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ABSTRACT

By analysing models of the young massive cluster R136 in 30 Doradus, set-up using the

herewith introduced and publicly made available code MCLUSTER, we investigate and compare

different methods for detecting and quantifying mass segregation and substructure in non-

seeing limited N-body data. For this purpose we generate star cluster models with different

degrees of mass segregation and fractal substructure and analyse them.

We quantify mass segregation by measuring, from the projected 2D model data, the mass

function slope in radial annuli, by looking for colour gradients in radial colour profiles, by mea-

suring Allison’s � parameter and by determining the local stellar surface density around each

star. We find that these methods for quantifying mass segregation often produce ambiguous re-

sults. Most reliable for detecting mass segregation is the mass function slope method, whereas

the colour-gradient method is the least practical in an R136-like configuration. The other two

methods are more sensitive to low degrees of mass segregation but are computationally much

more demanding. We also discuss the effect of binaries on these measures.

Moreover, we quantify substructure by looking at the projected radial stellar density profile,

by comparing projected azimuthal stellar density profiles and by determining Cartwright &

Whitworth’s Q parameter. We find that only high degrees of substructure affect the projected

radial density profile, whereas the projected azimuthal density profile is very sensitive to

substructure. The Q parameter is also sensitive to substructure but its absolute value shows a

dependence on the radial density gradient of the cluster and is strongly influenced by binaries.

Thus, in terms of applicability and comparability for large sets of N-body data, the mass

function slope method and the azimuthal density profile method seem to be the best choices for

quantifying the degree of mass segregation and substructure, respectively. The other methods

are computationally too demanding to be practically feasible for large data sets.

Key words: methods: data analysis – Magellanic Clouds – galaxies: star clusters: individual:

R136.

1 IN T RO D U C T I O N

Understanding the process of star cluster formation is vital for as-

trophysics since most, if not all, stars are born in a clustered mode

(Lada & Lada 2003). In the commonly accepted picture, star clus-

ters form in three stages: first, a cold molecular cloud collapses and

forms stars along filaments throughout this collapse. Secondly, the

⋆E-mail: akuepper@astro.uni-bonn.de (AHWK); tmasch@astro.uni-

bonn.de (TM); pavel@astro.uni-bonn.de (PK); h.baumgardt@uq.edu.au

(HB)

massive O- and B-stars start radiating off the residual gas until only

a more or less bound ensemble of stars is left. Subsequently, the

newly formed star cluster evolves dynamically until total dissolution

(e.g. Kroupa, Aarseth & Hurley 2001; Portegies Zwart, McMillan

& Gieles 2010).

In this picture, the survival of star clusters throughout the birth

process and the duration of the subsequent dynamical dissolution

depend crucially on the star formation efficiency, i.e. how much of

the cold gas gets transformed into stars. Moreover, it depends on the

structure of the gas cloud and the distribution of the forming stars.

That is, for a more massive ensemble of stars the gas expulsion

process will be more violent, whereas for low-mass configurations
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gas expulsion will happen more adiabatically (Geyer & Burkert

2001; Kroupa & Boily 2002; Goodwin & Bastian 2006; Bastian &

Goodwin 2006; Baumgardt & Kroupa 2007; Baumgardt, Kroupa &

Parmentier 2008b). A further influence on the survival rate is given

by the degree of mass segregation, i.e. when the most massive stars

of an ensemble are located deeper within the forming cluster, they

will have a more destructive influence on the subsequent evolution

of the star cluster (Vesperini, McMillan & Portegies Zwart 2009).

A yet open question in this respect is whether or not star clusters

form with primordial mass segregation, or if the initial mass func-

tion (IMF) of stars is the same throughout the whole star-forming

complex.

Observations of young clusters indeed suggest the existence of

primordial mass segregation (e.g. Stolte et al. 2002; Bontemps et al.

2010b). But such observed mass segregation is not necessarily due to

variations of the IMF, as mass segregation can also develop quickly

during the first few 100 000 years of cluster formation through dy-

namical relaxation. The time-scale of this process is proportional

to the relaxation time of the configuration and the mass ratio of

the forming stars (Spitzer 1987). Moreover, recent investigations

show that initially substructured configurations can develop mass

segregation on significantly shorter time-scales (McMillan, Ves-

perini & Portegies Zwart 2007; Allison et al. 2009; Moeckel &

Bonnell 2009; Allison et al. 2010; Yu, de Grijs & Chen 2011). In

this picture, (fractal) substructures, which may have much shorter

relaxation times, can segregate before they merge to form the final

star cluster. Hence, substructure in young star clusters is not only a

sign of a system not being virialized, but may also play a vital role

in the process of star cluster formation. Thus, two major aspects of

young star clusters have to be investigated in detail at the different

stages of star cluster formation: the degree of mass segregation and

the degree of substructure.

These questions may be addressed by means of collisional N-

body computations. But such numerical investigations also require

a choice of initial conditions. The question therefore remains what

configuration star clusters have at the stage where dynamical inves-

tigations can set in. From hydrodynamical computations of collaps-

ing gas clouds it appears that star formation may be happening in

a hierarchical, fractal fashion (Klessen 2001; Bonnell, Bate & Vine

2003; Bonnell & Bate 2006). During the subsequent dynamical

evolution this substructure is erased and indeed a significant degree

of mass segregation is established (Maschberger et al. 2010). But

hydrodynamical computations only reach gas cloud masses of a few

103 M⊙, thus they do not shed any light on star formation in star-

burst regions or on the formation of globular clusters, nor can they

account for the self-regulation induced by stellar feedback, yet.

Observations of young embedded star clusters show a similar pic-

ture like hydrodynamical computations. For example, Lada & Lada

(2003), Teixeira et al. (2006), Allen et al. (2007) as well as Gennaro

et al. (2011) find many young clusters to show substructure and to be

asymmetric. Moreover, Gutermuth et al. (2005, 2008) find young

embedded clusters in near-IR data to be azimuthally asymmetric

with a high degree of substructure. The star formation sites appear

filamentary and elongated over scales of several parsec. Such ob-

servations suggest that young clusters expand, get more symmetric

and lose substructure with ongoing gas removal (Gutermuth et al.

2008; Bontemps et al. 2010a). The nearby, more evolved Orion

Nebula Cluster, for example, shows a high degree of mass segre-

gation which appears to be inconsistent with its current relaxation

time (Hillenbrand & Hartmann 1998; Kroupa 2002). In this picture,

this may indicate that the ONC also formed with a high degree of

substructure.

But does this picture also apply to starbursts, and to the formation

of globular cluster-like objects? Massive star formation sites with

stellar masses above 104 M⊙ in the Milky Way like NGC 3603,

Westerlund 1 and the Arches cluster, are rare and mostly heavily

obscured by interstellar dust. Nevertheless, mass segregation as well

as high degrees of substructure have been reported for those objects

(e.g. Stolte et al. 2002, 2006; Brandner et al. 2008; Gennaro et al.

2011).

The most massive star formation site in the Local Group is the

30 Doradus complex in the Large Magellanic Cloud (LMC). It is

the only nearby starburst region, which makes it the ‘Rosetta Stone’

for understanding events such as the formation of globular clusters

(Walborn 1991). This paper therefore addresses this star formation

site and aims at investigating mass segregation and substructure

in this complex. For this purpose, we create models of the young

massive cluster R136 which is forming in the 30 Doradus complex

(Sections 2 and 3). We then use various methods from the literature

(Section 4) to detect and quantify mass segregation and substructure

(Section 5). Our aim is to test and calibrate these methods in order

to be able to apply them to N-body computations which will be

presented in a follow-up investigation, and to discuss their appli-

cability to observational data. Furthermore, Appendix A contains a

manual on our new star cluster initialization code MCLUSTER.

2 R 1 3 6

The young massive cluster R136 is at the heart of the 30 Doradus (30

Dor) star-forming region in the LMC. 30 Dor is known as the largest

H II region in the Local Group with more than 8×105 M⊙ of ionised

gas within a radius of about 100 pc (Kennicutt 1984; Malumuth &

Heap 1994). The densest region of 30 Dor is the central star cluster

NGC 2070 with a half-light radius of about 22 pc. R136, the centre

of this cluster, has always posed a challenge to high-resolution

observations. This object is crucial for our understanding of star

formation, since there is no other comparable starburst site in the

local Universe. But due to its distance, its high central brightness

and its substantially varying extinction, R136 is hard to access

observationally (e.g. Brandl et al. 1996).

R136 was found to be about 3 Myr old, but its constituent stars

show some age spread (Bosch et al. 2001; Andersen et al. 2009). Due

to the absence of red supergiants and due to the presence of several

Wolf-Rayet stars, the age of the oldest population of stars within

R136 can be limited to 3–5 Myr (Brandl et al. 1996). Some O stars in

the centre of R136 may be less than 2 Myr old, though, indicating

a complex star formation history (Massey & Hunter 1998). The

metallicity of the whole 30 Dor complex was found to be about half

solar value, i.e. Z ≃ 0.01 (Lebouteiller et al. 2008).

Mass estimates for the stellar component of R136/NGC 2070

range from about 1.4 × 104 M⊙ (Malumuth & Heap 1994), esti-

mated from Hubble Space Telescope (HST) UBV photometry, to

about 4.5 × 105 M⊙ (Bosch, Terlevich & Terlevich 2009), esti-

mated from multi-epoch stellar velocity dispersion data. Recent

high-precision photometry yields masses between ∼5.5 × 104 M⊙
(Crowther et al. 2010) and >105 M⊙ (Andersen et al. 2009).

R136 is an important test bed for our understanding of the IMF

of stars, and thus has been the subject of several mass function

investigations. Especially the mass function at the high-mass end

and a probable upper limit of stellar masses have been primary

targets of such investigations. Down to about 1.1 M⊙ the mass

function of R136 was found to be in agreement with a Salpeter

slope of 2.35 (Hunter et al. 1995; Andersen et al. 2009), with some

of these investigations reporting small radial dependencies of the

C© 2011 The Authors, MNRAS 417, 2300–2317
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2302 A. H. W. Küpper et al.

mass function (Brandl et al. 1996; Selman et al. 1999; Sirianni et al.

