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ABSTRACT

We present the results of a new study of mass segregation in two-component star clusters, based on a large
number of numericalN-body simulations using our recently developed dynamicalMonte Carlo code. Specifi-
cally, we follow the dynamical evolution of clusters containing stars with individual masses m1 as well as a
tracer population of objects with individual masses m2. We consider both light tracers (l � m2=m1 < 1) and
heavy tracers (l > 1) and a variety of King model initial conditions. In all of our simulations we use a realisti-
cally large number of stars for globular clusters,N ¼ 105, but we ignore the effects of binaries and stellar evo-
lution. For heavy tracers, which could represent stellar remnants such as neutron stars or black holes in a
globular cluster, we characterize in a variety of ways the tendency for these objects to concentrate in or near
the cluster core. In agreement with simple theoretical arguments, we find that the characteristic time for this
mass segregation process varies as 1=l. For models with very light tracers (ld10�2), which could represent
free-floating planets or brown dwarfs, we find the expected depletion of light objects in the cluster core but
also sometimes a significant enhancement in the halo. That is, for some initial conditions, the number density
of light objects in the cluster halo increases over time, in spite of the higher overall evaporation rate of lighter
objects through the tidal boundary. Using these results along with a simplified initial mass function, we esti-
mate the optical depth to gravitational microlensing by planetary mass objects or brown dwarfs in typical
globular clusters. For some initial conditions, the optical depth in the halo owing to very low mass objects
could be much greater than that of luminous stars. If we apply our results toM22, using the recent null detec-
tion of Sahu, Anderson, & King, we find an upper limit of �25% at the 63% confidence level for the current
mass fraction ofM22 in the form of very lowmass objects.

Subject headings: celestial mechanics, stellar dynamics — globular clusters: general —
methods: numerical — planetary systems — stars: low-mass, brown dwarfs

1. INTRODUCTION

Globular clusters are thought to contain objects with a
very wide range of masses, although even the present-day
mass function is rather poorly constrained by observations
(see, e.g., Bedin et al. 2001). The initial mass function (IMF)
is even less constrained, as it depends also on the details of
the overall cluster dynamical evolution (Vesperini & Heggie
1997). Indeed, even for highly idealized systems of unevolv-
ing point masses, a wide mass spectrum, combined with the
effects of two-body relaxation, leads to a variety of complex
dynamical phenomena that are still poorly understood theo-
retically (Heggie et al. 1998). We will refer to these phenom-
ena collectively here as ‘‘mass segregation,’’ but note that
they involve a number of different processes such as mass
loss through the tidal boundary, energy equipartition and
mass stratification, gravothermal contraction, and even in
some cases gravothermal instabilities (see, e.g., Spitzer
1987).

The masses of directly observable stars today in globular
clusters cover a relatively narrow range of �1 2 M� (e.g.,
primordial binaries, blue stragglers, neutron stars; see, e.g.,
Bailyn 1995) down to �0.1 M� at the faint end of the main

sequence (e.g., Marconi et al. 1998). Much more massive
stars were certainly present earlier in the dynamical evolu-
tion of these clusters, including more massive main-
sequence stars and binaries, as well as primordial �10 M�
black holes (Portegies Zwart & McMillan 2000). Much
lower mass objects such as brown dwarfs or planets may
also have formed in large numbers within the cluster ini-
tially, and as we will show in this paper, significant numbers
could also have been retained to the present.

Some lower mass objects �10�2 to 10�3 M� have been
detected in globular clusters as companions to millisecond
radio pulsars (D’Amico et al. 2001; Ford et al. 2000; Freire
et al. 2001). Gilliland et al. (2000) used the Hubble Space
Telescope (HST) to search for transits by giant planets in
short-period orbits (‘‘ hot Jupiters ’’) around main-sequence
stars in the central region of 47 Tuc. They reported a nega-
tive result and concluded that the planet frequency in 47
Tuc must be at least an order of magnitude below that for
the solar neighborhood. However, in the high-density cen-
tral region of this cluster, where the search was conducted,
planetary systems are likely to be disrupted by encounters
with other stars and binaries (Davies & Sigurdsson 2001),
and the frequency of ‘‘ free-floating ’’ planets is not con-
strained by these observations. In contrast, gravitational
microlensing can be used to try to detect such free-floating
planets (Paczyński 1994). Analysis of microlensing events
toward the Galactic bulge suggests the presence of a sub-
stantial amount of lower mass objects in globular clusters
(Jetzer, Strässle, & Wandeler 1998). More recently, in a pio-
neering study, Sahu et al. (2001) monitored about 83,000
Galactic bulge stars for microlensing by objects in the glob-
ular cluster M22. They reported one clear microlensing
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event associated with an object of about 0.1 M� and six
events unresolved in time that were very tentatively associ-
ated with planetary mass objects in the cluster

Observational evidence for mass segregation has been
found in a number of globular clusters. In some cases, direct
evidence comes from the measurement of a more centrally
concentrated density profile for some heavier stellar popula-
tion, such as blue stragglers or radio pulsars (Côté, Richer,
& Fahlman 1991; Layden et al. 1999; Rasio 2000). More
often, the evidence comes from an apparent decrease in the
slope of the (continuous) mass function toward the cluster
core. This can either be estimated from the observed lumi-
nosity function at different radii (Howell et al. 2001; Sosin
1997) or inferred from color gradients (Howell, Guhatha-
kurta, & Tan 2000). Note that in contrast to younger star
clusters, where the present-day mass segregation may still
reflect initial conditions (Figer et al. 1999; but see Portegies
Zwart et al. 2002), anymass segregation observed in the cen-
tral regions of globular clusters must be a result of dynami-
cal evolution, since the relaxation time in those regions is
typically much shorter than globular cluster ages (by a fac-
tor of�10 103).

Our theoretical understanding of the dynamical evolution
of dense star clusters containing a wide mass spectrum is far
from complete, even in the highly idealized limit of unevolv-
ing point masses. Direct N-body simulations are very com-
putationally intensive and have therefore been limited to
systems with unrealistically low N � 103 104 and rather
narrow mass spectra (de la Fuente Marcos 1996; Giersz &
Heggie 1997; Takahashi & Portegies Zwart 2000). Since
realistic IMFs are thought to increase (perhaps steeply)
toward smaller masses, a lower mass cut-off (usually
�0:1 0:5 M�) is introduced to avoid ending up with very
few heavier objects and a large numerical noise in the simu-
lation (since these heavier objects often dominate the overall
dynamics).

