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Abstract22

Proteomics approaches designed to catalogue all open reading frames (ORFs) under a23
defined set of growth conditions of an organism have flourished in recent years. However, no24
proteome has been sequenced completely so far. Here we generate the largest yeast proteome25
dataset, including 5610 identified proteins using a strategy based on optimized sample26
preparation and high-resolution mass spectrometry. Among the 5610 identified proteins, 94.1%27
are core proteins, which achieves near complete coverage of the yeast ORFs. Comprehensive28
analysis of missing proteins in our dataset indicate that the MS-based proteome coverage has29
reached the ceiling. A review of protein abundance shows that our proteome encompasses a30
uniquely broad dynamic range. Additionally, these values highly correlate with mRNA abundance,31
implying a high level of accuracy, sensitivity and precision. We present examples of how the data32
could be used, including re-annotating gene localization, providing expression evidence of33
pseudogenes. Our near complete yeast proteome dataset will be a useful and important34
resource for further systematic studies.35

Introduction36

Mass spectrometry (MS) is widely applied for protein identification in recent decades.37
Development of the related technologies, including improved sample preparation, mass38
spectrometers, as well as downstream bioinformatics analysis, have helped to improve protein39
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identification accuracy and coverage (Domon & Aebersold, 2006; Kumar & Mann, 2009; Mallick40
& Kuster, 2010; Shevchenko et al, 1996b; Tyanova et al, 2016; Washburn et al, 2001). MS-based41
proteomics is a powerful tool to obtain high quality measures of the proteome, greatly42
contributing to our understanding about the composition and dynamics of subcellular organelles,43
protein interaction, protein posttranslational modification as well as signaling networks44
regulation (Choudhary & Mann, 2010; Domon & Aebersold, 2006; Jensen, 2006; Pandey & Mann,45
2000). However, due to various analytical limitations (Gstaiger & Aebersold, 2009; Nilsson et al,46
2010; Vanderschuren et al, 2013), achieving high quantification accuracy and complete47
proteome coverage remains a challenge.48

Saccharomyces cerevisiae, one of the most extensively characterized model organisms,49
has been subjected to the most comprehensive proteome-wide investigations, including global50
and organelle-specific proteome (de Godoy et al, 2008; de Godoy et al, 2006; Ghaemmaghami et51
al, 2003; Ho et al, 2018; Huh et al, 2003; Kolkman et al, 2006; Nagaraj et al, 2012; Picotti et al,52
2009; Picotti et al, 2013; Reinders et al, 2006; Wiederhold et al, 2009; Zahedi et al, 2006). The53
first large-scale proteomic study on yeast has identified 150 proteins (Shevchenko et al, 1996a).54
Later, the number of identified proteins increased to thousands. Specifically, two studies55
expressing tandem affinity purification(TAP) tag (Ghaemmaghami et al., 2003) or GFP tag (Huh et56
al., 2003) in yeast gene natural chromosomal location show that as much as 4500 proteins are57
expressed during normal growth condition. Subsequent emerging targeted proteomics58
workflows (Deutsch et al, 2008; King et al, 2006; Kuster et al, 2005), by gathering as many as59
available yeast MS-based proteomics datasets to construct high quality and coverage protein60
lists, have substantially improved the yeast proteome to a higher coverage. Complementary61
absolute quantitative proteomics experiments further validate the expression levels (de Godoy62
et al., 2008; Nagaraj et al., 2012). Ho et al. (2018) combined 21 quantitative yeast proteome63
datasets, including MS-, GFP- and western blotting-based methods, to generate an unified64
protein abundance dataset, covering about 5400 proteins (Ho et al., 2018). This number is still65
lower than the number of currently annotated 6717 yeast ORFs in SGD database. Moreover, the66
protein abundance identified solely based on MS is known to span multiple orders of magnitudes,67
ranging from 25 to 221 copies per yeast cell (Picotti et al., 2009). This suggests that many low-68
abundance proteins have not yet been detected (de Godoy et al., 2006). Based on a69
high-throughput peptide synthesis technique, Picotti et al. (2013) generated an almost70
completed theoretical yeast proteome, covering 97% of the genome-predicted proteins (Picotti71
et al., 2013). However, the synthesized peptides were artificially selected for favorable MS72
properties and uniqueness and do not accurately reflect endogenous peptides that would be73
generated by experimental conditions on actual samples. So this large dataset represents a74
theoretical result, and may be more valuable for the development and optimization of75
computational methods.76