2000).

The masses of the brightest objects in R136 are very uncertain.

Due to resolution limits, R136 was once believed to be a single

supermassive star of more than 1000 M⊙. Only with Speckle in-

terferometry and the superior resolution of the HST it was later

found to be a very dense star cluster (see e.g. Weigelt et al. 1991).

Recently, Crowther et al. (2010) identified four stars in the centre of

R136 to have masses between 165 and 320 M⊙, again challenging

the commonly believed upper stellar mass limit of about 150 M⊙
(Weidner & Kroupa 2004).

R136 most probably has a high binary fraction. Selman et al.

(1999) and Bosch et al. (2009) find that at least all O- and B-stars

are in binaries, even though Crowther et al. (2010) find that the four

most massive stars are most likely single stars. But the observed

velocity dispersion seems to be dominated by binary motion (Bosch

et al. 2001, 2009).

Like many young clusters in the LMC, R136 follows a shallow

power-law density profile without any visible truncation at large

radii, as specified by Elson, Fall & Freeman (1987),

ρ(R) = ρ0(1 + R2/a2)(−γ /2), (1)

where R is the projected radius, ρ0 is the central density, a is a scale

radius and γ is the power-law slope. For R136’s number density

profile, γ was found to be about 1.85 for massive stars (Hunter et al.

1995). Its surface brightness profile shows a variety of power-law

slopes, depending on the instrument and filter which was used. The

γ values lie between 1.7 in F336W (Campbell et al. 1992) and

about 2 in F555W (Selman et al. 1999). Andersen et al. (2009)

found values of γ = 1.54 and a = 0.025 pc in F160W, whereas

according to Mackey & Gilmore (2003) γ = 2.43 for F555W and

F814W. Campbell et al. (2010) measured γ = 1.8 in optical data

(V and I), but γ = 1.6 in near-infrared (H and K) images. Hunter

et al. (1995) and McLaughlin & van der Marel (2005) found γ ≃ 2

in F555W. In none of the above investigations a proper core could

be identified, such that the scale radius a was in all cases found to

be of the order of the resolution limit.

R136 does not appear to be kinematically relaxed (Selman et al.

1999). In several studies evidence of dynamical substructure has

been found, such as a ring of massive stars at about 2–3 pc radius

(Malumuth & Heap 1994; Brandl et al. 2007), or a shell of massive

stars at a radius of 6 pc (Hunter et al. 1995) – structure which should

be quickly erased by two-body relaxation. Moreover, the azimuthal

density profile of R136 shows strong variations (Campbell et al.

2010). Such substructure and asymmetry also cause bumps in the

surface brightness profile at the corresponding radii (Malumuth &

Heap 1994; Selman et al. 1999), making the investigation of R136

difficult.

3 M O D E L S

To calibrate our methods for detecting mass segregation and

substructure, we generated two sets of star cluster models with

MCLUSTER
1 with properties similar to those of R136 as seen today

(see the previous section). In addition, we produce one set of mass

1 www.astro.uni-bonn.de/~akuepper/mcluster/mcluster.html

or www.astro.uni-bonn.de/~webaiub/german/downloads.php

A manual on our new publicly available cluster-initialization code MCLUSTER

is provided in Appendix A.

segregated models without binaries for comparison, and two more

sets of models with substructure using different random seeds for

estimating the stochastic scatter of the results.

All calibration models share the same basic properties, i.e. the

clusters have a total mass of 105 M⊙, consisting of about 170 000

stars drawn from the canonical Kroupa (2001) IMF following a

power-law index, α, of 1.3 for stellar masses between 0.08 M⊙ and

0.5 M⊙, and α = 2.3 for stellar masses larger than 0.5 M⊙. As the

upper stellar mass limit we chose 100 M⊙ since stellar evolution

models for higher masses are rather unreliable and therefore can-

not be properly modelled by the stellar evolution routines we use.

Crowther et al. (2010) find four stars in R136 to exceed the mass

of 165 M⊙, though. They also estimate the total number of stars

with initial masses above 100 M⊙ to be about 14 within a radius

of 5 pc. While this limitation may only have a negligible effect on

most measures we test here, it may well have a significant effect on

the colour-gradient method to detect mass segregation due to their

high luminosities (see Section 4).

The cluster stars have a metallicity of Z = 0.01 and they were

evolved from the zero-age main sequence (ZAMS) to an age of

3 Myr using the Single-Star Evolution (SSE) routine (Hurley, Pols

& Tout 2000) within MCLUSTER (see Appendix A). Thus, the most

massive stars have masses of about 80 M⊙. This was done in order

that the cluster stars have comparable colours like the stellar pop-

ulation of R136 which is especially important for detecting mass

segregation with the colour-gradient method.

The binary fraction, f bin, is 1.0 in all calibration models (except,

of course, for the set of models without binaries), i.e. all stars

are in binaries. The binaries were set up using ordered pairing for

stars more massive than 5 M⊙ following the method introduced

by Oh & Kroupa (in preparation), i.e. the most massive star is

in a binary with the second-most massive star, the third with the

forth, and so on. Stars with masses below this threshold were paired

randomly. The value of 5 M⊙ is somewhat arbitrary, but it rests

on the observation that late-type stars with masses below 1–5 M⊙
follow well-defined, simple pairing rules [random pairing from the

IMF, the initial period distribution function from Kroupa (1995b),

thermal eccentricity distribution], while massive stars with masses

larger than about 10 M⊙ tend to have similar component masses

and shorter periods (Kroupa 2011).

The orbital elements of the binaries were generated using the

Kroupa (1995b) period distribution and a thermal eccentricity dis-

tribution (Kroupa 2008). As shown in Küpper, Kroupa & Baumgardt

(2008), this results in a significant number of binaries which are too

wide to be bound inside the very dense environment of our models.

The mean kinetic energy, or ’dynamical temperature’, of centre-of-

mass (CoM) particles in such a configuration is about 1 km2 s−2.

Assuming that all binaries with binding energies lower than this dy-

namical temperature are unbound or get disrupted quickly (Heggie

1975), the effective binary fraction would be about 0.5, but about

1.0 among the high-mass stars which is consistent with recent ob-

servations (Bosch et al. 2009), even though Crowther et al. (2010)

find the four most massive stars in R136 not to be in binary systems.

But those few objects appear to be peculiar in many aspects which

may well be due to the frequent strong gravitational encounters they

must experience. Thus, they may be neglected here in this respect.

The density profile, ρ(R), of the models was chosen to be an

EFF profile (equation 1; Elson et al. 1987) with a scale radius, a, of

0.1 pc and a slope of γ = 2.0. The 2D density profile was deprojected

within MCLUSTER and used to generate the 3D cluster configuration

(for details see Appendix A). The (infinitely extended) EFF profile

was cut off at a radius of 20 pc, as we are mainly interested in the

C© 2011 The Authors, MNRAS 417, 2300–2317
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Mass segregation and fractal substructure 2303

inner ∼10 pc. The central density, ρ0, was fixed such that the total

mass within this radius is 100 000 M⊙.

To guarantee a good comparability between the different mod-

els, we chose the same random seed for all models such that the

stellar populations in all of them are the same, and only the spatial

distributions of the stars are different. Just the two additional sets

of models with substructure have each a separate random seed to

estimate the effect of stochasticity of the initialisation process on

the results.

The two calibration sets of models with binaries differ only in

one parameter, one has a varying degree of mass segregation, and

the other has a varying degree of fractal substructure.

(i) We produced 10 models with mass segregation values, S,

ranging from 0.0 (unsegregated) to 0.9 in steps of 0.1, and another

10 models with values of S from 0.91 to 1.0 (completely segregated)

in steps of 0.01 (Fig. 1). For segregating the clusters we chose the

method suggested by Baumgardt, De Marchi & Kroupa (2008a),

which preserves the desired (mass) density profile. We refer to

Appendix A for details on how the intermediate steps between

unsegregated and completely segregated clusters were set up with

MCLUSTER. In short: with a higher value of S, more massive stars

get higher probabilities to be placed deep in the potential well of

the cluster, i.e. in the centre. Lower values of S correspond to more

similar probabilities between high- and low-mass stars, i.e. more

random distributions.

(ii) We generated 3 × 15 models with fractal initial conditions

(Fig. 2). The fractal dimension, D, of the models was varied from

3.0 (non-fractal) to 1.6 (highly fractal) in steps of 0.1. Each set of 15

models has a different random number seed to measure the stochas-

tic scatter between different realisations. For fractalizing the stellar

distributions, we used the procedure described in Appendix A. In

short: we set up a fractal distribution of stars within a unit-sphere

following roughly the method of Goodwin & Whitworth (2004)

and ‘folded’ this distribution with the desired density profile. In this

way, we end up with a radially concentrated but fractal distribution

of stars. This is reminiscent of the filamentary and radially oriented

structure of dense star-forming gas in contracting molecular cloud

cores. Moreover, this way of producing a radial but fractal distri-

bution is an important innovation for testing substructure-detection

algorithms, since young clusters like R136 are neither purely radial

nor purely fractal (see Section 2).

Additionally, we produce another set of mass segregated mod-

els like the one above but without binaries, to determine the

influence of binary stars on the methods for detecting mass

segregation.

4 M E T H O D S

There have been several attempts to detect and quantify mass seg-

regation and substructure in (young massive) star clusters. Here,

we are going to apply some of these techniques to our models of

R136 to test their feasibility and to get some comparability among

them. In a follow-up investigation we will apply some of these

methods to N-body computations to follow the time evolution of

mass segregation and substructure. Since some of the methods are

computationally intensive when applied to a cluster with 170 000

stars, we apply a low-mass cut-off at 1.1 M⊙ for most methods

which leaves us with about 15 000 stars. This furthermore reflects

the common situation faced with observational data which often

suffers from incompleteness and crowding.