Instead, in this paper, we use Hénon’s Monte Carlo
method to compute the dynamical evolution of clusters con-
taining a more realistic number of stars (N ¼ 105). Our
Monte Carlo code, as well as a number of test calculations
and comparisons with direct N-body integrations, have
been described in detail in Joshi, Rasio, & Portegies Zwart
(2000) and Joshi, Nave, & Rasio (2001). As a first step, we
consider in this paper the simplest two-component clusters,
in which only two types of objects, of massm1 andm2 6¼ m1,
are present. In addition, we assume that most objects in the
cluster are of mass m1, while the objects of mass m2 form a
tracer population; i.e., the total component mass ratio
M2=M15 1. In general, the gravothermal evolution of a
two-component cluster can be either stable or unstable,
depending on the two ratios m2=m1 and M2=M1 (Spitzer
1969). In the stable case, the two components remain ther-
mally coupled, and the cluster evolves dynamically toward
energy equipartition between the two species. In the unsta-
ble case, energy equipartition is impossible, and the heavier
species decouples thermally from the rest of the cluster,
evolving separately toward core collapse and interacting
with the lighter component through the mean gravitational
field only. In a previous paper (Watters, Joshi, & Rasio
2000) we studied systematically the development of this
instability (sometimes called the Spitzer ‘‘ mass stratifica-
tion ’’ instability) in two-component systems, and we deter-
mined the location of the stability boundary in the
parameter space of m2=m1 and M2=M1. Instead, in this

paper, complementary to our previous study, we concen-
trate on the stable systems with M2=M15 1, and we study
systematically the effects of their dynamical evolution
toward energy equipartition. In particular, we seek to char-
acterize quantitatively the tendency for heavier objects to
develop radial density profiles that are more centrally con-
centrated, as well as the tendency for lighter objects to con-
centrate away from the central regions and to be
preferentially evaporated in the Galactic tidal field.

Our paper is organized as follows. In x 2 we present an
overview of our numerical approach, and we describe our
initial conditions. In x 3 we present our results for light trac-
ers (with m2 < m1), and we discuss their implications for
microlensing by low-mass objects in globular clusters. In x 4
we present our results for heavy tracers (withm2 > m1), and
we compare them to simple analytical estimates. Our con-
clusions and summary are presented in x 5.

2. OVERVIEW OF NUMERICAL METHOD

We study exclusively two-component clusters composed
of point masses, ignoring the effects of binaries and stellar
evolution. To evolve the clusters, we use our recently devel-
oped two-dimensional Monte Carlo code (Joshi, Rasio, &
Portegies Zwart 2000), which is based on Hénon’s Monte
Carlo algorithm for solving the Fokker-Planck equation
(Hénon 1971). Our code has shown close agreement with
direct N-body and Fokker-Planck calculations of one-com-
ponent clusters (Joshi, Rasio, & Portegies Zwart 2000), as
well as calculations incorporating mass spectra and tidal
mass loss (Joshi, Nave, & Rasio 2001). Furthermore, we
have demonstrated reasonable agreement with the results of
many different codes from Heggie’s ‘‘ collaborative experi-
ment ’’ (Heggie et al. 1998; see especially Rasio, Fregeau, &
Joshi 2001, Fig. 2).

For the initial conditions, we use the King model (a low-
eredMaxwellian), given by the distribution function

f
� eE=�

2 � 1
� �

for E > 0

0 for E � 0

(

; ð1Þ

where E � �� 1
2v

2 is the (negative) energy of each star rela-
tive to the potential at the tidal radius rt, � � ��þ �ðrtÞ is
the relative gravitational potential, and � is a normalization
constant. The quantity � is a parameter and should not be
confused with the actual velocity dispersion hv2ið Þ1=2. (See,
e.g., Binney & Tremaine 1987 or Spitzer 1987.) For light
tracers we enforce the tidal boundary induced by the Galaxy
using a simple spherical Roche approximation (Joshi et al.
2001), while for heavy tracers (which tend to concentrate
near the cluster center and hardly ever get ejected) we treat
the clusters as isolated.

To effect a two-component distribution, we first create a
single-component distribution of stars of massm1 according
to equation (1) and then randomly replace a fraction of
these background stars with tracers of mass m2 so that the
initial density profile of the tracers is the same as that of the
background. Although this creates clusters that are initially
slightly out of virial equilibrium, we find that they settle into
virial equilibrium within a few crossing times (a few time
steps). We have verified this independently using direct N-
body integrations (see below), which relax to virial equili-
brium within a few crossing times.
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For light tracers (with mass ratio l � m2=m1 < 1), we
consider a variety of King models for the initial conditions,
with dimensionless central potentials W0 � �ð0Þ=�2 ¼
1; 3; 5; 7; 9f g, a variety of mass ratios in the range

0:001 � l � 0:4, and a tracer population of either
Nt ¼ 1000 or Nt ¼ 15; 000 out of 105 total stars. Table 1
gives the initial conditions for each model. In all cases, trac-
ers make up no more than 0.5% of the mass of each cluster
and, consequently, do not significantly affect the overall
evolution of the cluster.

For heavy tracers, we consider King models with
W0 ¼ 3; 7; 10f g, a variety of mass ratios in the range
1:5 � l � 10, and a tracer population in the range
100 � Nt � 1000. With a mass ratio greater than 1, it is not
always feasible to use such a small number of tracers that
the cluster is less than a few percent tracers by mass since
then statistical noise is too great. Instead, we choose a rea-
sonable value for the number of tracers and, consequently,
explore both systems that can reach energy equipartition
and systems that evolve away from thermal equilibrium. A
simple test to determine whether thermal equilibrium is pos-
sible for a two-component cluster is the Spitzer stability
condition (Spitzer 1969),

S � M2

M1

� �

m2

m1

� �3=2

d0:16 ; ð2Þ

where M1 and M2 are the total masses of species 1 and 2,
respectively. If S is less than about 0.16, the system is ‘‘ Spit-
zer stable,’’ and the two components will reach thermal
equilibrium. If S exceeds this value, the system is said to be
‘‘ Spitzer unstable,’’ and equipartition is impossible. Wat-
ters, Joshi, & Rasio (2000) performed a more refined analy-
sis using our dynamical Monte Carlo code to evolve a wide
range of two-component clusters and arrived at the more
accurate empirical stability criterion

� � M2

M1

� �

m2

m1

� �2:4

d0:32 : ð3Þ

Table 2 gives these stability parameters, as well as the initial
conditions, for each model considered.

Some calculations with l < 1 were repeated with direct
N-body integrations. For these direct N-body calculations,
we used the program KIRA within the StarLab software
environment6 (see Portegies Zwart et al. 2001) and used the
special purpose GRAPE-4 and GRAPE-6 hardware (a sin-
gle GRAPE-6 board; Makino et al. 1997) to accelerate the
computation of gravitational forces between stars. Time
integration of stellar orbits was accomplished using a
fourth-order Hermite scheme (Makino & Aarseth 1992).

