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Abstract Mass spectrometry (MS) techniques, because

of their sensitivity and selectivity, have become methods of

choice to characterize the human metabolome and MS-

based metabolomics is increasingly used to characterize the

complex metabolic effects of nutrients or foods. However

progress is still hampered by many unsolved problems and

most notably the lack of well established and standardized

methods or procedures, and the difficulties still met in the

identification of the metabolites influenced by a given

nutritional intervention. The purpose of this paper is to

review the main obstacles limiting progress and to make

recommendations to overcome them. Propositions are

made to improve the mode of collection and preparation of

biological samples, the coverage and quality of mass

spectrometry analyses, the extraction and exploitation of

the raw data, the identification of the metabolites and the

biological interpretation of the results.

Keywords Metabolomics � Mass spectrometry �
Nutrition � Method development

1 Introduction

Nutrition research in the 20th century led to the discovery

of the functions of essential nutrients. Nutritional recom-

mendations have been made for populations to cover the

needs of these essential nutrients, and to ensure the good

functioning of the organism. Beyond these essential

effects, it is also clear today that many of these nutrients,

together with non-essential bioactive compounds also

present in foods and the diet, interact with a number of

metabolic pathways and influence health, reducing or

increasing the risk of diseases such as cancers or cardio-

vascular diseases. Deciphering these complex interactions

between nutrients and the human organism constitutes a
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INRA, UMR 1019, Unité de Nutrition Humaine, Centre de

Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genes-

Champanelle, France

e-mail: scalbert@clermont.inra.fr

L. Brennan

UCD School of Agriculture Food Science and Veterinary

Medicine, UCD Conway Institute, University College Dublin,

Dublin, Ireland

O. Fiehn

Genome Center, University of California, Davis, Davis,

CA 95616, USA

T. Hankemeier

Analytical Biosciences, Leiden/Amsterdam Center for Drug

Research, Leiden University, Einsteinweg 55, 2333 CC Leiden,

The Netherlands

B. S. Kristal

Department of Neurosurgery, Brigham and Women’s Hospital,

Harvard Medical School, Boston, MA 02115, USA

B. S. Kristal

Department of Surgery, Harvard Medical School, Boston,

MA 02115, USA

B. van Ommen � E. Verheij � S. Wopereis

TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The

Netherlands

D. Wishart

Department of Computing Science, University of Alberta,

Edmonton, AB T6G 2E8, Canada

123

Metabolomics (2009) 5:435–458

DOI 10.1007/s11306-009-0168-0



considerable challenge for the 21st century (Doets et al.

2008).

The classical approaches in nutrition research are

hypothesis-driven. Methods used to prove or disprove a

hypothesis were largely derived from those used in phar-

macology. However nutrients do not specifically interact

with a defined target like some drugs but they most likely

interact with a number of targets, metabolic pathways and

functions. Furthermore the magnitude of their effects is often

much lower than that commonly observed for drugs. Recent

research on vitamin E illustrates the limits of these approa-

ches: tocopherols do not only have a vitamin function but

they are also powerful free radical scavengers. Added to fats,

they limit their peroxidation and increase their shelf life. It is

known from animal studies and short-term clinical trials that

they can also limit LDL peroxidation in the artery wall and

improve some surrogate markers of cardiovascular disease

risk (Huang et al. 2002; Meydani 2004). However, despite

such evidence, the results of large intervention studies were

largely disappointing and did not show a reduction of disease

and mortality outcome (Bjelakovic et al. 2007; Miller et al.

2004). Therefore, short-term intervention studies and the use

of current surrogate markers failed to predict the effects of

vitamin E supplementation on diseases and mortality.

Omics approaches and metabolomics in particular should

allow to characterize the effects of a nutrient, a food or a diet

with much more precision. Metabolomics allows to analyse

hundreds of metabolites in a given biological sample (bio-

fluid, tissue, cells, etc.). When applied to urine or plasma

samples, it allows to differentiate individual phenotypes

better than with conventional clinical endpoints or with small

sets of metabolites (Assfalg et al. 2008; Brindle et al. 2002;

Yang et al. 2004). It also allows to explore the metabolic

effects of a nutrient in a more global way. In the field of

nutrition, metabolomics has been used to characterize the

effects of both a deficiency or a supplementation of different

nutrients, and to compare the metabolic effects of closely

related foods such as whole-grain or refined wheat flours

(Fardet et al. 2007; Rezzi et al. 2007). It may also allow to

better separate the effects of the diet from those of con-

founding factors such as age, gender, physiological states

and lifestyle once the effects of these factors on the metab-

olome will have been characterized in sufficient details.

Metabolomics and the food metabolome made of all the

products of food digestion may also be used to estimate the

food or nutrient intake from a urine, sera or plasma sample

(Fardet et al. 2008b; Wishart 2008). Metabolomics may help

solving problems associated to the methods currently used

for measuring food intake (Manach et al. 2009). A literature

search retrieved 128 papers dealing with metabolomics in

human nutrition and published since 2001 (Web of Science,

December 22, 2008). They included 45 original papers, 60

reviews and 23 papers focused on method development or

the characterization of metabolome variability. Nearly two-

third of these papers were published in the last 2 years.

In the majority of original papers (62%), proton NMR was

used for data acquisition. However, due to its more limited

sensitivity, not more than 60 different metabolites are com-

monly estimated in biological samples (Martin et al. 2007).

HPLC-separations coupled with coulometric electrode array

detectors are extremely sensitive (detection of subnanomolar

electrochemically active species in sera), and can detect

[1000 compounds in sera (Milbury 1997; Vigneau-Calla-

han et al. 2001), but their use remains limited by low

throughput, inability to observe non-electrochemically

active species and difficulties associated with metabolite

identification. Mass spectrometry (MS) techniques are also

highly sensitive and provide spectral information (exact

mass of molecular ion, fragmentation patterns) which con-

tribute to the identification of the metabolites (Dettmer et al.

2007). For these reasons, the number of MS-based meta-

bolomics studies grows quickly and now exceeds that of

NMR-based studies (Dettmer et al. 2007). Both targeted

profiling (in which metabolites are known a priori) and fin-

gerprinting (the identity of the metabolites of interest is

established a posteriori) have been carried out in MS-based

metabolomics. Targeted profiling is usually developed for

quantification of a given class of metabolites (lipids, fatty

acids, acylcarnitines, bile acids, organic acids, nucleosides,

etc.). It has been used for many years in nutrition research.

However the increasing power of MS techniques which

allows today the simultaneous analysis of several hundred

metabolites explains why it has been called metabolomics

(Altmaier et al. 2008; Watkins et al. 2002). MS-based fin-

gerprinting was only applied recently to nutrition with about

10 papers published in 2008 (Clish et al. 2004; Fardet et al.

2008a; Kuhl et al. 2008; Shen et al. 2008). This approach

offers a considerable potential but progress is still hampered

by many unsolved problems (Table 1) and most notably the

lack of well established and standardized methods or pro-

cedures, and the difficulties still met in the identification of

the discriminating metabolites (Jiye et al. 2005; Lawton et al.

2008; Wishart et al. 2008).

This paper is based on the discussions held during the

workshop ‘‘Tools and Methods for Mass Spectrometry

Metabolomics in Nutrition’’ organized by NuGO, the

European Nutrigenomics Organization (www.nugo.org) on

December 12–14, 2007 in Clermont-Ferrand (France).

Each section of the manuscript summarizes the problems

identified and proposes recommendations to solve them.

2 Sampling strategy for metabolomics

In metabolomic studies, minimisation of unwanted sources

of variation is important. Such variation can be broadly
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Table 1 Problems and recommendations for further developing MS-based metabolomics in nutrition research

Problems Solutions/recommendations

Study protocol not optimized for

metabolomics

Control the diet wherever possible

Control the time of sampling

Explore the influence of the diet or nutrient in perturbed conditions (challenge tests) to better reveal

low magnitude effects often characterizing nutritional interventions

Interindividual variations larger than

treatment effects

Cross-over design preferred to parallel design for nutritional interventions

At least two sampling points per person, before and after intervention

Time–course metabolomics

Unwanted sources of variations

associated to sample collection and

storage

For serum collection, control the clotting conditions

For plasma, standardize deproteinization methods

Ensure proper sample preservation (preservatives and low temperature)

Insufficient coverage of MS profiling

methods

Select and develop a limited set of analytical methods allowing to cover the highest fraction of the

known human metabolome

Increase the capacity of chromatographic systems

Develop bidimensional separation techniques

Limited quality of MS analyses Limit ion suppression effects in LC–MS (increase chromatographic resolution, use nanospray

ionization)

Develop isotope tagging methods for targeted metabolite classes

Establish gold standards of defined metabolite synthetic mixtures representative of biofluids to assess

and validate method performance

Analytical data not easily compared

between studies or laboratories

Ensure proper validation of the analytical methods

Generalize the use of quality control samples

Generalize the use of a set of spiked markers of retention time

Develop metabolite quantification rather than semi-quantification

Inconsistent results of data extraction Compare performance of various data extraction tools

Improved tools to be developed with notably interactive review and error correction functionalities

and generic tools applicable to data sets originating from various MS instruments

Insufficient exploitation of the data and

data overfitting

Develop the informatics plan together with the study design once the question(s) of interest has been

carefully defined

Fully disclose the methods used and encourage standardization for reporting data

Incomplete metabolite identification in

metabolomics fingerprints

Metabolite identification should be made a priority in metabolomics studies

Further develop MS-based metabolite databases (including food components/additives and their

metabolites formed in the body)

Further develop MS-based metabolite identification softwares

Develop elemental or chemical formula prediction softwares

Encourage the development of publicly accessible databases and common repository of MS reference

compound spectra

Difficult interpretation of changes in

metabolomics fingerprints

Build a knowledge base on the biological meaning of changes of metabolite concentrations in body

fluids and develop metabo-ontologies

Further clarify the links between changes in metabolite concentrations in body fluids with organ

physiology/pathology using animal models

Define ‘‘normal’’ concentrations as compared to concentrations characterizing early disease onsets

and diseases

Further understand the biochemical relationships between metabolic pathways and network biology

Improve match between MS analytical performance and metabolism areas of major biological

interest

Develop ‘‘wish lists’’ of metabolites of interest and promote the development of metabolomics

platforms to quantify the corresponding metabolites

Develop metabolite annotation to differentiate endogenous, exogenous and microbial metabolites

Promote standardization of methods and data formats as well as data warehousing to allow multi-

study comparison

Develop an integrated workbench with all data analysis tools

Develop a common depository of all available tools, knowledge and results
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summarised as analytical and biological variation and

examples include (Maher et al. 2007): (1) sample collection,

storage and stability, (2) sample pre-treatment, including

metabolite extraction, prior to analysis, (3) instrument

variation/stability, (4) intra-individual variations due to

environmental factors such as diurnal variation and stress,

(5) inter-individual variations due to genetic factors, (6)

inter-individual variations due to the presence/absence of

disease. Failure to minimise such unwanted variation can

have a negative impact on the outcome of the study

resulting in, for example, identification of fewer biomark-

ers. This section of the workshop addressed some of the

points above in the context of designing metabolomic

studies for nutritional studies. Most metabolomic studies

are designed to address a specific hypothesis and while a lot

of attention is devoted to the design from the hypothesis

view point it is easy to overlook sample collection, stability

and storage issues. Recently, there have been a number of

studies highlighting the importance of these points (Gika

et al. 2007, 2008; Lauridsen et al. 2007; Maher et al. 2007;

Saude et al. 2007; Saude and Sykes 2007; Shurubor et al.

2007; Teahan et al. 2006; Zhang et al. 2007). While a

number of these studies have been carried out using NMR

spectroscopy, the same issues and recommendations will

also apply to LC–MS and GC–MS approaches.

When considering the design of a metabolomic study the

first issue to consider is the time of the sampling. Diurnal

variation has been documented in urine samples taken from

healthy volunteers (Maher et al. 2007; Walsh et al. 2006).

However, one cannot simply decide to collect fasting

morning samples as changes have been reported between

samples collected with a 2 h separation (Maher et al.

2007). To minimise variation a very specific description of

the collection of urine sample needs to be given such as

‘‘first void midstream urine samples’’.

The next issue to be addressed is the effects of preser-

vatives on metabolic urinary profiles. Lauridsen et al.

investigated the effects of addition of NaN3 and NaF to

human urine samples (Lauridsen et al. 2007). The authors

concluded that for long-term storage at -25 and -80�C

there was no requirement for the preservative. However, if

preservative has to be added, for example due to extended

storage at room temperature, the recommended pre-

servative is NaN3 because of limited interferences with

NMR spectra. It was shown to slow down changes of the

metabolite concentrations in urine kept at room tempera-

ture (Saude and Sykes 2007).

With respect to blood sample collection recent studies

have also highlighted the importance of how collection is

performed. The generic advice of collection of fasting blood

samples is not enough if systematic bias is to be avoided. In

fact, details such as clotting time, clotting temperature and

treatment conditions prior to centrifugation need to be

considered. Teahan et al. demonstrated that clotting time

had an impact on the metabolic profile and that clotting on

ice delayed the observed changes (Teahan et al. 2006).

When collecting serum samples for metabolomics studies

one must record the clotting time and temperature at which

the clotting occurred and standardise across all samples.

Another issue which is often overlooked is that blood col-

lection tubes can release materials into the samples and

interfere with the mass spectrometry analysis (Drake et al.

2004). In addition, batch differences have been reported for

certain vacutainers and again these concerns should be

addressed in study design. With respect to plasma samples

one must consider the anticoagulant to be used and possi-

bility of unwanted peaks.

Sample storage and stability for human biofluids with

respect to metabolomics are issues that have been addres-

sed for NMR based and LC–MS based approaches. Lau-

ridsen et al. showed that urine samples should be stored at

or below -25�C and recommended not to store at 4�C for

prolonged periods (Lauridsen et al. 2007). No beneficial

effect of storing at lower temperature was seen for the

duration of this study (up to 26 weeks) using NMR based

metabolomics. Similar results were reported by Maher

et al. using NMR based metabolomics (Maher et al. 2007).