4.1 Mass segregation

We consider the following methods for the detection and quantifi-

cation of mass segregation.

(i) In analogy to the work of Andersen et al. (2009) on R136,

we measure the mass function slope, α, of stars above 1.1 M⊙ at

projected radii between 3 and 7 pc. In this radial range, Andersen

et al. achieve reasonably high completeness levels. For compari-

son, we also do this for all stars in the cluster and for all stars

within a projected radius of 3 pc from the cluster centre. We deter-

mine slope α with the Modified Maximum Likelihood estimator of

Maschberger & Kroupa (2008). A standard deviation is estimated

using 100 Monte Carlo subsets of stars. Since all models are set up

with a mass function slope of 2.3 for stellar masses above 0.5 M⊙,

mass segregated clusters should show a steeper slope outside 3 pc

and a shallower slope inside this radius. The choice of 3 pc is some-

what arbitrary but is meant to establish some comparability to the

results achieved by Andersen et al. (2009).

(ii) We measure radial colour gradients following the method-

ology of Gaburov & Gieles (2008). From the stellar radii and cor-

responding effective temperatures, which are provided by the SSE

routine (Hurley et al. 2000) in NBODY6 as well as MCLUSTER (see

Appendix), we compute B-, V- and I-band magnitudes for each star.

We use the algorithm described in Flower (1996) to first compute the

bolometric correction, BC, and the colour index, B − V . From this

we derive the V- and B-band magnitudes, MV and MB, respectively.

Finally, we derive the B − I colour using the relation of Natali et al.

(1994) and with this the I-band magnitude, MI , as well as the V − I

colour. Mass-segregated clusters should show a difference in V − I

colour in the inner part with respect to the outer part of the cluster.

(iii) Allison et al. (2009) suggest a method of detecting mass

segregation using a minimum spanning tree (MST). Their measure,

�, shows if a subset of stars is more concentrated compared to a

random subset of the same size. It is computed with

� =
l

l
±

σ

l
, (2)

where l is the length of the MST of the subset, l is the mean length

of the MST of random subsets, and σ is the standard deviation

of the distribution of MST lengths of random subsets. In a mass-

segregated cluster the most massive stars should show a � well

above 1 because they are more concentrated than the average subset

of random stars. Here, we are going to take only stars more massive

than 1.1 M⊙ into account, even though the computational expense

of this method does barely depend on the total number of stars but

on the size of the subset. This size, N, was practically limited to

about 500 in our case, since the computation time scales withO(N 2)

for Prim’s algorithm which we used (Prim 1957). Moreover, we set

the number of random subsets to 50, following the suggestion of

Allison et al. (2009).

(iv) Maschberger & Clarke (2011) suggest a different method for

quantifying mass segregation: by looking at the local stellar surface

densities of stars. This measure has proven to be useful for detect-

ing mass segregation in fractal structures which have not merged

to a larger structure yet, but which may already be mass segregated

(Maschberger & Clarke 2011). It defines mass segregation differ-

ently than the MST measure: while the MST method measures how

strongly the massive stars are grouped in relation to each other, the

local surface density method measures how strongly the massive

stars are grouped in relation to all stars. That is, the MST method

measures how close the massive stars are to each other, whereas

C© 2011 The Authors, MNRAS 417, 2300–2317
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2304 A. H. W. Küpper et al.

Figure 1. Logarithmic intensity maps of six cluster models which where set-up with MCLUSTER. The field-of-view is 20 pc × 20 pc. The clusters show different

degrees of mass segregation. The mass segregation parameter, S, of the clusters is 0.0 (upper left), 0.4 (upper right), 0.7 (middle left), 0.9 (middle right), 0.95

(lower left) and 1.0 (lower right), respectively. All models follow the same mass profile and extend out to a radius of 20 pc.

C© 2011 The Authors, MNRAS 417, 2300–2317
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Mass segregation and fractal substructure 2305

Figure 2. Logarithmic intensity maps of four cluster models which where set-up with MCLUSTER. The field-of-view is 20 pc × 20 pc. The clusters are not mass

segregated (S = 0) and show different degrees of substructure. The fractal dimension, D, of the clusters is 2.6 (upper left), 2.3 (upper right), 2.0 (lower left)

and 1.6 (lower right), respectively. All models follow the same mass profile and extend out to a radius of 20 pc. Note that these clusters are not meant to look

like real, existing objects but shall rather give a set of models with a smoothly increasing degree of substructuredness.

the local surface density method measures how close other stars

are to the massive stars. We compute the projected stellar surface

density around each star following Casertano & Hut (1985), i.e. by

measuring the radial distance, R, to its sixth nearest neighbour in

projection and calculating the normalized local surface density as

� =
6 − 1

πR2�mean

, (3)

where �mean is the mean local surface density in the cluster. In a

mass-segregated cluster massive stars will have higher local densi-

ties than the average star. Thus, by normalizing � with the mean

local surface density we get a dimensionless measure which should

yield values larger than unity for mass-segregated stars. For this

method, we also use only stars more massive than 1.1 M⊙ since the

computation of a neighbour list for N stars scales withO(N 2) for a

brute-force algorithm which we use here. To reduce the stochastic

scatter, we bin the stars in mass bins of 500 stars starting from the

most massive star. In this way, the � and the local surface density

measure are better comparable.

4.2 Substructure

In order to detect and quantify substructure and asymmetry in our

models we test three methods.

(i) We look at the surface number density profile of massive

stars. Like for the detection of mass segregation, we assume a

reasonable completeness level above 1.1 M⊙ and count only stars

more massive than that. Inhomogeneities will appear as bumps and

kinks in this kind of profile.

(ii) By measuring the azimuthal density profile (see e.g.

Gutermuth et al. 2005) we want to address possible asymmetries as

was done by Campbell et al. (2010) for R136. For this purpose we

count the stars with masses above 1.1 M⊙ within a projected radial

distance of 7 pc in 20 azimuthal bins of 18 degree each. We quantify

the asymmetry by computing the mean number density of the bins

and the standard deviation. A comparable measure of asymmetry is

then given by the normalized standard deviation, i.e. the standard

deviation divided by the mean.
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2306 A. H. W. Küpper et al.

(iii) Cartwright & Whitworth (2004) suggest a measure for de-

termining the degree of substructure, Q. For this method, the mean

edge length, m, of an MST connecting all stars in the cluster has

to be measured and divided by the mean separation between the

cluster stars, s. For a homogeneous stellar distribution Cartwright

& Whitworth find a Q value of about 0.8. A more substructured

cluster should show a lower value of Q, whereas higher values of Q

indicate a radial distribution of the stars.

5 R ESULTS

We test our methods with our calibration models in order to see

how sensitive the various procedures are in determining mass seg-

regation or substructure. In a follow-up investigation we aim at

applying these methods to N-body models in order to see how

mass segregation and substructure evolve with time in an R136-like

configuration.

5.1 Mass segregation

5.1.1 Mass function slope

In Fig. 3 we show the results of the mass function slope determi-

nation for all stars above 1.1 M⊙ within a projected radius of 3 pc

and outside this radius. Also shown are the uncertainties of these

values, which have been estimated using 100 Monte Carlo subsets

for each model. While there is barely any change in the measured

mass function slope within 3 pc, at radii larger than 3 pc α changes

significantly for high degrees of mass segregation, i.e. S ≥ 0.7. At

radii larger than 3 pc the change in α follows a simple relation of

the form

α(S) = a(S − 1)−1 + b (4)

with fitted values a = −0.09 and b = 2.15.

We did the same for the models without binaries (Fig. 4). The

change in α with growing S is less pronounced compared to the

models with 100 per cent binaries among high-mass stars (a =

Figure 3. Mass function slopes of the stars with masses above 1.1 M⊙ of

the models with mass segregation and 100 per cent binaries among high-

mass stars. The points show the slopes for all stars within a projected radius

of 3 pc (thick black) and for all stars outside this radius (thin red). The

slopes were determined with the Modified Maximum Likelihood estimator

of Maschberger & Kroupa (2008). The uncertainties were estimated using

a Monte Carlo approach. For comparison, the green dotted line gives the

overall mass function slope of 2.3. The red solid line is equation (4) with

coefficients a = −0.09 and b = 2.15. The difference in α becomes only

evident for strongly mass-segregated clusters with S ≥ 0.7.

Figure 4. The same as Fig. 3 but for the models without binaries. The red

solid line is equation (4) with coefficients a = −0.04 and b = 2.23. The

difference to the models with binaries comes from the way the models are

set-up: binaries are treated as single particles with the sum of the component

masses in the set-up process, i.e. the difference between the most massive

and the least massive particle is larger in the case of a high binary fraction

and such is the degree of mass segregation for any value of S.

−0.04 and b = 2.23). This is due to the set-up process within

MCLUSTER, which first generates the binaries, replaces them by

CoM particles with the combined mass of the two companion stars,

and finally distributes those particles within the cluster before they

are replaced by their constituent stars. With a high binary fraction

the spread in masses between low-mass and high-mass particles is

higher, and the number of particles is lower during the distribution

process. Thus, the final degree of mass segregation is higher in

the case of high binary fractions. For the binary-free models, mass

segregation becomes only significant for models with S ≥ 0.8.

5.1.2 Colour gradient

In Fig. 5, we show the V − I colour profiles for the mass-segregated

models. A significant magnitude difference of more than 0.1 mag

Figure 5. V − I colour profiles of the mass segregation models as suggested

by Gaburov & Gieles (2008) for the detection of mass segregation. Only

very high degrees of mass segregation (S ≥ 0.9) produce gradients larger

than 0.1 mag within a radial range of about 10 pc.
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Mass segregation and fractal substructure 2307

Figure 6. The same as Fig. 5 but for the models without binaries. As for

the mass function slope (Fig. 4), the effect of growing S is comparable to

the case with the high binary fraction.

between the inner part of the clusters and the outer part is only

observable for very high degrees of mass segregation (S ≥ 0.9).

In Fig. 6, the same is shown for the models without binaries.