6 See http://www.manybody.org.

TABLE 1

Main Results for Light Tracers

W0 l Nt Nb

tcc

trh

�1:5ðrcÞ
trh

�10ðrcÞ
trh

�1:5ðrhÞ
trh

�10ðrhÞ
trh

NtðtccÞ
Ntð0Þ

NbðtccÞ
Nbð0Þ

rhtðtccÞ
rhbðtccÞ

1...... 0.001 1000 99,000 9.7 1.54 9.25 1.83 8.44 0.039 0.32 5.6

0.001 15000 85,000 8.5 1.67 8.40 1.41 7.63 0.044 0.32 5.5

0.004 1000 99,000 9.7 1.92 8.90 2.05 8.48 0.040 0.33 4.4

0.01 1000 99,000 9.4 1.70 . . . 1.71 8.64 0.051 0.33 4.1

0.04 1000 99,000 9.6 1.65 8.99 1.73 8.64 0.048 0.32 4.6

0.1 1000 99,000 9.6 2.45 . . . 2.41 . . . 0.055 0.33 3.6

0.2 1000 99,000 9.6 2.64 . . . 2.22 9.35 0.055 0.32 3.2

0.4 1000 99,000 9.6 6.80 . . . 4.49 . . . 0.093 0.33 2.7

3...... 0.001 1000 99,000 11.7 0.90 11.63 1.44 10.45 0.076 0.46 2.9

0.001 15000 85,000 10.1 0.87 . . . 0.97 8.70 0.086 0.46 3.2

0.004 1000 99,000 11.6 1.05 11.13 1.41 10.57 0.079 0.46 2.9

0.01 1000 99,000 11.7 1.08 10.63 1.65 10.13 0.068 0.46 3.2

0.01 15000 85,000 10.0 1.13 . . . 1.03 8.90 0.088 0.46 3.0

0.04 1000 99,000 11.6 1.46 . . . 1.55 10.93 0.10 0.46 3.1

0.042 15000 85,000 10.2 1.09 . . . 1.13 9.37 0.094 0.46 3.0

0.1 1000 99,000 11.7 1.05 . . . 1.74 . . . 0.11 0.46 2.8

0.2 1000 99,000 11.7 1.99 . . . 2.35 11.65 0.11 0.46 2.5

0.4 1000 99,000 11.7 10.61 . . . 5.61 . . . 0.16 0.47 2.2

5...... 0.001 1000 99,000 13.3 0.43 11.4 1.05 11.5 0.26 0.64 2.8

0.001 15000 85,000 11.1 0.38 10.9 0.79 9.54 0.27 0.65 2.8

0.1 1000 99,000 12.9 1.43 . . . 1.52 12.78 0.30 0.65 2.5

7...... 0.001 1000 99,000 8.7 0.57 8.31 0.87 7.22 0.68 0.87 2.3

0.001 15000 85,000 7.6 0.21 2.30 0.70 7.25 0.68 0.87 2.2

0.004 1000 99,000 9.0 0.67 7.24 1.07 8.20 0.67 0.86 2.3

0.01 1000 99,000 8.9 0.50 6.90 1.00 8.77 0.68 0.87 2.1

0.04 1000 99,000 9.0 0.54 6.20 1.08 . . . 0.68 0.87 2.2

0.1 1000 99,000 8.9 0.54 8.44 1.17 . . . 0.70 0.87 2.0

0.2 1000 99,000 8.9 0.70 . . . 1.28 . . . 0.73 0.87 2.1

0.4 1000 99,000 8.8 1.76 . . . 2.51 . . . 0.77 0.87 1.8

9...... 0.001 15000 85,000 1.1 0.019 0.165 0.62 . . . 0.97 0.98 1.4

0.1 1000 99,000 1.5 0.095 0.875 1.02 . . . 0.97 0.98 1.4

Note.—Nt: number of trace stars;Nb: number of background stars; tcc: core collapse time; �1:5ðrÞ: time it takes for the number
of tracers within radius r to decrease by a factor of 1.5 and �10ðrÞ by a factor of 10; rht and rhb: half-mass radii of the tracers and
background stars, respectively. Ellipses represent data that were not attained before core collapse.
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KIRA also incorporates block time steps (McMillan 1986a,
1986b; Makino 1991) and a special treatment of close two-
body and multiple encounters of arbitrary complexity.
Given the high cost of the direct N-body integrations, we
limited our selection of initial conditions to a few models
with l < 1 and performed the calculations with N ¼ 6144
stars; these calculations take on the order of 10 days each to
complete on either the GRAPE-4 or a single GRAPE-6
board. (With our Monte Carlo code, each calculation takes
�12 hr.)

Following the convention of most previous studies, we
define dynamical units so that G ¼ M0 ¼ �4E0 ¼ 1, where
M0 and E0 are the initial total mass and total energy of the
cluster (Hénon 1971). The units of length, L, and time, T,
are then

L ¼ GM2
0 ð�4E0Þ�1 and T ¼ GM

5=2
0 ð�4E0Þ�3=2 : ð4Þ

Application of the virial theorem shows that L is the virial
radius of the cluster and T is on the order of the initial
dynamical (crossing) time. In the code, we use as the unit of
time the initial relaxation time, tr, which is given by

tr ¼
N0

lnN0
T ; ð5Þ

where N0 is the initial total number of stars in the cluster.
For a two-component cluster, it is possible to define similar
relaxation times for each component separately. The relaxa-
tion time for component 1, tr1, is given by

tr1 ¼
N1

lnN1
T1 ; ð6Þ

where N1 is the initial number of stars of component 1, and
T1 is the crossing time for component 1 given by equation
(4), with M0 and E0 replaced by the initial total mass and
energy of component 1, respectively. The relaxation time
for component 2, tr2, is given analogously, although the
resulting expression is only applicable when the two species

have decoupled (e.g., a collection of black holes undergoing
the Spitzer mass stratification instability).

To facilitate comparison with previous studies, we report
times in this paper in units of the initial half-mass relaxation
time, trh, given by the standard expression (see, e.g., Spitzer
1987)

trh ¼ 0:138
N

1=2
0 r

3=2
h

�mm1=2G1=2 lnN0
; ð7Þ

where rh is the initial half-mass radius, and �mm ¼ M0=N0 is
the average stellar mass.