A recent study by Gika et al. showed using untargeted LC–

MS and UPLC–MS approaches that human urine samples

were stable for up to 6 months stored at -20 and -80�C

(Gika et al. 2008). Short term storage of human urine

samples at 4�C was shown to be stable for up to at least

48 h using LC–MS profiling meaning that samples for this

type of work can be considered stable in a chilled auto-

sampler (Gika et al. 2008).

The effects of freeze thaw cycles on the metabolic

profiles have been investigated using NMR, LC–MS and

GC–MS. In the case of the LC–MS study, freeze thaw

cycles of up to 9 cycles of human urine samples, taken

from 6 individuals, did not impact on the clustering of the

data in a PCA plot (Gika et al. 2007, 2008). Investigating

the effects of the a freeze thaw cycle on the relative con-

centrations of 26 compounds in rat urine using GC–MS

Zhang et al. showed that one freeze thaw cycle did not

result in significant differences for the compounds analysed

(Zhang et al. 2007). Studies in our laboratory showed that

one freeze thaw cycle had minimal impact on the NMR

spectra and the within bin correlation was above 0.97 for

90% of the regions studied (unpublished data). Saude and

Sykes used a targeted NMR based approach and reported

that repeated freeze thaw cycles over 4 weeks resulted in

an intermediate degree of metabolite change when com-

pared to storage at room temperature and at -80�C (Saude

and Sykes 2007). Overall, to minimise confounding factors

in urinary metabolomics it is recommended to keep freeze-

thaw cycles to a minimum.
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Other unwanted sources of variation that are important

to consider in study design are recent consumption of

certain foods and medication. Recently, it has been dem-

onstrated that standardisation of the subjects diet reduced

the variation in the urinary metabolic profiles (Walsh et al.

2006). In addition, there are many reports where diet,

alcohol and medication have resulted in outlying samples.

When setting out to design metabolomics studies it is

essential that one considers food restrictions and medica-

tion and that subjects record their dietary and medication

intake 24 h prior to biofluid collection and avoid the use of

medication. A well planned study with collection of suf-

ficient metadata (dietary, medication and physical activity

at a minimum) should allow one to avoid the need for a

pilot study and to use metabolomics to its full potential.

Blood samples contain a range of low molecular weight

compounds and proteins and efficient removal of the pro-

teins is necessary prior to LC–MS or GC–MS analysis for

metabolomic studies. Since human blood contains a range

of low molecular weight compounds with a wide range of

concentrations, stability and ability to bind to proteins the

development of an extraction procedure is complex.

Recently, Want et al. examined a range of deproteinization

methods in combination with LC–MS profiling and found

that methanol precipitation was the most effective and

reproducible approach resulting in the detection of over

2000 metabolite features and less than 2% protein (Want

et al. 2006). A recent study investigated two protein pre-

cipitation methods for plasma samples and found the

methanol method to be superior comparing the number of

signals, sensitivity and reproducibility for use with UPLC–

MS (Bruce et al. 2007). In addition, for use with GC–MS

the methanol extraction procedure was found to be highly

efficient and reproducible (Jiye et al. 2005). However, it is

necessary to point out that these studies have used an un-

targeted profiling approach and in the case of targeted

approaches the deproteinization protocol to be used will

vary according to the metabolite classes targeted. While

protein depletion is not necessary prior to acquisition of

NMR spectra previous studies have shown that it can be

useful for gaining information on low-concentration

metabolites (Daykin et al. 2002; Tiziani et al. 2008).

Faecal samples are an example of another biofluid rel-

evant to nutritional research which requires pre-treatment

prior to metabolomic analysis. Recent papers have

appeared in the literature using both water extraction and

methanol extraction procedures of frozen faecal samples in

conjunction with NMR based profiling (Jacobs et al. 2008;

Saric et al. 2008). Both methods gave reproducible profiles

which contained complementary information (Jacobs et al.

2008). In addition, Saric et al. investigated the differences

between water extractions from fresh and frozen stool

samples and only found higher concentrations of amino

acids and glucose in frozen samples. As a result they

concluded that use of frozen samples was acceptable (Saric

et al. 2008).

All of the issues described above need to be considered

and standard operating procedures (SOPs) drawn up for the

biofluids used for each metabolomic study. The importance

of this cannot be underestimated, especially in the case of

multi-centre nutritional intervention studies, if meaningful

results are to be obtained. In addition, the adaptation of a

standard reporting system is essential for the description of

the collection of biofluids relevant to nutritional research.

To this end steps have been taken by the metabolomics

standards initiative and a recent publication describes the

recommended reporting requirements for biological sam-

ples (Griffin et al. 2007). In addition, NuGO intends to

compile SOPs relevant to sample collection, storage and

collection for nutritional metabolomics studies.

3 Mass spectrometry for metabolomics

Mass spectrometry (MS) has played an important role in

the development of methods for profiling of metabolites

due to its selectivity and sensitivity. Broad screening

approaches of metabolites in biofluids combined with

biostatistical tools for data evaluation have been devel-

oped, first by GC and GC–MS in the 1970s. In the 1990s,

major improvements in interfacing LC and MS (electro-

spray and atmospheric pressure chemical ionization)

enabled the use of LC–MS for metabolite profiling. How-

ever, more comprehensive metabolite profiling methods

were only reported after 2000 (van der Greef and Smilde

2005). Actually, for the acquisition of a comprehensive

metabolite profile more than one method has to be used

(van der Greef et al. 2007). As the physicochemical

properties (e.g. pKa, polarity, size) of metabolites cover a

wide range, there is not one separation method (GC, LC or

CE) to separate all metabolites with one method only. In

addition, there is not one detector that can measure all

metabolites, even a mass spectrometer cannot detect all

metabolites as some metabolites do not ionize with a cer-

tain MS method, or as their concentration are too low. The

dynamic range of most mass spectrometers is also still only

3–4 orders of magnitude, whereas the range of concentra-

tions of metabolites in biological samples is often much

larger. In addition, a specific challenge in nutritional met-

abolomics is the diversity of dietary compounds and of

their metabolites formed after ingestion. Many of these

compounds have not yet been fully described. As an

example, 869 metabolites have been detected in tomato,

including 494 not found in the main metabolite databases

and still awaiting to be characterized (Iijima et al. 2008).

With most metabolite profiling methods there are thus
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many unknown metabolites detected, and for many provi-

sionally identified metabolites, standards for identification

or quantification are often still lacking.

To analyse the different types of metabolites found in

biological samples collected in nutrition experiments,

proper sample preparation, metabolite separation and MS

detection are needed. This implies the choice of the most

appropriate separation method (GC, LC or CE), interface

between separation method and MS, and type of MS

detector. Alternatively, no separation at all is used, and a

direct infusion approach is followed (Boernsen et al. 2005).

Important criteria for selection of a method are coverage,

selectivity, dynamic range, detection limit, accuracy, pre-

cision, and price per sample.

The advantages of using GC are high separation effi-

ciency and reproducible retention times, which can be

compared between different labs via the retention index

concept using retention time markers. With GC–MS, uni-

versal electron ionization (EI) is most often used. It pro-

vides response for all metabolites and characteristic,

reproducible and standardized mass spectral fingerprints.

These mass spectra allow identification of the peak when

searching in public and commercial databases. For the

analysis of medium polar and polar metabolites with GC–

MS, metabolites are first derivatized, mostly by oximation

and subsequent silylation (Fiehn et al. 2000). The oximation

step is to protect certain carbonyl groups, and to assure that

only two peaks in a reproducible ratio are obtained for

carbohydrates. The advantage of silylation is that a wide

range of functional groups are derivatized such as hydroxyl,

amine, amide, phosphate and thiol group. However, the

disadvantage is that the derivatized products like some

amino acids are not very stable, and can degrade during

injection and separation. Therefore, internal quality markers

are added to the sample to monitor the performance of the

system (Kanani et al. 2008; Koek et al. 2006). For GC–MS,

there are generally less options for MS detectors compared

to LC–MS. Most often, a quadrupole MS or a time-of-flight

(TOF)-MS detector are used. Alternatives are triple quad-

rupole MS and ion trap MS detectors. For comprehensive

GC9GC, a fast TOF-MS is used. For the identification of

metabolites with GC–MS, chemical ionization is often used

to reveal the molecular weight of a metabolite. To increase

the peak capacity of the GC separation method, i.e.

increasing the number of separated metabolites, compre-

hensive multi-dimensional GC9GC approaches are

increasingly used (Hagan et al. 2007; Koek et al. 2008). It

has been shown that GC9GC–MS is in principle more

robust for metabolite profiling than GC–MS. However, data

is more complex, and no optimal solution for data pro-

cessing is available yet (Koek et al. 2008).

For LC–MS, the advantage is that in principle no

derivatization is required for the analysis of polar or high

molecular weight metabolites, allowing fast analysis of

small samples. A wide range of different detectors are

available for LC–MS, ranging from ultra-high resolution

MS such as Fourier transform ion cyclotron resonance (FT-

ICR) or Orbitrap FT, and high resolution MS (TOF) to low

resolution MS (ion traps, triple quads) up to hybrid sys-

tems. Most recent addition are ion-mobility TOF-MS sys-

tems (Dwivedi et al. 2008). Different methods have been

developed depending on the nature of the metabolites of

interest. Reversed-phase liquid chromatography (RPLC)–

MS has been used for global profiling of metabolites

(Plumb et al. 2006). A RPLC–MS approach is also used for

the profiling of lipids, allowing the detection of more than

hundred lipids of various classes (Hu et al. 2009; Laakso-

nen et al. 2006; Verhoeckx et al. 2004). Polar metabolites

are mostly analyzed by hydrophilic interaction chroma-

tography (HILIC–MS) (Bajad et al. 2006; Tolstikov and

Fiehn 2002) or after derivatization before RPLC–MS

(Carlson and Cravatt 2007b).

A disadvantage of LC–MS is ion suppression: ionization

of metabolites may depend on the presence of matrix

compounds, particularly with electrospray ionization (ESI)

and, to a lesser extent, atmospheric pressure chemical

ionization (APCI). This can be overcome to some extent by

miniaturization of electrospray ionization to nanospray

ionization and by a better separation of metabolites.

Obviously, the best quantitative results can be obtained

using isotopically labelled reference metabolites for each

metabolite in a targeted approach, but this cannot be

applied to the profiling of a large number of metabolites,

either because the labelled metabolites are not available, or

for cost reasons. Instead, isotope tagging methods can be

developed for targeted metabolite classes (Guo et al. 2007).

To increase the peak capacity in LC, options are smaller

particles in LC columns (requiring often higher pressure of

the LC) (Plumb et al. 2006), using longer columns such as

monolithic columns (Tolstikov et al. 2003). Comprehen-

sive LC9LC approach can also be used (Stoll et al. 2007),

but it is less straightforward compared to GC9GC, as less

options are available for refocusing peaks in the second

dimension. High separation efficiency can also be obtained

by CE–MS. However, migration times are often less

reproducible and sensitivity is often lower as compared to

LC–MS. Still, promising applications of CE–MS for

metabolites carrying a charge at a certain pH have been

reported (Soga et al. 2003).

The strategy for identifying metabolites in LC–MS

differs from that used in GC–MS, as only the molecular ion

is most often detected. Additional MS/MS fragmentation

experiments are required to obtain more information about

the structure of the metabolites. However, these MS/MS

spectra depend on the equipment and experimental condi-

tions used, and are usually not as comparable as they are
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for GC-EI-MS spectra (see Sect. 6 below). The use of TOF-

MS and especially of Fourier transformed MS (FT-ICR or

Orbitrap) allows the acquisition of metabolite profiles with

high mass accuracy, i.e. better than 3 ppm. This allows

often to identify the elemental composition of a metabolite

using internal mass calibration, and with TOF MS data

often the isotopic pattern is taken into account (Kind and

Fiehn 2007). Then in combination with using databases and

possibly MS/MS information, the provisional assignment

of those metabolites present in the database is often pos-

sible. However, it should be mentioned that often several

isomers are possible with the same elemental composition;

and obviously not all metabolites, especially dietary com-

pounds and biotransformed (after ingestion) plant metab-

olites, are present in databases yet. Next, the alignment of a

set of LC–MS chromatograms is in principle more

straightforward if data are acquired with high MS

resolution.

Direct infusion (DI)-nanospray ionization-high resolu-

tion MS can also be used for metabolomics profiling

(Boernsen et al. 2005), including for lipids (Han and Gross

2005). The advantage is high throughput of samples. In

recent years the analytical performance of DI-MS has been

improved and several applications in metabolomics have

been published. Extension of the dynamic range was

achieved using wide scan FT-ICR MS method, using col-

lection of multiple adjacent selected ion monitoring win-

dows that are stitched together (Southam et al. 2007). If

proper internal standards are used, linearity up to nearly

three decades can be achieved (Han et al. 2008). However,

for those compounds where no proper correction with

(preferably isotopically labelled) internals standards are

possible, limits in the quantification of metabolites are

commonly observed due to possible ion suppression

effects. These can be prevented (at least to some extent)

using more extensive sample preparation. Matrix assisted

laser desorption ionization (MALDI)-MS has also been

used for metabolite profiling, however, when applied to

small molecules, it is generally less quantitative compared

to ESI (Wang et al. 2009).

A key aspect in metabolite profiling methods with MS is

how to realize comparability of studies and data. Recently,

a set of minimum requirements for reporting chemical

analysis of a metabolite profiling experiment has been

suggested (Sumner et al. 2007). However, the minimum

requirements for the validation of metabolite profiling

methods have not been described yet, and one often

encounters publications where the validation of an analyt-

ical metabolite profiling method is not well described.