Like for the mass function slope, the effect is less pronounced due

to the lower effective degree of mass segregation for models without

binaries. In both cases, with and without binaries, mass segregation

would only be detectable for clusters with mass function slopes α ≥

3 outside the core using this method on a R136-like young massive

cluster.

It has to be kept in mind, though, that the adopted upper initial

mass limit in our models is 100 M⊙, whereas Crowther et al. (2010)

estimate the number of stars exceeding this limit to be of the order

of 10. Such high-mass stars, which may even reach masses of up to

320 M⊙ in R136 (Crowther et al. 2010), will contribute significantly

to the blue part of the spectrum, thus will make an observable colour

gradient more likely if those stars are preferentially found near the

cluster centre.

5.1.3 Minimum spanning tree

In Fig. 7, the MST measure, �, of Allison et al. (2009) is shown

for some of the mass-segregated models. The mean MST length

was determined for all stars in bins of 500 stars and divided by the

mean MST length of 50 random subsets of 500 cluster stars each.

The dotted lines give the standard deviation of the random subsets

from this mean value (see equation 2). It demonstrates the large

significance of the detected mass segregation in all clusters.

We see that all curves have a jump at 5 M⊙, even the S = 0.0 case,

which is due to the binary component pairing routine in MCLUSTER.

We chose to pair massive O- and B-stars with similar mass com-

panions, whereas all stars with masses less than 5 M⊙ are paired

randomly. This affects the MST length of the massive stars signif-

icantly. In Fig. 8 we see that this jump disappears for the models

without binaries. In both cases, most curves show a similar be-

haviour (� mostly between 1 and 3) with a clear trend to higher �

for high values of S. Only the curve for S = 1.0 significantly stands

out from the rest. This is due to the fact that in the case of S =

1.0 the high-mass stars have the smallest MST that can possibly be

made. For values of S smaller than 1.0 it becomes likely that larger

edges are included in the high-mass MST such that its length grows

rapidly.

Figure 7. MST measure, �, as suggested by Allison et al. (2009). The

thicker lines show the normalized MST lengths for bins of 500 stars versus

mean stellar mass, 〈m〉. The thinner lines show the standard deviations

from the mean of 50 random subsets of stars, which is a measure of the

significance of the detections. All models show a jump at 5 M⊙ which

corresponds to the mass limit of binaries with similar mass companions.

Below this threshold the binaries are paired randomly. The measure shows a

slowly but continuously increasing degree of mass segregation for all models

with S ≤ 0.95 and an extreme behaviour for the completely mass-segregated

model.

Figure 8. The same as Fig. 7 but for the models without binaries. The

curves do not show the jump at 5 M⊙ evident in the models with the high

binary fraction. Only high values of S ≤ 0.9 yield a significant signal. As

in the case with binaries, the difference between complete mass segregation

and lower values of S is again high.

5.1.4 Local surface density

In Fig. 9, we show the normalized local surface density, �, for bins

of 500 stars. The curves look similar to the MST curves but appear to

be less influenced by the ordered binary pairing. Comparing Fig. 9

with Fig. 10, which shows the same measure but for the clusters

without binaries, shows that the binaries have indeed only a minor

influence on the curves. In both cases, the �-values of the highest

mass bins grow continuously with increasing S. Below ∼10 M⊙
the local surface density measure suffers from statistical variations,

though.

In contrast to the MST measure, the local surface density measure

does not show a jump between the S = 0.95 model and the com-

pletely mass-segregated model. This is due to the fact that the local

surface density of the high-mass stars is less influenced by outliers,

C© 2011 The Authors, MNRAS 417, 2300–2317
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2308 A. H. W. Küpper et al.

Figure 9. Local surface density measure, � (equation 3; Maschberger &

Clarke 2011). The lines show the normalized, median local surface density

versus stellar mass. The lines were averaged with bins of 500 stars. This

measure is only weakly affected by the binary pairing and shows a smooth

transition from unsegregated to completely mass-segregated models.

Figure 10. The same as Fig. 9 but for the models without binaries. On

average the curves lie at lower values of � and show a smaller scatter than

for the models with binaries.

since it is the average of 500 surface density values, whereas the

high-mass MST length is a sum of 500 edge lengths where one

outlier can make a large contribution.

5.1.5 Comparison

We have shown that the mass function slope method appears to be

the easiest and most reliable way to detect mass segregation for a

rich cluster like R136, even though it is not very sensitive to low

degrees of mass segregation and suffers from the arbitrariness of

the choice of radius. That is, the results of this method depend on

the radial range in which the mass function is measured and on

the underlying mass function of the cluster. This complicates the

interpretation of its results.

The colour-gradient method is also easy to work with but is very

insensitive in an R136-like configuration. A further test including

stars with very high initial mass (≥100 M⊙) would be very interest-

ing, though, since, due to crowding and incompleteness effects, all

but the colour-gradient measure are almost impossible to compare

with observational data of such a cluster.

The MST measure and the local surface density method do work

for an R136-like cluster for non-seeing limited data, but are com-

putationally much more demanding than the other two methods. In

contrast to the others, both measures, MST and local surface density,

allow not only to detect but also to quantify mass segregation. That

is, their results automatically relate the behaviour of the massive

stars to the other stars. In practice, the quantification is complicated

by stochastic fluctuations.

The local surface density measure has the advantage that, once

the neighbour density of each star is calculated, the stochastic fluc-

tuations can be reduced easily by increasing the bin size which,

in addition, increases its sensitivity. This is not possible with the

MST measure, since new MSTs have to be constructed when the

sample size is changed. With a sample size of 500 the local surface

density measure shows a smoother behaviour in the very high mass

part, whereas the MST measure is, on average, smoother down to

lower masses. This may complicate the interpretation of the local

surface density measure when looking at the whole mass spectrum.

Moreover, the MST measure has the advantage that the significance

of its results is calculated simultaneously. Therefore, an estimate of

the significance of the local surface density measure’s results, like

the standard deviation of the MST measure, should be constructed

in order to make the local surface density measure more valuable.

In Fig. 11, we compare the MST measure with the local surface

density method. In this figure we only show the value of the up-

permost mass bin, and show its dependence on the degree of mass

segregation, S. Both measures show a steep rise for the highest val-

ues of S. Moreover, both measures are affected by a high binary

fraction which may be due to the way we construct our binary pop-

ulation, since we pair massive stars above 5 M⊙ preferentially with

each other. Nevertheless, the effective degree of mass segregation

should grow monotonically with increasing S. In this respect, the

local surface density measure shows a more monotonic behaviour,

even though it also suffers from statistical fluctuations (pink lines).

It also gives a value of about 1 for the completely unsegregated

cluster in the case of a high binary fraction (pink solid line).

Figure 11. Summary of the methods for quantifying mass segregation for

the uppermost mass bin (500 most massive stars) of all models with mass

segregation (solid lines are models with binaries, dashed lines are for models

without binaries). The � is the MST measure and the � is the local surface

density measure. The ordinate gives the normalized MST length or the

normalized local surface density, respectively. Note: whereas � = � =

1 signifies no mass segregation of the highest mass stars, � = X is not

equivalent to � = X in general.
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Mass segregation and fractal substructure 2309

5.2 Substructure

5.2.1 Radial density profile

In Fig. 12, we show the projected 2D radial number density profiles

of the clusters with fractal substructure. For the profiles we only

took stars more massive than 1.1 M⊙ and put them into 20 log-

arithmically spaced bins between 0.05 and 20 pc radial distance.

A cluster without substructure (D = 3.0) is shown for comparison

(red solid line). We see that for higher degrees of substructure the

deviations from the spherically symmetric cluster grow.

For the cluster with D = 1.6, which has the highest degree of

substructure in our sample, the radial profile shows a bump and a

kink in the slope at about 0.5 pc. Depending on the radial range, a

power-law fit of the profile would yield quite different results for

such a cluster or the profile could be even interpreted as following

a two-part power law. For lower degrees of substructure, the radial

density profile shows much less pronounced deviations making this

plot rather unfeasible for quantifying the degree of substructure.

5.2.2 Azimuthal density profile

In Fig. 13 we show the azimuthal density profiles of the same

clusters as in Fig. 12. For this purpose, we used again only stars

with masses above 1.1 M⊙. Moreover, we counted only stars within

a projected radius of 7 pc and put them into 20 bins of 18◦ width

each (see Fig. 14). The bins were then divided by the covered area in

pc2. Here, the different degrees of substructure are more apparent.

The spherically symmetric model (red solid line) shows only some

minor statistical fluctuations, whereas the model with the highest

degree of substructure shows a difference of about a factor of 6

between the bin with the fewest and the bin with the most stars. The

mean azimuthal density is for all clusters about the same (see also

Table 1).

In Fig. 15 the relative azimuthal variations for all three sets of

substructured models are shown, that is, the standard deviation of

azimuthal densities from the mean azimuthal density, d�, divided

by the mean, �. From the different sets of models which are gener-

ated with three different random seeds we can see that the generation

of models with substructure is a quite stochastic process. But, as

Figure 12. Radial number density profile for stars more massive than

1.1 M⊙ of the clusters with fractal substructure. For lower values of D

the profiles deviate more strongly from the spherically symmetric case

(D = 3.0). Only the model with the highest degree of substructure (D

= 1.6) shows a significant bump at about 0.5 pc and a kink in the power-law

profile.

Figure 13. Projected azimuthal number density profile for stars more mas-

sive than 1.1 M⊙ of the clusters with fractal substructure. The density was

measured in 20 bins of 18◦ for all stars within a projected radial distance

of less than 7 pc from the cluster centre. The azimuthal variations grow for

lower values of D, i.e. for higher degrees of substructure.

Figure 14. Sketch of how the projected azimuthal number density profile

is determined. The density is measured in 20 bins of 18◦ for all stars within

a projected radius of 7 pc from the cluster centre.

expected, the relative azimuthal variation grows with decreasing

values of D. The growth follows a simple relation of the form

d�

�
(D) = a D + b, (5)

with a ≃ −0.46 and b ≃ 1.45.

