK

1 = Church/Kleene
ω1 = the least noncomputable transfinite ordinal number. It can be shown that the Muchnik
degree sωCK

1
is not a Turing degree. As another example, let T be any of the subsystems of

second-order arithmetic considered in [95], and let K = Modω(T ) = the class of ω-models
of T . Again, the Muchnik degree sModω(T ) is not a Turing degree.

The above examples suggest the possible existence of a great many interesting Muchnik
degrees associated with specific unsolvable problems. This possibility has been explored over
the past 10 years. Some of the resulting Muchnik degrees and their relationships are exhibited
in Figure 1 below.

1.3. Effectively closed sets. The lattice Dw is very large and complicated. (For ex-
ample, the cardinality of Dw is 22ℵ0 .) In order to obtain a sublattice of Dw which is smaller
and more manageable, we follow the lead of effective descriptive set theory [40, 65, 69] and
consider mass problems which are “effectively definable” in some appropriate sense.

Recall that a mass problem is any set in an effectively presented complete separable
metric space. Let X be such a space. A set U ⊆ X is said to be effectively open if there exist
computable sequences of computable points an ∈ X and computable real numbers rn ∈ R

with n = 0, 1, 2, . . . such that

U =
∞⋃
n=0

B(an, rn) .

Here we are writing B(a, r) = {x ∈ X ; dist(a, x) < r} where dist(x, y) = the distance
between two points x, y ∈ X. A set C ⊆ X is said to be effectively closed if its complement
X \ C is effectively open.
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For example, if X is d-dimensional Euclidean space Rd , we may assume that an and rn
are rational, i.e., an ∈ Qd and rn ∈ Q. Similarly, if X is the Cantor space {0, 1}N or the
Baire space NN , the effectively open sets in X are of the form U = ⋃

σ∈S Nσ where S is a
recursively enumerable set of finite strings σ ∈ {0, 1}∗ or σ ∈ N∗ respectively. Here we are
writing

Nσ = {x ∈ X ; σ = x�{0, . . . , |σ | − 1}}
where |σ | = the length of σ .

Clearly every nonempty effectively open set is of Muchnik degree 0. However, we shall
see that there exist effectively closed sets of infinitely many different Muchnik degrees.

In this paper we consider mainly the case when X is effectively compact. For example,
X = [0, 1]d = the d-dimensional unit cube, or X = {0, 1}N = the Cantor space, or X = the
weak-star unit ball in the dual space of C[0, 1]d or of Lp([0, 1]d) where 1 ≤ p < ∞. It can
be shown that each effectively closed set in an effectively compact, complete separable metric
space is Muchnik equivalent to an effectively closed set in the Cantor space. Accordingly,
we define Ew to be the sublattice of Dw consisting of the Muchnik degrees of all nonempty
effectively closed sets in the Cantor space.

It is interesting to compare Ew with ET, the subsemilattice of DT consisting of the recur-
sively enumerable Turing degrees. One knows that ET has been studied extensively in many
publications including [85, 83, 107, 77, 61]. I have shown [99] that Ew is analogous to ET and
contains a naturally isomorphic copy of ET. But I have also shown [96, 99, 100, 102, 22, 103]
that Ew, unlike ET, contains many specific, natural degrees which are associated with natural,
foundationally interesting, unsolvable problems. (In many of these papers I used the notation
Pw instead of Ew. I now say Ew in order to emphasize the analogy with ET, the semilattice of
recursively enumerable Turing degrees.)

(In the same vein one may compare the lattice of Π0
1 sets in {0, 1}N (see for instance

[19] and [118]) with the lattice of (complements of) recursively enumerable subsets in N (see
for instance [83, Chapter XII] and [107, Chapters X, XI, XV]). In particular, by [96, §9] and
[7, 8, 9] we know that certain “smallness properties” of a nonempty Π0

1 set P ⊆ {0, 1}N
imply 0 < p < 1 where p = degw(P ) ∈ Ew. The analogous issue for ET remains unresolved
[102]. See also the discussion of Post’s Program in [107].)

The history of Ew is that I first defined it in 1999 [93, 94]. At the time I noted that Ew

is a countably infinite sublattice of Dw and that 1 and 0 are the top and bottom degrees in
Ew. I also observed that there is at least one other specific, natural degree in Ew, namely r1.
Moreover Ew is essentially disjoint from ET, because the only Turing degree belonging to Ew

is 0. These observations were implicit in the much earlier work of Gandy/Kreisel/Tait [36],
Scott/Tennenbaum [88, 89], Jockusch/Soare [49, 48], and Kučera [60]. My contribution in
1999 was to define the lattice Ew and to call attention to it as a more fruitful alternative to the
much-studied semilattice ET. Later I discovered the existence of many other specific, natural
degrees in Ew as illustrated in Figure 1 below. My embedding of ET into Ew [99] was obtained
as a byproduct.
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FIGURE 1. A picture of Ew.

This paper is essentially a summary of what I have learned about Ew over the past 10
years. An obvious reason for undertaking the study of Ew is that it is the smallest and simplest
nontrivial sublattice of Dw which presents itself in terms of effective descriptive set theory.
Beyond this, we shall see that Ew is a rich and useful structure in its own right.

Here is an outline of the rest of this paper. In Section 2 we exhibit a large variety of
specific, natural degrees in Ew. In Section 3 we explore some structural and methodological
aspects of Ew. In Section 4 we discuss the original intuitionistic motivation for the study of
Dw. In Section 5 we discuss an application of Ew in the study of tiling problems and symbolic
dynamics.

Acknowledgment. The author wishes to thank Paul Shafer for helpful comments on an earlier
draft of this paper.

2. Some specific Muchnik degrees in Ew. Recall from Subsection 1.3 that Ew is
the lattice of Muchnik degrees of nonempty effectively closed sets in the Cantor space. The
purpose of this section is to exhibit some specific degrees in Ew which are associated with
specific, natural, algorithmically unsolvable problems. Figure 1 represents the lattice Ew.
Each of the black dots except the one labeled inf(a, 1) represents a specific, natural, Muchnik
degree in Ew. We shall now explain each of these black dots.

As noted in Subsections 1.2 and 1.3, the top degree in Ew is 1 = degw(CPA) where
CPA is the problem of finding a completion of Peano arithmetic. The bottom degree in Ew is
0 = degw(S) where S is any solvable mass problem. Given two Muchnik degrees p and q,
let sup(p,q) and inf(p,q) be the Muchnik degrees which are the least upper bound and the
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greatest lower bound of p and q respectively. In [99] I proved that there is a natural one-to-
one embedding of the recursively enumerable Turing degrees into Ew given by a �→ inf(a, 1).
Since the semilattice ET is known to contain infinitely many Turing degrees (see for instance
[85]), my embedding of ET into Ew implies the existence of infinitely many Muchnik degrees
in Ew. However, since no specific recursively enumerable Turing degrees other than 0′ and 0
are known, my embedding of ET into Ew yields no specific examples of Muchnik degrees in
Ew other than 1 and 0.

2.1. Algorithmic randomness. Historically, the first example of a specific Muchnik
degree in Ew other than 1 and 0 was r1 = degw(MLR) = the Muchnik degree of the problem
of finding an infinite sequence of 0’s and 1’s which is random in the sense of Martin-Löf [66].

A related example is as follows. Let r2 = degw(MLR2) where

MLR2 = {x ∈ {0, 1}N ; x is Martin-Löf random relative to 0′} .

Here 0′ denotes the halting problem. One can easily show that r2 does not belong to Ew.
However, it turns out [96, 99] that inf(r2, 1) belongs to Ew. Moreover, as indicated in Figure
1, we have r1 < inf(r2, 1) < 1. Thus inf(r2, 1) is another specific, natural degree in Ew

which, like r1, is characterized in terms of algorithmic randomness.
Alternatively, we may characterize r1 as the maximum Muchnik degree of an effec-

tively closed subset of {0, 1}N which is of positive measure. Similarly, we may characterize
inf(r2, 1) as the maximum Muchnik degree of an effectively closed subset of {0, 1}N whose
Turing upward closure is of positive measure. See [99, Theorem 3.8].

2.2. Kolmogorov complexity. As already meantioned, r1 is the Muchnik degree in
Ew corresponding to Martin-Löf randomness. Subsequently, many other Muchnik degrees in
Ew of a similar nature were discovered. We shall now develop some of these examples, using
the concept of Kolmogorov complexity.

