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Plants play an essential part in global carbon fixing through photosynthesis and are

the primary food and energy source for humans. Understanding them thoroughly is

therefore of highest interest for humanity. Advances in DNA and RNA sequencing and in

protein and metabolite analysis allow the systematic description of plant composition at

the molecular level. With imaging mass spectrometry, we can now add a spatial level,

typically in the micrometer-to-centimeter range, to their compositions, essential for a

detailed molecular understanding. Here we present an LC-MS based approach for 3D

plant imaging, which is scalable and allows the analysis of entire plants. We applied

this approach in a case study to pepper and tomato plants. Together with MS/MS

spectra library matching and spectral networking, this non-targeted workflow provides

the highest sensitivity and selectivity for the molecular annotations and imaging of plants,

laying the foundation for studies of plant metabolism and plant-environment interactions.

Keywords: plant metabolomics, imaging mass spectrometry, 3D-imaging, tomato, pepper

INTRODUCTION

Phototrophs form the foundational layer of energy and nutrient capture in essentially all
terrestrial and marine ecosystems (Field et al., 1998). Human society has long relied on
both wild and cultivated plants to provide not only dietary energy, essential micronutrients
and medicinally useful natural products, but also structural materials and biofuels (Lewis
and Elvin-Lewis, 1995; Bouis, 1996; Durrett et al., 2008). Although many studies have
investigated the genetic (Koch, 2016), transcriptomic (Imadi et al., 2015), and proteomic
properties (Jorrín-Novo et al., 2015) associated with plant tissues, plant metabolites have
long been studied only in the context of bioactive metabolic products. The emerging field
of metabolomics is opening the door to a global understanding of plant phenotypes at the
molecular level (Sumner et al., 2015). With a quarter of plant genes dedicated to metabolism
and over 200 thousand unique natural products identified, the detection and mapping of
three dimensional distributions of plant chemistries remains underexplored (Dixon and Strack,
2003). For example, what are the chemical differences between tissue types and growth
stages? How do these chemotypes behave in comparison to other species? Are the main
factors driving the distribution of chemicals over the plant organ structure, vascularization,
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exposure to sunlight or other environmental gradients as
microbial symbionts or pathogens? Understanding these
questions at a basic chemical level is an important step to
understanding how to engineer plants to better resist erosion and
disease, and to improving their efficiency as providers of animal
nutrition, feedstocks to industrial processes or the many other
roles that plants perform in natural and engineered landscape
ecosystems (Yandeau-Nelson et al., 2016).

A wide range of analytical techniques such as NMR and
UV or IR spectroscopy, are available for making metabolomic
measurements, but suffer from limitations of sensitivity and
specificity to individual molecular features (Schripsema, 2010).
Unlike spectroscopic techniques, mass spectrometry (MS) allows
highly selective and quantitative measurements to be taken of
a broad range of chemical families over a large dynamic range.
With recent advantages in imaging mass spectrometry (IMS),
we can obtain metabolic inventories with spatial information
from nm to km scale (Petras et al., 2017). Matrix assisted laser
desorption ionization (MALDI) and laser assisted electrospray
ionization (LAESI) use laser shots that raster the surface of
a sample to generate molecular 2D images, while desorption
based DESI and nano-DESI raster continuously flowing solvent
droplets across the sample (Watrous et al., 2012; Etalo et al.,
2015; Sturtevant et al., 2016). These techniques vary in their
requirements for sample preparation, spatial resolution, and
compatibility with atmospheric conditions, but are all limited
to 2D surface imaging. To create 3D chemical maps, multiple
sectioning and reconstruction of 2D layers is required (as
in X-ray tomography or magnet resonance imaging). Apart
from these techniques, liquid chromatography based mass
spectrometry (LC-MS or LC-MS/MS) methods separate complex
components of a tissue extracts based on physiochemical
properties before their introduction to the mass spectrometer,
mostly via electrospray ionization (ESI). This pre-separation
enables greater sensitivity and depth of coverage, making it a
powerful tool for metabolomic analyses (De Vos et al., 2007).
Another advantage of LC-MS based imaging is that the spatial
scale is not limited to instrument based dimensions, typically
in the cm range. This enables the molecular 3D imaging of
humans (Bouslimani et al., 2015) and their habitats (Petras
et al., 2016) up to planetary (km) scale. Since the samples are
excised, homogenized, and extracted with organic solvents for
LC-MS analysis, it is not compatible with direct imaging of
plant tissue. However, by generating optical 3D images prior
to dissection and recording spatial sampling locations, new
visualization tools can map metabolomic features onto the
model.