The azimuthal density profile appears to be a good mea-

sure for substructure in star clusters which allows a reasonable

quantification.

5.2.3 Q parameter

In Fig. 16 we show the Q parameter as defined by Cartwright &

Whitworth (2004) for our models with fractal substructure. The

computation of this parameter necessitates the construction of a

MST of all cluster stars. As stated above, this is computationally

very expensive for a cluster of 170 000 stars when using Prim’s

algorithm. Even for a subset of about 15 000 stars with masses

larger than 1.1 M⊙ the computation of this parameter takes several

hours on a regular workstation. One would have to switch to a more

sophisticated algorithm to use the full set of stars which is beyond

the scope of this paper. We therefore compute the Q parameter for

different sizes of subsets with different low-mass cut-offs.

We compute Q by measuring the mean separation between the

cluster stars, s, and the mean edge length, m, of an MST connecting

C© 2011 The Authors, MNRAS 417, 2300–2317
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2310 A. H. W. Küpper et al.

Table 1. Azimuthal number density variations of the three sets of substructured models. � gives the mean azimuthal

number density of stars above 1.1 M⊙ within a projected radial distance of 7 pc, whereas d� gives the standard

deviation from this mean.

Set 1 Set 2 Set 3

D � [pc−2] d� [pc−2] d�/� � [pc−2] d� [pc−2] d�/� � [pc−2] d� [pc−2] d�/�

1.60 55.2 33.4 0.61 46.5 34.1 0.74 42.4 32.9 0.79

1.70 66.0 43.1 0.65 32.5 22.3 0.68 49.1 34.9 0.71

1.80 53.6 35.9 0.65 39.6 28.4 0.73 52.5 37.7 0.72

1.90 54.4 29.9 0.55 40.6 20.2 0.50 47.2 25.3 0.54

2.00 41.7 24.3 0.58 38.1 17.6 0.47 42.7 25.7 0.61

2.10 54.1 22.2 0.41 49.3 31.6 0.64 36.7 17.4 0.48

2.20 46.1 18.5 0.40 45.3 22.2 0.49 52.8 20.6 0.39

2.30 46.7 18.3 0.39 51.0 17.5 0.36 57.4 22.3 0.39

2.40 45.5 18.6 0.41 47.8 19.2 0.40 47.7 12.3 0.25

2.50 52.4 14.3 0.27 44.4 14.4 0.33 55.4 15.6 0.29

2.60 49.7 11.6 0.23 48.4 10.1 0.21 40.7 11.4 0.28

2.70 43.9 10.3 0.23 46.9 8.70 0.19 43.8 11.3 0.26

2.80 44.2 8.02 0.18 46.4 14.7 0.32 44.4 8.19 0.19

2.90 46.0 6.16 0.13 47.5 7.25 0.15 49.8 6.51 0.13

3.00 47.7 3.20 0.07 47.0 3.30 0.07 47.1 3.98 0.08

Figure 15. Relative azimuthal variations of the clusters with fractal sub-

structure. Shown are three different sets of models each with a different

random seed. The solid line gives a linear fit to all the data (equation 5) with

a slope of −0.46 and an intercept of 1.45 .

all stars in the subset, such that

Q =
m

s
. (6)

Cartwright & Whitworth find values between 0.45 for highly fractal

configurations (fractal dimension D = 1.5) and 0.8 for homogeneous

configurations (D = 3.0). Values above 0.8 and up to about 1.5 they

find for models with a radial density gradient (ρ3D ∝ r−3). But,

in contrast to their investigation, the models in our sample have

a radial density gradient (ρ2D ∝ R−2) and at the same time fractal

substructure (1.6 ≤ D ≤ 3.0). Therefore, we expect the value of Q of

our models to be of the order of the values Cartwright & Whitworth

find for the radial clusters, but also to show some variability around

this value depending on the degree of substructure. Moreover, our

models contain binaries which are paired non-randomly, i.e. the

massive stars above 5 M⊙ are paired with similar mass companions

(see Section 3) which further complicates the interpretation of Q.

Interestingly, as can be seen in Fig. 16, the Q values of our models

depend on the size of the subset. For a small subset containing

Figure 16. Cartwright & Whitworth’s Q parameter of the clusters with

fractal substructure. Computation of this parameter is computationally too

demanding when all stars are taken into account and Prim’s algorithm is

used for the computation of the MST length (see text). But when calculating

it for only a subset of the most massive stars, the absolute value of the Q

parameter seems to depend on the number of stars in the subset, which is

most probably due to the binary population. The lower solid line gives a

linear fit to the Q parameters for the subsets containing all stars above 5 M⊙
(equation 7) with a slope of 0.16 and an intercept of 0.44. In contrast, the

upper solid line is a fit to the subsets containing all stars with masses larger

than 1.1 M⊙ (about 15 000 stars) from all three sets of models. The slope

here is 0.18 and the intercept 0.75.

only the most massive stars with masses larger than 5 M⊙ (about

2500 stars) the values almost agree with the findings of Cartwright

& Whitworth for purely fractal clusters but are shifted about 0.1

upwards. The more stars are taken into account the more the absolute

values of the Q parameter are shifted to larger values. This is due to

the binaries in our clusters: when taking all stars above 5 M⊙ we

only have massive binaries in our sample, as the massive stars are

paired with each other. When going to a lower mass limit we add

stars to the sample that need not be in binaries, i.e. whose binary

companions need not be within the sample. This increases the mean

edge length m, whereas it barely affects the mean separation s, such

that Q becomes larger.
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Mass segregation and fractal substructure 2311

We fit a linear function to the values of the form

Q(D) = a D + b, (7)

where a = 0.16 and b = 0.44 for the small subsets with m > 5 M⊙,

whereas a = 0.17 and b = 0.75 for the large subsets with m >

1.1 M⊙ (about 15 000 stars) from all three sets of models. Subsets

with sizes in between these two yield intermediate values (e.g. a =

0.21 and b = 0.62 for a subset with m > 1.9 M⊙, i.e. about 7500

stars).

To which exact values Q will converge when more stars are taken

into account cannot be checked easily but the growth in Q with

increasing sample size falls off strongly such that the overall values

should be close to the values of our largest samples. Anyway, the

question remains how useful such a quantification of substructure

is. To follow the evolution of substructure with time in a single N-

body computation seems possible with this method. But it is time

consuming, unless a highly sophisticated algorithm is used.

6 SU M M A RY A N D C O N C L U S I O N S

Here, we introduce for the first time the code MCLUSTER, which

is a publicly available tool for initializing star cluster models and

binary-rich stellar populations.

Moreover, we have tested and calibrated several methods for

detecting and quantifying mass segregation and substructure in non-

seeing limited star cluster data. We applied these methods to models

of the young massive cluster R136 which is the only starburst site

in the Local Group. Accessing this cluster and measuring its degree

of mass segregation and substructure at its current age of about

3 Myr is of importance because it is the only object which can be

resolved into single stars and at the same time can give insight into

star formation conditions in starburst sites. Moreover, due to its size

and mass we can assume that the present-day conditions in R136

can still yield insights to the conditions 3 Myr ago, as the dynamical

time of this configuration is comparably long (about 0.3 Myr), i.e.

the cluster is dynamically young (Portegies et al. 2010). Finally,

its moderate mass of about 105 M⊙ makes it accessible by means

of N-body investigations. But for understanding the development

of these two quantities, mass segregation and substructure, easily

quantifiable and little time consuming methods have to be found.

We compare four different methods for quantifying mass segre-

gation and three methods for quantifying substructure from the lit-

erature (Section 4). The former we quantify by comparing the mass

function slope of massive stars, the radial colour profile (Gaburov

& Gieles 2008), the MST measure (Allison et al. 2009, 2010) and

the local surface density measure (Maschberger & Clarke 2011).

We quantify substructure by looking at the projected radial number

density profile, the projected azimuthal density profile (Gutermuth

et al. 2005, 2008) and by calculating the Q parameter (Cartwright

& Whitworth 2004). For this purpose, we set up star cluster models

with different degrees of mass segregation and substructure using

the new publicly available code MCLUSTER (Section 3).

We find that the methods for detecting mass segregation often

yield ambiguous results (Section 5). From the four methods we

compare, the mass function slope seems to be the simplest and

most reliable measure for detecting mass segregation, even though

it suffers from a somewhat arbitrary choice of radius, and significant

detections of mass segregation are only possible for high degrees

of mass segregation. The radial colour profile only yields signifi-

cant results for the highest (and rather unrealistic) degrees of mass

segregation for a configuration like R136. Both measures cannot

handle substructure, i.e. clusters which are not radially symmetric.

In contrast to that, the MST measure and the local surface density

measure can handle substructured clusters (Maschberger & Clarke

2011), but their results are often ambiguous, and computationally

they are much more demanding. Moreover, the MST method is

strongly influenced by a high binary fraction. On the other hand,

it has the unique advantage that the significance of its results is

readily given. The local surface density measure is less influenced

by binaries, and with careful calibration it can be a very sensitive

method for detecting mass segregation. We recommend, though,

that a measure of its significance similar to the standard deviation

of the MST measure should be constructed.

For quantifying substructure we are left with the projected az-

imuthal density profile since the projected radial density profile only

shows significant deviations from the spherical symmetric case for

extremely substructured configurations. Such a cluster with a high

degree of substructure can show strong bumps and kinks in its

projected radial profile but those are difficult to quantify. The pro-

jected azimuthal density profile is a reliable measure of substructure

(Fig. 15). We suggest to compute the mean projected azimuthal den-

sity and the normalized standard deviation from this mean to get a

useful measure. The Q parameter is also sensitive to substructure

but is computationally very demanding, when using a standard al-

gorithm like Prim’s algorithm, as a MST for all cluster stars has to

be constructed. If only a subset of stars is taken into account for its

computation, its absolute value shows a dependence on the num-

ber of stars in this subset which is due to the binary population we

adopted. Thus, the Q parameter is only of limited use in such config-

urations, unless a much more sophisticated algorithm like Kruskal’s

algorithm is used (see e.g. Lomax, Whitworth & Cartwright 2011).