Kolmogorov complexity [28, 76, 62] is a way of measuring the “information content” of
a finite mathematical object. The key definitions are as follows. Let {0, 1}∗ be the set of finite
sequences of 0’s and 1’s, i.e., words on the alphabet {0, 1}. We define a machine to be a partial
recursive function M from {0, 1}∗ to {0, 1}∗. A universal machine is a machine U with the
property that for all machines M there exists a word ρ ∈ {0, 1}∗ such that M(σ) = U(ρ�σ)
for all σ in the domain of M . Here ρ�σ denotes the concatenation, ρ followed by σ , i.e.,

ρ�σ = 〈ρ(0), . . . , ρ(|ρ| − 1), σ (0), . . . , σ (|σ | − 1)〉
where |σ | = the length of σ . Note that |ρ�σ | = |ρ| + |σ |. It is straightforward to prove the
existence of a universal machine. Now let U be a fixed universal machine. By a description of
τ ∈ {0, 1}∗ we mean any σ ∈ {0, 1}∗ such that U(σ) = τ . We then define the complexity of τ ,
measured in bits, to be the smallest length of a description of τ . In other words, the complexity
of τ is C(τ ) = min{|σ | ; U(σ) = τ }. It is straightforward to show that C(τ ) is, in a sense,
asymptotically independent of our choice of a fixed universal machine U . Namely, letting
U1 and U2 be any two universal machines, and letting C1(τ ) and C2(τ ) be the complexity of
τ as defined in terms of U1 and U2 respectively, we have ∃c ∀τ (|C1(τ ) − C2(τ )| ≤ c). In
other words, the complexity of τ is well defined up to within an additive constant. An easy
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argument shows that the complexity of τ is bounded by the length of τ plus a constant, i.e.,
∃c ∀τ (C(τ ) ≤ |τ | + c).

For technical reasons it is convenient to consider a “prefix-free” variant of C(τ ). A ma-
chine M is said to be prefix-free if the domain of M contains no pair ρ, σ such that ρ is a
proper initial segment of σ . A universal prefix-free machine is a prefix-free machine U such
that for all prefix-free machines M there exists ρ such that M(σ) = U(ρ�σ) for all σ in the
domain of M . The prefix-free complexity of τ is defined as K(τ ) = min{|σ | ; U(σ) = τ }
where U is a universal prefix-free machine. As in the case of C(τ ), it is straightforward to
show that K(τ ) is well defined up to plus or minus a constant. Clearly C(τ ) and K(τ ) are
closely related. For example, one can show that C(τ ) ≤ K(τ ) ≤ C(τ ) + 2 log2 |τ | up to
additive constants.

Now let x be a point in the Cantor space, i.e., an infinite sequence of 0’s and 1’s. By
the initial segment complexity of x we mean the asymptotic behavior of the complexity of the
finite initial segments x�{0, . . . , n} as n goes to infinity. An interesting theorem of Schnorr
(see for instance [98, Theorem 10.3]) says that Martin-Löf randomness can be characterized
in terms of initial segment complexity. Specifically, x is random if and only if

∃c∀n(K(x�{0, . . . , n}) ≥ n− c) .

In other words, x is random if and only if the initial segment complexity of x is as large as
possible.

Unfortunately Schnorr’s theorem fails with C in place of K. However, the theorem sug-
gests that initial segment complexity may be useful in uncovering other interesting mass prob-
lems. For instance, one may define the effective Hausdorff dimension of x as

effdim(x) = lim inf
n→∞

K(x�{0, . . . , n})
n

and here it is immaterial whether we use C or K. Thus effdim(x) measures the “asymptotic
density of information” in x. It is known (see for instance [41]) that effective Hausdorff
dimension is closely related to the familiar classical Hausdorff dimension which plays such
a large role in fractal geometry [32]. Namely, for any effectively closed set P in the Cantor
space {0, 1}N , the Hausdorff dimension of P with respect to the standard metric on {0, 1}N is
equal to the effective Hausdorff dimension of P , defined as

effdim(P ) = sup{effdim(x) ; x ∈ P } .
Now, given a rational number s in the range 0 ≤ s < 1, it follows from [99, Lemma 3.3]

(see also Theorem 3.3.1 below) that the Muchnik degree

ks = degw({x ∈ {0, 1}N ; effdim(x) > s})
belongs to Ew. Moreover, a theorem of Miller [68] may be restated as follows: s < t implies
ks < kt . Thus we have an infinite family of specific, natural degrees in Ew which are indexed
by the rational numbers s in the interval 0 ≤ s < 1. See also Figure 1.
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We have seen that the Muchnik degrees ks are defined in terms of effective Hausdorff
dimension, which is in turn defined in terms of linear lower bounds on initial segment com-
plexity. We now consider nonlinear lower bounds. Let f be a convex order function, i.e., an
unbounded computable function f : N → [0,∞) such that f (n) ≤ f (n+ 1) ≤ f (n)+ 1 for
all n. For example, f (n) could be n or n/2 or n/3 or

√
n or 3

√
n or logn or log logn or the

inverse Ackermann function. By [99, Lemma 3.3] (see also Theorem 3.3.1 below) each of the
Muchnik degrees

kf = degw({x ∈ {0, 1}N ; ∃c∀n(K(x�{0, . . . , n}) ≥ f (n)− c)})
belongs to Ew. Moreover, Hudelson [43] has generalized Miller’s construction [68] to prove
that kf < kg provided f (n) + 2 log2 f (n) ≤ g(n) for all n. Thus we see that the degrees
kf corresponding to specific, natural, convex order functions f comprise a rich family of
specific, natural degrees in Ew. See also Figure 1.

In addition, there are many specific, natural degrees in Ew corresponding to familiar
classes of recursive functions. Let REC be the class of all total recursive functions, and let C
be any reasonably nice subclass of REC. For example C could be the class of polynomial time
computable functions, or the class of polynomial space computable functions, or the class of
exponential time computable functions, or the class of elementary recursive functions, or the
class of primitive recursive functions, or the class of recursive functions at or below level α
of the Wainer hierarchy [116] for some particular ordinal α ≤ ε0. Or, C could be REC itself.
Our Muchnik degree corresponding to C is

kC = degw({x ∈ {0, 1}N ; (∃h ∈ C)∀n(K(x�{0, . . . , h(n)}) ≥ n)})
and by [99, Lemma 3.3] (see also Theorem 3.3.1 below) we have kC ∈ Ew. Moreover, Hudel-
son’s theorem [43] (see also [3, Theorems 1.8 and 1.9]) tells us that kC∗ < kC provided C∗
contains a function which grows significantly faster than all functions in C. (These degrees
kC are closely related to the degrees kf which were defined previously. Namely, to each
strictly increasing h ∈ C we associate a convex order function h−1(m) = the least n such that
h(n) ≥ m. We then have kC = inf{kh−1 ; h ∈ C, h strictly increasing}.) Thus we see that
there are many specific degrees in Ew corresponding to specific subclasses of REC which arise
from resource-bounded computational complexity [38] and from proof theory [87, 111, 116].
I first identified these degrees in terms of diagonal nonrecursiveness rather than Kolmogorov
complexity [96, §10]. See also Figure 1 and Subsection 2.3 below.

2.3. Diagonal nonrecursiveness. As in [83] let ϕ(1)e (n) for e = 1, 2, 3, . . . be a
standard enumeration of the 1-place partial recursive functions. A 1-place total function
g : N → N is said to be diagonally nonrecursive if g(n) �= ϕ

(1)
n (n) for each n for which

ϕ
(1)
n (n) is defined. Obviously each diagonally nonrecursive function is nonrecursive. Much

more information about diagonally nonrecursive functions can be found in [44, 3, 59, 53]. Let
d = degw(DNR) where

DNR = {g ∈ NN ; g is diagonally nonrecursive} .
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By [99, Lemma 3.3] (see also Theorem 3.3.1 below) we have d ∈ Ew. Thus d is yet another
example of a specific, natural degree in Ew. See also Figure 1.

The naturalness of d may be questioned on the grounds that it appears to depend on
our choice of a standard enumeration of the partial recursive functions. However, we may
respond by noting that the 1-place partial recursive function θ(n) � ϕ

(1)
n (n) is universal in

the following sense: for all 1-place partial recursive functions ψ(n) there exists a primitive
recursive function p(n) such that ψ(n) � θ(p(n)) for all n. (The notation E1 � E2 means
that E1 and E2 are both undefined, or E1 and E2 are both defined and E1 = E2. Here E1 and
E2 are expressions which may or may not be defined.) One can show that d does not depend
on the choice of a universal 1-place partial recursive function. Furthermore, one can construct
a universal 1-place partial recursive function θ(n) which is “linearly universal” in that p(n)
may be taken to be linear, i.e., p(n) = an + b for appropriately chosen constants a, b ∈ N .
See also the discussion in [96, §10].

In order to obtain additional specific examples of degrees in Ew, recall that REC is the
class of total recursive functions. As in Subsection 2.2 let C = REC or C = any reasonably
nice subclass of REC. A 1-place total function g : N → N is said to be C-bounded if there
exists h ∈ C such that g(n) < h(n) for all n. Let dC be the Muchnik degree of the problem
of finding a diagonally nonrecursive function which is C-bounded. In other words,

dC = degw({g ∈ DNR ; (∃h ∈ C)∀n(g(n) < h(n))}) .
These specific, natural degrees in Ew were first identified in [96, §10]. Moreover, by [53, 55]
there is a close relationship between diagonal nonrecursiveness and Kolmogorov complexity,
and this leads to the equations kREC = dREC and kC = dC as indicated in Figure 1.