Here we describe an LC-MS based technique for the
3D-mapping of metabolic content of a tomato (Solanum
lycopersicum) and pepper plant (Capsicum annuum), two
members of the nightshade family. The protocol and analysis
pipeline provide a means for spatially mapping the relative
intensities of all metabolites detected through an untargeted LC-
MS/MS metabolomics analysis survey of whole plants. Together
with global statistical treatments of the data, these ion maps will
help investigators to quickly identify patterns and metabolites of
interest in their plant systems.

EXPERIMENTAL CONCEPT

Our experimental workflow is shown in Figure 1. The initial
step of our imaging approach is the creation of optical three
dimensional models for the representation of the organism to
be sampled. For experiments with little plant to plant variation
in size and shape it may be suitable to use a single template
to map all samples, in this study we generated models of
the specific organisms to be used prior to their dissection.
Members of the nightshade family, tomato (S. lycopersicum)
and pepper (C. annuum), were therefore purchased from a
local nursery. Three dimensional models were generated using
a structure from motion software and desktop 3D Scanner to
scan the smaller pepper plant. Structure from motion software
utilized multiple optical images or photographs from many
angles to reconstruct the three dimensional surface of the
tomato plant. The tomato plant was placed on a flat surface
with minimal background along with several colorful printed
reference points to provide consistent points of overlap between
photos. The scanner uses infrared lasers as distance finders
to accurately capture the surface depth as it is manipulated
by a rotating platform, and multiple images are captured
and merged by the software. After 3D models had been
generated, the aerial plant tissues were dissected, weighed, and
quenched in −20◦C extraction solvent. Downstream sample
preparation involved homogenization and extraction of plant
tissues with extraction solvent prior to subsequent evaporation
and resuspension for LC-MS/MS analysis. For the LC-MS/MS
analysis a 10 min chromatographic separation (UHPLC) method
was used, enabling an analysis of 144 samples, e.g., voxel per
day. After injecting the samples, molecules were eluted from
the reverse phase C18 column with a linear gradient of water
and acetonitrile and with 0.1% formic acid and infused into
hybrid quadrupole-time-of-flight (Q-TOF) mass spectrometer.
Once acquired, raw vendor data files were recalibrated with an
internal standard and converted to mzXML format. Our first
step of LC-MS/MS data analysis was to perform a comparison
of the presence and intensity of chromatographic ion peaks
in extracted ion maps (EIM) (XIC, e.g., retention time –
m/z pairs). This process, typically called “feature finding,”
can be time consuming and require substantial computational
resources, depending on the data size and algorithms used
for feature detection and alignment. MZmine2 (Pluskal et al.,
2010), an established tool with easy to use graphical interface
was used. After manual inspection of aligned XICs, features
were exported as .csv matrix of samples and features with
the area under the curve. The feature matrices were used
for visualization in principal coordinate analysis (PCoA) with
EMPeror (Vazquez-Baeza et al., 2013) and for the generation
of 3D EIM using ‘ili. Molecular annotation of features was
performed in parallel with MS/MS data by spectra library
matching and spectral networking using GNPS (Wang et al.,
2016). In GNPS, the MScluster algorithm (Frank et al., 2008)
is first used to consolidate identical spectra. All consensus
spectra are then compared and scored against each other,
and organized into a molecular network depending on their
spectral similarity. The network was then visualized in Cytoscape
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FIGURE 1 | Workflow from plant to chemical 3D ion intensity maps. First, the plant is 3D scanned, either using dedicated hardware (for small and/or complex

plants) or structure from motion (for larger and/or less complex plants). The 3D model is then generated and used as a template for analysis. Afterwards, the plant is