Each calculation is terminated when the 0.35% Lagran-
gian radius of the heavier component falls below 0.001 (in
our length units). The Lagrangian radii are then inspected
graphically and the core collapse time, tcc, determined by
noting the time at which the innermost Lagrangian radii of
the heavier component begin to dip appreciably. Core col-
lapse times determined in this way are not sensitive to the
precise criterion used but can have a large statistical uncer-
tainty, particularly when the number of stars within the
innermost Lagrangian radii is small.

3. LIGHT TRACERS

Intuition has it that globular clusters cannot contain
extremely light stars, since equipartition of energy would
imply a mean velocity for the light stars that far exceeds the
escape velocity for the cluster (Taillet, Longaretti, & Salati
1995). Although proportionately more light tracers than
background stars are lost during the evolution, we find that
a significant fraction are retained in the halo. In some cases
their number density there actually increases during the
evolution.

3.1. Numerical Results

To ensure the validity of our Monte Carlo results, we first
sought to compare integrations performed with the Monte

TABLE 2

Main Results for Heavy Tracers

W0 l Nt Nb S �

tcc

trh

�0ðrh < r < rtÞ
tr

�1:5ðrcÞ
trh

�10ðrcÞ
trh

�1:5ðrhÞ
trh

rhtðtccÞ
rhbðtccÞ

3...... 1.5 1000 99,000 0.028 0.040 16.50 0.74 0.52 11.61 1.30 0.070

3 1000 99,000 0.16 0.42 7.60 0.27 0.33 3.85 0.54 0.099

6 100 99,900 0.088 0.44 8.30 0.19 0.25 1.34 0.39 0.095

10 100 99,900 0.32 2.5 3.20 0.13 0.42 1.61 0.44 0.080

10 1000 99,000 3.2 25.4 1.50 0.16 0.37 1.36 0.37 0.18

7...... 1.5 1000 99,000 0.028 0.040 8.80 0.54 0.31 5.16 3.91 0.23

3 1000 99,000 0.16 0.42 3.10 0.22 0.053 0.81 0.84 0.098

6 1000 99,000 0.89 4.5 0.50 0.13 0.054 0.37 0.39 0.54

10 1000 99,000 3.2 25.4 0.31 0.09 0.032 0.25 0.27 0.60

10.... 1.5 200 99,800 0.0055 0.0080 0.38 0.31 0.028 0.37 . . . 0.85

1.5 1000 99,000 0.028 0.040 0.38 1.5 0.028 0.32 . . . 0.98

3 200 99,800 0.031 0.084 0.19 0.17 0.0021 0.043 . . . 0.86

3 1000 99,000 0.16 0.42 0.081 0.6 0.0021 0.042 . . . 0.98

6 200 99,800 0.18 0.89 0.022 0.09 0.0014 0.012 . . . 0.92

6 1000 99,000 0.89 4.5 0.013 0.4 0.0016 . . . . . . 1.0

10 100 99,900 0.32 2.5 0.021 0.04 0.00050 0.0055 . . . 0.91

Note.—Nt: number of trace stars; Nb: number of background stars; S and �: stability parameters; tcc: core collapse time; �0 (in units of
tr): mass segregation timescale; �1:5ðrÞ: time it takes for the number of tracers within radius r to increase by a factor of 1.5 and �10ðrÞ by a fac-
tor of 10; rht and rhb: half-mass radii of the tracers and background stars, respectively. Note that for each simulation the number of stars lost
from the cluster was 1% or less. Ellipses represent data that were not attained before core collapse.
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Carlo code with the results of directN-body simulations. As
a representative case, Figure 1 shows 5%, 10%, 25%, 50%,
75%, and 90% Lagrange radii (radii containing a constant
mass fraction) for background stars (left) and tracers (right)
for a W0 ¼ 5 King initial model with mass ratio l ¼ 0:001.
The agreement remains quite good at all times. The two
methods agree remarkably in the most relevant result, that
the light tracer stars ‘‘ diffuse ’’ into the outer halo, while the
core, composed mainly of heavier ‘‘ background ’’ stars,
contracts. This is consistent with the mass segregation
found with previous N-body and Fokker-Planck studies
(Spitzer 1987).

Figure 2a displays the segregation more clearly, showing
only the Monte Carlo results from Figure 1. Here back-
ground stars are represented by a solid line, light tracers by
a dotted line. As one expects from simple energy equiparti-
tion arguments, the tracers gain energy from interactions
and are pushed out of the core, as is seen in the mass segre-
gation evident as early as t ’ 5trh. However, 25% of the
tracer population is left to linger in the outer regions at the
time of core collapse. (By contrast, 65% of the background
stars remain in the cluster.) Instead of receiving large mono-
lithic kicks from the heavy stars and being immediately
ejected from the cluster, the light tracers slowly gain energy
and are gradually pushed out into the halo, where there are
so few heavy stars that the light tracers are unable to
exchange energy and are left there to linger. Figure 2b is the
same as Figure 2a but for a very centrally concentrated
W0 ¼ 9 King initial model. Because this cluster is initially so
close to core collapse, it does not have much time to evolve;
yet by the time of core collapse over 90% of the tracers
occupy the outer region of the cluster in which 75% of the
background stars reside. This extreme segregation is wit-
nessed even for a more moderate mass ratio of l ¼ 0:1. Fig-
ure 2c shows the same as Figure 2a, but for a W0 ¼ 5,
l ¼ 0:1 model. Here by the time of core collapse, about 90%

of the tracers occupy the outer region in which 50% of the
tracers reside.

For a more detailed look at the radial profile of the light
tracers relative to the background, Figure 3a shows the
number of stars in each radial bin. The number in each bin
is divided by the initial total number of stars in the cluster,
N0, so that the vertical axis represents the fraction of stars in
each bin. This histogram, which is proportional to dN=dr, is
not a number density plot but still gives a feel for the number
density and was chosen because it most clearly displays phe-
nomena at large radii. Shown is the sameW0 ¼ 5, l ¼ 0:001
model as in Figure 1, with background stars in the top plot
and tracers in the bottom. The dotted line represents a time
very near the start of the simulation, while the solid line rep-
resents a time midway through the simulation, at t ¼ 4:9trh.
There is a clear increase in the density of background stars
in the core during the evolution, while there is also a clear
decrease for tracers. More importantly, there is a significant
enhancement of tracers in the halo region. Similarly, Figure
3b shows the same results for aW0 ¼ 7, l ¼ 0:001 model. In
this case, the number density of tracers in the halo is very
visibly greater at core collapse than at the start of the simu-
lation, and by about 50% in some regions. Even for the more
modest mass ratio of l ¼ 0:1, a similar profile is obtained,
as shown in Figure 3c. Although a bit noisier than the pre-
ceding since only 1000 tracers are used here, the same signifi-
cant enhancement of tracers in the halo is evident.