Despite the challenges, recent technical and methodological developments keep77
emerging, enabling the almost complete quantitative Arabidopsis proteome (Mergner et al, 2020)78
and human proteome draft (Kim et al, 2014; Wilhelm et al, 2014), which provide useful resources79
for further function analysis. It also encourages us to look into the possibility of complete80
coverage of yeast proteome. In this study, we combine the optimized sample preparation81
(extensive gel molecular weight fractionation, and two digestion enzymes) and a more sensitive82
and faster liquid chromatography/tandem mass spectroscopy (LC-MS/MS) platform (Orbitrap83
Velos coupled to a nanoAcquity UPLC), providing the largest yeast proteome dataset to date. In84
total, we identify 5610 proteins, covering 83.5% annotated yeast ORFs. Among, our dataset85
shows nearly complete coverage of core proteins, up to 94.1%. We find that proteins are missed86
mainly due to physical properties, such as small protein molecular weight, high sequence87
similarity, as well as absence in transcription and uncharacterized gene function. Quantitative88
analysis of our proteome shows that protein abundance spans six orders of magnitudes, and89
highly correlate with mRNA abundance, suggesting the high coverage and sensitive of our90
dataset. Moreover, systematic analysis shows our proteome covers 98% of the annotated KEGG91
pathways, providing insight into the expression pattern of yeast at the molecular level. Also, we92
use a select sample to show how this near complete yeast proteome can be used to reannotate93
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the yeast genome.94
95

Results96

Generation of a deep-coverage yeast proteome with high reliable protein identification97

To develop methods for the high coverage proteomics analysis, we started with in-gel digestion98
coupled with mass spectrometric analysis strategy (GeLC-MS/MS) for the separation and99
identification of the yeast total cell lysate (TCL) samples cultured in the yeast extract peptone100
dextrose (YPD) medium (Fig 1A). Firstly, SDS-PAGE was used to resolve the samples, resulting in101
clear and sharp bands, which indicated the proteins were extracted and separated in high quality102
and resolution (Fig 1B). Each lane was excised into 26 gel bands based on the molecular weight103
(MW) and the protein abundance. The proteins in these gel bands were in-gel digested with104
trypsin or endoproteinase LysC (lysC) to help identify more peptides and proteins (Swaney et al,105
2010). LC-MS/MS analysis showed that 5179 proteins were identified with high confidence.106
Among them, 4716 proteins were identified in trypsin digestion and 4730 were identified in lysC107
digestion. The number of proteins identified in both datasets was 4267, consisting of 90.4% of108
trypsin digested samples and 90.2% of lysC digested samples, respectively (Fig 1D). The average109
sequence coverage of identified proteins in trypsin digestion was 29%, which was 2% higher than110
that in lysC digestion, as trypsin digestion generated more proteotypic, or easily detectable111
peptides for MS analysis (Fig S1A). The combination of two proteases digested dataset further112
improved the average sequence coverage to 36%, leaving significantly less proteins with low113
sequence coverage (Fig S1A). Though the application of trypsin and lysC digestion helped to114
identify more proteins with higher sequence coverage, it did not improve the identification of115
proteins with low molecular weight (LMW) (Fig S1B).116