dissected, and metabolites extracted in 96-well plates. Each sample is analyzed by non-targeted LC-MS/MS with data dependent acquisition (DDA). The MS/MS

dataset is then dereplicated through MS/MS spectra database comparison and molecular networking is used to relate MS/MS features to one another and to

perform chemical identification through spectral proximity. The MS data is used to identify molecular features, which are further linked to MS/MS based

identifications in the molecular network. Finally, the location of each sample is mapped back to the 3D structure of the plant to localize the relative intensity of each

molecular feature within this 3D structure. Statistical analyses of MS features such as principal coordinates analysis (PCoA) are performed complementing the

explicitly spatial map with a dimensionality-reduced abstract map showing intrinsic similarities and differences in the samples.

(Shannon et al., 2003). Experimental spectra were compared
to different reference libraries, including the ReSpect library
of phytochemical MS/MS spectra (Sawada et al., 2012). As
metabolites with similar fragmentation spectra are organized
in network clusters, spectral annotations can be propagated
throughout the network to provide putative annotations for
previously undescribed molecules. Finally, by assigning colors to
the network nodes based on their tissue or organisms of origin,
one can quickly generate hypotheses about which metabolite
families contain chemically biologically distinctive members, and
whether these families are non-randomly distributed among
plant locations, tissues or species.

RESULTS AND DISCUSSION

For an initial global analysis of sample to sample distances,
we visualized MS features in the first three dimensions of
PCoA space (Figure 2) in EMPeror using the binary Jaccard
dissimilarity metric (Vazquez-Baeza et al., 2013). Within this
space, tissue type distinctions from the global metabolomic level
are readily visible. As expected, leaf, flower, fruit, and stem carry
distinct metabolic signatures. Some quantitative distinctions may
be driven by differences in extraction efficiency between tissue

types, like tough stems and high-water content of tomato flesh.
However, the qualitative presence/absence of LC-MS features also
varies across tissues. In fact less than 10% of LC-MS features are
observed in all tissue types, suggesting that untargeted analysis
of crude extracts are capturing tissue level chemical diversity.
In order to determine to what degree the individual metabolites
vary between tissue types it is necessary to begin grouping
individual metabolites, identifying those that can be dereplicated
and observing families of unknown metabolites.

LC-MS features are the first level of mass spectrometric
data, but molecular fragmentation (MS/MS) spectra were
also collected. These fragmentation patterns contain chemical
information about individual metabolites that can be compared
using spectra library comparison and spectral networking (Wang
et al., 2016). This allows metabolites to be grouped into families
of similar compounds as well as being matched against libraries
of known compounds (Nguyen et al., 2013). From the resulting
molecular network the background nodes, shared with solvent
and system blanks, were subtracted, leaving in total 5598 nodes
(Figure 3A). Of those, 92 consensus spectra matched thereby
to spectra from the libraries within a mass error of 20 ppm,
yielding a 1.6% annotation rate. When categorized by tissue type
(Figure 3B), MS/MS nodes show similar distributions as MS
features (Figure 2), with stem and leaf metabolites making up a
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FIGURE 2 | Molecular distribution across the (A) tomato and (B) pepper plants. In each case, a cartoon of the plant showing the individual patches labeled with

the same colors used in the principal coordinates plots and Venn diagrams is shown. The principal coordinates plots show the first three principal axes, using the

binary Jaccard’s distance metric. Samples separate by type and the Venn diagrams demonstrate that only a minority of MS features are shared among all parts of

the plant (5.5% for tomato, 7.9% for pepper), that stems and leaves share more metabolites than any other pair of samples in both species, and that stems, leaves

and fruit each have more unique metabolites than flowers although the rank order of unique metabolites varies between the two plants samples. See Figure 4 for

the distribution of individual metabolites of interest on the 3D structure of the plant.

large number of total amount of nodes. Fruit and flower tissues
contribute many unique signals, while a relatively small number
of metabolites are universally detected in all tissues. Matches to
library data are present all along this distribution (Figure 3C),
providing evidence that the untargeted metabolomics equally
sampled a wide range of compounds and that these were
represented within the library. Molecular networking performs
especially well in identifying uniquely expressed metabolites in a
survey (Floros et al., 2016; Nguyen et al., 2016). It is clear that
in our molecular network (Figure 3A), with background spectra
removed, are multiple molecular families (connected network
components) which are either unique to or dominated by samples
from specific tissue types.