Validation should include at least a description of the

calibration model (linearity and range), repeatability and

intermediate precision, accuracy (use of matrix variation

studies, etc.) and lower limit of quantification. In addition,

the recovery, reproducibility, robustness (e.g. different

technicians, freeze-thaw cycles, etc.) and carry over should

be characterized. When large series of samples are ana-

lysed, the use of quality control samples is recommended

to control the analytical systems performance, or to com-

pensate for drift of the chromatographic system or the mass

spectrometer (van der Greef et al. 2007). Comparison

between metabolomics studies can be best achieved by

reporting ultimately concentrations of identified peaks

rather than relative peak areas. In addition, internal stan-

dards added to the sample prior to sample preparation

improves quantification accuracy.

Nutritional metabolomics experiments can be conducted

in two manners, (i) a non-targeted profiling approach

(using direct infusion MS or LC/GC/CE–MS), where the

obtained data may be only semi-quantitative, or (ii) a more

targeted profiling approach aiming at quantitative data by

using more internal standards and reference compounds,

ultimately resulting in absolute concentrations. Often a

non-targeted semi-quantitative profiling approach is

applied first for hypothesis finding, and a targeted quanti-

tative approach to zoom into biochemical processes and

mechanisms, and to validate mechanisms of action or

markers. The numbers of metabolites covered by the var-

ious MS analytical methods vary a lot, also depending

whether it is a non-targeted profiling or a targeted

approach. When using a GC–MS global profiling approach

of plasma, the identity of only about 30–70% of the peaks

detected is commonly assigned. In LC–MS experiments,

much less peaks are generally assigned (Wishart et al.

2008). With targeted profiling, often 50–200 metabolites

can be analyzed with one analytical method. When using a

set of complementary methods, e.g. GC–MS and LC–MS,

often about 100–500 metabolites can be analysed in blood

in a targeted approach, and about 600–1000 can be

detected in a fingerprinting mode (Jiye et al. 2005; Lawton

et al. 2008; Shaham et al. 2008; van der Greef et al. 2007).

Clearly coverage of the methods has to be improved to also

include all metabolites of importance in nutrition research,

eventually present at low concentrations and currently not

measured in metabolomics studies so far published. A list

of relevant metabolites for the nutritional research field will

be helpful (see Sect. 7) to guide the development of ana-

lytical metabolomics platforms.

4 Extraction of information from mass spectrometry

metabolomics data

Extraction of information from metabolomics data has

always been a problematic process. This was true in the long

history of comprehensive analysis of biological materials

and still holds today. For example, in the study of medicinal

Mass-spectrometry-based metabolomics in nutrition 441

123



plants and plant cell biotechnology, the metabolomics

approach was daily routine. Back then, the low tech gold

standard was thin layer chromatography (1D or 2D) in the

‘pre’ HPLC, GC, MS and NMR era, because it was cheap,

and provided detailed information about sample composi-

tion (primary and secondary plant metabolites). Metabolites

were visualized by coloring reaction with a multitude of

different spraying reagents and/or fluorescence and the data

was captured by photography and notes in logbooks. Data

extraction was very laborious, inefficient and ineffective.

Progress in analytical technology brought HPLC, GC MS,

LC–MS and NMR to these labs, but also in the early days of

these techniques data was captured on paper recorder rolls,

photographic plates, etc. Only after the computer revolution

in the 80’s digital data systems became commonplace to

capture analytical data. We finally got digital data, and the

main purpose of the software that came along with analyt-

ical instruments was visualization of data, and computer

aided extraction of data in a manner similar to what was

done in the past with a ruler, pair of scissors and other

utensils.

Currently NMR and MS (LCMS and GCMS) are the

metabolomics workhorses. In the past decade advances in

analytical technology have provided us with reliable

instrumentation capable of producing vast amounts of very

rich data at increasing higher speeds simply because we

need this (that’s what we told the instrument companies).

The resulting data burden is commonly regarded as one of

the major bottlenecks in analytical laboratories, and is not

specific for metabolomics. The complexity and richness of

metabolomics data (and also mass spec proteomics data)

makes the ‘omics’ community the hardest hit.

Extraction of information from mass spectrometry met-

abolomics data may be done with a diverse set of approa-

ches, methods and tools. The fundamental problem of data

extraction: the same data, extracted with n different meth-

ods, gives n different data sets and probably n different

statistical models (if a single statistical procedure is

applied). In applications where major changes to the me-

tabolome occur (e.g. toxicity models) the differences in the

final outcome are relatively small. Unfortunately, in all

other applications where metabolome changes are more

subtle (i.e. nutrition research), data extraction errors have a

dramatic impact on the outcome of a study. For 1D-NMR

popular data extraction methods are binning (total signal in

fixed chemical shift regions of 0.01–0.05 ppm) and peak-

picking (peak finding, baseline subtraction and alignment)

(Forshed et al. 2005; Vogels et al. 1996). Recently,

deconvolution of NMR spectra into compounds has been

added to these two (Weljie et al. 2006). This approach is

superior from a fundamental, theoretical perspective

because it delivers quantitative metabolite data and not just

NMR signal vectors. It is obvious these three fundamentally

different methods will give different study outcomes when

applied to the same data.

Hyphenated mass spectrometry techniques such as

LC–MS, GC–MS, 2D-NMR and in particular GC9GC–MS,

result in far more complex data than 1D NMR due to the

increased dimensionality. On top of differences between

data extraction methods, all these techniques have a large

number of operation and acquisition modes, and other factors

increasing the data diversity, e.g. for mass spectrometry:

– centroid or profile data acquisition

– fixed scan time (ToF, Q) versus variable scan time (IT)

– positive, negative and alternating/mixed polarity

– full scan MS1 versus SRM in MSn

– nominal mass resolution to ultra high resolution

– the ability to mix of all of the above

– proprietary data formats and instrument specific acqui-

sition modes/experiments

All instruments come with software for quantitative data

processing as it is used in routine analysis (e.g. bioanalysis,

residue analysis, environmental analysis, etc.). Unfortu-

nately this software was not made for processing very rich

comprehensive metabolomics LC–MS and GC–MS data

(e.g. 10,000 features in a single file) of unknown compo-

sition. This software can be used, but this limits the number

of compounds to a few hundred. It should be realized that

multiple target processing with the standard software

results in the best data quality because the process is

supervised and transparent. Integration errors are relatively

easy to detect and correct through well designed and

functional user interfaces. Furthermore, the output does not

contain contaminant peaks, isotopes, (auto)adducts, frag-

ments, multiple charge states etc., in other words it is very

clean data. However, the price of good data quality is time,

in the order of 2–4 weeks (or more), depending on the

number of target metabolites and number of samples. This

data extraction approach has in addition to its time con-

suming nature another more relevant major drawback. It

does not take full advantage of the richness of the data and

the conceptual aspect of metabolomics, the data is

incomplete, information and markers are being lost in the

process. The only solution to this is the use of brute force

comprehensive automated data extraction tools.

Instrument companies have only recently become active

in producing automated data extraction tools for meta-

bolomics and proteomics (e.g. Waters, AB, Thermo, Agi-

lent, Bruker) for selling Plug & Play Metabolomics

Systems. Major disadvantages of these proprietary tools are

(1) they only work for specific types of data and data

formats and (2) they are black box systems (little is known

about the underlying algorithms). At the same time more

and more 3rd party software is becoming available for

automated data extraction, e.g. GeneData, ACD-Labs,
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Rosetta, Non-Linear Dynamics to name a few. These

programs offer more flexibility with respect to the format

of the input LC–MS data which is a clear advantage when

using instruments from different vendors because data from

the different instruments can be processed in exactly the

same way.

The proteomics and metabolomics communities (and

also others) have been very active the last 15 years in

developing their own tools mainly because commercial

software was (is) not available and/or the poor performance

of some of the available software. Some of these DIY data

extraction tools are freely available on the web (CODA

algorithm (Windig et al. 1996), XCMS (Smith et al. 2006),

OpenMS (Sturm et al. 2008), MZmine 1 and 2 (Katajamaa

et al. 2006), MetAlign (Tolstikov et al. 2003), etc.) and

appear to be cheap solutions to the data extraction prob-

lems. In reality they are not cheap because they all require

training and good understanding of what the software is

doing right and wrong. On top of that issues such as sup-

port and long term continuity are not favorable. For an

excellent overview and description of all these tools and

software see (Katajamaa and Oresic 2007).

The various automated data extraction tools (commer-

cial, public domain and DIY) use different algorithms.

Popular approaches include:

(1) Peak detection and integration, followed by alignment

in the feature space.

(2) Warping of the m/z—retention time plane (alignment

at raw data level), background and blank subtraction,

followed by peak detection and integration.

(3) De-isotoping of data after Steps 1 or 2, e.g. correla-

tion analysis, accurate mass data (de-isotoping may

also be done as a 1st step in data extraction).

(4) Metabolite extraction by using spectrum information:

deconvolution, spectrum libraries, accurate mass, etc.

(5) ….

Analogous to NMR (see above) the extraction of

metabolite information (#4) is strongly preferred compared

to the extraction of all the features in the data: the possi-

bility of getting 15000 features from a single LC–MS file

seems very impressive, but these represent a much smaller

number of metabolites.

A quick search on the web resulted in approximately 20

different tools for automated data extraction (commercial

and public domain). None of these tools is generic, i.e. they

can only be used for either low or high resolution data,

centroid or profile data, etc. The functionality and perfor-

mance of all these tools is a white spot on the metabolo-

mics map, and it is widely known that all automated data

extraction tools have their specific problems which result in

data with a variable amount of errors. The fact that high

quality raw data is being corrupted due to these errors is

very alarming. Typical problems include:

– missed peaks

– integrated noise peaks

– database mismatches

– misalignment

– integration errors

These errors become more and more dominant in the

data at low signal to noise ratios. All algorithms eventually

stumble on classification problems such as: is this noise or

signal? Is this peak A or B or neither of the two? Are these

spectra the same?, etc. Unfortunately, many metabolites of

interest happen to be present at low concentrations and at

low signal to noise. These extraction errors have major

detrimental effects on the outcome of metabolomics stud-

ies. The majority of these tools, unlike the standard quan-

tification tools provided by instrument companies, are

applied without supervision in batch processing mode, and

typically do not have interactive review and error correc-

tion functionalities.

It is obvious that there is big need for improvements in

the area of data extraction. The ultimate goal is a (set of)

perfect tool(s), but it is expected this will take quite some

time. Development of new better algorithms and software

(user interfaces, databases, etc.) are relatively slow pro-

cesses, and a lag between availability of the appropriate

data extraction tools and rapid technological/methodolo-

gical innovation is inevitable. A serious implication of this

lag is that there is no point to waiting for the perfect

solution. It is equally important to focus on workflow

optimization and quality control measures to detect, char-

acterize, and reduce data extraction errors for the currently

available metabolomics data extraction tools. International

collaboration, between data extraction software experts and

users, is essential, and would ideally involve programs for

selecting well characterized test data (LC–MS, GC–MS,

etc.) and benchmarking of existing and new data extraction

tools/algorithms. Analysis and sharing of benchmarking

results (the good and the bad) is essential for improving the

data extraction software. This iterative process will even-

tually lead to many, almost flawless, solutions for high

throughput automated data extraction.

5 Multivariate analysis considerations for

metabolomics studies

The multivariate analysis considerations and procedures for

metabolomics studies are roughly comparable to those in the

microarray field (Broadhurst and Kell 2006; D’Haeseleer

2005; Goodacre et al. 2007; Westerhuis et al. 2008).
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Similarly, the vast majority of issues that impact on the

multivariate analysis component of any metabolomics study

also impact those in nutritional metabolomic (Broadhurst

and Kell 2006; Garosi et al. 2005). Basic approaches to data

analysis include classification, dimensional reduction,

visualization, pattern recognition, and modeling (Broad-

hurst and Kell 2006; Brown et al. 2000; Goodacre et al.

2007; Jansen et al. 2004; Lindon et al. 2001; Tamayo et al.

1999; Trygg and Wold 2002; Wold et al. 2001). This sec-

tion addresses multivariate analysis in the context of the

mathematical (dimensional) reduction of large multivariate

or megavariate (or numerical) data sets, e.g. into smaller

parcels of data that can be comprehended by humans and/or

into models that can predict behavior or classify a sample

into a group of interest (e.g. control, diseased). Bioinfor-

matics issues related to biological interpretation of the data,

e.g. pathway and/or literature annotation and systems biol-

ogy, and issues related to inter-lab data sharing and inte-

gration are discussed in Sect. 7.

Arguably the most important conceptual issue that dis-

tinguishes nutritional metabolomics studies from those in

other areas, such as toxicology, pharmacology or disease

diagnostics (Bhattacharjee et al. 2001; Garber et al. 2001;

Garosi et al. 2005; Kenny et al. 2008; Lindon et al. 2001),

is that the signals may be more subtle, an issue that makes

the specifics of experimental systems even more demand-

ing. In general, the choice of experimental question is, or

more precisely needs to be, directly and inextricably linked

with the experimental design (Bidaut et al. 2006; Brown

et al. 2000; Jansen et al. 2004; Taylor et al. 2002; Trygg

and Wold 2002; Wold et al. 2001). It is at best extremely

difficult and, often, impossible to rescue a study that is

poorly designed. By building the multivariate analysis in as

part of the experimental design, it is possible to avoid

studies that are doomed from the start and to make sure the

study will be sufficiently powerful (statistically speaking)

to draw conclusions, define models, or make predictions—

all while avoiding over-fitting, the bane of large multi-

variate studies (Broadhurst and Kell 2006; Westerhuis et al.

2008).

One constant trade-off that exemplifies the issues related

to experimental/analytical design is between specificity and

power (e.g. such as occurs when building a model in a

tightly controlled biological model system) versus robust-

ness and generalized applicability (such as occurs when

building a model in a broad human population) (Bhatta-

charjee et al. 2001; Garber et al. 2001; Kristal et al. 2005).

A general study seeking to describe the metabolome

present in a person or animal on one or another given diet,

for example is inherently different from a study geared at

building a profile that can distinguish the individual on

those diets (Shi et al. 2004). This, in turn, differs from one

that seeks to distinguish the effects of these diets in only

one specific gender or at a specific age (Paolucci et al.