One way to increase the identification of LMW proteins in MS is to increase their resolution.117
Tricine gel has previously been shown to efficiently resolve LMW proteins with high resolution118
(Haider et al, 2012; Schagger, 2006). To identify more LMW proteins, we tested whether applying119
tricine gel can improve LMW proteins coverage (Fig 1C). Similar to the SDS-PAGE strategy, the120
samples resolved by tricine gel were also in-gel digested with trypsin or lysC and then analyzed121
by LC-MS/MS. The examination of MW distribution indeed indicated that the uniquely identified122
proteins from tricine gel were enriched in the region of LMW, and the number of identified123
proteins with MW<=10 kDa had improved by 31% (Fig S1C). The tricine gel runs resulted in a124
total of 5451 identified proteins (Fig 1E). Compared with the proteins identified from SDS-PAGE,125
369 unique proteins were identified in tricine, increasing the total number of identified proteins126
to 5548 (Fig 1F). Compared to the published yeast proteome datasets (de Godoy et al., 2008; de127
Godoy et al., 2006; Ghaemmaghami et al., 2003; Huh et al., 2003; Nagaraj et al., 2012; Picotti et128
al., 2009; Picotti et al., 2013), our dataset is significantly larger, suggesting that protein129
identification has approached saturation using the current experimental conditions.130

To further increase the number of identified yeast proteins, we reanalyzed our published131
proteome dataset derived from the same genetic background yeast strain cultured in synthetic132
complete (SC) medium for SILAC labeling (Li et al, 2019). The SILAC dataset increased protein133
identifications slightly from 5,548 to 5,610 (Fig S1D). Most of these additionally identified134
proteins were located in the LMW range (Fig S1E). Alteration of growth conditions did not135
significantly improve the number of identified proteins. This combined with the number of136
proteins identified from YPD experiments suggests that detection of proteins in all molecular137
weight ranges is likely approaching saturation. Therefore, the largest yeast proteome dataset to138
date is constructed with 5610 high-confidence gene products, covering 83.5% of yeast protein139
coding genes (Fig 2A, Supplementary table 2).140

Employing different experimental strategies not only increases the number of identified141
proteins, but also improves the accuracy of the identified proteins. Among the 5610 identified142
proteins, 97.1% matched at least two identified peptides, 99.2% matched at least one PSM with143
Xcorr>2 (Fig S2 A&B). The average number of identified peptides per protein reached up to 30,144
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leading the average protein sequence coverage up to 50% (Fig 2D), which, to our best knowledge,145
is higher than the known proteomics studies to date (de Godoy et al., 2008; de Godoy et al.,146
2006; Nagaraj et al., 2012). It suggests the high reliability of our proteome dataset in protein147
identification. In SGD, yeast genes can be classified into three main categories: core,148
uncharacterized (including putative or hypothetical) and dubious genes. Among the 5155 core149
genes with annotated functions, 4851 were included in our dataset, reaching a coverage of150
94.1% (Fig 2A&S2C, Supplementary table 2), indicating that the MS-based proteomics approach151
can reach near complete coverage for these core proteins. In addition, 71.4% of the152
uncharacterized genes and 27.4% dubious genes were identified in our dataset. All three153
catalogued gene groups were higher than the four previously published datasets (Fig S2C).154
Interestingly, our proteome provided support for the translation of 6 pseudogenes from 26155
annotated ones in the reference yeast genome, in which YLL016W and YAL065C were uniquely156
identified in our study (Fig S2D). YLL016W was confirmed by the alignment of the spectra from157
large scale proteomics and synthesized peptides (Fig S2E).158