In Figure 3C the distribution of the frequency at which
metabolites are observed at the MS/MS level ranges from the
observations for the internal standard, glycocholic acid, in
every sample to pheophytin, chlorophyll without the central
Mg2+ ion (Lambers et al., 2008), which was observed in
more than 60 samples from stem and leafs, which is not
surprising as it forms an essential part of photosynthesis.
Chlorogenic acid, on the other hand, an intermediate of the
biosynthesis of lignin (Boerjan et al., 2003), an important
organic polymer and structural building block of plants, was
observed in several redundant nodes, originating from more
than 41 samples from stem and leaf. Spectral redundancy can
be typically overserved in molecular networks, especially for
frequently observed compounds. The reasons therefore can be
the differences in abundance of precursors which results in
presents or absence of low intensity MS/MS fragments and
thus classification in different consensus spectra. The flavonoid,
kaempferol-3-O-glucoside, a typical phytochemical which has
been studied in the context of antioxidant and anti-inflammatory
activity (Parveen et al., 2007) was present in total 34 samples,
but mostly in leaves. On the low frequent side, nodes matching

to spectra from capsaicin were only observed in eight samples
originating from fruits from the pepper plant.

Once data at the global levels has indicated that tissue level
distinctions and tissue specific metabolite families are present,
the visualization of individual metabolites was achieved with
the generation of EIMs (Figure 4). Visualization in ‘ili allows
investigators to cycle through the distributions of each individual
metabolite. This takes advantage of the brain’s enormous capacity
to absorb visual information and detect patterns; EIMs allow
rapid hypothesis generation and potential biomarker selection.
Comparing single metabolite patterns to known physiological
and pathological patterns can provide insight into the biological
function of certain metabolites in many systems. Figure 4 shows
exemplary EIMs of the above-mentioned metabolite features.
Once present in ‘ili, the creation of an EIM can be performed
instantly with every molecular feature present in the .csv file.
In Figure 4A, the distribution of tri-coumaroyl spermidine can
be seen. The strongest abundance can be overserved at both,
the flowers of the pepper and the tomato plant. These findings
are in line with the literature, where coumaroylated spermidines
have been reported to be common in floral organs (Werner
et al., 1995), in particular in tomatoes (Larbat et al., 2014).
Phenolic amines, such as tri-coumaroylated spermidine, have
thereby been studied mainly in the context of plant defense
and biotic aggression (Elejalde-Palmett et al., 2015) which might
be an important molecular factor for future crop breeding. In
Figure 4B the spatial distribution of tryptophan, a canonical
amino acid, is shown. As tryptophan is common in basically
all living organism it’s detection is not too surprising. However,
tryptophan is a biosynthetic precursor of indole acetic acid –
an auxin important for fruit development (Ljung et al., 2002).
Hence, it’s interesting to observe that the relative concentration
of tryptophan shows the highest abundance in the tomato and
pepper fruits, which can be important to understand differences
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FIGURE 3 | Molecular MS/MS network and metabolite level overlap. (A) Product ion spectra of all tissues samples, were analyzed based on their spectral

proximity with GNPS. Every node represents a single or set of identical spectra, linked to similar MS/MS spectra. The different tissue origins of the spectra are

indicated by different node colors. Nodes originating from solvent and/or system blanks were subtracted. In (B) Venn diagrams of the occurrence of unique and

shared MS/MS spectra between different tissue types are shown. In (C) the frequency plot of clusters of MS/MS spectra (represented as nodes in the network) vs.

samples in which this MS/MS spectrum is observed.

in fruit maturing processes, particularly of agricultural important
species. Figure 4C shows the spatial distribution of capsaicin
which was found only in the fruit of the pepper plant. In
Figure 4D the spatial distribution of an unknownmetabolite with
the mass 446.2480 m/z is shown which is only observed in the
tomato. Although it is unknown now, it might be identified and
automatically annotated through the “living data” in GNPS or
could be subjected to further targeted structural and functional
investigations.