2.4. Almost everwhere domination. For total functions f, g : N → N we say that
f is dominated by g if f (n) < g(n) for all but finitely many n. A real y is said to be almost
everywhere dominating [27, 10, 20, 52, 54, 98, 100] if for all reals x ∈ {0, 1}N except a set of
measure zero, every f : N → N which is computable using x as a Turing oracle is dominated
by some g : N → N which is computable using y as a Turing oracle. Here we are referring
to the fair coin probability measure on {0, 1}N . Let b1 = degw(AED) where

AED = {y ; y is almost everywhere dominating}.
One does not expect b1 to belong to Ew, and indeed it does not. However, it turns out [52, 98]
that inf(b1, 1) belongs to Ew, so this is another example of a specific, natural degree in Ew.
(Our sole reason for viewing inf(b1, 1) as a natural degree is that it is the infimum of two other
degrees which are obviously natural.) The degree inf(b1, 1) is particularly interesting because
it is incomparable with other specific, natural degrees in Ew such as r1 and d. On the other
hand, there is a recursively enumerable Turing degree a such that inf(b1, 1) < inf(a, 1) < 1.
For more information on inf(b1, 1) and related degrees in Ew, see [100] and [103].

2.5. LR-reducibility and hyperarithmeticity. Given a Turing oracle x, one may
relativize the concepts of Martin-Löf randomness and Kolmogorov complexity to x. Let
MLRx = {z ∈ {0, 1}N ; z is Martin-Löf random relative to x}, and let Kx(τ ) = the prefix-
free complexity of τ relative to x. Nies [75] introduced the corresponding reducibility notions,
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LR-reducibility and LK-reducibility. Namely, x ≤LR y if and only if MLRy ⊆ MLRx , and
x ≤LK y if and only if ∃c ∀τ (Ky(τ ) ≤ Kx(τ )+ c). Later Kjos-Hanssen/Miller/Solomon [54]
proved that LR-reducibility is equivalent to LK-reducibility. They also used LR-reducibility
to give an interesting characterization of almost everywhere domination: y ∈ AED if and only
if 0′ ≤LR y. Thus b1 = degw({y ; 0′ ≤LR y}). See also my exposition in [98, 100]. Here of
course 0′ = the halting problem.

Recently [103] I generalized some of these results concerning almost everywhere domi-
nation, from 0′ to the entire hyperarithmetical hierarchy. For each ordinal α < ωCK

1 let

bα = degw({y ; 0(α) ≤LR y}) .
It turns out [103] that there is a natural embedding of the hyperarithmetical hierarchy into Ew

given by 0(α) �→ inf(bα, 1) as indicated in Figure 1. See also Example 3.2.1.3 below.
2.6. Ew and reverse mathematics. Reverse mathematics is a program of research

in the foundations of mathematics. The purpose of reverse mathematics is to determine the
weakest set existence axioms which are needed in order to prove specific core mathematical
theorems. In many cases it turns out that the axioms are equivalent to the theorem. The
standard reference on reverse mathematics is my book [95]. See also my recent survey paper
[104].

Several of the specific, natural degrees in Ew which are depicted in Figure 1 were orig-
inally motivated by and correspond closely to various set existence axioms which occur in
reverse mathematics. To begin with, the top and bottom degrees 1 and 0 in Ew correspond
to the axiomatic theories WKL0 and RCA0 which are known [95] to play an enormous role
throughout reverse mathematics. In particular, 1 can be characterized as the Muchnik degree
of the problem of finding a countably coded ω-model of WKL0. See also [97].

Similarly, one can show that r1 is the Muchnik degree of the problem of finding a count-
ably coded ω-model of WWKL0. Here WWKL0 is an axiomatic theory which arises fre-
quently in the reverse mathematics of measure theory. See for instance [119, 16] and [95,
§X.1].

In addition, the degrees bα for α < ωCK
1 were also inspired by the reverse mathematics

of measure theory. Technical results concerning these degrees have been used [27, 103] in
order to construct ω-models for some relevant subsystems of second-order arithmetic. The
precise relationship between measure theory and the degrees bα for α < ωCK

1 is as follows:

0(α) ≤LR y if and only if every Σ0
α+2 set includes a Σ0,y

2 set of the same measure [103,
Corollary 4.12]. Here again we are referring to the fair coin probability measure on {0, 1}N .

2.7. Summary. To summarize, we have seen that Ew contains many specific, natu-
ral degrees which correspond to foundationally interesting topics. Among these topics are
algorithmic randomness, Kolmogorov complexity, effective Hausdorff dimension, resource-
bounded computational complexity, subrecursive hierarchies, proof theory, LR-reducibility,
hyperarithmeticity, and reverse mathematics.
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3. Structural and methodological aspects of Ew.

3.1. Priority arguments. Some structural properties of Ew are stated in the following
theorem.

THEOREM 3.1.1.
1. Ew is a countable distributive lattice with 1 and 0 as the top and bottom elements.
2. Every countable distributive lattice is lattice-embeddable in Ew.
3. More generally, given 0 < p ∈ Ew, every countable distributive lattice is lattice-

embeddable into the initial segment of Ew below p.
4. Given 0 < p ∈ Ew we can find p1 ∈ Ew and p2 ∈ Ew such that p = sup(p1,p2) and

0 < p1 < p and 0 < p2 < p.

Here items 2 and 3 are from [11] and item 4 is from [6].
As mentioned in Subsection 1.3 above (see also [99]), the study of the lattice Ew is in

some ways analogous to the study of the semilattice ET of recursively enumerable Turing
degrees. A traditional highlight in the study of ET has been the methodology of priority argu-
ments. Over a span of several decades, successively more difficult types of priority arguments
including finite injury arguments, infinite injury arguments [84, 85], 0′′′ priority arguments
[107, 61], etc., were used to elucidate the structure of ET. Later it emerged that priority argu-
ments can also be used to study Ew. In particular, each of items 2 through 4 in Theorem 3.1.1
was originally proved by means of a finite injury priority argument. In this vein there is the
following generalization of the Sacks Splitting Theorem [107, Theorem VII.3.2] which was
proved by essentially the same method.

THEOREM 3.1.2 (Binns Splitting Theorem). Let A ⊆ N be recursively enumerable,
and let P ⊆ NN be effectively closed such that P ∩ REC = ∅. Then, we can find a pair of
recursively enumerable sets A1, A2 such that A = A1 ∪A2 and A1 ∩A2 = ∅ and no member
of P is Turing reducible to A1 or to A2.

Item 4 in Theorem 3.1.1 was originally obtained in [6] as a special case of Theorem 3.1.2
with A = 0′ = the halting problem. Namely, let P be such that p = degw(P ) and for i = 1, 2
let pi = inf(p, ai ) where ai = degT(Ai).

REMARK 3.1.3. An open question concerning the structure of Ew reads as follows.

Given p1 ∈ Ew and p2 ∈ Ew such that p1 < p2, can we find q ∈ Ew such that
p1 < q < p2?

An affirmative answer to this question would constitute an Ew-analog of the Sacks Density
Theorem for ET [84]. It seems reasonable to conjecture that q can be constructed using an
infinite injury priority argument as in [84].

3.2. Forcing arguments. Forcing constructions have played a large role in the study
of Ew. Many of the relationships between specific pairs of degrees in Ew which are exhibited
in Figure 1 have been proved by means of forcing. Here are some examples.
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EXAMPLES 3.2.1.
1. The fact that d < r1 [96] (see Figure 1) was originally obtained as a consequence of

Kumabe’s Theorem [59]: there exist diagonally nonrecursive functions which are of minimal
Turing degree. The proof of Kumabe’s Theorem uses the Kumabe/Lewis technique of bushy
tree forcing [59, 3].

2. Cholak/Greenberg/Miller [20, §4] introduced an interesting forcing technique in or-
der to construct an almost everywhere dominating real which does not compute a diagonally
nonrecursive function. This result is equivalent to saying that d � b1 in Figure 1.

3. In [103, §5] I simplified and generalized the technique of [20, §4] to prove that for
any real x we can find a real y such that x ≤LR y and y does not compute a diagonally
nonrecursive function. Consequently we have inf(bα,d) < inf(bα+1,d) for each α < ωCK

1 .
See also Figure 1.

4. Miller [68] introduced his technique of forcing with optimal covers in order to prove
that s < t implies ks < kt in Figure 1.

5. Recently Hudelson [43] modified and generalized Miller’s technique in order to
prove that kf < kg whenever f and g are convex order functions satisfying f (n) +
2 log2 f (n) ≤ g(n) for all n. See Figure 1.

REMARK 3.2.2. Even the familiar Kleene/Post/Friedberg technique of forcing with
finite conditions and 1-genericity (see [56] and [83, §§13.1, 13.3]) has been very useful in the
study of Ew. In [22, §§3,4] we used this method to obtain a natural embedding of the hyper-
arithmetical hierarchy into Ew. Also, as explained as Subsections 3.4 and 4.2 below, a variant
method based on Posner/Robinson [78] has been used in [101] to obtain some interesting
structural information concerning Ew.