2004a, b). Similarly, what constitutes a control group

(Bhattacharjee et al. 2001; Garber et al. 2001)? Is someone

who is medicated or someone with a known disease

included (Rozen 2005)? Are they equally represented

(Paolucci et al. 2004a, b)? Are numbers representative of

the general population? This continues as one refines and

defines progressively more specific/narrow criteria (or,

alternatively, progressively broader, more robust criteria).

Another choice is whether one wants to find the few most

powerful single markers (Kenny et al. 2008), or whether

one aims at a general profile (Goodacre et al. 1996; Pa-

olucci et al. 2004b). Is the long-term goal clinical or sci-

entific, a choice that often changes the acceptable options

for model building? Clinical models generally prioritize

robustness, simplified upstream analysis, and often cost per

analysis and throughput, whereas scientific models might

prioritize maximum information about a very limited

sample set, and be more willing to accept initially costly

and complicated analytical approaches.

Another closely related issue in terms of matching the

multivariate analysis approach and the experimental design

consists of determining, ideally in advance, what the

quality control metric will be, and how errors will be

viewed (Broadhurst and Kell 2006; Paolucci et al. 2004b;

Rubingh et al. 2006; Tominaga 1999; van den Berg et al.

2006; Wold et al. 2001). In practice, the standard to which

one’s data analysis must be held is often considered—for

better or worse—an extremely subjective one. In some

cases, the chosen metric will be an internal validation, e.g.

examining overfit of class assignment by permutation

analysis (Broadhurst and Kell 2006; Paolucci et al. 2004b;

Rubingh et al. 2006; Westerhuis et al. 2008). Alternatively,

the standard might be the same metric, but from a blinded

cohort (Shi et al. 2004). In a descriptive study, it may be

the development of a model that captures class identity

within a cohort, or, alternatively, between two different

cohorts (Shi et al. 2002, 2004). In other cases, it may be

clinical measures such as specificity, sensitivity, positive

predictive value, or negative predictive values. In some

cases, a measure of distance from one or more classes

might be of interest; in others, a more Bayesian viewpoint

of probabilistic class assignment may be considered more

useful. Finally, reciprocal errors cannot always be consid-

ered equivalent, e.g. the clinical cost of a false positive and

false negative clinical test differ substantially.

A second general concept is that of over-fitting

(Broadhurst and Kell 2006; Rubingh et al. 2006; Wester-

huis et al. 2008). Over-fitting is probably, today, the single

greatest multivariate analysis problem that we observe.

Basically, overfitting is the consequence of an incorrect

(over-zealous) use of an multivariate analysis approach to

describe a dataset and/or make predictions (e.g. about
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classification), for example using PLS-DA to find metab-

olites that distinguish two classes of interest. The problem

lies in the ability of algorithms such as PLS-DA to find

solutions in some spaces where no real solution exists. For

example, PLS-DA can separate two groups comprised

completely of random data (Westerhuis et al. 2008). The

gold standard here is biological replication in a blind, new

dataset (Kenny et al. 2008; Shi et al. 2002, 2004).

The third general concept is that of disclosure. At the

level of the field as a whole (or the individual who may

be reading a grant or paper in it), one of the solutions,

indeed arguably the best solution, to this suite of problems

is full disclosure of what is done. The overall goal of the

Metabolomic Standard Initiative (http://msi-workgroups.

sourceforge.net/) is to enable different metabolomics groups

to talk with each other. Within the multivariate analysis

component of the standards initiative the goal is, in part, to

request, and, ideally, eventually demand, sufficient infor-

mation so as to be able to really understand what was done

and catch key problems (Goodacre et al. 2007). Thus we

seek to define and encourage standardization at the level of

reporting data, not at the level of conducting analysis.

The fourth and final general concept that we can now

address is the most powerful way to attack metabolomics

data. This may be broken into at least three pieces. (i) Do

we know, for any question of interest, tools which always

work? To our knowledge, the answer is no. (ii) Do we

know, for any specific class of metabolomics question (e.g.

modeling nutritional intake, discriminating individuals on

either of two diets), whether there are tools (i.e. algorithms/

multivariate approaches) that always outperform other

tools with respect to a given metric (e.g. accuracy,

robustness, overfit characteristics)? In the experience of

one of us (BSK), components based analysis (PCA, PLS,

PLS-DA, etc. (Trygg and Wold 2002; Wold et al. 2001))

always performs as well as or better than pure distance

based algorithms, such as clustering and self-organizing

maps, on metabolomics data (Paolucci et al. 2004a; Shi

et al. 2002, 2004). This comment is very specific, however,

for a very defined problem—caloric intake in rats. That

said, we have looked at other data sets (non-metabolomics)

where self-organising maps and clustering outperform

projections. Others have had success with machine learning

approaches, support vector machines, etc. (Ellis et al. 2002;

Kenny et al. 2008; Lindon et al. 2001; Tominaga 1999).

Together, even this anecdotal argument suggests that we

are not yet ready to answer this question.

Indeed, while it is conceptually true that we should be

able to match algorithm to question, it appears that we

remain a long way from really being able to assign this

match with confidence [i.e. which method(s) work for

which question(s)]. Not everyone agrees. There are, for

example, those who are convinced genetic algorithms, or

random forest, or PLS-DA answer all questions about

group classification, but in reality each has strengths and

weaknesses. In some datasets, all three will essentially

yield equivalent variables as being important and equiva-

lent class assignments. I have also seen the opposite, where

each identifies different variables as important and makes

different class predictions (and all with relatively high

accuracy). Thus, for the moment, we have no robust

answers, only answers that are valid within a defined

experimental lens

6 Metabolite identification in mass spectrometry-based

metabolomics

6.1 Current state of the art

Metabolite identification is an essential part of any meta-

bolomics experiment. Unfortunately, because metabolite

identification is one of the most difficult and time con-

suming steps in metabolomics this crucial process is often

deferred to the final stages of many studies and therefore

left largely unfinished. In some cases, it is ignored alto-

gether. Without formal compound identification, the dis-

covery of any metabolically interesting patterns or clusters

(via PCA or PLS-DA) is largely meaningless.

The challenge of metabolite identification, especially for

mass spectrometry, lies in the fact that there are potentially

thousands of compounds that can match a given parent ion

mass or a given atomic composition. The situation is made

even worse given that most metabolomics experiments

generate hundreds or even thousands of different masses.

In the past, compound identification via mass spectrometry

required the use of complementary analytical techniques,

such as NMR, IR, or specialized chemical assays. How-

ever, this is now changing. In particular, with the intro-

duction of improved separation technologies, higher

resolution mass spectrometers, smarter ‘‘mass analysis’’

algorithms, more innovative chemical labelling schemes,

more comprehensive MS databases and a better under-

standing of the ‘‘standard’’ metabolic composition of most

organisms, it is now possible to confidently and rapidly

identify many metabolites via MS (Guo et al. 2007; Kind

and Fiehn 2007; Kopka 2006; Tikunov et al. 2005).

As has been previously discussed, MS-based experiments

can be done in any number of ways using many different

kinds of separation (GC, LC, CE, 1D, 2D), ionization (EI,

MALDI, ESI, APCI, CI) and detection (parent-ion-only,

parent ion ? EI fragmentation or parent ion ? soft sec-

ondary fragmentation) techniques. Consequently a given

MS-based metabolomics experiment can generate 3 general

types of data or mass spectral tags (MSTs): (1) parent mass

only; (2) parent mass ? chromatographic retention time or
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(3) parent mass ? fragment mass ? chromatographic

retention time. These properties, if properly documented,

can allow identification of both previously known and

hitherto unidentified compounds. The identification of

unknowns is done by measuring the MSTs of postulated

pure/authentic compounds that may match features of the

unknown MST (Kopka 2006).

This document discusses the needs and requirements

regarding data, databases and software for MS-based

metabolite identification. In particular we have attempted

to provide a framework or a series of recommendations

regarding how metabolite identification can be facilitated

in an MS-based metabolomics experiment. In doing so we

have used the databases and software models developed for

MS-based proteomics as a template for MS-based

metabolomics.

6.2 MS-based ‘‘pure’’ metabolite databases: current

limitations and recommendations

There are 3 types of MS-based metabolite databases: (1)

those that provide raw, unannotated MS (GC–MS or LC–

MS) spectral data of biofluids or tissue extracts; (2) those

that provide annotated MS (GC–MS or LC–MS) spectral

data or MST’s of biofluids or tissue extracts and 3) those

that provide reference MS spectra or MST’s (GC–MS or

LC–MS) of pure compounds. The first two types of dat-

abases represent archival reference data of MS-based

metabolomics experiments. They can be used to facilitate

compound identification and are often used in general

metabolomic analysis. However, the most useful databases

for compound identification are those in category 3. These

include the NIST GC–MS database, the Metlin database

(Smith et al. 2005), the Golm Metabolome database (Ko-

pka et al. 2005), BinBase (Fiehn et al. 2005), SetupX

(Scholz and Fiehn 2007), the HMDB LC–MS/MS library

(Wishart et al. 2007) and others (Moco et al. 2006). Min-

imally, these kinds of databases should include the name,

chemical formula and monoisotopic mass (to 5 decimal

places) of a significant number ([500) of metabolites or

chemically modified (trimethylsilated) metabolites. Ideally

these databases should also include chromatographic

retention times or retention indices (for both GC and LC

separations) as well as fragment ion mass data (EI or MS/

MS fragmentation). As with similar kinds of proteomics

MS databases, these metabolomics MS databases should be

searchable by (1) elemental composition; (2) parent ion

mass; (3) retention time/index; and/or (4) mass fragment

pattern. A major limitation of LC–MS relative to GC–MS

is the fact that retention times and retention indices for LC

methods are not generally reproducible and therefore

cannot be used as reliably as GC retention indices.

Potentially, the establishment of a ‘‘universal’’ calibration

standard of 5–7 compounds with varying polarity that

could be spiked into LC separations would provide a means

of making LC retention times both meaningful and share-

able. Another particularly useful addition to these kinds of

MS-based metabolite databases would be the possibility of

restricting the search to certain kinds of compounds (i.e.

endogenous metabolites only, known mammalian metab-

olites only, drugs only, toxins only, metabolites specific to

a certain tissue or biofluid, etc.) or combinations of

metabolite classes. Furthermore these databases should

provide experimental details (images of spectra, collection

conditions, MS spectrometer parameters, collision ener-

gies, instrument type, date of collection, lab/individual who

collected the data) concerning the origin or source of their

pure compound reference spectra. While it would be

preferable if these MS-based metabolomics databases were

freely accessible and freely downloadable (as many MS-

based proteomics databases are), we appreciate the fact that

commercial possibilities exist for the sale and distribution

of these kinds of MS resources. Nevertheless, we would

encourage the community (both academic and industrial) to

do their best to make their database resources publicly

accessible and adherent to these standards.

Because the number of compounds of interest to met-

abolomics researchers easily numbers in the thousands

and because different organisms have profoundly different

metabolomes, it is almost impossible for a single lab or a

single investigator to have access or an interest in col-

lecting referential MS spectra for ALL metabolites.

Therefore, there is a need to establish a process by which

individuals from many different metabolomic interests or

backgrounds may contribute to a common repository of

MS (GC or LC) reference compound spectra. While

several compound reference databases already exist

(NIST, the SDBS) these are general chemical databases

and they are not limited to metabolites or compounds of

biological interest. What is really needed is the equivalent

of a GenBank or PDB for MS spectral deposition. Such a

model allows users to deposit data to a common reposi-

tory so that it can be searched, shared or used by other

scientists. Already the NMR metabolomics community

has started depositing their reference compound spectra

into a common repository, called the BioMagResBank

(Ulrich et al. 2008). We would advocate for the estab-

lishment of a similar entity (lets call it the BioMSBank)

to support submission (and searching) of referential MS

(LC–MS and GC–MS) metabolite spectra. We would

advocate that such a resource store its data in a common

data exchange format such as XML (extensible mark-up

language).
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6.3 MS-based metabolite identification software:

limitations and recommendations

Currently most MS-based metabolite identification soft-

ware is a proprietary stand-alone application tied to a

proprietary MS instrument. This is somewhat contrary to

the trends seen in other ‘‘omics’’ software development.

Indeed, over the past decade, the trend for most ‘‘omics’’

software is towards web-based applications or web-server

delivery. This has numerous advantages (accessibility,

speed, improved maintenance, no need for installation

support) and it is the way in which most MS-based

proteomics software is now available—both commer-

cially and academically. We believe that MS-based

metabolite identification software should move to this

model. We also believe that MS-based metabolite iden-

tification software should emulate many of the features

used by MS-based proteomics software. This includes

support for database or subdatabase selection, support for

different mass list input formats, support for chemical

modification corrections (in this case TMS or dimethy-

lation), and inclusion of additional MST data (retention

index, parent ion mass, fragment ion patterns, etc.).

Obviously this kind of software needs to sit atop an

appropriately maintained database of referential metabo-

lite spectra (see above).

A separate kind of software tool that is unique to meta-

bolomics (and small molecule MS work) is elemental or

chemical formula prediction software. Given sufficiently

high mass accuracy (1–2 ppm) and resolution, it is possible

to use the parent ion mass spectrum to determine the ele-

mental composition and, in many cases, the identity or

approximate identity of a compound. Recently Kind and

Fiehn have developed a series of 7 heuristic rules for

chemical formula extraction and compound identification

(or ranking) from high resolution MS spectra (Kind and

Fiehn 2007). With the increasing availability of FT-ICR and

Orbitrap MS instruments, there is a distinct possibility that

this approach may offer a powerful adjunct, or even

replacement, to MST-based metabolite identification. In

particular, with the growing knowledge about what is found

or findable in many metabolomes (*1000 metabolites in

microbes, *3000 metabolites in mammals), the use of

chemical formula prediction, followed by rapid scanning

for formula matches to known metabolite lists could prove

to be a very fast, simple and robust method to metabolite

identification—especially among organisms that have well

characterized metabolomes. We would advocate that more

effort be devoted to this particular kind of MS-based

metabolite identification and that the software be made

available through easily accessible web-server applications.