Summarizing, LC-MS based 3D imaging of plants
introduces a new tool to spatially visualize small molecules
in plants and thus to understand phenotypic and genetic
differences on a metabolite level. Paired with spatial high
resolution imaging methods such as MALDI and other
modalities, we anticipate this technique will provide the
base for most comprehensive molecular models of complete
plants and their interactions with their environment and
microorganisms.
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FIGURE 4 | Extracted 3D ion maps of a pepper and tomato plant. The spatial distribution of (A) tri-coumaroyl- spermidine, (B) tryptophan, (C) Capsaicin, and

(D) an unknown compound are shown. Relative concentrations of each m/z - retention-time feature are displayed with a linear color gradient (blue – red) in the

extracted ion maps of both plants. All MS features detected in our study can be found in the supporting information and can be visualized by drag and drop of the

.stl and .csv files in ‘ili (ili-toolbox.github.io).

EXPERIMENTAL PROCEDURE

Plants
Two individual plants, tomato (S. lycopersicum) and pepper
(C. annuum), were purchased from a local nursery (Green
Gardens Nursery, San Diego, CA, USA) in October 2015.

Model Generation
3D models were generated using the structure-from-motion
software 123Dcatch (Autodesk, San Rafael, CA, USA) for the
larger tomato plant, and the 3D Scanner Ultra HD (NextEngine,
Santa Monica, CA, USA) for portions of the pepper plant. Both
platforms provide output file in stl formats, which are then used
with the ‘ili toolbox.

Sectioning, Processing, and Extraction
All aerial plant tissues parts were dissected manually into
sections with a size convenient for extraction in a 1.5 mL
reaction tube. Each tissue section was weighed, with masses
ranging from 0.01 to 0.03 grams. Tissues were placed in
round-bottom solvent resistant tubes along with a 5 mm

stainless steel bead and 500 microliters of extraction solvent
(2:2:1 ethyl acetate:methanol:water) and were disrupted by
shaking at 30 Hz for 15 min in a TissueLyser (Qiagen,
Hilden, Germany). Plant tissues were allowed to extract
for at least 8 h at −20◦C. Tubes were then centrifuged
briefly to pellet solid material and the supernatants were
transferred to 1 mL deep 96-well plates and stored at
−20◦C until being evaporated to dryness in a Speedvac
vacuum centrifuge (Thermo, Bremen, Germany). Samples were

then resuspended in injection solvent (9:1 methanol:water

containing 10 mM glycocholic acid as internal standard) by
sonication of the entire plate for 5 min. Again, insoluble
particulates were pelleted by centrifugation at 20,000 g for
10 min. Finally, 100 microliters of extracted solvent was
transferred to polypropylene 0.3 mL 96-well plates (NUNC,
Roskilde, Denmark). Plates were stored at −80◦C until LC-MS
analysis.

LC-MS Analysis
All sample extracts were subjected to chromatographic
separation with an Agilent 1290 InfinityUHPLC system (Agilent,
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Waldbronn, Germany). Separations were achieved using a flow
rate of 0.5 mL/min with an 1.7 micron C18 (50 × 2.1 mm)
Kinetex UHPLC column (Phenomenex, Torrance, CA, USA)
held at 30◦C. The gradient was 0–0.5 min 5% B, 0.5–8 min
5–100% B, 8–11 min 100% B, 11–11.5 min 100–5% B, 11.5–
12 min 5% B, where solvent A is water with 0.1% formic acid
(v/v) and solvent B is acetonitrile with 0.1% formic acid (v/v).
MS/MS experiments were performed on a Maxis QTOF mass
spectrometer (Bruker, Bremen, Germany) equipped with an
ESI source in positive mode with mass range 100–2000 m/z.
Before analysis, the instrument was externally calibrated to
1.0 ppm mass accuracy with ESI-L Low Concentration Tuning
Mix (Agilent, Waldbronn, Germany). During the analysis
m/z 622.029509, was used as an internal calibrant. Instrument
parameters were as follows: nebulizer gas (N2) pressure, two bar;
Capillary voltage, 4500 V; ion source temperature 200◦C; dry gas
9 L/min; spectra rate, 2 Hz. MS/MS fragmentation of the five
most abundant ions per spectrum was performed with adaptive
collision energy and acquisition time based on precursor ion
properties (see Supplementary Materials). With total cycle time
of 3 s, ions were excluded from reselection after three spectra
and released after 20 s. An exclusion list was used to prevent
sampling of the lock mass. All LC-MS analyses were controlled
by Hystar and Otof Control software packages (Bruker, Bremen,
Germany). Raw data was then converted to .mzXML format.