REMARK 3.2.3. An open structural question concerning Ew is to compute the Turing
degree of Th(Ew), the first-order theory of Ew. Since the hyperarithmetical hierarchy is nat-
urally embeddable into Ew [22, 103], it seems reasonable to conjecture that Th(Ew) should
be recursively isomorphic to the ωth Turing jump of the complete Π1

1 set of integers. This
conjecture was first stated in [22].

3.3. The Σ0
3 Embedding Lemma. As illustrated in Figure 1, many specific, natural

degrees in Ew are of the form inf(s, 1) where s is a specific, natural degree which does not
belong to Ew. We now present the key theorem which enables us to deal with such degrees.
Our theorem is known as the Σ0

3 Embedding Lemma.
LetX be an effectively presented complete separable metric space. A subset of X is said

to be Σ0
1 if and only if it is effectively open. This class of sets is, of course, the effective

analog of the open sets. We now define effective analogs of other classes of sets. For each
positive integer k, a set P ⊆ X is said to be Π0

k if and only if its complement X \ P is Σ0
k .

For example, P is Π0
1 if and only if P is effectively closed. A set S ⊆ X is said to beΣ0

k+1 if
and only if it is of the form

S = {x ∈ X ; ∃n((n, x) ∈ P)}
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where P ⊆ N × X is Π0
k . Here we are viewing N × X as an effectively presented com-

plete separable metric space in its own right. Thus S = ⋃∞
n=0 Pn where each Pn = {x ∈

X ; (n, x) ∈ P } is a Π0
k set and moreover the sequence Pn for n = 0, 1, 2, . . . is uniformly

Π0
k .

In particular, the Σ0
3 sets in X are those of the form

S = {x ∈ X ; ∃m∀n((m, n, x) ∈ U)}
where U ⊆ N × N ×X is effectively open. Note that the Σ0

3 sets are the effective analogs of
the classical Gδσ sets [50, Introduction]. For each k ≥ 3 it can be shown that every Σ0

k set in
X is Muchnik equivalent to a Π0

k−1 set in the Baire space NN or in the Cantor space {0, 1}N .
For convenience we shall focus on Σ0

3 sets in the Baire space, i.e., sets of the form

S = {f ∈ NN ; ∃k∀m∃nR(k,m, n, f )}(1)

where R ⊆ N3 × NN is recursive. These sets will play an important role in what follows.

THEOREM 3.3.1 (The Σ0
3 Embedding Lemma). Let s = degw(S) where S is aΣ0

3 set.
Then inf(s, 1) belongs to Ew.

Theorem 3.3.1 has been extremely useful in showing that various interesting Muchnik
degrees belong to Ew. We now present some examples.

EXAMPLES 3.3.2.
1. Recall that a real x ∈ {0, 1}N is said to be 2-random if it is Martin-Löf random

relative to 0′ = the halting problem. It is not hard to see that

MLR2 = {x ∈ {0, 1}N ; x is 2-random}
is Σ0

3 . Therefore, letting r2 = degw(MLR2) we have inf(r2, 1) ∈ Ew in view of Theorem
3.3.1. See also Figure 1.

2. Recall from Figure 1 the degrees r1, ks , kf , and d, as well as kC = dC where
C = REC or C = a nice subclass of REC. Each of these was defined in Section 2 as the
Muchnik degree of a specific, natural, Σ0

3 subset of {0, 1}N or of NN . Moreover, each of
these degrees is easily seen to be ≤ 1. Therefore, by Theorem 3.3.1, each of these degrees
belongs to Ew.

3. For each real x ≤T 0′ the singleton set {x} is easily seen to be Σ0
3 . Therefore,

Theorem 3.3.1 tells us that inf(a, 1) ∈ Ew where a = degT(x) = degw({x}). This applies in
particular if a is a recursively enumerable Turing degree, as shown in Figure 1. The Arslanov
Completeness Criterion [107, Theorem V.5.1] tells us that for all a ∈ ET the embedding
a �→ inf(a, 1) is one-to-one.

4. In [103, Theorem 6.3] I proved that if S is Σ0
3 then its LR-upward closure

SLR = {y ; ∃x(x ∈ S and x ≤LR y)}
is againΣ0

3 . Moreover, it is known (see for instance [86, Part A]) that the singleton set {0(α)}
is Σ0

3 for each recursive ordinal α < ωCK
1 . Combining these facts with Theorem 3.3.1 we see

that inf(bα, 1) ∈ Ew where bα = degw({y ; 0(α) ≤LR y}). See also Figure 1.
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REMARK 3.3.3. In view of Theorem 3.3.1 it seems reasonable to consider a certain
sublattice of Dw which is larger than Ew but still countable. Namely, let Sw be the lattice of
Muchnik degrees of nonemptyΣ0

3 sets in NN , or equivalently, nonemptyΠ0
1 sets in NN (see

Lemma 3.3.5 below). Trivially Sw includes Ew but it also includes much more. In particular,
each of the degrees 0(α) and bα for α < ωCK

1 belongs to Sw. The structure of Sw has not been
studied extensively, but we can show for instance that Sw has no top degree. We also have the
following result.

COROLLARY 3.3.4. Ew is an initial segment of Sw. Specifically, we have

Ew = {s ∈ Sw ; s ≤ 1} .
PROOF. This is a restatement of Theorem 3.3.1. �

We shall now sketch a proof of Theorem 3.3.1. The theorem was first proved in [99,
Lemma 3.3] but the proof given here yields additional useful information. See also Remark
3.3.7 below.

If P and Q are sets of reals, we say that P and Q are Turing equivalent, abbreviated
P ≡T Q, if and only if

{degT(x) ; x ∈ P } = {degT(y) ; y ∈ Q} .
Note that P ≡T Q implies degw(P ) = degw(Q) but not conversely. For f, g ∈ NN we write
f ⊕ g = the unique h ∈ NN such that h(2n) = f (n) and h(2n+ 1) = g(n) for all n.

LEMMA 3.3.5. Let S be a Σ0
3 set in NN . Then, we can find a Π0

1 set Q in NN such
that Q ≡T S.

PROOF. Since S is Σ0
3 , let R ⊆ N3 × NN be a recursive relation such that (1) holds.

We then let

Q = {〈k〉�(f ⊕ g) ; ∀m(g(m) = the least n such that R(k,m, n, f ) holds)} .

Clearly Q is a Π0
1 set in NN , and it is easy to check that Q ≡T S. �

LEMMA 3.3.6. Let S be a Σ0
3 set in NN . Let P be a nonempty Π0

1 set in {0, 1}N .
Then, we can find a nonempty Π0

1 set Q in {0, 1}N such that Q ≡T S ∪ P .

PROOF. By Lemma 3.3.5 we may safely assume that S is a Π0
1 set in NN . Therefore,

let U be a recursive subtree of N∗ such that S = {paths through U}. In addition, let V be a
recursive subtree of {0, 1}∗ such that P = {paths through V }. Define W to be the recursive
subtree of {0, 1, 2}∗ consisting of all strings of the form

σ0
�〈2〉�σ1

�〈2〉� · · · �〈2〉�σn−1
�〈2〉�σn

such that

(a) for each i ≤ n, σi ∈ V ;
(b) for each i < n, σi is the leftmost σ ∈ V such that |σ | = |σi |;
(c) the string 〈|σ0|, |σ1|, . . . , |σn−1|〉 belongs to U .
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LettingQ = {paths throughW }, it is straightforward to verify thatQ ≡T S ∪P . ClearlyQ is
a Π0

1 set in {0, 1, 2}N . Since {0, 1, 2}N is effectively homeomorphic to {0, 1}N , we have our
lemma. �

REMARK 3.3.7. Kent and Lewis [51] have studied the lattice of sets of Turing degrees
of the form {degT(x) ; x ∈ P } where P is aΠ0

1 subset of {0, 1}N . Lemma 3.3.6 is of obvious
interest in this regard.

PROOF OF THEOREM 3.3.1. Let P ⊆ {0, 1}N be Π0
1 such that degw(P ) = 1. For

instance, we could take P = CPA or P = DNR ∩ {0, 1}N . Apply Lemma 3.3.6 to get a
Π0

1 set Q ⊆ {0, 1}N such that Q ≡T S ∪ P . Let q = degw(Q). We then have q ∈ Ew and
q = degw(Q) = degw(S ∪ P) = inf(s, 1). �

3.4. A generalization of the Posner/Robinson Theorem. We now prove another
lemma which is consequential for the structure of Ew. This is a strengthened version of [101,
Lemma 5].

LEMMA 3.4.1. Let S ⊆ NN be Σ0
3 . Assume that f, h ∈ NN are such that S �w {f }

and 0 <T f and f ⊕ 0′ ≤T h. Then, we can find a 1-generic g ∈ NN such that S �w {g} and
f ⊕ g ≡T g ′ ≡T g ⊕ 0′ ≡T h.