Table 1 gives relevant initial conditions for all the light
tracer systems considered here, as well as core collapse
times, the fraction of each species left in the cluster at core
collapse, and the ratio of half-mass radii for the two species
at core collapse. We have also included a few astrophysi-
cally relevant timescales: �1:5ðrcÞ, the time for the number of
light stars within the initial core radius to decrease by a fac-
tor of 1.5; �10ðrcÞ, the time for the number of light stars
within the initial core radius to decrease by a factor of 10;

Fig. 1.—Comparison ofMonte Carlo (solid line) andN-body (dotted line) data. Shown are the 5%, 10%, 25%, 50%, 75%, and 90%Lagrangian radii of back-
ground stars (left) and tracers (right) for aW0 ¼ 5King initial model with a mass ratio l ¼ 0:001, showing reasonable agreement between the twomethods.
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�1:5ðrhÞ, the time for the number of light stars within the ini-
tial half-mass radius to decrease by a factor of 1.5; and
�10ðrhÞ, the time for the number of light stars within the ini-
tial half-mass radius to decrease by a factor of 10. Figure 4
shows a representative determination of these timescales.
Smooth curves were fitted to the data using GNUPLOT’s
‘‘ acsplines ’’ (approximation cubic splines) routine. The

timescales show a clear trend, increasing as the mass ratio
approaches unity, consistent with energy equipartition
arguments. A closer look reveals a critical mass ratio,
around 0.3, below which the timescales �10, and especially
�1:5, are roughly constant; the light stars are so light that
they are immediately ejected from the inner regions of the
cluster on a timescale that is independent of mass ratio. A

Fig. 2a Fig. 2b

Fig. 2c

Fig. 2.—(a) Lagrangian radii of background stars (solid line) and tracers (dotted line) fromFig. 1, showing only theMonte Carlo results. Note the stark con-
trast between the two, illustrating the extreme mass segregation present even early in the simulation, at t � 5 trh. By core collapse, over 90% of the tracers
occupy the outer region of the cluster in which 50% of the background stars reside. (b) Same as (a), but for a very centrally concentratedW0 ¼ 9 King initial
model. Even though this cluster reaches core collapse very quickly (because it is initially almost core-collapsed), by that time over 90% of the tracers occupy
the outer region of the cluster in which 75% of the background stars reside. (c) Same as (a), but for a mass ratio l ¼ 0:1. Almost the same degree of mass segre-
gation present for the extrememass ratio of l ¼ 0:001 is witnessed for this more reasonable value. Again, by core collapse, about 90% of the tracers occupy the
outer region of the cluster in which 50% of the background stars reside.
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simple derivation of this critical mass ratio, lcrit, proceeds as
follows. The escape speed from the center of the cluster is
given by v2e ¼ 2�ð0Þ ¼ 2W0�2. In the core of the cluster,
densities are very high, and it is expected that the two stellar
species will attain thermal equilibrium: hv21icore ¼ lhv22icore.
Since the cluster is dominated by the heavy species (species
1), its velocity dispersion can be obtained directly from the

distribution function (eq. [1]):

hv21icore �
R

ffiffiffiffiffiffiffiffiffi

2�ð0Þ
p
0 v2dvf ð0; vÞv2
R

ffiffiffiffiffiffiffiffiffi

2�ð0Þ
p
0 v2dvf ð0; vÞ

: ð8Þ

This equation can be integrated numerically to give hv21icore

Fig. 3a Fig. 3b

Fig. 3c

Fig. 3.—(a) Number histogram of stars vs. radius for a W0 ¼ 5 King initial model with a mass ratio l ¼ 0:001, showing background stars in the top plot
and tracers in the bottom. The dotted line represents a time very near the start of the simulation, while the solid line represents a time midway through the sim-
ulation, at t ¼ 4:9 trh. While this is not a number density plot, it gives a feel for the radial profile of the two species. (b) Same as (a), but for aW0 ¼ 7King initial
model. Here the solid line represents a time near collapse, t ¼ 7:3 trh. In this case, the number density of tracers in the halo is very visibly greater at core col-
lapse than at the start of the simulation, and by about 50% in some regions. (c) Same as (a), but for a W0 ¼ 7 King initial model with a mass ratio l ¼ 0:1.
Again, the solid line represents a time near core collapse, t ¼ 7:2 trh. Although the curve is a bit noisy, there is clearly an enhancement in the number density of
tracers in the halo, even at this modest mass ratio.

No. 1, 2002 MASS SEGREGATION IN GLOBULAR CLUSTERS 177



in units of �2: hv21icore � ��2. Setting the velocity dispersion
of the lighter species equal to the escape speed at the center
yields a simple equation for the critical mass ratio,

lcrit ¼
�

2W0
; ð9Þ

below which the light stars are almost immediately ejected
from the core (within a core relaxation time) but not neces-
sarily from the cluster. Table 3 gives � and lcrit for many
values ofW0. Comparison with Table 1 shows that, indeed,
below this mass ratio the light stars are ejected from the cen-
tral regions of the cluster on a timescale that is independent
of mass ratio; above this mass ratio, the segregation time-
scale increases dramatically.

3.2. Implications forMicrolensing

It is possible that globular clusters could contain copious
amounts of nonluminous matter—often referred to as (bar-
yonic) dark matter in this context (Heggie, Griest, & Hut
1993; Taillet, Longaretti, & Salati 1995; Heggie & Hut
1996). However, it is probable that the amount of dark mat-
ter is poorly constrained by observations of luminous stars.
Consider a cluster with a continuous Salpeter IMF,

dN

dM
/ M�2:35 : ð10Þ

Since we want to study very light objects, let the IMF extend
from 0.001 to 10M� (even though such a mass function was
never meant to apply below �0.1 M�!). To place this prob-
lem in the context of two-component clusters, break up the
IMF into two bins: a tracer bin extending from 0.001 to 0.1
M� corresponding to nonluminous objects and a back-
ground bin extending from 0.1 to 10 M� corresponding to
main-sequence stars. (For simplicity, we will ignore stellar
evolution and suppose that the heavy stars keep their mass
for the lifetime of the cluster.) Integrating equation (10) over
these two bins gives a mean tracer mass of 0.0031 M�, a
mean background mass of 0.31M�, and a ratio of the num-
ber of tracers to background of Nt=Nb ¼ 500. Using the
background stars as species 2 in equations (2) and (3), we
find S ¼ 200 and � ¼ 1:3� 104; this simple model is well
outside the Spitzer stability regime. The two species will
decouple completely and evolve independently; observa-
tions of the luminous background stars will not betray the
presence of the very light tracers.