Utilization of different experimental strategies helps to increase the number of identified159
proteins, however, as the accumulative spectra increases, less new proteins are identified (Fig160
2B). MS-based experiments alone cannot efficiently improve the number of identified proteins,161
suggesting MS-based approaches have reached the upper limit of identification. In support of162
this, four published representative yeast datasets based on non-MS and MS techniques,163
consisted of Tandem Affinity Tag (TAP)-based dataset (Ghaemmaghami et al., 2003; Huh et al.,164
2003), Green Fluorescent Protein (GFP)-based dataset (Huh et al., 2003), PeptideAtlas dataset165
(Deutsch et al., 2008) and SILAC dataset published by Mann in 2008 (de Godoy et al., 2008), were166
selected to compare with our proteome dataset, we found very few novel proteins were167
identified based on these different datasets (Fig 2C). Most of the proteins uniquely in the other168
four datasets came from the GFP or TAP, which are not MS-based technologies and can play the169
role of complementing protein identifications. We further combined our dataset with these four170
datasets, which yielded a total of 5776 proteins by the aggregation of these five datasets, and171
97.1% (5610) of these proteins were included by our dataset alone, suggesting the high coverage172
of our proteome dataset.173

The high sequence coverage of the identified proteins help us confirm the annotation of174
the protein-coding ORFs in the current yeast genome, especially for the N-terminal and C-175
terminal ends of proteins. As protein termini may not generate proteotypic peptides long176
enough for mass spectrometric identification even using in silico digestion, here we defined the177
in silico digested peptide nearest to a protein terminus which could be identified by MS as the178
“theoretical terminus”, to represent protein terminus. As a result, 2,243 and 2,780 proteins had179
identified theoretical N-termini and C-termini, respectively, consisting of 40.0% and 49.6% of the180
identified proteins (Fig 2E). The average sequence coverage of these 2,243 and 2,780 proteins181
was 62.1% and 64.3%, respectively. A total of 1372 proteins had both identified theoretical N-182
and C- termini, with increased average sequence coverage up to 73.4%, which was significantly183
higher than that of all identified proteins in our proteome. We found that 799 and 1593 proteins184
had identified annotated N- and C-terminal peptides (Fig S3A), which provided the direct185
evidence of these proteins’ terminus annotation. Among the 779 proteins with annotated N-186
terminal peptide, 116 proteins had matched N-terminal peptide if the first amino acid residue in187
the N-terminus was removed, and 46 proteins had matched N-terminal peptide if the first two188
amino acid residues in the N-terminus were removed. Even still 8 proteins had matched N-189
terminal peptide after removing 5 amino acid residues (excluding targets amino acid of190
trypsin/lysC: lysine and arginine) from the N-terminus (Fig S3B). It indicates that a certain portion191
of yeast proteins has N-terminal cleavage sites of peptidase (Vogtle et al, 2009), which might192
regulate protein maturation, stabilization as well as function.193

Another benefit of the high sequence coverage is reflected in the identification of intron-194
containing genes. In total we identified 275 of 331 (83.1%) annotated intron-containing gene195
products. Among these gene products, 470 exons were identified from the total 574, and 139196
junctions were identified from the total 297, consisting of 81.9% and 46.8% respectively (Fig 2F).197
The amino acid sequence of junction peptide identified in YR111W-A was shown as an example198
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in Fig S3C, further suggesting the high coverage of our proteomics data can provide direct199
evidence for the translation of gene splicing isoforms and facilitate the identification of splice200
sites.201

Characteristics of missing proteins in MS-based proteome study202

Though our proteome dataset contains a total of 5610 proteins, there are still 1107 proteins203
missed based on SGD annotation. We performed a detailed analysis to uncover the possible204
reasons for the missing proteins.205

Distribution of identified proteins based on MW as well as protein catalogue showed that206
proteins with LMW (≤20kDa) or belonging to uncharacterized or dubious gene products are207
mostly missed by our proteome dataset (Fig 3A). 840 of 1107 missing proteins were located in208
the LMW (≤20kDa) region (Supplementary Table S3). Proteins with LMW (≤20kDa) generate less209
peptides for MS-based proteomics to detect. Even when we applied tricine gel, which is210
optimized to identify small molecular weight proteins, still a large portion of proteins with LMW211
were left unidentified.212