Finally, we have to conclude that most of the methods presented

in this work will likely yield ambiguous results when applied to ob-

servations of young massive clusters, due to crowding and incom-

pleteness effects, as has similarly been found by Ascenso, Alves &

Lago (2009). Also the distance of such clusters and heavy, variable

extinction will add further difficulties. But even for non-seeing lim-

ited data of (young) massive clusters, like N-body data, some of the

methods will face great computational difficulties due to the large

number of stars involved.
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APPENDI X A : MCLUSTER MANUAL

The tool MCLUSTER is an open source program that can be used

to either set up initial conditions for N-body computations or, al-

ternatively, generate artificial star clusters for direct investigation.

There are two different versions of the code, one basic version for

generating all kinds of unevolved clusters (in the following called

mcluster) and one for setting up evolved stellar populations at a

given age. The former is completely contained in the C file main.c.

The latter (here dubbed as mcluster_sse) is more complex and

requires additional FORTRAN routines, namely the SSE routines by

Hurley et al. (2000) which are provided with the MCLUSTER code.

For a quick introduction read the README file which is also pro-

vided with the code. For technical details on how to generate initial

conditions for star cluster in general we would like to refer to Kroupa

(2008) and referenced literature therein.

A1 Compilation

After extracting the archive which can be obtained from the given

web address,2 the basic version mcluster can be compiled on a

UNIX system from the command line with

2 www.astro.uni-bonn.de/~akuepper/mcluster/mcluster.html

or www.astro.uni-bonn.de/~webaiub/english/downloads.php
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Mass segregation and fractal substructure 2313

> cc -lm -o mcluster main.c

where cc may be replaced by the C-compiler available on your

computer. It can also be compiled by using the Makefile, i.e.

> make mcluster

For the more complex version mcluster_sse the Makefile has

to be used. Type

> make mcluster_sse

after which the program should compile, generating an executable

named mcluster_sse.

(i) Note that, when using the Makefile, you may have to change

the C- and/or FORTRAN-compiler entry as well as the path of your

compiler.

(ii) In case you want to apply any change to the code, make sure

that you first delete all object files by typing

> make clean

before re-compiling the code.

A2 Input

There are two ways of choosing the desired cluster parameters. One

is to set the parameters manually within main.c, within the upper

part of the code right at the beginning of the main routine where all

variables are declared. Note that, after changing the value of a vari-

able, you have to compile the code again. The more convenient way

is therefore to pass arguments to the code at the time of execution

via the command line (see Table A1 for an overview of available

options). Type

> mcluster -h

or

> mcluster_sse -h

respectively, to get a quick help on the available parameters and

their usage.

(i) In case you have not specified a certain parameter, the default

value as set within the main routine is used.

(ii) Not all parameters can be set via the command line, some

have to be changed within the code.

(iii) All command line arguments are the same for mcluster

and mcluster_sse, except for the age parameter (-e) which is

mentioned in more detail below.

A3 Density profile

MCLUSTER can generate star clusters with various radial density

profiles (option -P). In all cases the total mass of the cluster has to

be chosen separately (options -M or -N). The available profiles are

as follows.

(i) The simplest option is the analytical Plummer (1911) profile

(option -P0) which is the simplest (two-parameter only) stationary

Table A1. Overview of available command line options in MCLUSTER with brief descriptions. For details on the available choices

see the corresponding paragraphs. Also given are the possible ranges and the default values (which can be permanently changed

within main.c).

Option Range Default Meaning

−N 0 < N < Nmax 0 Number of cluster stars (specify either N or M)

−M M > 0 1000 Mass of the cluster ( M⊙; specify either N or M)

−P 0/1/2/3/−1 0 Density profile (Plummer/King/Šubr/EFF/homogeneous sphere)

−W 1.0–12.0 – W0 parameter for the King model (only P = 1, ignored if P �= 1)

−R R > 0 0.8 Half-mass radius in parsec (ignored for P = 3)

−r 0 < r < c – Scale radius of the EFF template in parsec (only P = 3, ignored if P �= 3)

−c c > r – Cut-off radius of the EFF template in parsec (only P = 3, ignored if P �= 3)

−g g > 1.5 – Power-law slope of the EFF template (only P = 3, ignored if P �= 3)

−S 0.0–1.0 0.0 Degree of mass segregation (0.0 means no segregation; S < 1.0 for P = 2)

−D 1.6–3.0 3.0 Fractal dimension (3.0 means no fractality)

−T T > 0 100.0 NBODY4/6 computation time in N-body units

−Q Q ≥ 0 0.5 Virial ratio (Q = 0.5 for virial equilibrium)

−C 0/1/3 3 Output type (NBODY6/NBODY4/ASCII table)

−A A > 0 2.0 NBODY4/6 adjustment time in N-body units (e.g. Heggie & Hut 2003)

−O O > 0 2.0 NBODY4/6 output time in N-body units

−G 0/1 0 Use GPU with NBODY6 (no/yes)

−o – Test Output name of the cluster model

−f 0/1/2 1 IMF (no mass function/Kroupa IMF/user defined)

−a a < 0 – IMF slope for a user-defined IMF, may be used multiple times, from low to high mass

−m m > 0 – IMF mass limit ( M⊙) for a user-defined IMF, may be used multiple times, from

low to high mass

−B 0–N/2 0 Number of binary systems (specify either B or b)

−b 0.0–1.0 0.0 Binary fraction (specify either B or b)

−p 0/1 1 Binary pairing (random/ordered for M > 5 M⊙)

−s s ≥ 0 0 Seed for randomization, set 0 for randomization by local time

−t 0/1/2/3 3 Tidal field (no tidal field/near-field approximation/point-mass potential/

Milky Way potential)

−e e ≥ 0 0 Epoch for stellar evolution in Myr (only available in mcluster_sse)

−Z 0.0001–0.03 0.02 Metallicity (Z = 0.02 for solar metallicity)

−X X ≥ 0 8500/0/0 Galactocentric radius vector in parsec (use three times for x-, y- and z-coordinate)

−V V ≥ 0 0/220/0 Cluster velocity vector in km s−1 (use three times for x-, y- and z-coordinate)

−u 0/1 1 Output units (N-body units/astrophysical units)

−h/-? – – Display help
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solution to the collisionless Boltzmann equation. For this profile

only the half-mass radius has to be specified additionally (option -R,

in parsec). The Plummer profile is in principle infinitely extended

but gets automatically truncated at the theoretical tidal radius of the

cluster in case a tidal field has been specified (see below).

(ii) A more sophisticated set of models is given by the distri-

bution function of King (1966). For this profile (option -P1) the

half-mass radius and the dimensionless value of W0 which specifies

the model concentration (option -W ranging from 2.0, i.e. low con-

centration, to 12.0, i.e. high concentration) has to be specified. The

underlying routine for generating the density distribution from the

distribution function is based on KING0 by Douglas C. Heggie (e.g.

Heggie & Aarseth 1992). Note that the final density distribution

gets scaled to exactly match the desired half-mass radius; the radius

at which the density becomes zero does not necessarily match the

theoretical tidal radius in this case.

(iii) Šubr, Kroupa & Baumgardt (2008) give a density pro-

file which can be chosen to be mass segregated. For this density

profile (option -P2) the half-mass radius and an additional mass-

segregation parameter (option -S, ranging from 0.0 to 0.99, but S <

0.5 for reasonable models in virial equilibrium) have to be chosen.

For -S0.0 the Šubr profile is equal to a Plummer profile. MCLUSTER

uses a slightly modified version of the PLUMIX routine by Ladislav

Šubr to set up this kind of profile.

(iv) Young clusters in the LMC were found to follow a 2D density

profile consisting of a core and a power-law tail without visible tidal

truncation. Elson et al. (1987) give a simple analytical formula for

such profiles which can be deprojected with MCLUSTER and used to

set up 3D star cluster models (option -P3). Since those models are

in principle infinitely extended, the so-called EFF models do not get

scaled to a certain half-mass radius, but rather require specification

of a cut-off radius to which the profile should extend (option -c,

in parsec). The central density then gets calculated automatically

using the specified cluster mass (see below). In addition, the radius

of the 2D core (option -r, in parsec) and the slope of the power-law

part of the profile (option -g) have to be chosen. Values for g larger

than 1.5 usually yield stable solutions; observational values lie at

about 2.0 for young star clusters in the LMC (Elson et al. 1987).

The velocity field of this family of profiles is generated using the

algorithm described in Kroupa (2008).

(v) A further possibility to set up the density distribution is given

by option -P-1. In this case the final cluster has no density gradient,

but consists of stars which are homogeneously distributed within

a sphere. The size of the sphere is specified by choosing the half-

mass radius (thus, the limiting radius of the sphere will be a factor of

21/3 larger). This option is especially useful in case of fractal initial

conditions (see below). The velocities of the stars are isotropic and

drawn from a Gaussian distribution.

(i) The exact matching of the actual half-mass radius as resulting

from the discretized model to the specified value may be switched

off within the main routine, but is not recommended. Set match =

0 and compile the code again.

A4 Tidal field

As mentioned above, the choice of the tidal field and of the cluster

orbit may influence the extent of the density profile. MCLUSTER of-

fers different kinds of tidal fields which can be specified with the

option -t. In addition it may be necessary to specify the galactocen-

tric radius vector and the orbital velocity vector. This can be done

by using the option -X (in parsec) and -V (in km s−1), respectively,

three times for the x-, y- and z-component (within a Cartesian co-

ordinate system where the galactic disc would lie in the x-y-plane,

if applicable). As an example, -X8500.0 -X0.0 -X0.0 -V0.0

-V220.0 -V0.0 would give the motion of the Local Standard of

Rest. This option is especially useful when generating input for N-

body computations, since the input parameter file is automatically

adjusted accordingly.

(i) For a cluster in isolation choose -t0. No truncation is applied

to profiles like the Plummer profile in this case.