Approximating the continuous mass spectrum by two
bins is most likely unjustified, however, since in a continu-
ous mass spectrum stars of mass M will certainly exchange
energy with stars of mass M þ dM. Thus, light stars will
exchange energy with slightly heavier stars, which will
exchange energy with slightly heavier stars, etc., providing
an indirect means for light objects such as Jupiters to
exchange energy with heavy objects such as main-sequence
stars. Thus, thermal equilibrium among all species may not
be forbidden in a realistic cluster, but the timescale over
which it occurs is unclear.

Taillet, Longaretti, & Salati (1995) and Taillet, Salati, &
Longaretti (1996) considered multicomponent King models
and assumed that thermal equilibrium did occur among spe-
cies. Using analytical methods, they found that the cluster
surface brightness was nearly unaffected by the amount of
nonluminous stars present, for a cluster with dark matter
content ranging from 0% to 90% by mass. Therefore, obser-
vations of the luminous cluster stars would give no evidence
of the dark matter in the cluster. (However, in the most
extreme cases, the projected velocity dispersion profiles
could be used to detect dark matter by observing the lumi-
nous component.)

Regardless of whether thermal equilibrium occurs in clus-
ters, it is probable that dark matter would not be easily
detectable by observing the luminous members of clusters.
Dark matter could be directly detected, however, by its
gravitational lensing effect on distant, luminous sources
(Paczyński 1986, 1991, 1994). By convention, a microlens-
ing event is said to occur when a background source lies, in
projection, within the Einstein radius of a lens and is conse-
quently amplified by a factor greater than 1.34 (Refsdal
1964; Vietri & Ostriker 1983). The optical depth, � , is the

TABLE 3

Velocity Dispersion and

Critical Mass Ratio

W0

hv21icore
�2 lcrit

1................... 0.799 0.399

2................... 1.466 0.367

3................... 1.990 0.332

4................... 2.373 0.297

5................... 2.632 0.263

6................... 2.796 0.233

7................... 2.892 0.207

8................... 2.945 0.184

9................... 2.973 0.165

10................. 2.987 0.149

11................. 2.994 0.136

12................. 2.997 0.125

Note.—Velocity dispersion in
the core in units of the velocity dis-
persion parameter �, and critical
mass ratio for immediate ejection
from the core for many values of the
dimensionless central potential W0;
see the discussion preceding eq. (9).
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Fig. 4.—Representative determination of the mass segregation time-
scales �1:5ðrhÞ and �10ðrhÞ from Table 1 for the case l ¼ 0:004,W0 ¼ 3. The
top dashed line is the number of tracers initially within the half-mass radius,
N0ðrhÞ, the middle dashed line N0ðrhÞ=1:5, and the bottom dashed line
N0ðrhÞ=10.
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probability that such an event will occur and for low proba-
bility is given by

� ¼ 1

�!

Z

dVnðDdÞ��2E ; ð11Þ

where �! is the solid angle of sky considered,
dV ¼ �!D2

ddDd is the element of volume, n is the number
density of lenses, Dd is the distance to the lens (deflector),
and �E is the angular Einstein radius of the lens. The Ein-
stein radius is given by the usual expression

�2E ¼ 4GM

c2
Ds �Dd

DdDs

; ð12Þ

where Ds is the distance to the source. Here we will be con-
sidering lensing of sources in the Galactic bulge, for exam-
ple, by globular clusters along the line of sight to the bulge;
therefore, typical values for Dd and Ds are �3 and �8 kpc,
respectively. Since tidal radii of globular clusters are typi-
cally on the order of tens of parsecs, we can approximateDd

and Ds as constant over the range of integration to arrive at
the simpler expression

� ¼ 4�G

c2
�ðrÞDd 1�Dd

Ds

� �

; ð13Þ

where �ðrÞ is the surface density along the line of sight, and
r is the distance perpendicular to the line of sight.

Figure 5a shows the optical depth owing to heavy stars
(solid line) and light stars (dotted line) for a W0 ¼ 3 initial
King model with 15,000 tracers of mass ratio l ¼ 0:01. We
have assigned the background stars a mass of 0.31 M� and
multiplied the tracer number density by a factor
500� ð85; 000=15; 000Þ, consistent with the preceding dis-

cussion of approximating the Salpeter IMF by two mass
bins. (This heuristic model therefore defines a thermally
equilibrized two-component idealization of the continuous
mass function.) We have also multiplied both optical depths
by a factor of 5 so that the figure is normalized to a cluster
that initially had 5� 105 stars and a mass of 1:3� 105 M�.
Generic values of Dd ¼ 3 kpc and Ds ¼ 8 kpc were used in
the calculation, and this snapshot of the system was taken at
t ¼ 9:5trh. Note not only the mass segregation, but also that
at large radii the optical depth owing to the light stars is
about an order of magnitude greater than that owing to the
heavy stars. Significant numbers of nonluminous stars may
linger in the outer regions of globular clusters.

3.3. DarkMatter inM22

Sahu et al. (2001) have carried out HST observations of
the central regions of the globular cluster M22 (NGC 6656)
and have detected at least one microlensing event. All the
parameters needed to deduce the mass of the lens from the
timescale of the lensing event are fairly well known so that a
prediction of its mass can be made. Assuming distances of
8.2 kpc to the source (for a typical star in the Galactic bulge)
and 2.6 kpc to M22, as well as a proper motion for M22 of
10.9 mas yr�1 (134.4 km s�1), they determine the mass of the
lens to be 0:13þ0:03

�0:02 M�. This result is exciting because it is
the first such detection where the mass of the lens can be esti-
mated. They also report a tentative detection of 6 sub-MJ

objects in the core (an upper limit of�0.25MJ for each) that
has since proven spurious (Sahu, Anderson, & King 2002).
Although the events are no longer associated with planets,
we still present our theoretical analysis of the amount of
dark matter in M22 as a useful exercise, illustrating how

Fig. 5a Fig. 5b

Fig. 5.—(a) Optical depth to microlensing owing to heavy stars (solid line) and light stars (dotted line) for aW0 ¼ 3 initial King model with 15,000 tracers of
mass ratio l ¼ 0:01. The number density of light stars has been amplified to emulate a continuous Salpeter IMF. This snapshot was taken near core collapse,
at t ¼ 9:5 trh. Generic values ofDd ¼ 3 kpc andDs ¼ 8 kpc were used in the calculation. (b) Optical depth to microlensing at present owing to luminous stars
(solid line) and darkmatter (dotted line) for the globular clusterM22.
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future detections could be used to estimate the amount of
dark matter in clusters.