Compared to the nearly complete identification of core proteins, the identification of213
uncharacterized and dubious proteins were still low (71% and 27%) (Fig S2C), suggesting a large214
portion of these two categories proteins is still missing from our proteome dataset. Among 1107215
missing proteins, a total of 803 proteins was uncharacterized or dubious proteins (Fig 3A,216
Supplementary table 3). Among, 723 proteins were also LMW proteins, consisting of 65.3% of217
the total missing proteins in our dataset.218

The low identification of uncharacterized proteins as well as dubious proteins prompts us219
to explore whether the transcripts of these missing proteins are expressed or not with the220
assistance of RNA sequencing (RNA-seq). We compared our proteome dataset with our221
previously published RNA-seq dataset, which was performed in the same yeast strains under the222
same culture conditions (Li et al., 2019). The RNA-seq dataset contains 5,833 genes identified in223
total, representing an in-depth transcriptomics. A total of 5369 gene products were identified in224
common, occupying 95.7% and 92.0% of identified proteins and sequenced gene transcripts,225
respectively (Figure 3B). Among 1107 missing proteins, a total of 643 proteins were not detected226
in RNA-seq dataset (Fig 3C), including 525 uncharacterized or dubious proteins, suggesting under227
current growth conditions, a large portion of uncharacterized or dubious genes may not express.228
The following 464 missing proteins showed the normal distribution according to the RNA229
expression level, which is similar to the distribution of the identified proteins.230

By comparing the proteomics data with protein MW and the RNA-seq dataset on a three-231
dimensional distribution, we found the missing proteins which were not detected by RNA-Seq232
are also of small MW (Fig S4). The union of missing proteins caused by LMW, uncharacterized233
and dubious protein categories and absence in RNA-seq dataset, is 986 proteins, consisting of234
89.0% of the total missing proteins.235

The remaining 121 missing proteins were all core proteins, with molecular weight ranging236
from 21 to 203 kDa. As for the identified core proteins, the coverage with MW≤20, 20-80, 80-237
190, >190kDa was 83.1%, 96%, 98.8% and 76.4% respectively (Fig 3A). It showed the lowest238
coverage of core proteins with MW>190kDa, even lower than the core proteins with MW≤20 kDa.239
This prompted us to analyze other physicochemical properties of these missing proteins. We240
found several of the missing proteins belonged to the retrotransposon protein group, which241
shared high sequence similarity. As peptides are the targets for sequencing in bottom-up242
shotgun proteomic strategies, proteins with highly conserved amino acid sequence will be mostly243
made up of non-unique peptides which are reported as a ‘protein homology group’ (Zhang et al,244
2013). A parsimonious approach is to only choose one protein for each group, so the others are245
cataloged as missing proteins, though these proteins may have high sequence coverage. In fact,246
among the 1,107 missing proteins, 149 had at least one matched peptide, and 134 of the 149247
proteins have more than 10% sequence similarity to identified proteins (Fig S5A). Most of these248
134 proteins fall into three major protein groups, including retrotransposon, helicase, and249
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ribosome (Fig S5B-D, Supplementary table 4). Therefore, proteins in these groups that are250
labelled as missing are primarily due to the high sequence similarity with the identified proteins,251
even though many of them have a high molecular weight (HMW) (Supplementary table 3). We252
found that 32 of 121 missing proteins in the core protein category belong to the highly253
homologous retrotransposon, helicase as well as ribosome groups. Thus, lack of unique peptides254
in HMW proteins remains a hurdle for complete coverage.255

The hydrophobicity and number of proteotypic peptides have been proposed to account for256
the protein identification in MS (Amado et al, 1997; Krause et al, 1999). We found that the257
distribution of hydrophobicity or the number of proteotypic peptides were not significantly258
different between the identified proteins and the missing proteins (Fig S5 E&F). This indicates259
that our MS-based platform are robust enough to identify proteins regardless of their260
physicochemical parameters, further supporting the high sensitivity.261