PROOF. For integers n ∈ N and strings σ ∈ N∗ we write

Φn(σ) = 〈ϕ(1),σn,|σ | (i) ; i < j 〉
where j = the least i such that either ϕ(1),σn,|σ | (i) ↑ or i ≥ |σ |. Note that the mapping Φn :
N∗ → N∗ is recursive and monotonic, i.e., σ ⊆ τ implies Φn(σ) ⊆ Φn(τ). Moreover, for all
g, ĝ ∈ NN we have g ≥T ĝ if and only if ∃n (Φn(g) = ĝ). Here we are writing

Φn(g) =
∞⋃
l=0

Φn(g�{0, 1, . . . , l − 1}) .

Let S, f and h be as in the statement of Lemma 3.4.1. By Lemma 3.3.5 we may safely
assume that S is Π0

1 , so let U ⊆ N∗ be a recursive tree such that S = {paths through U}.
Since f is not recursive, we can find a set A ⊆ N such that f ≡T A and A is not recursively
enumerable. We shall inductively define an increasing sequence of strings σk ∈ N∗ for k =
0, 1, 2, . . . and then let g = ⋃∞

k=0 σk . In presenting the construction, we shall identify strings
with their Gödel numbers.

Stage 0. Let σ0 = 〈〉 = the empty string.
Stage 3n+ 1. Assume inductively that σ3n has been defined. Let σ3n+1 = σ3n

�〈h(n)〉.
Stage 3n+2. Assume inductively that σ3n+1 has been defined. SinceA is not recursively

enumerable, there exists i such that

i ∈ A ⇔ ¬ ∃σ(σ3n+1
�〈i〉 ⊆ σ ∧Φn(σ)(0) ↓) .

Using A ⊕ 0′ as an oracle, find in = the least such i. If in ∈ A let σ3n+2 = σ3n+1
�〈in〉. If

in /∈ A let σ3n+2 = the least σ ⊇ σ3n+1
�〈in〉 such that Φn(σ)(0) ↓.



506 S. SIMPSON

Stage 3n + 3. Assume inductively that σ3n+2 has been defined. Let σn,0 = σ3n+2.
Suppose that σn,s has been defined. Using A⊕ 0′ as an oracle, search for an i such that

i ∈ A ∧ ¬ ∃σ (σn,s�〈i〉 ⊆ σ ∧Φn(σn,s) ⊂ Φn(σ) ∈ U) .(2)

At the same time, using A as an oracle, search for a pair i, σ such that

i /∈ A ∧ σn,s�〈i〉 ⊆ σ ∧Φn(σn,s) ⊂ Φn(σ) ∈ U .(3)

Since A is not recursively enumerable, at least one of these two searches will eventually
succeed. If search (2) succeeds first, let σ3n+3 = σn,s

�〈i〉. If search (3) succeeds first, let
σn,s+1 = σ . In either case let in,s = i.

We claim that for some s, search (2) succeeds first. Otherwise, by performing search (3)
for s = 0, 1, 2, . . . successively, we would obtain infinite increasing sequences of strings

σn,0 ⊂ σn,1 ⊂ · · · ⊂ σn,s ⊂ σn,s+1 ⊂ · · ·
and

Φn(σn,0) ⊂ Φn(σn,1) ⊂ · · · ⊂ Φn(σn,s) ⊂ Φn(σn,s+1) ⊂ · · ·
with Φn(σn,s) ∈ U for all s. Moreover, these sequences of strings would be computable
relative to A. Thus, letting f̂ = ⋃∞

s=0Φn(σn,s) we would have f̂ ∈ S and f̂ ≤T A ≡T f ,
hence S ≤w {f }, a contradiction. This proves our claim. From this it follows that σ3n+3 is
defined.

Clearly the sequence σ0, σ1, . . . , σk, σk+1, . . . is computable relative to h, because A⊕
0′ ≡T f ⊕ 0′ ≤T h. Moreover, h is computable relative to this sequence, because for all n we
have h(n) = σ3n+1(|σ3n|).

Let g = ⋃∞
k=0 σk . We claim that the sequence σ0, σ1, . . . , σk, σk+1, . . . is ≤T A ⊕ g .

Given σk we useA⊕g to compute σk+1 as follows. For k = 3nwe have σk+1 = σk
�〈g(|σk |)〉.

For k = 3n + 1 we have in = g(|σk|) and σk+1 = σk
�〈in〉 if in ∈ A, otherwise σk+1 = the

least σ ⊇ σk
�〈in〉 such that Φn(σ)(0) ↓. For k = 3n + 2 we begin with σn,0 = σk . Given

σn,s we use g to compute in,s = g(|σn,s |) and then use A to decide whether in,s ∈ A or not. If
in,s /∈ Awe compute σn,s+1 = the least σ such that σn,s�〈in,s〉 ⊆ σ andΦn(σn,s) ⊂ Φn(σ) ∈
U . By the previous claim, we will eventually find an s such that in,s ∈ A, and then we have
σk+1 = σn,s

�〈in,s〉. This proves our claim. Since A ≡T f ≤T h and g ≤T h, it follows that
h ≡T A⊕ g ≡T f ⊕ g .

Next we claim that the sequence σ0, σ1, . . . , σk, σk+1, . . . is ≤T g ⊕ 0′. Given σk we
use g ⊕ 0′ to compute σk+1 as follows. For k = 3n we have σk+1 = σk

�〈g(|σk |)〉. For
k = 3n + 1 we have in = g(|σk|) and we can then use 0′ to decide whether there exists
σ such that σk�〈in〉 ⊆ σ and Φn(σ)(0) ↓. If such a σ exists, we have σk+1 = the least
such σ , otherwise σk+1 = σk

�〈in〉. For k = 3n + 2 we have σn,0 = σk . Given σn,s we
use g to compute in,s = g(|σn,s |) and then use 0′ to decide whether there exists σ such that
σn,s

�〈in,s〉 ⊆ σ and Φn(σn,s) ⊂ Φn(σ) ∈ U . If such a σ exists, we compute σn,s+1 = the
least such σ , otherwise σk+1 = σn,s

�〈in,s〉. As before we know that this procedure eventually
gives σk+1. This proves our claim. Thus h ≤T g ⊕ 0′. Moreover g ′ ≤T g ⊕ 0′ because for all
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n we have n ∈ g ′ if and only if Φn(σ3n+2)(0) ↓. Since g ≤T h and 0′ ≤T h it follows that
g ′ ≡T h.

The construction at stage 3n + 3 insures that S �w {g}. Moreover, the construction at
stage 3n+ 2 insures that g is 1-generic. This completes the proof of Lemma 3.4.1. �

REMARK 3.4.2. The Posner/Robinson Theorem [78] follows from the special case
of Lemma 3.4.1 with S = ∅ = the empty set. Also, Lemma 3.4.1 improves our result in
[101, Remark 9] by eliminating the hyperimmunity hypothesis. Other generalizations of the
Posner/Robinson Theorem are in [45, 46, 90]

LEMMA 3.4.3. Let S ⊆ NN be Σ0
3 such that S �w {0}, i.e., S ∩ REC = ∅. Let

h ∈ NN be such that 0′ ≤T h. Then, we can find a 1-generic g ∈ NN such that S �w {g}
and g ′ ≡T g ⊕ 0′ ≡T h.

PROOF. We proceed as in the proof of Lemma 3.4.1 above. The construction is easier
than in Lemma 3.4.1, because we can ignore f . We omit the details. �

As in Remark 3.3.3 let Sw be the lattice of Muchnik degrees of nonempty Σ0
3 sets in

NN .

THEOREM 3.4.4. Let s be a Muchnik degree in Sw such that 0 < s. Let c be a Turing
degree such that 0′ ≤ c. Then, we can find a Turing degree a such that 0 < a < c and s � a.
Moreover, given any such Turing degree a1 we can find another such Turing degree a2 with
the property that sup(a1, a2) = c.

PROOF. These statements are a partial translation of Lemmas 3.4.3 and 3.4.1 into the
language of Muchnik degrees and Turing degrees. �

THEOREM 3.4.5. Let p be a Muchnik degree in Ew such that 0 < p. Then, we can
find a Turing degree a such that 0 < a < 0′ and p � a. Moreover, given any such Turing
degree a1 we can find another such Turing degree a2 with the property that sup(a1, a2) = 0′.
Consequently, letting pi = inf(p, ai ) for i = 1, 2 we have pi ∈ Ew and 0 < pi < p and
p = sup(p1,p2).

PROOF. Apply Theorem 3.4.4 with s = p and c = 0′. From ai < 0′ plus Theorem 3.3.1
it follows that pi ∈ Ew. From 0 < p and 0 < ai and p � ai it follows that 0 < pi < p.
Since p ≤ 1 < 0′ = sup(a1, a2), the distributive law gives p = inf(p, sup(a1, a2)) =
sup(inf(p, a1), inf(p, a2)) = sup(p1,p2). �

REMARK 3.4.6. Theorem 3.4.5 provides another proof of the Splitting Theorem
3.1.1.4 and this alternative proof is in some ways more informative. Also, as we shall see
in Section 4, Theorem 3.4.5 answers a question about Ew which arises naturally from Much-
nik’s version of Kolmogorov’s interpretation of intuitionism.
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4. Muchnik degrees and intuitionism. Historically, Muchnik degrees arose from
the foundational controversy which was ignited by Brouwer’s doctrine of intuitionism. Kol-
mogorov, in his influential 1932 paper [57, 58], proposed to interpret intuitionism nonrig-
orously as an Aufgabenrechnung (translation: calculus of problems). (This proposal in [57]
accounts for the “K” in the so-called BHK-interpretation of intuitionism [114, §§1.3.1, 1.5.3].)
In order to rigorously implement Kolmogorov’s idea, Medvedev 1955 [67] introduced mass
problems, and Muchnik 1963 [71] proved that the lattice Dw of all Muchnik degrees is Brouw-
erian, i.e., it satisfies Heyting’s intuitionistic propositional calculus. My brief account of this
history is in [101].