6.4 Metabolite quantification and standards: limitations

and recommendations

While MS-based approaches are widely recognized for their

sensitivity and capacity to identify large ([100s) of

metabolites, they are not generally recognized as being

useful in metabolite quantification. This has often been the

Achilles heel to many MS-based approaches. However,

with the recent successes in using isotopic affinity tags

(such as ICAT) to make MS-based proteomics reasonably

quantitative, there is a distinct possibility that similar iso-

tope tagging methods could make MS-based metabolomics

equally quantitative (Carlson and Cravatt 2007a; Guo et al.

2007). We believe that the issue of metabolite quantification

should be made a priority in MS labs and that efforts that

focus methodological improvements or software improve-

ments to make rapid and accurate metabolite quantification

possible should receive both encouragement and support

from the metabolomics community. Indeed, identification

without quantification is the bane of many analytical

chemists—as well as many metabolomics researchers.

Recently the proteomics community has pushed for the

establishment of standards to assess the performance of

instruments, methods and labs in identifying and quanti-

fying proteins from defined mixtures. We believe that

similar initiatives should be undertaken in the metabolo-

mics community. The use of defined metabolite mixtures

(specific to plants, microbes and mammals) would provide

a means to objectively assess the performance and reli-

ability of algorithms, databases and protocols used in MS-

based metabolite identification and quantification. Indeed,

the use of standardized metabolite mixtures would provide

much-needed validation of existing methods and a means

of objective assessment of emerging methods.

6.5 Metabolite identification: consensus

recommendations

(1) Metabolite identification (and quantification) must be

a priority in any MS-based metabolomics experiment.

(2) Metabolites should be identified or classified as

either: (a) unknown; (b) belonging to a certain

chemical class; (c) putatively identified by a match

to a database MST or (d) confirmed with an authentic

standard.

(3) GC–MS and LC–MS databases should become open

source (using XML), open for public deposition and

much more standardized in terms of the information

they provide.

(4) The use of a standard set of externally spiked-in

retention markers (5–7 compounds) would help
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standardize the reporting of LC retention times and

the utility of LC–MS MSTs.

(5) A set of ‘‘gold standards’’ consisting of synthetic

plasma, urine and cerebrospinal fluid (CSF) should be

used by the metabolomics community to assess

existing protocols, check new protocols and verify

inter or intra-lab reproducibility.

(6) These gold standards would each contain 50 chem-

ically diverse, biofluid-specific compounds with wide

concentration ranges (pM to mM).

(7) Databases containing detailed physico-chemical infor-

mation of known food components (phytochemicals,

nutrients) and food additives must be established to

facilitate nutrition research by MS-based metabolomics.

7 Biological interpretation of metabolomics results

After having identified and quantified the relevant metab-

olite changes caused by a nutritional intervention, biolog-

ical conclusions need to be drawn related to the research

hypothesis. As yet, dedicated tools for the biological

interpretation of metabolomics data are scarce. In this

section we discuss the challenges posed by biological

interpretation and present suggestions for improvement.

7.1 Challenges

7.1.1 On the level of study design

Nutrigenomics is the study of molecular relationships

between nutrition and the complexity of molecular pro-

cesses, commonly measured with ‘‘omics’’ techniques,

with the aim to extrapolating how such subtle changes can

affect human health (Afman and Muller 2006; Chavez and

de Chavez 2003; Müller and Kersten 2003; van Ommen

and Stierum 2002). Metabolomics provides an essential

contribution, as nutrition is almost synonymous with

metabolism. In both study design and interpretation of

metabolomics data, a number of aspects related to the

control of unwanted sources of variability, the time of

sampling and the nature of the samples analysed should be

taken into account. Some sources of variation are relatively

easy to be controlled and recorded, such as analytical

instrument performance, sample storage and processing,

and data-processing. Other sources of variability are much

more of problem and need thorough thoughts when

designing your study. Firstly, inter-individual differences

are usually larger than treatment effect. These inter-indi-

vidual differences are partly explained by some variability

induced by non-controlled conditions in the study. It can be

reduced at the urine level but not in plasma or saliva,

through the use of a standard diet (Walsh et al. 2006).

However, large inter-individual differences remain, some

being age- and gender-dependent (Assfalg et al. 2008;

Lawton et al. 2008), others might be related to diurnal

variability, lifestyle, timing of sampling in relation to eat-

ing habits and fluid intake (especially with regard to urines)

or non-compliance in dietary interventions. Discussions are

ongoing on how to best capture these variations in

describing the study design. The new tools developed by

the European Bioinformatics Institute to capture study

metadata (ISA-TAB, ISA-creator and BioInvestigation

Index: http://www.ebi.ac.uk/net-project/projects.html) are

currently adapted by NuGO to carefully capture and

describe nutritional intervention studies. Also, the use of

standardized diets is a frequent topic of discussion. Stan-

dard run-in (pre-intervention) diets will indeed reduce the

variation in especially the urine metabolome (Walsh et al.

2006). Many food components present in diet are traceable

in plasma and urine, either intact or metabolized and

contribute to this variability (Manach et al. 2009; Mennen

et al. 2008). A series of human studies will still be needed

to characterize this variability and to produce valid rec-

ommendations on how to best limit interferences with diet-

induced physiological adaptations.

Secondly, homeostatic (fasting) metabolomics analysis

may be less informative than metabolomics analysis under

perturbed conditions. Unfortunately, only very few exam-

ples exploiting this concept have been published so far

(Kuhl et al. 2008; Shaham et al. 2008; Wopereis et al.

2009). Thirdly, although our main interest will be in organ-

related processes and biochemistry, these are not readily

available in human studies and we thus need to suffice with

body fluids. Plasma and urine have distinct biological

characteristics. Urine generally reports on exposure and

environmental challenges (Fardet et al. 2008b; Walsh et al.

2006, 2007), while plasma reveals endogenous processes,

including inter-organ communication, energy metabolism,

inflammation and disease state (Abdel-Sayed et al. 2008;

Kuhl et al. 2008; Wood et al. 2008).

7.1.2 On a single metabolite level

Do we understand the biological function

of the metabolite in the studied matrix?

This question can be addressed at two levels. The first is

its ‘‘intrinsic’’ function. For example, glucose has a primary

biological function as energy source. The second is its rel-

evance related to the matrix. Increased glucose in urine

indicates diabetes, while its increase in plasma is primarily

correlated to the post-prandial state and insulin sensitivity.

Many other metabolites have less known or more complex

functions. Besides, metabolite concentrations in distinct
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tissues may have different relevance, and even intra-cellular

compartmentalisation plays a role. For instance, metabolite

concentrations in mitochondria may be very different from

the cytoplasmic concentration. Plasma carnitine is not

straightforwardly related to mitochondrial carnitine con-

centration. Glutathione concentrations are higher in liver

than plasma, and strongly fluctuate in a diurnal rhythm

(Blanco et al. 2007).

Metabolomics needs a knowledge base on metabolite

information in the context of its matrix. Clinical chemistry

databases like Young’s effects online (www.fxol.org) are

valuable. The HMDB database (Wishart et al. 2007) pro-

vides a treasure of information on metabolite properties.

NuGOwiki (www.nugowiki.org) potentially adds to this

knowledge base, as any researcher can add biological

observations related to the metabolite. Other applications

related to plasma metabolite concentration changes appear,

like the HORA suite (Bruschi et al. 2008). At this point, a

large knowledge gap still exists in the translation from

metabolite concentration changes in body fluids to organ

biochemistry and (molecular) physiological interpretation.

Do we understand the relevance of the metabolite’s

changed body fluid concentration?

Can we translate organ processes to body fluid readouts?

Biochemistry text books teach us about the glycolysis as an

intracellular process not to occur in plasma. Yet, GC–MS

metabolomics detects most of the glycolysis and citric acid

cycle metabolites in plasma, indicating that those com-

pounds can be transported through the membrane and may

be a measure of the glycolytic activity in certain tissues. Or

is this due to the way of sampling, i.e. red and white blood

cells lysis? Usually we cannot make a simple comparison

between plasma changes and organ changes. The body

strives to maintain homeostasis, and therefore the organs

need to work hard to keep plasma concentrations between

acceptable boundaries, thereby showing much more

metabolite fluctuation in the organs. For instance, absorbed

glucose triggers release of insulin, resulting in inhibition of

triglyceride hydrolysis in adipose tissue, free fatty acid

esterification, decreased gluconeogenesis, decreased pro-

teolysis and many other processes in various organs, all

with their ‘‘imprint’’ on the plasma metabolome (Shaham

et al. 2008). Urine functions as an accumulating waste

basket of exogenous compounds and their metabolites,

while plasma levels of these compounds need to be as low

as possible. Furthermore, time lags can be involved

between organ changes and plasma changes. Therefore,

statistical relationships between various compartments

should be treated with care.

A practical approach in this problem is the use of animal

models to establish the link between organ physiology and

pathology, and body fluid (plasma) metabolome changes.

Especially, transgenic mice models are key in unravelling

specific mechanisms and combined omics technologies

then provide many indications for both the mechanism and

which metabolites should be measured in plasma (Chen

et al. 2008a; de Vogel-van den Bosch et al. 2008; Hansson

et al. 2005; Kleemann et al. 2007).

7.1.3 On a complex level (metabolic fingerprinting)

Do fingerprints really tell us more than the sum

of the individual components?

Nowadays roughly two different strategies can be dis-

tinguished for metabolite investigations: (1) metabolic

profiling and (2) metabolic fingerprinting (Dettmer et al.

2007). They should be clearly distinguished here. Meta-

bolic profiling focuses on a group or category of metabo-

lites of interest defined a priori (e.g. fatty acids, oxidized

lipids, nucleosides, etc.) and all these metabolites are pre-

cisely quantified. Metabolic profiling is a targeted way to

study different aspects of metabolism and one should need

the assemblage of a whole suite of quantitative methods to

turn metabolic profiling into metabolomics. In general,

speaking in terms of metabolomics people refer to meta-

bolic fingerprinting, where metabolite profiles are com-

pared with limited a priori knowledge of the metabolites of

interest. Semi quantitative data are acquired by high

throughput analytical methods (such as LC–MS or 1H

NMR) and (bio)markers (ions or chemical shift signals)

revealed by (difficult) multivariate statistical tools. The

identity of the different signals from the fingerprint can

subsequently be revealed by metabolite identification pro-

cedures allowing biological interpretation.

The question ‘‘Do fingerprints really tell us more than

the sum of the individual components’’ will be positively

answered by statistics, but biologists struggle with this

truth. Biologists simply want to understand the relevance of

each individual change, and collate these into pathways,

and processes. Furthermore, biologists also exploit the

results that metabolites, pathways and processes are not

changed, whereas metabolic profiling is, due to the statis-

tical selection procedures, only focused on the detection of

changes. However, nutritional interventions will often lead

to complex changes and therefore an individual approach

will seldom be enough to understand the underlying

mechanism. Therefore we need to unravel the biochemical

relationships between the components of a ‘‘profile’’.

Pathway tools like Pathvisio (www.pathvisio.org) and

biological network tools like Metacore (www.genego.com)

and IPA (www.ingenuity.com) provide a first attempt to

connect these components but (also given the complex

relationship between body fluids and organ biochemistry

described above) are not (yet) up to the task. These tools
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originate from transcriptome visualisation, are primarily

focussing on intracellular processes, and cannot cope with

the characteristics of plasma and urine ‘‘biochemistry’’.

Matching metabolomics technology to biology

In describing nutrition and health relationships, biolo-

gists often can produce a ‘‘wishlist’’ of metabolites to be

identified and quantified. So far, metabolomics has pri-

marily been a technology-driven science: the list of the

metabolites analyzed was determined on the basis of their

physico-chemical properties, and usually it does not com-

pletely match with the biologist’s wishlist. Many times,

biologists moaned at only seeing the same amino acid

changes in NMR fingerprinting strategies. A metabolic

profiling technique such as lipidomics provides a more

biologically coherent metabolite set and is a method of first

choice in many papers. The inflammation-related oxylipids

as separated and quantified by Newman and Pedersen is a

jewel of a biologically relevant targeted lipidome (New-

man et al. 2007). As the metabolites on those platforms are

more strictly linked to certain biological processes, the

interpretation of the data of such platforms is much easier.

Although NMR and MS spectroscopy can detect all kind

of metabolites, there is no single universal technique today

than can provide estimates of all compounds making the

human metabolome. From a biological point of view

therefore, a comprehensive metabolomics analysis should

be the assemblage of several quantitative methods that

analyze the key metabolites from the biochemical path-

ways or signalling processes that are of interest in your

research question. Nutrition deals with metabolism, oxi-

dation, and inflammation as primary processes that main-

tain health or promote disease. The advantage of this semi-

targeted approach is that quantitative data are collected for

well-annotated metabolites allowing the implementation of

databases that can be further mined. In addition, highly

sensitive individual assays to probe important low-abun-

dance metabolites with regulatory functions such as eico-

sanoids, not easily detected in current metabolic

fingerprinting approaches may also be needed.

A major limit of the metabolic fingerprinting strategies

is the limited number of metabolites identified. Therefore

biological interpretation has to be performed on a small

number of metabolites. It is challenging to get a good

biological interpretation based on only fragments of the

overall picture.

Can we separate the exogenous metabolome from the

endogenous health/disease effects hidden in the

metabolome?