Data Processing and Multivariable
Statistical Analysis
For the global statistical analysis, the MS/MS scans were removed
from the original mzXML files using MSConvert (Deutsch et al.,
2015) to decrease the total file and speed up down-stream
processing. Feature extraction was performed with MZmine2
(Pluskal et al., 2010) with a signal threshold of 2.0e6 and 0.3 s
minimum peak width. The mass tolerance was set to 10 ppm
and the maximum allowed retention time deviation was set to
10 s. For chromatographic deconvolution the baseline cutoff
algorithm with 1.0e4 signal threshold was used. Maximum peak
width was set to 2 min. After isotope peak removal, the peak lists
of all samples were aligned with the above-mentioned retention
time and mass tolerances. After the creation of a feature matrix
containing the feature retention times, exact mass and peak areas
of the corresponding extracted ion chromatograms, metadata of
the samples (plant type, tissue type, and spatial coordinates) was
added. For the PCoA the signal intensity of the features was
normalized to the total ion current of all samples. The PCoA
plots were generated with the binary Jaccard dissimilarity metric
using the in-house tool ClusterApp and visualized in EMPeror
(Vazquez-Baeza et al., 2013). Venn diagrams of shared MS1
features were generated using InteractiVenn (Heberle et al., 2015).

Molecular Networking
MS/MS data was analyzed with GNPS (Wang et al., 2016).
Therefore, the data was filtered by removing all MS/MS peaks
within a 17 Da window of the precursor m/z and MS/MS spectra
were filtered by choosing only the top 6 peaks in 50 Da windows.
The data was then clustered with MS-Cluster (Frank et al.,

2008), with a precursor mass tolerance of 0.02 Da and a MS/MS
fragment ion tolerance of 0.02 Da. Consensus spectra with less
than 2 spectra were discarded. A spectral network was then
created with a minimum spectral similarity of cosine 0.7 and
more than 4 matched peaks. Only top 10 edged connecting one
note were kept in the network. Consensus spectra were searched
against the GNPS spectral library as well as Massbank, ReSpect,
HMDB, and NIST14 (Forsythe and Wishart, 2009; Horai et al.,
2010; Sawada et al., 2012; Stein, 2014; Wang et al., 2016) with
a precursor mass tolerance of 0.02 Da and a MS/MS fragment
ion tolerance of 0.02 Da. Nodes originating from solvent and/or
system blanks were subtracted. Venn/Euler diagrams of MS/MS
features from GNPS were generated using the Venn and Euler
Diagrams app (Heuer et al., 2016) in theCytoscape 3 environment
(Shannon et al., 2003).

3D Mapping and Visual Analysis
We used the GeoMagic 3D visualization and editing software
(3D Systems, Rock Hill, SC, USA) to clean up the automatically
generated 3D mesh objects from the .stl-format files. This
software was also used to identify coordinates corresponding to
each tissue sample. Each pair of filenames and coordinates was
associated with their corresponding MS features and MS/MS IDs
in a .csv-format table. These tables were uploaded, along with the
.stl 3D model, to the visualization tool ‘ili (Alexandrov, 2016).

DATA ACCESSIBILITY

All LC-MS/MS data can be found on the Mass spectrometry
Interactive Virtual Environment (MassIVE) at https://massive.
ucsd.edu/ with the identifiers MSV000079448, MSV000079447,
and MSV000079446. 3D .stl files and corresponding ion
intensities in .csv format are available in the supporting
information of this article.
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