4.1. Interpreting intuitionism in Dw. We shall now briefly describe Kolmogorov’s
interpretation and Muchnik’s implementation of it. The original Kolmogorov idea was to
view each intuitionistic proposition as a “problem.” An intuitionistic proof of the proposition
is then the same thing as a “solution” of the problem. If A and B are problems, let us write
A � B to mean that the problem A is “at least as difficult as” the problem B, in the sense
that any solution of A would “easily” or “immediately” yield a solution of B. Consequently,
A and B are “equivalent” as problems if and only if A � B and B � A. We denote this
equivalence as A ≡ B.

One may combine problems in various ways to obtain new problems. Some of the meth-
ods of combination correspond to the intuitionistic propositional connectives ∧, ∨, ⇒, ¬ ,
etc. Thus, if A and B are problems, let A ∧ B denote the problem of solving both A and B,
let A ∨ B denote the problem of solving at least one of A and B, and let A ⇒ B denote the
“least difficult” problem C such that A ∧ C � B. Rephrasing this in terms of “solutions,”
we see that a solution of A ∧ B should be essentially an ordered pair (x, y) where x and y
are solutions of A and B respectively; a solution of A ∨ B should consist of a solution of
at least one of A and B; and a solution of A ⇒ B should be something which allows us to
“easily transform” any solution of A into a solution of B. Attempting to state this in another
way, let P and Q be the solution sets of A and B respectively, i.e., P = {solutions of A}
and Q = {solutions of B}. Clearly we ought to have something like P ×Q = {solutions of
A ∧ B}, and P ∪Q = {solutions of A ∨ B}, but the set-theoretic interpretation of A ⇒ B is
not so clear.

Let us now adopt an instrumentalist viewpoint, according to which any “problem”A is to
be identified with its solution set P . On this view, any set P of possible solutions corresponds
in turn to a problem, namely, the problem of “finding” an element of P . Muchnik’s idea was
to identify the possible solutions as Turing oracles. Thus P and Q are sets of Turing oracles,
i.e., mass problems, and we interpret P � Q to mean that P ≥w Q, i.e., every solution of
P can be used as a Turing oracle to compute some solution of Q. Letting p = degw(P ) and
q = degw(Q), it is easy to check that sup(p,q) = degw(P×Q) and inf(p,q) = degw(P∪Q),
so we are forced to implement ∧ and ∨ respectively as sup and inf in the Muchnik lattice Dw.
(For this reason we strongly prefer the notations sup(p,q) and inf(p,q) for the least upper
bound and greatest lower bound operations in Dw. The usual lattice-theoretic notations ∨
and ∧ [23] or + and × [108] are confusing and misleading in the mass problem context.)
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Similarly we implement � as ≥ and ≡ as = in Dw. In order to implement ⇒ in Dw we need
the following theorem.

THEOREM 4.1.1. Let p and q be Muchnik degrees. Then, among all Muchnik degrees
z such that sup(p, z) ≥ q there is a unique smallest one. We denote this Muchnik degree by
imp(p,q).

PROOF. Let P and Q be sets of reals such that degw(P ) = p and degw(Q) = q. Let
imp(p,q) = degw(P ⇒ Q) where

(P ⇒ Q) = {z ; (∀x ∈ P)(∃y ∈ Q)((x, z) ≥T y)} .
It is straightforward to verify that imp(p,q) has the desired property. �

We now have an interpretation of the formulas of propositional calculus in Dw. Namely,
if φ is a mapping of propositional atoms into Dw, we extend φ to propositional formulas
as follows: φ(A ∧ B) = sup(φ(A), φ(B)), φ(A ∨ B) = inf(φ(A), φ(B)), φ(A ⇒ B) =
imp(φ(A), φ(B)), and φ(¬A) = imp(φ(A),∞) where of course ∞ = degw(∅) = the top
degree in Dw. Let us define a propositional formula A to be Dw-valid if and only if φ(A) = 0
for all φ. It is straightforward to show that the axioms of intuitionistic propositional calculus
[114, §2.1] are Dw-valid, and that Dw-validity is preserved under the intuitionistic proposi-
tional rules of inference. Thus we see that all of the theorems of intuitionistic propositional
calculus are Dw-valid. (One can show that the Dw-valid propositional formulas are precisely
the theorems of Jankov logic, consisting of intuitionistic propositional calculus together with
the so-called weak law of the excluded middle, (¬A) ∨ (¬ ¬A). See for instance [108].)

The above interpretation of intuitionistic propositional calculus in Dw can be extended to
an interpretation of intuitionistic arithmetic, intuitionistic analysis, and intuitionistic higher-
order logic. This is accomplished as follows. Recall from Subsection 1.1 that DT is the partial
ordering of all Turing degrees. A set U ⊆ DT is said to be upward closed if for all a ∈ U and
a ≤ b ∈ DT we have b ∈ U . Obviously the upward closed sets in DT form a complete and
completely distributive lattice under reverse inclusion. Moreover, as noted by Muchnik [71],
the upward closed sets in DT are the open sets of a topology on DT.

THEOREM 4.1.2. The lattice Dw is canonically isomorphic to the lattice of upward
closed sets in DT ordered by reverse inclusion.

PROOF. Recall from Subsection 1.2 that each Turing degree is identified with a Much-
nik degree. Thus DT ⊆ Dw. For each p ∈ Dw the corresponding upward closed set in DT

is

Up = {a ∈ DT ; p ≤ a}
and all upward closed sets in DT are of this form. It is also clear that p ≤ q if and only if
Up ⊇ Uq, so we have a canonical isomorphism as required. �

REMARK 4.1.3. For any topological space X, let Sh(X) be the category of sheaves
over X. This category Sh(X) is the standard example of a topos. See for instance [114,
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§§14.5, 15.1, 15.2] and [64]. In particular, let Sh(DT) be the category of sheaves over DT

with the topology of upward closed sets. In light of Theorem 4.1.2 we refer to Sh(DT) as the
Muchnik topos. Regrettably, the Muchnik topos has not been studied extensively. Like Sh(X)
for any topological spaceX, the Muchnik topos is a model of intuitionistic higher-order logic,
intuitionistic arithmetic, and intuitionistic analysis. However, the Muchnik topos has the ad-
vantage of carrying with it the original intuitionistic motivation in terms of Kolmogorov’s
Aufgabenrechnung. We may therefore expect the Muchnik topos to yield new foundational
insights. This is a topic of ongoing investigation.

4.2. Non-interpretability of intuitionism in Ew. In view of the Kolmogorov/Much-
nik interpretation of intuitionism in Dw, one may ask whether intuitionism can be similarly in-
terpreted in various sublattices of Dw. Following Birkhoff [12, 13] (first and second editions)
we define a Brouwerian lattice to be a distributive latticeLwith a top element and a bottom el-
ement such that for all a, b ∈ L there is a unique smallest c ∈ L such that sup(a, c) ≥ b. Just
as classical propositional calculus may be viewed as the theory of Boolean lattices, so intu-
itionistic propositional calculus may be viewed as the theory of Brouwerian lattices. Theorem
4.1.1 says that Dw is Brouwerian, and Sorbi and Terwijn [108] have investigated Brouwerian
sublattices of Dw. In particular, each initial segment of Dw is Brouwerian.

Recall from Subsection 1.3 that Ew is a distributive sublattice of Dw with top and bottom
elements 1 and 0. In view of the great interest of Ew as documented in Sections 2 and 3
above, it is natural to ask whether Ew is Brouwerian. The answer is negative, as shown by the
following theorem from [101].

THEOREM 4.2.1. Given p ∈ Ew such that 0 < p, we can find p1 < p such that
p1 ∈ Ew and there is no smallest z ∈ Ew such that sup(p1, z) ≥ p.

PROOF. By the first part of Theorem 3.4.5, let a be a Turing degree such that 0 < a < 0′
and p � a. Let p1 = inf(p, a). Clearly p1 < p, and by Theorem 3.3.1 we have p1 ∈ Ew. Now
given z ∈ Ew such that sup(p1, z) ≥ p, we clearly have 0 < z and z � a, so by the second part
of Theorem 3.4.5 let b be a Turing degree such that 0 < b < 0′ and z � b and sup(a,b) = 0′.
Let z1 = inf(z,b). Clearly z1 < z, and by Theorem 3.3.1 we have z1 ∈ Ew. Since p ≤ 1 < 0′
we have sup(a,b) > p, hence sup(p1, z1) ≥ p. This completes the proof. �

Theorem 4.2.1 implies that there are many pairs of degrees p1,p ∈ Ew such that
imp(p1,p) /∈ Ew and moreover Ew is not Brouwerian. Comparing Remark 4.1.3 with The-
orem 4.2.1, we may say that Dw provides an interesting model of intuitionistic higher-order
arithmetic and analysis, while Ew does not even provide a model of intuitionistic propositional
calculus.