We also noticed that the distribution of the unidentified proteins are biased toward the262
ends of each chromosome (Fig S5G). More than 75% proteins localized near centromere were263
identified by either proteome or transcriptome, while only 50% proteins localized in264
chromosome ends were identified, which was extremely low in the chromosome extremities265
(~40%). This is likely due to the irregular repeated sequence of the telomeres in yeast, which266
differs from that of higher organisms including humans (Louis, 1995; Louis et al, 1994).267

Hierarchical analysis for the integration of different protein characteristics showed that268
1018 of 1107 missing proteins are caused by LMW, uncharacterized or dubious genes, absence in269
transcriptomics and sequence similarity (Fig 3 D&E, supplementary table S3). Among the 89270
leftover uncharacteristic missing proteins, 45 did not generate enough proteotypic peptides for271
MS detection as predicted by peptideSieve, and 16 belonged to the enriched gene ontology (GO)272
catalogues associated with temporare expression, such as response to toxin, sexual sporulation273
or cell development (Fig S5H).274

Label-free quantification analysis shows the high correlation between the quantitative proteome275

and transcriptome276

To correlate our proteomics dataset with gene expression, we quantitatively analyzed our label-277
free proteome based on peptide intensity. Because the abundance of different proteins could278
not be compared directly based on the intensity of all identified peptides due to the bias of279
peptide detectability by MS (Mallick et al, 2007), we designed a label-free workflow for280
combining quantitative results from different YPD experiments at the peptide level (Fig S6A). The281
peptides with abnormal intensity for each protein were eliminated due to the high sequence282
coverage in our proteomics dataset (Peptides identified from YML120C were shown as the283
example in Fig S6B), to further improve the accuracy of protein quantitation. Protein abundance284
was defined by the sum of the peptide intensities of each protein divided by their respective MW.285

A total of 5056 proteins were quantified, comparable to the yeast unified protein286
abundance dataset, which combined 21 quantitative yeast proteome datasets (Ho et al., 2018).287
We found a large dynamic range of protein expression (Fig 4A), spanning approximately 6 orders288
of magnitude, which is 2 magnitudes larger than the mRNA abundance in the RNA-seq dataset (Li289
et al., 2019). This is consistent with what we find in human liver tissue (Chang et al, 2014a). Our290
quantitative proteome and the RNA-seq dataset had 4,923 gene products in common (Fig 4B).291
The Pearson correlation coefficient between the protein abundance and the mRNA abundance292
was 0.65 (Fig 4C), which is higher than our previous study based on quantitative SILAC method (Li293
et al., 2019), suggesting that the abundance of proteins is coupled with the abundance of mRNA294
(Marguerat et al, 2012). We also found that as the increasing of the number of quantitative295
peptides for each protein, the Pearson correlation of the intensity between transcriptome and296
proteome is also increased (Fig 4D), suggesting that increased depth of MS-based proteome in297
the future will improve quantitative accuracy and consistency with quantitative transcriptome, at298
least to some extent. Not only does our proteomics dataset correlate well with the299
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transcriptomics dataset, it also correlates well with other published datasets that are generated300
with non-MS or MS based methods such as TAP (Ghaemmaghami et al., 2003) and GFP (Huh et301
al., 2003) (combined as TAP&GFP), as well as the quantitative SRM dataset (termed as SRM)302
(Picotti et al., 2013), with the respective Pearson correlation coefficients of 0.66 and 0.93 (Fig 4E,303
S6C). The high correlation with SRM dataset further suggests the high quantitative accuracy of304
our current proteomics dataset. As the quantitative information of SRM dataset is generated by305
the targeted comparison to the synthetic peptides with a known concentration (Picotti et al.,306
2013), which provide accurate relative quantification information for yeast proteins. Correlation307
coefficient between the transcriptome and TAP&GFP datasets was 0.51 (Fig 4F), which was lower308
than that with our proteomics dataset. Correlation coefficient between the transcriptome and309
the SRM dataset was, as expected, up to 0.83 (Fig S6D). Interestingly, it was lower than 0.93,310
which is the correlation coefficient between our proteomics dataset and the SRM dataset (Fig311
S6C). This suggests that our quantitative proteomics dataset better reflects the relative gene312
expression pattern, compared to the quantitative transcriptome dataset. It is likely due to the313
post-transcriptional regulation via control over translation and/or degradation rates of specific314
proteins within the cell (Tchourine et al, 2014).315