The exogenous metabolome can be defined as all

metabolites directly derived from extrinsic factors such as

diet (nutrients & non-nutrients), drugs, toxics and

metabolites produced by the colonic flora. The endogenous

metabolome are intrinsic metabolites involved in or

resulting from primary and intermediary metabolism

formed under direct cell genome/proteome control (Gibney

et al. 2005; Manach et al. 2009). The consumption of a

particular diet or nutrient will induce changes in the

endogenous metabolome but these effects may be made

blurred by the presence, particularly in urine, of a large

number of exogenous metabolites resulting from the

digestion of food. Furthermore, food is also made of ma-

cronutrients that are transformed into compounds partly

identical to some endogenous metabolites. On the other

hand, these exogenous metabolites can also be useful as

markers of food intake. Different metabolite profiles were

observed after consumption of high-meat-, vegetarian-,

Atkins-, or high-fish diets (Rezzi et al. 2007). In fact, one

of the very few methods to precisely estimate food intake is

through quantification of specific metabolites (Landberg

et al. 2008; Noguchi et al. 2006; Sun et al. 2007a, b), and

this may become a valuable application of metabolomics

(Mennen et al. 2006). Moreover, it will not be simple to

understand the separate effects of age, gender, physical

activity, stress, drugs, region etc. Furthermore, we should

not forget the interactions between gut flora and host

metabolism. The large-bowel microflora produces meta-

bolic signals that might overwhelm the true metabolic

signals of nutrients in human biofluids (Dumas et al. 2006;

Goodacre 2007). Consequently, it will be hard to divide the

diet induced changes in the metabolome impacting health

into changes deriving from the food itself.

What extra information can be extracted from time–

course metabolomics profiles?

Healthy subjects have a remarkable capacity to maintain

homeostasis, through regulation of metabolism, transport,

and effective defence and repair mechanisms in oxidative

and inflammatory stress. In the development of nutritional

related diseases this homeostasis may be deregulated.

Disease progression in early, intermediate and late stage of

development has been shown to have distinct metabolome

profiles (Harrigan et al. 2005; Lamers et al. 2005). Pro-

cesses involved in these regulatory activities in late stages

of disease seem to be essentially different from processes

involved in early onset disease. With maturing of the

metabolomics technology, more comprehensive invento-

ries of ‘‘normal’’ concentrations spanning the life stages

and sexes become available (Lawton et al. 2008). To better

understand whether the homeostasis in a patient is dis-

turbed, we should have a good estimate of the ‘‘normal’’

concentrations spanning the life stages and sexes. Such

data adds to the clinical chemistry data available and is

indispensable if we want to surpass the level of ‘‘differ-

ential display profiling’’.
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How to link a metabolomics study to the results of

other (published) metabolomics studies?

Currently, it is very difficult to compare metabolomics

results from one study to results from another study for two

reasons. Firstly, many different metabolomics platforms

are in use. Each company or institute has its own favorite

technique and derivatization method. Secondly, metabolite

data are often semi-quantitative and not expressed in

absolute concentrations. For this reason, it is difficult to

compare metabolite concentrations to clinical chemistry

reference ranges, but also to published metabolomics

studies. We therefore advocate that initiatives should be

undertaken in the metabolomics community to make

reporting of metabolites in absolute concentrations possi-

ble, rather than using arbitrary units or x-fold changes (see

also Sect. 6.4).

Linking the metabolome to other measurements

Understanding the metabolic and signalling networks

that regulate health and disease is a principal goal of

nutritional research and of post-genomics research in

general. Although it may seem like increasing complexity,

a breakthrough may be obtained by integrating metabolo-

mics with other phenotypic and possibly genotypic infor-

mation. Metabolomics can be embedded with other sources

of data such as histology, functional tests, gene expression,

(targeted) proteomics etc., and this may help to further

understand the metabolome biology. Metabolomics started

as a technology push, but is now getting part of a more

comprehensive phenotyping. Genotype–phenotype linking

studies are now emerging in the area of transcriptomics

(Chen et al. 2008b; Emilsson et al. 2008; Wang et al.

2007), and this linkage is being explored in large cohort

studies (Tracy 2008). Handling of data and results should

change from technology-focused to study-focussed. Only

after this transposition, multi-study comparison is possible

for cross-validation and meta-analysis based on accurate

phenotypic matching. Standardized formats and mark-up

language development will facilitate this development

(Sansone et al. 2008; Taylor et al. 2008). Databases and

LIMS will thus gradually shift from individual data tech-

nology data handling to study-oriented integration com-

bined evaluation of all relevant results.

7.2 Solutions

As earlier mentioned, nutrition deals with metabolism,

oxidation and inflammation as primary processes that

maintain health or promote disease. So, metabolites and

metabolomics need to focus on these processes, primarily

(in case of human studies) in plasma. An integrated bio-

informatics solution that helps to map and visualise

changes in metabolite levels and links to knowledge bases

might be useful. This means: translating metabolite chan-

ges to process changes, translating profiles to metabolic

processes and transport (including biochemical informa-

tion), and translating plasma observations to organ

(mechanism) processes. All of this sounds like science

fiction but we might want to use this as an umbrella for

integrated toolbox development. So, we propose to federate

efforts in metabolome bioinformatics in a number of ways,

in order to achieve this goal. The toolbox should address

several key problems summarised below.

Analytics: biology driven metabolomics platforms.

Biologists should continue creating wish lists of metabo-

lites that are most relevant in the overarching processes of

metabolism, oxidation and inflammation. Metabolomics

platforms need to be further developed, combined and fine-

tuned to cover the most important compounds for these

overarching processes. Subsequently, metabolite data

should be quantitative and expressed in absolute units that

can be used for comparing concentrations with reference

concentration ranges used in clinical chemistry and in

publications.

Study design: focus on intra-individual variation by

including at least two samples per person. To control

biological variation that occurs between the volunteers in a

human intervention study at least two samples are needed

per person: one sample before the start of the intervention

and one sample at the end of the intervention. In this way it

is possible to specifically identify metabolites that are

changed by the dietary intervention by substracting the

inter-individual variation from the data.

Study design: time–course metabolomics (and fluxo-

mics). Taking into account the time–course of metabolism

should provide a dynamic view of changes in metabolic

pathways. In this way we are able to separate time

effects—representing processes and pathology, i.e. rela-

tively slowly occurring changes from healthy physiology to

a state of pathology—from diet effects—usually in the

range of hours as they reflect normal kinetic processes,

representing concentration differences as cause from

change in diets. Linking these data to our biochemical

knowledge will result in understanding the underlying

dynamic processes (fluxomics).

Study design: use of challenge tests. The use of chal-

lenge tests with different time points, like for example the

oral glucose tolerance test (OGTT), facilitates the detection

of subtle differences in metabolomics data (Kuhl et al.

2008; Shaham et al. 2008). This should become a part of

comprehensive nutritional phenotyping (van Ommen et al.

2008b).

Study design: parallel human and mouse intervention

studies. To gain a better understanding of the relation

between body fluid metabolite changes and organ
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physiology and pathology, human intervention studies need

to be carried out in parallel to animal model studies to

access the target tissues and link changes in metabolite

concentrations in the plasma to organ physiology.

Bioinformatics: metabo-ontology (MO). In the world of

transcriptomics the Gene Ontology Consortium developed

controlled classification (ontologies) that describe gene

products in terms of their associated biological processes,

cellular components and molecular functions. We should

also have that for metabolites. This will then become the

basis for statistical approaches on pathways and process

level: metabolite set enrichment analysis (MSEA).

Bioinformatics: plasma oriented biological networks.

We need to build bioinformatics tools that connect plasma

and organs. So far, all pathways and process visualisation

tools are focused on intracellular processes only. Organ

specific affected processes have been translated into

plasma specific metabolite profiles. Network biology and

modelling approaches for nutrition and health relationships

(van Ommen et al. 2008a) will become important.

We have started to construct these maps, which allow

visualisation of intracellular changes based on changes

quantified in plasma, for micronutrient metabolomics. This

is an open source (wiki-based) effort in Wikipathways

(Pico et al. 2008), with export options to major pathway

visualisation tools like GenMAPP and Cytoscape (http://

wikipathways.org/index.php/Portal:Micronutrient).

Bioinformatics: integrated workbench. All data analysis

tools needed for nutritional metabolomics might be unified

into an integrated workbench. This could be established on

a number of levels:

(1) Use of unified nomenclature and markup language. In

the case of metabolomics, a series of initiatives are

helpful (the metabolomics standards initiative (San-

sone et al. 2006, 2007; Taylor et al. 2008). Simple

agreements like a unified coding of metabolites still

need to be agreed on, and the HMDB coding

(connected to a synonym finder) (Wishart et al.

2007) is for the biologist the obvious choice. This

database contains besides all other metabolite iden-

tifiers (KEGG, BioCyc, BIGG, Metlin, Pubchem,

ChEBI, CAS and InChI) and chemical information,

also biological information such as cellular, tissue and

biofluid locations, normal reference ranges, associ-

ated disorders, metabolic enzymes, etc.

(2) Agreement on basic issues in datawarehousing and

(pre)processing, changing from analysis-orientation

to study orientation, allowing metadata and other

parameters to ‘‘travel along’’ with the metabolomics

data (Sansone et al. 2006, 2008).

(3) A unified statistical and bioinformatics workbench,

following the example of Genepattern (Reich et al.

2006). Genepattern is a software package developed

for transcriptomics data analysis, which provides a

comprehensive environment that can support (i) a

broad community of users at all levels of computa-

tional experience and sophistication, (ii) access to a

repository of analytic and visualization tools and easy

creation of complex analytic methods from them and

(iii) the rapid development and dissemination of new

methods. This will function once points 1) and 2)

have been taken care of. Such a suite will allow

LIMS-independent manoeuvring within and between

datasets, if all are ISA-TAB compliant. Given the

large variety of vendors and analytical application,

this is a must.

(4) A plasma-oriented bioinformatics platform. If indeed

our technological output is a list of plasma metabo-

lites provides a good reference starting point. Appli-

cations like HORA (Bruschi et al. 2008) have

understood this and provide useful connected tools.

The plasma oriented biological networks as men-

tioned above (Pico et al. 2008; van Ommen et al.

2008a) continue this exercise.

(5) A common depository/point of access of all available

tools, knowledge and results. The NuGO metabolo-

mics portal (www.nugo.org/metabolomics) was cre-

ated for this purpose and will only flourish if this

becomes a community effort. Hopefully, the meta-

bolomics community, while still in its infancy, is

flexible enough to properly organize itself on com-

mon grounds for the benefit of all.

8 Conclusions

MS techniques which combine sensitivity and selectivity

appear today as the most appropriate to capture the bulk of

the highly heterogeneous human metabolome. A combi-

nation of several MS techniques combined with different

chromatographic methods will likely be needed to offer the

maximum coverage of the human metabolome. No stan-

dards exist yet for the characterization of the human me-

tabolome (Fiehn et al. 2007). Techniques still evolve

rapidly and standards are needed to allow the sharing and

comparison of data between laboratories or studies. The

main obstacles faced today by nutritionists when trying to

obtain biologically meaningful results from metabolomics

studies have been analysed here and various recommen-

dations have been made (Table 1). They should be col-

lectively addressed in the next years. Indeed the goals of

nutritionists should be shared with analysts, statisticians,

(bio)informaticians and companies developing MS equip-

ments and software. This is precisely one of the raison

452 A. Scalbert et al.

123

http://wikipathways.org/index.php/Portal:Micronutrient
http://wikipathways.org/index.php/Portal:Micronutrient
http://www.nugo.org/metabolomics


d’être of the European Nutrigenomics Organization

(NuGO, www.nugo.org) to facilitate the sharing of ideas

and the emergence of collaborative projects in the field of

nutrition. Exchanges with scientists in other disciplines

such as toxicology, medicine or pharmacology should also

be encouraged. Links between major initiatives for tech-

nical developments, database building, training, etc. should

be strengthened and as much as possible coordinated at the

international level.
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Laaksonen, R., Katajamaa, M., Päivä, H., Sysi-Aho, M., Saarinen, L.,

Junni, P., et al. (2006). A systems biology strategy reveals

biological pathways and plasma biomarker candidates for

potentially toxic statin-induced changes in muscle. PLoS ONE,
1, e97. doi:10.1371/journal.pone.0000097.

Lamers, R. J. A. N., van Nesselrooij, J. H. J., Kraus, V. B., Jordan, J.

M., Renner, J. B., Dragomir, A. D., et al. (2005). Identification of

an urinary metabolite profile associated with osteoarthritis.

Osteoarthritis and Cartilage, 13, 762–768. doi:10.1016/j.joca.

2005.04.005.

Landberg, R., Kamal-Eldin, A., Andersson, A., Vessby, B., & Aman,

P. (2008). Alkylresorcinols as biomarkers of whole-grain wheat

and rye intake: Plasma concentration and intake estimated from

dietary records. The American Journal of Clinical Nutrition, 87,

832–838.

Lauridsen, M., Hansen, S. H., Jaroszewski, J. W., & Cornett, C.

(2007). Human urine as test material in H-1 NMR-based

metabonomics: Recommendations for sample preparation and

storage. Analytical Chemistry, 79, 1181–1186. doi:10.1021/ac06

1354x.

Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A.

M., Guo, L., et al. (2008). Analysis of the adult human plasma

metabolome. Pharmacogenomics, 9, 383–397. doi:10.2217/1462

2416.9.4.383.

Lindon, J., Holmes, E., & Nicholson, J. (2001). Pattern recognition

methods and applications in biomedical magnetic resonance.

Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–

40. doi:10.1016/S0079-6565(00)00036-4.

Maher, A. D., Zirah, S. F. M., Holmes, E., & Nicholson, J. K.

(2007). Experimental and analytical variation in human urine

in H-1 NMR spectroscopy-based metabolic phenotyping

studies. Analytical Chemistry, 79, 5204–5211. doi:10.1021/ac

070212f.

Manach, C., Hubert, J., Llorach, R., & Scalbert, A. (2009). The

complex links between dietary phytochemicals and human

health deciphered by metabolomics. Molecular Nutrition &
Food Research (in press).

Martin, F. P. J., Dumas, M. E., Wang, Y. L., Legido-Quigley, C., Yap,

I. K. S., Tang, H. R., et al. (2007). A top–down systems biology

view of microbiome-mammalian metabolic interactions in a

mouse model. Molecular Systems Biology, 3, 112. doi:10.1038/

msb4100153.