(ii) A linearized tidal field, as described in Fukushige & Heggie

(2000), can be chosen with -t1. If you have selected to generate

input files for NBODY6 (see below) then the values for the Local

Standard of Rest are used. In all other cases the galactocentric

distance has to be specified additionally. Therefore use the option

-X and set all but one component to zero, e.g. -X6000.0 -X0.0

-X0.0 for an orbit at 6 kpc. No orbital velocity vector has to be

specified as the linearized tidal field mimics a circular orbit.

(iii) If you choose -t2 then you get a point-mass galaxy for

which you can specify any galactocentric radius and orbital velocity

(options -X and -V). The mass of the galaxy is set within the header

of the main routine. By default, M1pointmass is set such that you

get an orbital velocity of 220 km s−1 at a galactocentric radius of

8.5 kpc.

(iv) For a more realistic, Milky Way potential you can choose

option -t3. This potential consists of a central point mass/bulge,

modelled as a Hernquist potential (Hernquist 1990), a Miyamoto

disc (Miyamoto & Nagai 1975) and a logarithmic (phantom dark-

matter) halo, with values as given in Allen & Santillan (1991). If

you set up initial condition for NBODY6 then the logarithmic halo

will be adjusted such that the circular velocity, VCIRC, at some

radius, RCIRC, has a specific value. The default is 220 km s−1 and

8.5 kpc, respectively, which may be changed in the header of the

main routine. The other parameters of this potential may also be

changed there.

A5 Cluster mass and stellar mass function

You can either fix the total number of stars in your cluster (option

-N) or set a desired total mass (option -M, in solar units). In the

latter case, MCLUSTER draws stars from the selected mass function

until the desired mass is exceeded. The mass function of stars in

the cluster can be defined to be one of the following three kinds

(option -f).

(i) All stars can have the same mass (option -f0). The mass of

each star is by default assumed to be 1 M⊙, which may be changed

within the main routine (parameter single_mass).

(ii) The canonical Kroupa (2001) IMF can be used with-f1. This

IMF has a slope of α1 =−1.3 for stellar masses m = 0.08−0.5 M⊙,

and the Salpeter slope α2 = −2.3 for m > 0.5 M⊙. The lower

and upper IMF limits, mlow and mup, are by default 0.08 M⊙ and

100 M⊙, respectively, but these values may be changed in the main

routine.

(iii) More sophisticated, multi-power-law IMFs can be set up

with option -f2. Therefore, MCLUSTER uses the routine MUFU by

Ladislav Šubr. This routine allows to define several mass limits

and corresponding mass function slopes between these limits. The

limits and the slopes can be passed to MCLUSTER with the options -m

and -a, respectively. These options have to be used multiple times,

where one more limit has to be passed to MCLUSTER than slopes.

For example, the Kroupa IMF with a steeper slope of α3 = −2.7 for

stars more massive than 5 M⊙ up to a maximum mass of 80 M⊙
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Mass segregation and fractal substructure 2315

would be -f2 -m0.08 -a-1.3 -m0.5 -a-2.3 -m5.0 -a-2.7

-m80.0.

(i) The maximum stellar mass–cluster mass relation found by

Weidner & Kroupa (2006) can be used to automatically cut off the

IMF at the corresponding upper mass limit. This routine is switched

off by default but may be activated by setting theweidner parameter

in the main routine to 1.

(ii) In MCLUSTER there is a maximally allowed stellar mass limit

defined through the parameter upper_IMF_limit. This parameter

is set to 100 M⊙ since NBODY6, i.e. the stellar evolution routine

SSE within NBODY6, does not allow higher masses. In case you need

higher stellar masses anyway, set this parameter within the main

routine to the desired value but keep in mind that stars with mass

larger than 100 M⊙ are evolved as 100 M⊙ stars.

A6 Mass segregation

With MCLUSTER it is possible to apply any degree of primordial

mass segregation to all available density profiles, not only to the

Šubr profile as already mentioned above. Therefore, the method as

described in Baumgardt et al. (2008a) is used. The advantage of

this method is that the chosen density profile is not changed with

increasing degree of mass segregation as is the case for the Šubr

profile.

In short, it works as follows: for a cluster of N stars MCLUSTER

first draws the stellar masses from the selected IMF (see above) and

then creates N ′ = N〈m〉/mlow orbits, where 〈m〉 is the mean stellar

mass and mlow the lowest stellar mass in the cluster. These orbits get

ordered by their specific energy, from low-energy to high-energy

orbits. Then the stellar masses are also ordered and the cumulative

mass function, Mcum(i) =
∑

i
j=1M(j), is evaluated from this mass

array, whereby i = 1, . . ., N. After dividing Mcum(i) by the total

cluster mass, the function is normalized such that it runs from 0 to

1. Finally, for any star an orbit from the list of energy-ordered orbits

is chosen from the orbits between N ′Mcum(i − 1) and N ′Mcum(i).

If the masses in the mass array are perfectly ordered from highest

to lowest then this will yield a completely mass-segregated cluster.

That is, the highest mass star is on the lowest energy orbit, and the

lowest mass star is on the highest energy orbit.

Intermediate degrees of mass segregation can be achieved by non-

perfect ordering. In MCLUSTER this is realized as follows: first, all N

stellar masses are ordered from highest to lowest. Then, beginning

with the highest mass, the masses are written to a new array, where

the ith massive star is written to the jth empty slot counting from 0

to N − i. j is generated using

j = (N − i)(1 − X1−S), (A1)

where X is a random number between 0 and 1, and S is the mass

segregation parameter. When S is zero, j can have all values from 0

to N − i and we end up with a random distribution. But when S is 1,

then j is always zero and we reproduce the perfectly ordered array

we started with. That is, because every star i, beginning with the

most massive one, gets written to the next empty slot which is slot

i. By choosing S values between 0 and 1 we can get intermediate

degrees of partial mass segregation (option -S). Unlike for the Šubr

profile, S can explicitly be chosen to be 1.0. Moreover, for all values

of S we get clusters in virial equilibrium (if not explicitly specified

differently) with the desired (mass) density profile.

A7 Fractality

Star clusters are not born in perfect symmetry. They are rather

formed in collapsing, fractal molecular clouds (see e.g. Gutermuth

et al. 2008; Könyves et al. 2010). With MCLUSTER you can set up

two kinds of fractal initial conditions. First, you can set up a fractal

distribution of stars within a sphere of constant average density,

similarly as described in Goodwin & Whitworth (2004). Secondly,

you can add fractal substructure to any of the above given density

profiles.

(i) When you choose a homogeneous density profile (option

-P-1) the cluster stars getting distributed within a sphere as follows.

The first star (a so-called parent) is placed in the middle of a box

of size 2 (arbitrary units), then this box is split into eight sub-boxes

of half the initial box size. In the centre of each sub-box a further

star is placed (a so-called child), whereupon each sub-box is split

up into eight smaller pieces, such that each child now becomes a

parent on its own. By applying a small random offset to each star

from its sub-box centre, we make sure that the final cluster does not

look too grid-like. This is repeated until we have generated 128.0

× 8log (N)/log (8) stars or until the total number of stars would exceed

this number with the next generation of children. From these stars

we randomly draw N stars with radial distances of less than unity

from the centre of the initial box. We end up with a homogeneous

sphere of stars.

Now, if not every sub-box gets a new star, and only those sub-

boxes get sub-divided which have a star in their centre, then the

final distribution of stars becomes fractal. The probability that a

sub-box gets a star can be expressed as 2(D−3), where D is the fractal

dimension (option -D). If D is chosen to be 3.0 then we get no

fractality since the probability is unity, i.e. every parent gets eight

children. If it is, e.g. 2.0 then only every second sub-box gets a star,

or, on average, every parent has four children.

Corresponding stellar velocities are drawn from a Gaussian dis-

tribution, and re-scaled such that all children of one parent are in

virial equilibrium and the total mean velocity in one sub-group is

unity (arbitrary units). In addition, each child gets the velocity of its

parent. In a later step, MCLUSTER re-scales the phase-space coordi-

nates of the stars such that the cluster is in virial equilibrium (if not

specified differently). In this way, we get a fractal structure consist-

ing of coherently moving, gravitationally bound substructures.

(ii) Alternatively, we can choose to set up fractal clusters which

follow a given density profile like, e.g., the Plummer profile or the

King profile, but which show fractal substructure. This is realized

by first generating a sphere of stars of radius unity with the above

procedure. But now this distribution of stars gets folded with the

chosen density profile. Therefore, the radius of each star first gets

re-scaled by its absolute value to the power of three. In this way,

we get N stars with radii distributed homogeneously between 0

and 1, but which show substructure in 6D phase space. These radii

are used as seeds to compute a corresponding radius within the

specified density profile. In a last step, the space coordinates of

each star get scaled by this newly generated radius. In this way the

fractal distribution is conserved but folded with the specific density

profile. Moreover, the velocity of each star is scaled to the expected

velocity of a star at the given radius within the specified density

profile.

Note that the method described here is an ad hoc introduction

of substructure which, like all other methods for generating sub-

structured models, does not rely on any physical motivation. In this

way, the generated clusters can have any degree of substructure and

a smooth transition from spherical symmetry to substructuredness
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can be realized. This may be useful in some applications but is not

meant to accurately reproduce observational substructure. In fact,

due to the radial re-scaling the substructure gets stretched which

produces long filaments in the final clusters. These filaments may

be compared to the filamentary structure of molecular gas in star-

forming regions.

(i) In order to guarantee a minimum of spherical symmetry, you

can tell MCLUSTER to give eight children to the first ‘ur-parent’. In

this way, you avoid too large asymmetries. This will lead to less

differing results between initial conditions generated with different

random seeds, but does on the other hand not yield perfectly fractal

clusters. This tweak can be switched off within the header of the

main routine. Set the symmetry parameter to 0 and re-compile.

(ii) Once in a while MCLUSTER gets stuck in the fractality sub-

routine. In this case a restart with a different random seed should

help.