It is a simple matter to calculate the optical depth owing
to dark matter given these detections. Since the lenses are
moving with respect to the source, the actual probability for
microlensing is modified from equation (11) to

Prob � Ne

No

¼ 1

�!

Z

dVnðDdÞ2�E _’’Dt ; ð14Þ

whereNe is the number of microlensing events observed, No

is the number of observations, _’’ is the angular velocity of
the lens, and Dt is the time duration of each observation. In
terms of the optical depth, this is simply

Ne

No

¼ 2

�
�
Dt

t0
; ð15Þ

where t0 � �E= _’’ is the characteristic timescale of a micro-
lensing event. The optical depth is then

� ¼ �

2

Ne

No

t0

Dt
: ð16Þ

Sahu et al. (2001) monitored approximately 83,000 stars for
a period of �105 days and found six candidate dark matter
(below 0.1M�) microlensing events lasting at most 0.8 days
each. Equation (16) then gives an optical depth owing to
dark matter of 8:7� 10�7. Adopting the same simple pre-
scription used before of approximating a continuous mass
function by two mass bins, we can evolve a two-component
cluster from a reasonable initial state until its profile resem-
bles that of M22. We can then adjust the number of tracers
so that the optical depth in the core owing to dark matter
matches observations and, consequently, estimate what
fraction of the cluster mass would have been in dark matter
had the six tentative detections proven correct.

For our initial conditions we take a W0 ¼ 3 King model
with 85,000 background stars of 0.38M� and 15,000 tracers
of 0.016 M� to emulate a Kroupa IMF—which we have
extended well below the 0:1M� lower limit for which it was
intended—from 0.001 to 10 M� split into two bins at 0.1
M� (Kroupa, Tout, & Gilmore 1993). The Kroupa IMF is
more conservative than a Salpeter IMF in that it contains
far fewer sub–stellar-mass objects. (The exact form of the
IMF chosen is largely irrelevant, since in the end we scale
the number of stars in each mass bin to match observations;
however, it may affect the percentage of light stars lost from
the cluster during evolution.) We then evolve the cluster
until its profile matches that of M22, approximately a
W0 ¼ 6model (Harris 1996).We adjust the number of back-
ground stars so that the mass owing to luminous matter is
105:57 M� (Mandushev, Spassova, & Staneva 1991) and
adjust the number of tracer stars so that the optical depth
owing to dark matter in the core is approximately
8:7� 10�7.

Figure 5b shows the optical depth owing to luminous
stars (solid line) and dark matter (dotted line) using the pre-
scription just given. Adopting the total cluster mass and
dark matter optical depth quoted above, we find that the
current mass ofM22 would have been�20% dark matter by
mass. If either the total cluster mass or optical depth are off
by a factor of 2, this number could be as small as 12% or as
high as 35%. If both are off by a factor of 2, then this number
could be as small as 6% or as high as 52%. This range of val-

ues is consistent with the value quoted by Sahu et al. (2001)
of�10% but implies a higher median. Using the median val-
ues, this analysis implies that M22 would have had an initial
mass of 8:3� 105 M�, 35% of which was dark matter (this
figure could be anywhere between 12% and 69%) and that it
would have lost 2� 105 M� of dark matter to the Galaxy.
These ranges of values should be treated with caution, how-
ever, since our Monte Carlo code ignores the effects of
binaries, mass loss owing to stellar evolution, and the effects
of a nonspherical tidal field, all of which may affect the frac-
tion of light tracers retained in a cluster. Furthermore, it is
clear that in order to tighten constraints on the amount of
dark matter, one must also refine estimates of the distances
to the lens and the source.

3.4. Upper Limit on DarkMatter inM22

All six ‘‘ planetary ’’ events are no longer interpreted as
being due to microlensing. More careful examination
reveals that the apparent brightening observed in both of a
pair of cosmic-ray split images was actually due to pointlike
cosmic rays hitting close to the same star in both images
(Sahu, Anderson, & King 2002). This null detection, while
unfortunate, can be used to estimate an upper limit on the
mass fraction ofM22 in very lowmass objects.

Adopting our simple prescription of approximating the
continuous mass function by two bins, one containing lumi-
nous matter (objects heavier than 0:1 M�), the other con-
taining dark matter (objects lighter than 0:1 M�), we
assume that the dark matter in M22 is represented by a col-
lection of objects with the average mass in that bin,
0:016 M�. We then expect the number of dark matter lens-
ing events in an observation to obey a Poisson distribution.
Adopting a mean of one dark matter lensing event, using
t0 � 6 days for a 0:016 M� lens, and performing essentially
the same analysis as in x 3.3, a null detection yields an upper
limit on the current mass fraction of M22 in very low mass
objects of �25% at the 63% confidence level. Adopting a
mean of three events yields an upper limit of �50% at the
95% confidence level.

Although our simple calculation is physically motivated,
it is necessarily crude, since a careful analysis should take
into account the mass distribution of the dark matter. In
addition, there is another effect to consider. The typical sep-
aration between exposures in the Sahu et al. (2001) observa-
tion is about 3 days. Thus, a microlensing event with
characteristic width smaller than 3 days, corresponding to a
lens mass of 0:004 M�, has a nonzero probability of not
being detected, biasing detections toward higher masses.
Since the smallest mass we consider is 0:001 M�, presum-
ably this effect is small.

4. HEAVY TRACERS

4.1. Analytic Results

Spitzer (1969) pioneered the theoretical analysis of mass
segregation in clusters. Considering a two-component clus-
ter in which one component is more massive than the other,
yet sparse enough to be considered a tracer population, he
found that the timescale on which the heavier species con-
tracts varies approximately as 1=l. For completeness, we
include a brief summary of the steps leading to this result.

For the generic case of energy transfer when E2, the mean
kinetic energy of the massive stars, is greater than the corre-

180 FREGEAU ET AL. Vol. 570



sponding energy E1 for the lighter stars, the rate of energy
loss of the massive stars is given by

dU2

dt
¼ E1 � E2ð Þ

teq
; ð17Þ

whereU2 is the mean total energy of the heavier species. The
equipartition time is approximately (Spitzer 1940, 1962)

teq ¼ hv21i þ hv22i
� �3=2

8 6�ð Þ1=2�01G2m2 lnN1

; ð18Þ

where �01 is the central density of the lighter species, N1 is
the number of light stars in the cluster, and brackets denote
an average over stars. When one expresses this timescale in
units of tr1, the overall relaxation timescale of species 1, one
obtains

teq

tr1
¼ 3�1=2

16

m1

m2
1þ hv22i

hv21i

� �3=2

: ð19Þ

It follows that if the rms velocities of the two species are
equal, as they are at the start of our simulations (they
remain roughly equal for the first half of the simulation; see
Fig. 7), teq=tr1 initially varies approximately as 1=l.