5. Ew and symbolic dynamics. In this section we present an application of Ew to
symbolic dynamics. As explained below, symbolic dynamics is the study of subshifts. We
are interested specifically in Zd -subshifts. A standard reference for symbolic dynamics is
Lind/Marcus [63] which also includes an appendix on Zd -subshifts [63, §13.2].
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5.1. Tiling problems. Historically, the subject of Z2-subshifts began with tiling prob-
lems in the sense of Wang [117]. A Wang tile is a unit square with colored edges. Given a
finite set A of Wang tiles, let PA be the problem of tiling the plane with copies of tiles fromA.
More formally, PA is the set of mappings x : Z × Z → A such that for all (i, j) ∈ Z × Z the
right edge of x(i, j)matches the left edge of x(i+1, j) and the top edge of x(i, j)matches the
bottom edge of x(i, j + 1). Clearly PA is an effectively closed set in the effectively compact
space AZ×Z . From this it follows that degw(PA) ∈ Ew provided PA �= ∅.

In 1966 Berger [5] proved that, given A, it is algorithmically undecidable whether PA =
∅. From this it follows that there exists an A such that PA �= ∅ but no x ∈ PA is periodic.
In 1971 Robinson [82] gave an elegant simplified treatment of Berger’s results. In 1974 My-
ers [72] used Robinson’s method to construct an A such that PA �= ∅ but no x ∈ PA is
computable. Thus 0 < degw(PA) ≤ 1, and indeed, for the A constructed by Myers one has
degw(PA) = 1. My contribution in 2007 [105] was to show that for each p ∈ Ew one can
find an A such that degw(PA) = p. Thus the Muchnik degrees of tiling problems are pre-
cisely characterized in terms of Ew. A new treatment of these results and many others is in
Durand/Romashchenko/Shen [30].

5.2. Symbolic dynamics. Given a dynamical system, one may partition the state
space into a finite number of regions. Then, each orbit of the system has a symbolic rep-
resentation obtained by ignoring the actual states and considering only the regions. In this
way one obtains a symbolic representation of the given system. The existence of these sym-
bolic representations is part of the reason for the importance of the symbolic case in dynamical
systems theory.

Some key definitions for symbolic dynamics are as follows. Fix a countable semigroup
G. Specifically, letG be the additive group (Zd,+) or the additive semigroup (Nd,+) where
d is a positive integer. Let A be a finite set of symbols. The shift action ofG on AG is defined
by (Sgx)(h) = x(g + h) for all g, h ∈ G and x ∈ AG. We endow A with the discrete
topology and AG with the product topology. A G-subshift is a nonempty set X ⊆ AG which
is topologically closed and shift-invariant, i.e., x ∈ X implies Sgx ∈ X for all g ∈ G. The
study of subshifts is called symbolic dynamics.

Let X ⊆ AG and Y ⊆ BG be G-subshifts. A shift morphism is a continuous mapping
Φ : X → Y such that Φ(Sgx) = SgΦ(x) for all g ∈ G and x ∈ X. Two G-subshifts are
said to be conjugate if they are topologically isomorphic, i.e., there is a shift isomorphism
between them. A compactness argument shows that any shift morphism is given by a block
code, i.e., a finite mapping φ : AF → B, where F is a fixed finite subset of G, such that
Φ(x)(g) = φ(Sgx�F) for all x ∈ X and all g ∈ G. Since block codes are Turing functionals
(in fact, bounded truth-table functionals), the existence of a shift morphism Φ : X → Y

implies that Y is weakly reducible toX. In particular, the Muchnik degree ofX is a conjugacy
invariant of X.

Since degw(X) is a conjugacy invariant, it is appropriate to compare degw(X) with other
conjugacy invariants which have arisen previously in dynamical systems theory. One of the
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most important conjugacy invariants is the topological entropy,

ent(X) = lim
n→∞

log2 |{x�Fn ; x ∈ X}|
|Fn|

where Fn = {−n, . . . , n}d if G = Zd , or {0, 1, . . . , n}d if G = Nd . Here the cardinality of
a finite set F is denoted |F |. As a guiding principle, one may say that degw(X) represents a
lower bound on the complexity of the orbits of X, while ent(X) represents an upper bound.
In [106] we provide a precise characterization of ent(X) in terms of the initial segment com-
plexity of the orbits of X. Relationships of this kind are a subject of ongoing investigation.

A G-subshift X is said to be of finite type if it is defined by a finite set E of excluded
finite configurations. More precisely, X is of finite type if

X = {x ∈ AG ; (∀g ∈ G) (Sgx�F /∈ E)}
where F and E are finite. Many of the subshifts which arise in practice (see for instance
[15, 63]) are of finite type. Moreover, this property of subshifts is again a conjugacy invariant.

In 1989 [70] it was realized that Z2-subshifts of finite type are essentially the same thing
as tiling problems. Clearly each tiling problem PA �= ∅ is a Z2-subshift of finite type. Con-
versely, it is easy to see that each Z2-subshift of finite type is conjugate to a tiling problem.
Thus, all of the results and methods which were originally developed for tiling problems
[5, 82, 72, 105] apply equally well to the study of Z2-subshifts of finite type. Hochman and
Meyerovitch [42] have used these methods to show that a nonnegative real number is the
entropy of a Z2-subshift of finite type if and only if it is right recursively enumerable. In addi-
tion, my result from [105] (see Subsection 5.1 above) provides the following characterization
of the Muchnik degrees of such subshifts.

THEOREM 5.2.1. Let p be a Muchnik degree. For each d ≥ 2 the following statements
are pairwise equivalent.

1. p = degw(X) where X is a Zd -subshift of finite type.
2. p = degw(X) where X is an Nd -subshift of finite type.
3. p belongs to Ew.

PROOF. See [105]. Another proof is implicit in [30]. �

5.3. An application. We shall now present an application of Theorem 5.2.1 which is
stated purely in terms of subshifts, with no reference to Muchnik degrees. Namely, we shall
construct an infinite collection of Z2-subshifts of finite type which are, in a certain sense,
mutually incompatible. This application is intended to suggest that the Muchnik degrees may
provide a potentially significant method for the classification of subshifts. In particular, each
of the Muchnik degrees in Figure 1 represents a possibly interesting class of subshifts of finite
type.

If X and Y are G-subshifts on k and l symbols respectively, let X + Y and X × Y be
the disjoint union and Cartesian product of X and Y . These are G-subshifts on k + l and kl
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symbols respectively. If U is a collection of G-subshifts, let cl(U) be the closure of U under
+ and ×.

THEOREM 5.3.1. We can find an infinite collection of Z2-subshifts of finite type, W ,
such that for all partitions of W into two subcollections, U and V , there is no shift morphism
of X into Y for any X ∈ cl(U) and Y ∈ cl(V).

PROOF. By Theorem 3.1.1.2 let pi for i = 1, 2, . . . be an infinite family of Muchnik
degrees in Ew which are independent, i.e.,

inf(pii , . . . ,pim ) � sup(pj1, . . . ,pjn )

whenever {i1, . . . , im}∩{j1, . . . , jn} = ∅. By Theorem 5.2.1, for each i = 1, 2, . . . letXi be a
Z2-subshift of finite type such that degw(Xi) = pi . Let W be the collectionXi , i = 1, 2, . . . ,
and let U,V be a partition of W . By induction on X ∈ cl(U) and Y ∈ cl(V) we can easily
show that neither of X and Y is Muchnik reducible to the other. Since each shift morphism is
given by a block code, it follows that there is no shift morphism of X into Y or vice versa. �

REFERENCES

[ 1 ] S. AANDERAA AND D. E. COHEN, Modular machines I, II, in [2], Stud. Logic Found. Math. 95 (1980),
1–18, 19–28.

[ 2 ] S. I. ADIAN, W. W. BOONE AND G. HIGMAN (eds.), Word problems II: The Oxford Book, Stud. Logic
Found. Math. 95, North-Holland Publishing Co., Amsterdam, New York, 1980.

[ 3 ] K. AMBOS-SPIES, B. KJOS-HANSSEN, S. LEMPP AND T. A. SLAMAN, Comparing DNR and WWKL, J.
Symbolic Logic 69 (2004), 1089–1104.

[ 4 ] J. BARWISE, H. J. KEISLER AND K. KUNEN (eds.), The Kleene Symposium, Stud. Logic Found. Math.
101, North-Holland, Publishing Co., Amsterdam-New York, 1980.

[ 5 ] R. BERGER, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66, American Mathematical
Society, 1966.

[ 6 ] S. BINNS, A splitting theorem for the Medvedev and Muchnik lattices, MLQ Math. Log. Q. 49 (2003),
327–335.