Mennen, L., Sapinho, D., Ito, H., Galan, P., Hercberg, S., & Scalbert,

A. (2006). Urinary flavonoids and phenolic acids as biomarkers

of intake for polyphenol-rich foods. The British Journal of
Nutrition, 96, 191–198. doi:10.1079/BJN20061808.

Mennen, L. I., Sapinho, D., Ito, H., Galan, P., Hercberg, S., &

Scalbert, A. (2008). Urinary excretion of 13 dietary flavonoids

and phenolic acids in free-living healthy subjects—Variability

and possible use as biomarkers of polyphenol intake. European

Mass-spectrometry-based metabolomics in nutrition 455

123

http://dx.doi.org/10.1111/j.1365-313X.2008.03434.x
http://dx.doi.org/10.1002/nbm.1233
http://dx.doi.org/10.1093/bioinformatics/bth268
http://dx.doi.org/10.1021/ac051211v
http://dx.doi.org/10.1016/j.jchromb.2008.04.049
http://dx.doi.org/10.1093/bioinformatics/btk039
http://dx.doi.org/10.1016/j.chroma.2007.04.021
http://dx.doi.org/10.1177/1933719108316908
http://dx.doi.org/10.1186/gb-2007-8-9-r200
http://dx.doi.org/10.1021/ac051683&plus;
http://dx.doi.org/10.1021/ac051683&plus;
http://dx.doi.org/10.1016/j.chroma.2007.11.107
http://dx.doi.org/10.1016/j.chroma.2007.11.107
http://dx.doi.org/10.1016/j.jbiotec.2005.12.012
http://dx.doi.org/10.1093/bioinformatics/bti236
http://dx.doi.org/10.1007/s11306-008-0118-2
http://dx.doi.org/10.1371/journal.pone.0000097
http://dx.doi.org/10.1016/j.joca.2005.04.005
http://dx.doi.org/10.1016/j.joca.2005.04.005
http://dx.doi.org/10.1021/ac061354x
http://dx.doi.org/10.1021/ac061354x
http://dx.doi.org/10.2217/14622416.9.4.383
http://dx.doi.org/10.2217/14622416.9.4.383
http://dx.doi.org/10.1016/S0079-6565(00)00036-4
http://dx.doi.org/10.1021/ac070212f
http://dx.doi.org/10.1021/ac070212f
http://dx.doi.org/10.1038/msb4100153
http://dx.doi.org/10.1038/msb4100153
http://dx.doi.org/10.1079/BJN20061808


Journal of Clinical Nutrition, 62, 519–525. doi:10.1038/sj.ejcn.

1602744.

Meydani, M. (2004). Vitamin E modulation of cardiovascular disease.

Annals of the New York Academy of Sciences, 1031, 271–279.

doi:10.1196/annals.1331.027.

Milbury, P. E. (1997). CEAS generation of large multiparameter

databases for determining categorical process involvement of

biomolecules. In Coulometric array detectors for HPLC (pp.

125–141). VSP International Science Publication.

Miller, E. R., III, Pastor-Barriuso, R., Dalal, D., Riemersma, R. A.,

Appel, L. J., & Guallar, E. (2004). Meta-analysis: High-dosage

vitamin E supplementation may increase all-cause mortality.

Annals of Internal Medicine, 142, 37–46.

Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., de Groot, J., van

Beek, T. A., et al. (2006). A liquid chromatography–mass

spectrometry-based metabolome database for tomato. Plant
Physiology, 141, 1205–1218. doi:10.1104/pp.106.078428.

Müller, M., & Kersten, S. (2003). Nutrigenomics: Goals and

strategies. Nature Reviews. Genetics, 4, 315–322. doi:10.1038/

nrg1047.

Newman, J. W., Kaysen, G. A., Hammock, B. D., & Shearer, G. C.

(2007). Proteinuria increases oxylipid concentrations in VLDL

and HDL but not LDL particles in the rat. Journal of Lipid
Research, 48, 1792–1800. doi:10.1194/jlr.M700146-JLR200.

Noguchi, Y., Zhang, Q. W., Sugimoto, T., Furuhata, Y., Sakai, Y.,

Mori, M., et al. (2006). Network analysis of plasma and tissue

amino acids and the generation of an amino index for potential

diagnostic use. The American Journal of Clinical Nutrition, 83,

513S–519S.

Paolucci, U., Vigneau-Callahan, K. E., Shi, H., Matson, W. R., &

Kristal, B. S. (2004a). Development of biomarkers based on diet-

dependent metabolic serotypes: Characteristics of component-

based models of metabolic serotypes. Omics, 8, 221–238. doi:

10.1089/omi.2004.8.221.

Paolucci, U., Vigneau-Callahan, K. E., Shi, H. L., Matson, W. R., &

Kristal, B. S. (2004b). Development of biomarkers based on diet-

dependent metabolic serotypes: Concerns and approaches for

cohort and gender issues in serum metabolome studies. Omics: A
Journal of Integrative Biology, 8, 209–220. doi:10.1089/omi.

2004.8.209.

Pico, A. R., Kelder, T., van Iersel, M. P., Hanspers, K., Conklin, B.

R., & Evelo, C. (2008). WikiPathways: Pathway editing for the

people. PLoS Biology, 6, 1403–1407. doi:10.1371/journal.pbio.

0060184.

Plumb, R. S., Rainville, P., Smith, B. W., Johnson, K. A., Castro-

Perez, J., Wilson, I. D., et al. (2006). Generation of Ultrahigh

peak capacity LC separations via elevated temperatures and high

linear mobile-phase velocities. Analytical Chemistry, 78, 7278–

7283. doi:10.1021/ac060935j.

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., & Mesirov, J.

P. (2006). GenePattern 2.0. Nature Genetics, 38, 500–501. doi:

10.1038/ng0506-500.

Rezzi, S., Ramadan, Z., Fay, L. B., & Kochhar, S. (2007). Nutritional

metabonomics: Applications and perspectives. Journal of Pro-
teome Research, 6, 513–525. doi:10.1021/pr060522z.

Rozen, S., Cudkowicz, M. E., Bogdanov, M., Matson, W. R., Kristal,

B. S., Beecher, C., et al. (2005). Metabolomic analysis and

signatures in motor neuron disease. Metabolomics, 1, 101–108.

doi:10.1007/s11306-005-4810-1.

Rubingh, C., Bijlsma, S., Derks, E., Bobeldijk, I., Verheij, E.,

Kochhar, S., et al. (2006). Assessing the performance of

statistical validation tools for megavariate metabolomics data.

Metabolomics, 2, 53–61. doi:10.1007/s11306-006-0022-6.

Sansone, S. A., Rocca-Serra, P., Brandizi, M., Brazma, A., Field, D.,

Fostel, J., et al. (2008). The first RSBI (ISA-TAB) workshop:

‘‘Can a Simple Format Work for Complex Studies? Omics: A

Journal of Integrative Biology, 12, 143–149. doi:10.1089/omi.

2008.0019.

Sansone, S. A., Rocca-Serra, P., Tong, W. D., Fostel, J., Morrison, N.,

& Jones, A. R. (2006). A strategy capitalizing on synergies: The

Reporting Structure for Biological Investigation (RSBI) working

group. Omics: A Journal of Integrative Biology, 10, 164–171.

doi:10.1089/omi.2006.10.164.

Sansone, S.-A., Schober, D., Atherton, H., Fiehn, O., Jenkins, H.,

Rocca-Serra, P., et al. (2007). Metabolomics standards initiative:

Ontology working group work in progress. Metabolomics, 3,

249–256. doi:10.1007/s11306-007-0069-z.

Saric, J., Wang, Y., Li, J., Coen, M., Utzinger, J., Marchesi, J. R.,

et al. (2008). Species variation in the fecal metabolome gives

insight into differential gastrointestinal function. Journal of
Proteome Research, 7, 352–360. doi:10.1021/pr070340k.

Saude, E., Adamko, D., Rowe, B., Marrie, T., & Sykes, B. (2007).

Variation of metabolites in normal human urine. Metabolomics,

3, 439–451.

Saude, E. J., & Sykes, B. D. (2007). Urine stability for metabolomic

studies: Effects of preparation and storage. Metabolomics, 3, 19–

27. doi:10.1007/s11306-006-0042-2.

Scholz, M., & Fiehn, O. (2007). SetupX—A public study design

database for metabolomic projects. Pacific Symposium on
Biocomputing, 169–180.

Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan,

R. S., Carr, S. A., et al. (2008). Metabolic profiling of the human

response to a glucose challenge reveals distinct axes of insulin

sensitivity. Molecular Systems Biology, 4, 214. doi:10.1038/

msb.2008.50.

Shen, Q., Li, X., Qiu, Y. P., Su, M. M., Liu, Y. M., Li, H. K., et al.

(2008). Metabonomic and metallomic profiling in the amniotic

fluid of malnourished pregnant rats. Journal of Proteome
Research, 7, 2151–2157. doi:10.1021/pr700776c.

Shi, H. L., Paolucci, U., Vigneau-Callahan, K. E., Milbury, P. E.,

Matson, W. R., & Kristal, B. S. (2004). Development of

biomarkers based on diet-dependent metabolic serotypes:

Practical issues in development of expert system-based classi-

fication models in metabolomic studies. Omics: A Journal of
Integrative Biology, 8, 197–208. doi:10.1089/omi.2004.8.197.

Shi, H., Vigneau-Callahan, K. E., Shestopalov, A. I., Milbury, P. E.,

Matson, W. R., & Kristal, B. S. (2002). Characterization of diet-

dependent metabolic serotypes: Primary validation of male and

female serotypes in independent cohorts of rats. The Journal of
Nutrition, 132, 1039–1046.

Shurubor, Y., Matson, W., Willett, W., Hankinson, S., & Kristal, B.

(2007). Biological variability dominates and influences analyt-

ical variance in HPLC-ECD studies of the human plasma

metabolome. BMC Clinical Pathology, 7, 9. doi:10.1186/1472-

6890-7-9.

Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A.,

Brandon, T. R., et al. (2005). METLIN—A metabolite mass

spectral database. Therapeutic Drug Monitoring, 27, 747–751.

doi:10.1097/01.ftd.0000179845.53213.39.

Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G.

(2006). XCMS: Processing mass spectrometry data for metab-

olite profiling using nonlinear peak alignment, matching, and

identification. Analytical Chemistry, 78, 779–787. doi:10.1021/

ac051437y.

Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka,

T. (2003). Quantitative metabolome analysis using capillary

electrophoresis mass spectrometry. Journal of Proteome
Research, 2, 488–494. doi:10.1021/pr034020m.

Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., &

Viant, M. R. (2007). Dynamic range and mass accuracy of wide-

scan direct infusion nanoelectrospray Fourier transform ion

cyclotron resonance mass spectrometry-based metabolomics

456 A. Scalbert et al.

123

http://dx.doi.org/10.1038/sj.ejcn.1602744
http://dx.doi.org/10.1038/sj.ejcn.1602744
http://dx.doi.org/10.1196/annals.1331.027
http://dx.doi.org/10.1104/pp.106.078428
http://dx.doi.org/10.1038/nrg1047
http://dx.doi.org/10.1038/nrg1047
http://dx.doi.org/10.1194/jlr.M700146-JLR200
http://dx.doi.org/10.1089/omi.2004.8.221
http://dx.doi.org/10.1089/omi.2004.8.209
http://dx.doi.org/10.1089/omi.2004.8.209
http://dx.doi.org/10.1371/journal.pbio.0060184
http://dx.doi.org/10.1371/journal.pbio.0060184
http://dx.doi.org/10.1021/ac060935j
http://dx.doi.org/10.1038/ng0506-500
http://dx.doi.org/10.1021/pr060522z
http://dx.doi.org/10.1007/s11306-005-4810-1
http://dx.doi.org/10.1007/s11306-006-0022-6
http://dx.doi.org/10.1089/omi.2008.0019
http://dx.doi.org/10.1089/omi.2008.0019
http://dx.doi.org/10.1089/omi.2006.10.164
http://dx.doi.org/10.1007/s11306-007-0069-z
http://dx.doi.org/10.1021/pr070340k
http://dx.doi.org/10.1007/s11306-006-0042-2
http://dx.doi.org/10.1038/msb.2008.50
http://dx.doi.org/10.1038/msb.2008.50
http://dx.doi.org/10.1021/pr700776c
http://dx.doi.org/10.1089/omi.2004.8.197
http://dx.doi.org/10.1186/1472-6890-7-9
http://dx.doi.org/10.1186/1472-6890-7-9
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1021/pr034020m


increased by the spectral stitching method. Analytical Chemistry,
79, 4595–4602. doi:10.1021/ac062446p.

Stoll, D. R., Li, X. P., Wang, X. O., Carr, P. W., Porter, S. E. G., &

Rutan, S. C. (2007). Fast, comprehensive two-dimensional liquid

chromatography. Journal of Chromatography A, 1168, 3–43.

doi:10.1016/j.chroma.2007.08.054.

Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A., Hussong, R.,

Lange, E., et al. (2008). OpenMS—An open-source software

framework for mass spectrometry. BMC Bioinformatics, 9, 163.

Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C.,

et al. (2007). Proposed minimum reporting standards for chem-

ical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-

007-0082-2.

Sun, Q., Ma, J., Campos, H., Hankinson, S. E., & Hu, F. B. (2007a).

Comparison between plasma and erythrocyte fatty acid content

as biomarkers of fatty acid intake in US women. The American
Journal of Clinical Nutrition, 86, 74–81.

Sun, Q., Ma, J., Campos, H., & Hu, F. B. (2007b). Plasma and

erythrocyte biomarkers of dairy fat intake and risk of ischemic

heart diseased. The American Journal of Clinical Nutrition, 86,

929–937.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S.,

Dmitrovsky, E., et al. (1999). Interpreting patterns of gene

expression with self-organizing maps: Methods and application

to hematopoietic differentiation. Proceedings of the National
Academy of Sciences of the United States of America, 96, 2907–

2912. doi:10.1073/pnas.96.6.2907.