A8 Binaries

After the stellar masses got drawn from an IMF, you can choose

to let MCLUSTER set up binary systems. You can specify either the

desired number of binary systems (option -B, values from 0 to N/2)

or a fraction of stars which should be in binary systems (option -b,

values from 0 to 1). Thus, from all N stars, N × b/2 or B binaries

are formed, respectively. The binaries are then replaced by a CoM

particle for the rest of the procedure. Only in the very end, after

the density profile has been established and the velocities of the

cluster members have been scaled appropriately, the CoM particles

get replaced by their two constituent stars. The binary orbital plane

is oriented randomly and the orbital phase is also chosen randomly.

The internal properties of the binaries can be generated according

to the following semimajor axis distributions which can be selected

in the header of the main routine (parameter adis).

(i) A flat distribution of semimajor axes can be specified with

adis = 0. In addition, you have to choose a minimum and a

maximum semimajor axis (parameters amin and amax).

(ii) If adis is set to 1 (default) then the semimajor axis of each

binary is computed from a period which was drawn from the Kroupa

(1995a) period distribution (see also Kroupa 2008). This is the

preferred distribution function as it unifies the observed Galactic-

field and the pre-main-sequence population.

(iii) If you want the semimajor axes to be generated from the

Duquennoy & Mayor (1991) Galactic-field period distribution then

you have to set adis = 2.

(i) The pairing of primary and secondary components of the bi-

naries can be chosen to be either random or ordered. In the latter case

(option -p1) the stellar masses above a certain threshold (parameter

msort in the main routine) get ordered from most to least massive.

The rest of the stars are put in random order on to the list below

the last star with mass above msort. The pairing of binaries now

starts with the most massive star which gets paired together with

the second-most massive, then the third with the forth, and so on

down the list. Below msort pairing is random, which is consistent

with the binary-star observational data (Kroupa 2008). The default

value of msort is 5 M⊙, in rough agreement with recent findings

(e.g. Kobulnicky & Fryer 2007).

(ii) Eccentricities, e, are drawn from a thermal eccentricity dis-

tribution, i.e. f (e) = 2e (e.g. Duquennoy & Mayor 1991; see also

Kroupa 2008).

(iii) To correct for the fact that short-period binaries in the

Milky Way do not show high eccentricities (Mathieu 1994), Kroupa

(1995b) introduces an analytical correction for such systems, which

is attributed to pre-main-sequence eigenevolution between the con-

stituent stars. This correction can be switched off by setting the

parameter eigen = 0 in the main routine.

A discussion of binary systems and their formation can be found

in Kroupa (2009).

A9 Stellar evolution

MCLUSTER contains the SSE routines by Hurley et al. (2000) which

are also used in e.g. NBODY6 for stellar evolution. If you just want

to generate star clusters consisting of ZAMS stars then you only

need the basic version mcluster. But if you want to set up a

cluster with an evolved stellar population then you have to use

mcluster_sse which makes use of those SSE routines. In this case

you have to specify an age for the cluster population (option -e,

in Myr). The evolution of the stars is done in the very beginning

of the program. When the stars are drawn from the IMF they get

immediately evolved to the desired age. The masses of the evolved

stars are then summed up and additional stars are generated until

the desired cluster mass is exceeded or the desired number of stars

is reached. The stellar parameters derived from SSE for each star are

stored in an additional file, which also has to be passed to NBODY6

(see below).

(i) The internal parameters of SSE can be changed within the

header of the main routine (not recommended).

(ii) In case a star becomes a neutron star or a black hole SSE

assigns a kick velocity to the remnant (if not specified differently).

The kick velocity can be used to remove the remnant from the

cluster. Therefore the present-day escape velocity of the cluster at

its half-mass radius is calculated and if the kick velocity exceeds this

velocity it gets removed. If you want to keep all compact remnants

set the parameter remnant = 0 in the main routine.

(iii) The metallicity, Z, can be set with option -Z. Alternatively,

you can specify the metallicity as [Fe/H] within the main routine,

the corresponding Z value is computed using the relation given in

Bertelli et al. (1994). Make sure that in this case you set Z = 0

beforehand.

(iv) In case you are generating binaries and have selected ordered

pairing for stars above a certain mass, msort (see above), then the

ZAMS mass is used to decide whether a star is paired randomly to

another star or not.

(v) The components of binaries are independently evolved as

single stars with SSE. For a more advanced treatment of stars in bi-

naries, the Binary-Star Evolution (BSE) routines by Hurley, Pols &

Tout (2002) are also included in MCLUSTER. Therefore, at the very

end of the cluster generation procedure, when the binary CoM par-

ticles are replaced by their constituents and the orbital elements are

generated, the masses of the components are reset to their ZAMS

mass. Then the two stellar masses, a semimajor axis and an eccen-

tricity are passed to BSE which finally returns corresponding evolved

values. This feature is switched off by default but may be activated

by setting the parameter BSE to 1 in the main routine.

A10 Output

Up to now MCLUSTER can generate input for NBODY6 (option -C0;

Aarseth 2003) and NBODY4 (option -C1), or it can write an ASCII

table of stars and their properties (option -C3).
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(i) In the first and second cases, there will be two output files

which can be named with option -o. For example, -o mycluster

will yield the files mycluster.input, containing all the input

parameters for the run, and mycluster.fort.10, containing the

masses, positions and velocities. Note that the latter has to be re-

named to fort.10 at the time of execution in order to be recognized

by NBODY4/6. When using mcluster_sse there will be another

file named mycluster.fort.12. This file also has to be renamed

within the directory of the run to fort.12. The name mycluster

is just added to the file names for convenience. Thus, a directory for

an NBODY4/6 run should contain:

(a) mycluster.input,

(b) fort.10,

(c) fort.12.

The run is then started with the usual command, i.e.,

> /. . ./nbody6 < mycluster.input

where /. . ./ should be replaced by the path to your NBODY4/6 instal-

lation.

(ii) In the case of -C3 a file named mycluster.txt will be

created containing mass, positions (x, y, z) and velocities (vx, vy, vz).

If you are using mcluster_sse then this file will also contain for

each star the ZAMS mass,3 the stellar type,4 the epoch of the star,5

its spin,6 its radius,7 its luminosity,8 its age in Myr, its metallicity

(Z), its absolute V magnitude, its apparent V magnitude,9 B − V ,

its effective temperature (K), a random error for the V magnitude

and a random error for B − V . The last six are generated assuming

observations with an 8-m-class telescope from a distance Rgal (see

Küpper et al. 2011).

(a) In addition you have to specify whether you want the output

to be in N-body units (see e.g. Heggie & Hut 2003; option -u0)

or astrophysical units (option -u1). For the MCLUSTER output to

serve as input for NBODY6 and NBODY4 this output should always

be in N-body units.

(b) With the ASCII table output you can easily draw a colour–

magnitude diagram. Use columns 18(+21) versus 17(+20) for a

diagram showing B − V versus apparent V magnitude (+random

errors).

(c) MCLUSTER automatically computes a radial density pro-

file and a cumulative radial density profile. Both are by de-

fault printed to the screen. This may be switched off within

the main routine (parameters create_radial_profile = 0

or create_cumulative_profile = 0, respectively).

A11 Miscellaneous

(i) The virial ratio, Q = −Ekin/Epot, where Ekin is the total kinetic

energy of the single cluster stars and Epot their potential energy, can

3 From SSE, in M⊙.
4 From SSE, see Hurley et al. (2000).
5 From SSE, in Myr.
6 From SSE, in km s−1.
7 From SSE, in solar units.
8 From SSE, in solar units.
9 Assuming a distance Rgal from the observer which can be changed in the

main routine.

be set with the parameter -Q. Note that this only affects the input

file for N-body computations but not the stellar velocities in the

table of stars (there the virial ratio will always be 0.5, i.e. virial

equilibrium). The velocities get scaled within NBODY4/6 according

to your choice of Q.

(ii) The random seed can be set with the parameter -s which can

be any positive integer. In the case of -s0 MCLUSTER will take the

local time as random seed.

(iii) There is an upper limit of temporary stars or orbits within

MCLUSTER. This number, Nmax, is set to 1500 000 by default, i.e.

MCLUSTER allocates memory accordingly. When applying mass seg-

regation or fractality to a cluster, many more temporary stars/orbits

have to be generated than finally needed. Especially if a cluster shall

be mass segregated and fractal at the same time this number may

easily be exceeded. In this case you should increase it in the main

routine.

(iv) A few more parameters and command line arguments are

available (see option -h and the header of the main routine) which

mostly affect flags for N-body computations.

A12 Examples

If no command line arguments are passed to MCLUSTER it will use

the default parameter values which are specified and which can be

changed within the main routine. By typing

> mcluster

a file test.txt is created. This default cluster has 1000 M⊙
(∼1800 stars), a half-mass radius of 0.8 pc, a Plummer density

distribution, is in a Milky Way tidal field with LSR values, uses the

Kroupa IMF and has no binaries. The entries in the data table are

in astrophysical units. With

> mcluster -C0 -u0

the same cluster is written to the files test.input and

test.fort.10 but in N-body units. This can be passed to NBODY4/6

as stated above. The clusters used in this work were created using

e.g.

> mcluster -M100000.0 -P3 -r0.1 -c20.0 -g2.0 -S1.0

-C0 -G1 -o R136 -f1 -b0.2 -p1 -s2 -Z0.01 -u0

for the fully mass segregated N-body model. The arguments stand

for: a total mass of 100.000 M⊙ (-M), the EFF density profile (-P)

with a 2D core radius of 0.1 pc (-r), a cut-off radius of 20 pc

(-c) and a 2D power-law slope of -2 (-g). It is completely mass

segregated (-S), the output is for NBODY6 (-C), and we use a GPU

(-G). The output is named R136 (-o), we use a Kroupa IMF (-f),

20 per cent binaries (-b) and ordered pairing for massive stars (-p).

The random seed of our model is 2 (-s) and the metallicity is 0.01

(-Z). The output is in N-body units (-u) since we want to pass it to

NBODY6.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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