

Mass profiles and $c - M_{DM}$ relation in X-ray luminous galaxy clusters (Corrigendum)

S. Ettori^{1,2}, F. Gastaldello^{3,5,6}, A. Leccardi^{3,4}, S. Molendi³, M. Rossetti³, D. Buote⁵, and M. Meneghetti^{1,2}

¹ INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: stefano.ettori@oabo.inaf.it

² INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy

³ INAF, IASF, via Bassini 15, 20133 Milano, Italy

⁴ Università degli Studi di Milano, Dip. di Fisica, via Celoria 16, 20133 Milano, Italy

⁵ Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA

⁶ Occhialini Fellow

A&A, 524, A68 (2010), DOI: 10.1051/0004-6361/201015271

Key words. galaxies: clusters: general – X-ray: galaxies: clusters – cosmology: observations – dark matter – intergalactic medium – Errata, addenda

Table 1. Estimates of R_{200} , R_{500} and the gas mass fraction.

	Method 1			Method 2		
Cluster	R_{200}	R_{500}	f_{gas}	R_{200}	R_{500}	f_{gas}
	kpc	kpc	<r<sub>500</r<sub>	kpc	kpc	<r<sub>500</r<sub>
RXCJ0003.8+0203	1231 ± 65	824 ± 38	0.117 ± 0.049	1360 ± 122	899 ± 50	0.097 ± 0.010
Abell3911	1589 ± 88	1044 ± 41	0.146 ± 0.017	1773 ± 155	1130 ± 75	0.126 ± 0.015
Abell3827	1894 ± 84	1228 ± 45	0.140 ± 0.012	1823 ± 87	1184 ± 40	0.147 ± 0.008
RXCJ0049.4-2931	980 ± 59	666 ± 37	0.143 ± 0.020	1071 ± 39	721 ± 29	0.123 ± 0.008
Abell2034	2491 ± 140	1569 ± 75	0.073 ± 0.007	1957 ± 108	1267 ± 114	0.123 ± 0.016
RXCJ1516.5-0056	1668 ± 65	1039 ± 38	0.105 ± 0.009	1309 ± 159	845 ± 98	0.120 ± 0.015
RXCJ2149.1-3041	1298 ± 52	846 ± 30	0.131 ± 0.027	1452 ± 36	942 ± 26	0.101 ± 0.006
RXCJ1516.3+0005	1416 ± 95	940 ± 54	0.142 ± 0.074	1502 ± 107	991 ± 81	0.122 ± 0.015
RXCJ1141.4-1216	1635 ± 55	1047 ± 31	0.086 ± 0.012	1551 ± 27	1003 ± 23	0.095 ± 0.005
RXCJ1044.5-0704	1399 ± 35	923 ± 19	0.146 ± 0.009	1531 ± 72	996 ± 21	0.119 ± 0.007
Abell1068	1772 ± 57	1140 ± 31	0.091 ± 0.007	1645 ± 13	1061 ± 7	0.105 ± 0.002
RXCJ2218.6-3853	1991 ± 159	1275 ± 84	0.099 ± 0.018	1900 ± 167	1222 ± 132	0.107 ± 0.024
RXCJ0605.8-3518	1613 ± 64	1057 ± 29	0.133 ± 0.012	1643 ± 49	1071 ± 25	0.125 ± 0.006
RXCJ0020.7-2542	2023 ± 228	1329 ± 124	0.062 ± 0.016	2182 ± 200	1415 ± 82	0.060 ± 0.009
Abell1413	1837 ± 64	1207 ± 21	0.161 ± 0.010	1809 ± 58	1188 ± 28	0.167 ± 0.007
RXCJ2048.1-1750	1792 ± 155	1110 ± 80	0.132 ± 0.044	2008 ± 269	1187 ± 109	0.114 ± 0.020
RXCJ0547.6-3152	1921 ± 161	1251 ± 85	0.105 ± 0.057	1882 ± 168	1219 ± 81	0.116 ± 0.013
Abell2204	2450 ± 79	1549 ± 44	0.115 ± 0.008	2319 ± 33	1477 ± 47	0.126 ± 0.007
RXCJ0958.3-1103	2183 ± 174	1366 ± 87	0.086 ± 0.013	2191 ± 174	1363 ± 106	0.087 ± 0.014
RXCJ2234.5-3744	2237 ± 293	1474 ± 164	0.079 ± 0.067	2377 ± 294	1542 ± 159	0.085 ± 0.025