[ 7 ] S. BINNS, Small Π0
1 classes, Arch. Math. Logic 45 (2006), 393–410.

[ 8 ] S. BINNS, Hyperimmunity in 2N , Notre Dame J. Formal Logic 48 (2007), 293–316.
[ 9 ] S. BINNS,Π0

1 classes with complex elements, J. Symbolic Logic 73 (2008), 1341–1353.
[10] S. BINNS, B. KJOS-HANSSEN, M. LERMAN AND D. R. SOLOMON, On a question of Dobrinen and Simp-

son concerning almost everywhere domination, J. Symbolic Logic 71 (2006), 119–136.
[11] S. BINNS AND S. G. SIMPSON, Embeddings into the Medvedev and Muchnik lattices of Π0

1 classes, Arch.
Math. Logic 43 (2004), 399–414.

[12] G. BIRKHOFF, Lattice theory, American Mathematical Society, 1940.
[13] G. BIRKHOFF, Lattice theory, revised edition, Amer. Math. Soc. Colloq. Pub. 25, American Mathematical

Society, New York, 1948.
[14] G. BIRKHOFF, Lattice theory, third edition, Amer. Math. Soc. Colloq. Pub. 25, American Mathematical

Society, Providence, R.I., 1967.
[15] M. BOYLE, Open problems in symbolic dynamics, Contemp. Math. 469, 69–118 in [17], Amer. Math. Soc.,

Providence, RI, 2008.
[16] D. K. BROWN, M. GIUSTO AND S. G. SIMPSON, Vitali’s theorem and WWKL, Arch. Math. Logic 41

(2002), 191–206.



514 S. SIMPSON

[17] K. BURNS, D. DOLGOPYAT AND Y. PESIN (eds.), Geometric and probabilistic structures in dynamics,
Contemp. Math. 469, American Mathematical Society, Providence, RI, 2008.

[18] J.-Y. CAI, S. B. COOPER AND A. LI (eds.), Theory and applications of models of computation, Lecture
Notes in Comput. Sci. 3959, Springer-Verlag, Berlin, 2006.

[19] P. CHOLAK, R. COLES, R. DOWNEY AND E. HERRMANN, Automorphisms of the lattice of Π0
1 classes;

perfect thin classes and ANC degrees, Trans. Amer. Math. Soc. 353 (2001), 4899–4924.
[20] P. CHOLAK, N. GREENBERG AND J. S. MILLER, Uniform almost everywhere domination, J. Symbolic

Logic 71 (2006), 1057–1072.
[21] C.-T. CHONG, Q. FENG, T. A. SLAMAN, W. H. WOODIN AND Y. YANG (eds.), Computational Prospects of

Infinity: Proceedings of the Logic Workshop at the Institute for Mathematical Sciences, June 20—August
15, 2005, Part II: Presented Talks, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore, 15, World Scientific Publishing Co. Pre. Ltd., Hackensack, NJ, 2008.

[22] J. A. COLE AND S. G. SIMPSON, Mass problems and hyperarithmeticity, J. Math. Logic 7 (2008), 125–143.
[23] B. A. DAVEY AND H. A. PRIESTLEY, Introduction to lattices and order, Cambridge University Press, 1990.
[24] M. DAVIS, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233–269.
[25] A. R. DAY AND J. S. MILLER, Randomness for non-computable measures, to appear in Trans. Amer. Math.

Soc.
[26] J. C. E. DEKKER (ed.), Recursive function theory, Proc. Symp. Pure Math., American Mathematical Society,

Providence, R.I., 1962.
[27] N. L. DOBRINEN AND S. G. SIMPSON, Almost everywhere domination, J. Symbolic Logic 69 (2004), 914–

922.
[28] R. G. DOWNEY AND D. HIRSCHFELDT, Algorithmic randomness and complexity, Theory Appl. Comput.,

Springer-Verlag, New York, 2010.
[29] B. DURAND AND W. THOMAS (eds.), STACS 2006: Proceedings of the Twenty-Third Annual Symposium

on Theoretical Aspects of Computer Science, Marseille, France, February 23–25, 2006, Lecture Notes in
Computer Science 3884, Springer-Verlag, Berlin, 2006.

[30] B. DURAND, A. ROMASHCHENKO AND A. SHEN, Fixed-point tile sets and their applications, 2010,
arXiv:0910.2415v5.pdf.

[31] H.-D. EBBINGHAUS, G. H. MÜLLER AND G. E. SACKS (eds.), Recursion theory week, Lecture Notes in
Math. 1141, Springer-Verlag, 1985.

[32] K. FALCONER, Fractal geometry, 2nd edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
[33] S. FEFERMAN, C. PARSONS AND S. G. SIMPSON (eds.), Kurt Gödel: essays for his centennial, Lect. Notes

in Log. 33, Assoc. Symbol. Logic, Cambridge University Press, Cambridge, 2010.
[34] J.-E. FENSTAD, I. T. FROLOV AND R. HILPINEN (eds.), Logic, methodology and philosophy of science

VIII, Stud. Logic Found. Math. 126, North-Holland, Amsterdam, 1989.
[35] FOM e-mail list, http://www.cs.nyu.edu/mailman/listinfo/fom/, September 1997 to the present.
[36] R. O. GANDY, G. KREISEL AND W. W. TAIT, Set existence, Bull. Acad. Polon. Sci. Sér. Sci. Math. As-

tronom. Phys. 8 (1960), 577–582.
[37] K. GÖDEL, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I,

Monatsh. Math. Phys. 38 (1931), 173–198.
[38] O. GOLDREICH, Computational complexity: a conceptual perspective, Cambridge University Press, Cam-

bridge, 2008.
[39] D. HILBERT, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437–479.
[40] P. G. HINMAN, Recursion-theoretic hierarchies, Perspectives in Mathematical Logic, Springer-Verlag,

Berlin, New York, 1978.
[41] J. M. HITCHCOCK, J. H. LUTZ AND E. MAYORDOMO, The fractal geometry of complexity classes,

SIGACT News 36 (2005), 24–38.
[42] M. HOCHMAN AND T. MEYEROVITCH, A characterization of the entropies of multidimensional shifts of



MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS 515

finite type, Ann. Math. 171 (2010), 2011–2038.
[43] P. HUDELSON, Mass problems and initial segment complexity, 2010, in preparation.
[44] C. G. JOCKUSCH, JR., Degrees of functions with no fixed points, in [34] (1989), 191–201.
[45] C. G. JOCKUSCH, JR. AND R. A. SHORE, Pseudo-jump operators I: the r.e. case, Trans. Amer. Math. Soc.

275 (1983), 599–609.
[46] C. G. JOCKUSCH, JR. AND R. A. SHORE, Pseudo-jump operators II: transfinite iterations, hierarchies, and

minimal covers, J. Symbolic Logic 49 (1984), 1205–1236.
[47] C. G. JOCKUSCH, JR. AND S. G. SIMPSON, A degree theoretic definition of the ramified analytical hierarchy,

Ann. Math. Logic 10 (1976), 1–32.
[48] C. G. JOCKUSCH, JR. AND R. I. SOARE, Degrees of members of Π0

1 classes, Pacific J. Math. 40 (1972),
605–616.

[49] C. G. JOCKUSCH, JR. AND R. I. SOARE, Π0
1 classes and degrees of theories, Trans. Amer. Math. Soc. 173

(1972), 35–56.
[50] A. S. KECHRIS, Classical descriptive set theory, Grad. Texts in Math. 156, Springer-Verlag, New York, 1995.
[51] T. KENT AND A. E. M. LEWIS, On the degree spectrum of aΠ0

1 class, Trans. Amer. Math. Soc. 362 (2010),
5283–5319.

[52] B. KJOS-HANSSEN, Low-for-random reals and positive-measure domination, Proc. Amer. Math. Soc. 135
(2007), 3703–3709.

[53] B. KJOS-HANSSEN, W. MERKLE AND F. STEPHAN, Kolmogorov complexity and the recursion theorem,
149–161 in [29], Lecture Notes in Comput. Sci. 3884, Springer, Berlin, 2006.

[54] B. KJOS-HANSSEN, J. S. MILLER AND D. R. SOLOMON, Lowness notions, measure and domination, to
appear in Proc. London Math. Soc.

[55] B. KJOS-HANSSEN AND S. G. SIMPSON, Mass problems and Kolmogorov complexity, October 2006, in
preparation.

[56] S. C. KLEENE AND E. L. POST, The upper semi-lattice of degrees of recursive unsolvability, Ann. Math. 59
(1954), 379–407.

[57] A. KOLMOGOROFF, Zur Deutung der intuitionistischen Logik, Math. Z. 35 (1932), 58–65.
[58] A. N. KOLMOGOROV, On the interpretation of intuitionistic logic, in [113] (1991), 151–158, 451–466.

(Translation of [57] with commentary and additional references.)
[59] M. KUMABE AND A. E. M. LEWIS, A fixed-point-free minimal degree, J. London Math. Soc. (2) 80 (2009),

785–797.
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