Taylor, C. F., Field, D., Sansone, S. A., Aerts, J., Apweiler, R.,

Ashburner, M., et al. (2008). Promoting coherent minimum

reporting guidelines for biological and biomedical investiga-

tions: The MIBBI project. Nature Biotechnology, 26, 889–896.

doi:10.1038/nbt.1411.

Taylor, J., King, R. D., Altmann, T., & Fiehn, O. (2002). Application

of metabolomics to plant genotype discrimination using statistics

and machine learning. Bioinformatics (Oxford, England), 18,

S241–S248.

Teahan, O., Gamble, S., Holmes, E., Waxman, J., Nicholson, J. K.,

Bevan, C., et al. (2006). Impact of analytical bias in metabo-

nomic studies of human blood serum and plasma. Analytical
Chemistry, 78, 4307–4318. doi:10.1021/ac051972y.

Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino,

R. J., Hall, R. D., et al. (2005). A novel approach for nontargeted

data analysis for metabolomics Large-scale profiling of tomato

fruit volatiles. Plant Physiology, 139, 1125–1137. doi:10.1104/

pp.105.068130.

Tiziani, S., Einwas, A. H., Lodi, A., Ludwig, C., Bunce, C. M., Viant,

M. R., et al. (2008). Optimized metabolite extraction from blood

serum for H-1 nuclear magnetic resonance spectroscopy. Ana-
lytical Biochemistry, 377, 16–23. doi:10.1016/j.ab.2008.01.037.

Tolstikov, V. V., & Fiehn, O. (2002). Analysis of highly polar

compounds of plant origin: Combination of hydrophilic interac-

tion chromatography and electrospray ion trap mass spectrom-

etry. Analytical Biochemistry, 301, 298–307. doi:10.1006/abio.

2001.5513.

Tolstikov, V. V., Lommen, A., Nakanishi, K., Tanaka, N., & Fiehn,

O. (2003). Monolithic silica-based capillary reversed-phase

liquid chromatography/electrospray mass spectrometry for plant

metabolomics. Analytical Chemistry, 75, 6737–6740. doi:

10.1021/ac034716z.

Tominaga, Y. (1999). Comparative study of class data analysis with
PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemometrics and
Intelligent Laboratory Systems, 49, 105–115. doi:10.1016/

S0169-7439(99)00034-9.

Tracy, R. P. (2008). ‘Deep phenotyping’: Characterizing populations

in the era of genomics and systems biology. Current Opinion in
Lipidology, 19, 151–157. doi:10.1097/MOL.0b013e3282f73893.

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent

structures (O-PLS). Journal of Chemometrics, 16, 119–128. doi:

10.1002/cem.695.

Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y.

E., Lin, J., et al. (2008). BioMagResBank. Nucleic Acids
Research, 36, D402–D408. doi:10.1093/nar/gkm957.

van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A.

K., & van der Werf, M. J. (2006). Centering, scaling, and

transformations: Improving the biological information content of

metabolomics data. BMC Genomics, 7, 142. doi:10.1186/1471-

2164-7-142.

van der Greef, J., Martin, S., Juhasz, P., Adourian, A., Plasterer, T.,

Verheij, E. R., et al. (2007). The art and practice of systems

biology in medicine: Mapping patterns of relationships. Journal
of Proteome Research, 6, 1540–1559. doi:10.1021/pr0606530.

van der Greef, J., & Smilde, A. K. (2005). Symbiosis of chemometrics

and metabolomics: Past, present, and future. Journal of Chemo-
metrics, 19, 376–386. doi:10.1002/cem.941.

van Ommen, B., Fairweather-Tait, S., Freidig, A., Kardinaal, A.,

Scalbert, A., & Wopereis, S. (2008a). A network biology model

of micronutrient related health. The British Journal of Nutrition,
99, S72–S80. doi:10.1017/S0007114508006922.

van Ommen, B., Keijer, J., Kleemann, R., Elliott, R., Drevon, C. A.,

mcardle, H., et al. (2008b). The challenges for molecular

nutrition research 2: Quantification of the nutritional phenotype.

Genes & Nutrition, 3, 51–59. doi:10.1007/s12263-008-0084-3.

van Ommen, B., & Stierum, R. (2002). Nutrigenomics: Exploiting

systems biology in the nutrition and health arena. Current
Opinion in Biotechnology, 13, 517–521. doi:10.1016/S0958-

1669(02)00349-X.

Verhoeckx, K. C. M., Bijlsma, S., Jespersen, S., Ramaker, R.,

Verheij, E. R., Witkamp, R. F., et al. (2004). Characterization of

anti-inflammatory compounds using transcriptomics, proteo-

mics, and metabolomics in combination with multivariate data

analysis. International Immunopharmacology, 4, 1499–1514.

doi:10.1016/j.intimp.2004.07.008.

Vigneau-Callahan, K. E., Shestopalov, A. I., Milbury, P. E., Matson,

W. R., & Kristal, B. S. (2001). Characterization of diet-

dependent metabolic serotypes: Analytical and biological vari-

ability issues in rats. The Journal of Nutrition, 131, 924S–932S.

Vogels, J., Tas, A. C., Venekamp, J., & VanderGreef, J. (1996).

Partial linear fit: A new NMR spectroscopy preprocessing tool

for pattern recognition applications. Journal of Chemometrics,
10, 425–438. doi:10.1002/(SICI)1099-128X(199609)10:5/6\
425::AID-CEM442[3.0.CO;2-S.

Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., &

Gibney, M. J. (2006). Effect of acute dietary standardization on

the urinary, plasma, and salivary metabolomic profiles of healthy

humans. The American Journal of Clinical Nutrition, 84, 531–

539.

Walsh, M. C., Brennan, L., Pujos-Guyot, E., Sebedio, J.-L., Scalbert,

A., Fagan, A., et al. (2007). Influence of acute phytochemical

intake on human urinary metabolomic profiles. The American
Journal of Clinical Nutrition, 86, 1687–1693.

Wang, S. S., Schadt, E. E., Wang, H., Wang, X. P., Ingram-Drake, L.,

Shi, W., et al. (2007). Identification of pathways for atheroscle-

rosis in mice—Integration of quantitative trait locus analysis and

global gene expression data. Circulation Research, 101, E11–

E30. doi:10.1161/CIRCRESAHA.107.152975.

Wang, J., Van der Heijden, R., Spijksma, G., Reijmers, T., Wang, M.,

Xu, G., et al. (2009). Alkaloids profiling of the Chinese herbal

medicine Fuzi by Matrix-assisted laser desorption ionization mass

spectrometry and its validation by Liquid chromatography-mass

spectrometry. Journal of Chromatography A, 1216, 2169–2178.

Want, E. J., O’Maille, G., Smith, C. A., Brandon, T. R., Uritboonthai,

W., Qin, C., et al. (2006). Solvent-dependent metabolite

Mass-spectrometry-based metabolomics in nutrition 457

123

http://dx.doi.org/10.1021/ac062446p
http://dx.doi.org/10.1016/j.chroma.2007.08.054
http://dx.doi.org/10.1007/s11306-007-0082-2
http://dx.doi.org/10.1007/s11306-007-0082-2
http://dx.doi.org/10.1073/pnas.96.6.2907
http://dx.doi.org/10.1038/nbt.1411
http://dx.doi.org/10.1021/ac051972y
http://dx.doi.org/10.1104/pp.105.068130
http://dx.doi.org/10.1104/pp.105.068130
http://dx.doi.org/10.1016/j.ab.2008.01.037
http://dx.doi.org/10.1006/abio.2001.5513
http://dx.doi.org/10.1006/abio.2001.5513
http://dx.doi.org/10.1021/ac034716z
http://dx.doi.org/10.1016/S0169-7439(99)00034-9
http://dx.doi.org/10.1016/S0169-7439(99)00034-9
http://dx.doi.org/10.1097/MOL.0b013e3282f73893
http://dx.doi.org/10.1002/cem.695
http://dx.doi.org/10.1093/nar/gkm957
http://dx.doi.org/10.1186/1471-2164-7-142
http://dx.doi.org/10.1186/1471-2164-7-142
http://dx.doi.org/10.1021/pr0606530
http://dx.doi.org/10.1002/cem.941
http://dx.doi.org/10.1017/S0007114508006922
http://dx.doi.org/10.1007/s12263-008-0084-3
http://dx.doi.org/10.1016/S0958-1669(02)00349-X
http://dx.doi.org/10.1016/S0958-1669(02)00349-X
http://dx.doi.org/10.1016/j.intimp.2004.07.008
http://dx.doi.org/10.1002/(SICI)1099-128X(199609)10:5/6%3c425::AID-CEM442%3e3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1099-128X(199609)10:5/6%3c425::AID-CEM442%3e3.0.CO;2-S
http://dx.doi.org/10.1161/CIRCRESAHA.107.152975


distribution, clustering, and protein extraction for serum profiling

with mass spectrometry. Analytical Chemistry, 78, 743–752. doi:

10.1021/ac051312t.

Watkins, S. M., Reifsnyder, P. R., Pan, H.-j., German, J. B., & Leiter,

E. H. (2002). Lipid metabolome-wide effects of the PPAR{-

gamma} agonist rosiglitazone. Journal of Lipid Research, 43,

1809–1817. doi:10.1194/jlr.M200169-JLR200.

Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M.

(2006). Targeted profiling: Quantitative analysis of H-1 NMR

metabolomics data. Analytical Chemistry, 78, 4430–4442. doi:

10.1021/ac060209g.

Westerhuis, J., Hoefsloot, H., Smit, S., Vis, D., Smilde, A., van

Velzen, E., et al. (2008). Assessment of PLSDA cross validation.

Metabolomics, 4, 81–89. doi:10.1007/s11306-007-0099-6.

Windig, W., Phalp, J. M., & Payne, A. W. (1996). A noise and

background reduction method for component detection in liquid

chromatography mass spectrometry. Analytical Chemistry, 68,

3602–3606. doi:10.1021/ac960435y.

Wishart, D. S. (2008). Metabolomics: Applications to food science

and nutrition research. Trends in Food Science & Technology,
19, 482–493. doi:10.1016/j.tifs.2008.03.003.

Wishart, D. S., Lewis, M. J., Morrissey, J. A., Flegel, M. D., Jeroncic,

K., Xiong, Y., et al. (2008). The human cerebrospinal fluid

metabolome. Journal of Chromatography B: Analytical Tech-
nologies in the Biomedical and Life Sciences, 871, 164–173. doi:

10.1016/j.jchromb.2008.05.001.

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N.,

et al. (2007). HMDB: The human metabolome database. Nucleic
Acids Research, 35, D521–D526. doi:10.1093/nar/gkl923.

Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: A

basic tool of chemometrics. Chemometrics and Intelligent
Laboratory Systems, 58, 109–130. doi:10.1016/S0169-7439

(01)00155-1.

Wood, J., Williams, J., Pandarinathan, L., Courville, A., Keplinger,

M., Janero, D., et al. (2008). Comprehensive profiling of the

human circulating endocannabinoid metabolome: Clinical sam-

pling and sample storage parameters. Clinical Chemistry and
Laboratory Medicine, 46, 1289–1295. doi:10.1515/CCLM.2008.

242.

Wopereis, S., Rubingh, C. M., van Erk, M. J., Verheij, E. R., van

Vliet, T., Cnubben, N. H. P., et al. (2009). Metabolic profiling of

the response to an oral glucose tolerance test detects subtle

metabolic changes. PLoS ONE, 4, e4525. doi:10.1371/journal.

pone.0004525.

Yang, J., Xu, G., Zheng, Y., Kong, H., Pang, T., Lv, S., et al. (2004).

Diagnosis of liver cancer using HPLC-based metabonomics

avoiding false-positive result from hepatitis and hepatocirrhosis

diseases. Journal of Chromatography B: Analytical Technolo-
gies in the Biomedical and Life Sciences, 813, 59–65. doi:

10.1016/j.jchromb.2004.09.032.

Zhang, Q., Wang, G., Du, Y., Zhu, L. & Jiye, A. (2007). GC/MS

analysis of the rat urine for metabonomic research. Journal of
Chromatography B: Analytical Technologies in the Biomedical
and Life Sciences, 854, 20–25. doi:10.1016/j.jchromb.2007.

03.048.

458 A. Scalbert et al.

123

http://dx.doi.org/10.1021/ac051312t
http://dx.doi.org/10.1194/jlr.M200169-JLR200
http://dx.doi.org/10.1021/ac060209g
http://dx.doi.org/10.1007/s11306-007-0099-6
http://dx.doi.org/10.1021/ac960435y
http://dx.doi.org/10.1016/j.tifs.2008.03.003
http://dx.doi.org/10.1016/j.jchromb.2008.05.001
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1515/CCLM.2008.242
http://dx.doi.org/10.1515/CCLM.2008.242
http://dx.doi.org/10.1371/journal.pone.0004525
http://dx.doi.org/10.1371/journal.pone.0004525
http://dx.doi.org/10.1016/j.jchromb.2004.09.032
http://dx.doi.org/10.1016/j.jchromb.2007.03.048
http://dx.doi.org/10.1016/j.jchromb.2007.03.048

	Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus �on nutrition research
	Abstract
	Introduction
	Sampling strategy for metabolomics
	Mass spectrometry for metabolomics
	Extraction of information from mass spectrometry metabolomics data
	Multivariate analysis considerations for metabolomics studies
	Metabolite identification in mass spectrometry-based metabolomics
	Current state of the art
	MS-based ‘‘pure&rdquo; metabolite databases: current limitations and recommendations
	MS-based metabolite identification software: limitations and recommendations
	Metabolite quantification and standards: limitations and recommendations
	Metabolite identification: consensus recommendations

	Biological interpretation of metabolomics results
	Challenges
	On the level of study design
	On a single metabolite level
	On a complex level (metabolic fingerprinting)

	Solutions

	Conclusions
	Acknowledgements
	References