RXCJ2014.8-2430	1935 ± 56	1245 ± 32	0.136 ± 0.014	2067 ± 70	1323 ± 16	0.120 ± 0.004
RXCJ0645.4-5413	1919 ± 133	1243 ± 65	0.161 ± 0.020	1811 ± 183	1174 ± 83	0.177 ± 0.022
Abell2218	1671 ± 120	1100 ± 53	0.159 ± 0.019	1820 ± 120	1122 ± 66	0.154 ± 0.016
Abell1689	1892 ± 40	1279 ± 24	0.156 ± 0.008	1946 ± 54	1304 ± 21	0.151 ± 0.005
Abell383	1577 ± 79	1015 ± 39	0.121 ± 0.042	1697 ± 100	1090 ± 17	0.101 ± 0.005
Abell209	2006 ± 125	1267 ± 57	0.146 ± 0.015	1873 ± 197	1196 ± 54	0.160 ± 0.013
Abell963	1750 ± 95	1153 ± 50	0.137 ± 0.015	1586 ± 74	1049 ± 36	0.164 ± 0.011
Abell773	2100 ± 257	1350 ± 130	0.116 ± 0.041	1959 ± 170	1140 ± 92	0.156 ± 0.019
Abell1763	1644 ± 105	1079 ± 52	0.212 ± 0.025	1575 ± 88	1028 ± 39	0.213 ± 0.012
Abell2390	$2/35 \pm 63$	1695 ± 36	0.108 ± 0.013	3484 ± 67	2026 ± 57	0.079 ± 0.005
Abell266/	$23/4 \pm 36$	$14/8 \pm 22$	0.114 ± 0.018	2259 ± 103	1417 ± 72	0.118 ± 0.013
RXCJ2129.6+0005	$1/11 \pm 60$	1099 ± 30	0.165 ± 0.012	1619 ± 63	1042 ± 16	0.177 ± 0.006
Abel11835	2433 ± 80	1540 ± 46	0.120 ± 0.012	2539 ± 100	1583 ± 34	0.109 ± 0.006
RXCJ0307.0-2840	2030 ± 199	1302 ± 103	0.105 ± 0.017	1695 ± 78	1114 ± 59	0.147 ± 0.017
Abell68	2293 ± 127	$145/\pm/1$	0.079 ± 0.008	2549 ± 165	1489 ± 155	0.082 ± 0.020
E1455+2252	1484 ± 40 1770 + 102	980 ± 26	0.160 ± 0.013	1445 ± 59	954 ± 14	0.163 ± 0.006
KACJ2557.0+0010	$1/19 \pm 192$ 2101 + 170	$11/\delta \pm 90$ $12/7 \pm 02$	0.148 ± 0.027	$1094 \pm 2/8$	$1223 \pm 1/3$ 1202 ± 122	0.141 ± 0.033
KACJUSUS.8-7752	$2191 \pm 1/9$ 1784 ± 170	$134/\pm 93$ 1196 + 102	0.110 ± 0.010	1000 ± 301 1025 ± 222	1203 ± 122 1207 ± 105	0.148 ± 0.024 0.126 ± 0.010
RACJ0332.9-3/01	$1/04 \pm 1/9$ 2220 + 141	1100 ± 102 1200 ± 71	0.141 ± 0.027 0.122 + 0.012	1033 ± 233 1709 ± 147	1207 ± 103 1152 ± 127	0.130 ± 0.019 0.178 ± 0.022
TW2146	2230 ± 141 1975 + 40	1380 ± 71 1206 ± 26	0.123 ± 0.013 0.150 + 0.010	$1/90 \pm 10/$ 2040 + 77	1132 ± 137 1202 ± 22	0.176 ± 0.032 0.125 + 0.005
LW 3140 DVC10042 4 2027	$16/3 \pm 49$ 1604 ± 157	1200 ± 20 1069 ± 92	0.139 ± 0.010 0.176 + 0.022	2040 ± 77 1472 ± 05	1293 ± 22	0.133 ± 0.003
PYC10516 7 5430	1004 ± 137 2020 ± 246	1000 ± 62 1273 ± 114	0.170 ± 0.032 0.127 ± 0.022	$1 + 12 \pm 93$ 1767 ± 112	702 ± 133 1135 ± 57	0.199 ± 0.033 0.157 ± 0.013
PYCI1121 0 1055	2027 ± 240 2121 + 206	1275 ± 114 1325 ± 03	0.127 ± 0.022 0.155 ± 0.023	2513 ± 271	1475 ± 97	0.137 ± 0.013 0.120 ± 0.015

Notes. These estimates refer to the mass models obtained with two different methods (see Table 2) and are evaluated at the overdensities determined from the *total* (i.e. dark+gas) mass profiles. All the quoted errors are at 1σ level.