To see how this timescales manifests itself, assume for the
sake of simplicity that the kinetic energy of the heavier spe-
cies, E2, dominates that of the lighter species, E1. Equation
(17) then becomes

dU2

dt
¼ �E2

teq
: ð20Þ

Application of the usual virial theorem yields
U2 ¼ �E2 ¼ 1

2W2, where W2 is the potential energy of spe-
cies 2, and so we have

W2 / et=teq : ð21Þ

Under the assumption that the potential of species 2 domi-
nates, W2 is proportional to GM2

2=r2h, where r2h represents
any characteristic radius of species 2 but for concreteness
has been chosen to be the half-mass radius. Thus,

r2h / e�t=teq ; ð22Þ

which simply states that the timescale for contraction of the
heavier species is given by teq, the equipartition time. Equa-
tion (22) still holds true even when the potential of species 2
is not the dominant potential.

4.2. Numerical Results

For studying mass segregation of heavy tracers, we use as
the unit of time the overall cluster relaxation time, tr, given
by equation (5). This time differs from tr1 (given by eq. [6]),
the relaxation time of species 1 and the unit of time in equa-
tion (19), by a factor close to unity that varies slowly among
sets of initial conditions. The quantity tr also differs from
the half-mass relaxation time, trh (given by eq. [7]), the unit
of time used in the preceding sections for studying light trac-
ers. A good rule of thumb is that trh � 0:1tr (Joshi, Rasio, &
Portegies Zwart 2000).

To determine the mass segregation timescale—which
should approximately equal teq from equation (22) but
which we label �0—we look at the number of tracers in the

halo, defined to be the region between the half-mass radius
and the tidal radius, as a function of time and fit to it a
decaying exponential. Figure 6 shows a representative deter-
mination of this timescale for aW0 ¼ 3, l ¼ 1:5, Nt ¼ 1000
model. Note that the exponential fit is only meaningful for
the first few half-mass relaxation times, during which the
ratio of velocity dispersions hv22i=hv21i does not change
appreciably. Figure 7 shows this ratio hovering at unity for

Fig. 6.—Number of tracers in the halo (rh < r < rt) as the cluster con-
tracts, showing a representative determination of the mass segregation
timescale �0 for the caseW0 ¼ 3, l ¼ 1:5, andNt ¼ 1000.

Fig. 7.—Ratio of rms velocities of the heavier component to the lighter
component for the system shown in Fig. 6. Solid line is this ratio for the
cluster as a whole. Note that this ratio remains near unity for about the first
half of the simulation. For reference, the value of this ratio in the core
is shown as a dotted line. This curve approaches 2=3, consistent with
equipartition.
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nearly the first half of the simulation. (For reference,
hv22i=hv21i averaged over the core is shown as a dotted line.
This curve approaches 2/3, consistent with thermal equili-
brium.) Figure 8 shows �0 as a function of l for King initial
models with W0 ¼ 3, 7, and 10. In all cases, the mass segre-
gation timescale shows a clear 1=l dependence, as expected
from equation (19). Figure 9 gives another look at the segre-
gation, showing the ratio of half-mass radii of the tracers to
the background stars.

Table 2 gives relevant initial conditions for all the heavy
tracer systems considered here, as well as the thermal equili-
brium stability parameters S and� (see eqs. [2] and [3]), core
collapse times, and the ratio of half-mass radii for the two
species at core collapse. Similarly to Table 1 we have
included the following astrophysically relevant timescales:
�0ðrh < r < rtÞ, the e-folding timescale shown in Figure 8;
�1:5ðrcÞ, the time for the number of heavy stars within the ini-
tial core radius to increase by a factor of 1.5; �10ðrcÞ, the time
for the number of heavy stars within the initial core radius
to increase by a factor of 10; and �1:5ðrhÞ, the time for the
number of heavy stars within the initial half-mass radius to
increase by 1.5. Here again, the trend is clear: the closer the
mass ratio is to unity, the longer it takes the heavy tracers to
sink into the core.

The shorter core collapse timescales for the models with
larger l or larger W0 give these clusters little time to evolve
dynamically. Consequently, mass segregation is not as pro-
nounced in these clusters, as is evident from Table 2.

5. SUMMARY AND DISCUSSION

We have studied the mass segregation of both light and
heavy tracers in two-component star clusters. The calcula-
tions were performed using our recently developed Monte
Carlo code using N ¼ 105 stars, with a few key calculations
repeated using a direct N-body code running on GRAPE
computers. The two methods showed good agreement in all
cases. The large N that can be used in Monte Carlo simula-
tions is essential for this type of study, as it allows us to treat
a small tracer population of objects without suffering large
numerical noise.

We found that light tracers with ld0:1 0:4 (depending
on cluster parameters) are ejected from the cluster core, on
average, within one central relaxation time (�107 109 yr for
most globular clusters). The cores of globular clusters
should therefore be largely devoid of stars of mass d0.25
M�. As a result, we predict that any observed low-mass star
in a dense globular cluster core is most probably part of a
binary system with a more massive companion. For exam-
ple, low-mass helium white dwarfs observed in a cluster core
are most probably in binary systems (Taylor et al. 2001).

Some of the low-mass objects, when they are ejected from
the central region of the cluster, settle in the outer halo,
where the relaxation time is so long that they are prevented
from further segregation or evaporation through the tidal
boundary. We found in our simulations that the number
density of light tracers in the outer parts of the cluster can
actually become significantly higher than it was initially. We
studied the implications of these results for gravitational
microlensing in globular clusters and found that low-mass
objects in the cluster halo can dominate the optical depth
for microlensing by up to an order of magnitude. We
applied these results to the recent null detection of Sahu,
Anderson, & King (2002) to estimate an upper limit on the
current mass fraction of M22 in very low mass objects of
�25% at the 63% confidence level.

For clusters with heavy tracers (l > 1) we found good
agreement between our Monte Carlo results and direct N-
body integrations, as well as simple theoretical estimates. In
particular, we found that the timescale for mass segregation,
�0, varies as 1=l, as expected from theoretical predictions.
Specifically, over a wide range of initial cluster concentra-

Fig. 8.—Mass segregation timescale as a function of mass ratio, for a
few King initial models. In all cases �0 / 1=l, as predicted by simple theo-
retical arguments.

Fig. 9.—Ratio of half-mass radii of the tracers to the background stars
for the system shown in Fig. 6, displaying persistent segregation. Also plot-
ted for reference is the overall half-mass radius of the cluster.
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tions and mass ratios, �0=tr ¼ C=l, where the constant
C ’ 0:5� 1.
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