To further quantitatively compare our proteomics dataset with the TAP and GFP datasets,316
we transformed our protein intensity into the copy number using the SRM dataset as a ruler (see317
method) (Supplementary table 2) (Picotti et al., 2013). The dynamic range of protein copy318
number in our dataset was two magnitudes larger than that given by TAP and GFP construct319
expression, extending mainly in the direction of low protein abundance (Fig S6E&F). Our320
proteomic dataset identified 241 and 609 unique proteins not found by RNAseq (Fig 3B) and the321
four other published datasets (Fig 2C), respectively. Additionally, we also showed a biased322
distribution in the low expression region, both in protein and RNA level (Fig S7). Hence,323
identification of low-abundance proteins drives the improvement towards complete coverage in324
our proteomic dataset, and reflects the depth of our MS-based pipeline.325

Functional pathway profiling by the high coverage quantitative proteome326

Our quantitative proteome dataset analysis provides insight into the protein expression pattern327
of yeast under the log phase growth conditions (Fig 5A). The core proteins have globally higher328
abundance than the uncharacterized proteins and the products of dubious genes (Fig S8), which329
further suggests that these core proteins are essential to yeast. This is consistent with what we330
found in our previous SILAC dataset (Li et al., 2019).331

All intracellular components attain high identification coverage (>93%), except for the332
extracellular region and cell wall (72.6% and 74.8%, respectively). Even membrane proteins,333
which can be difficult to extract, digest, and detect in such experiments, also attain 93.4%334
coverage (Fig S9A). Besides that, 96% of transcription factors and 91% of all proteins with GO335
slim annotations were covered in our proteomics dataset, providing additional evidence that336
most of the annotated functional protein-coding genes are expressed in yeast cells under log-337
phase growth conditions.338

Our proteomic dataset covers almost all proteins essential for yeast survival as supported339
by pathway analysis. The coverage of all proteins in the KEGG pathway were above 75%, with340
72% of pathways having all their proteins completely covered (Supplementary table 5); the341
average coverage of KEGG pathway annotated proteins is 98% (Fig 5A). One of the most active342
pathways, mitosis, is chosen for detailed analysis. Mitosis associated proteins are cataloged into343
five subgroups (midbody, centrosome, kinetochore, telomere and spindle) based on the microkit344
4.0 (Ren et al, 2010) and SGD annotations. More than 97% of all five subgroups of their member345
proteins were uniquely identified (Fig S9B, missing proteins are listed in Supplementary table 6).346

Combining mRNA and protein abundance to the proteins assigned in each KEGG pathway347
further uncovered the expression patterns of different functional modules under current growth348
conditions. Fig 5B presented proteins in representative pathways with mRNA and protein349
abundance; pathways were ranked by the correlation coefficient between the transcriptome and350
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the proteome from high to low. This confirms that (1) the correlation of protein to mRNA is351
higher not only for individual genes, but also extend to the well-established pathways; (2)352
protein encoding genes in the concerted metabolic pathways have high correlation with their353
transcript levels, suggesting that the transcriptional control is a primary means of regulating the354
abundance of these proteins; (3) proteins involved in meiosis and cell cycle have relatively low355
correlation with their transcript abundance, possibly due to stringent regulation of checkpoint356
controls where protein expression might lag behind mRNA changes such as multiple post-357
translational modification to achieve necessary changes in function.358

Subcellular localization of proteins is an important aspect of gene annotation, which359
relates to its cellular function. It has been previously shown that protein abundance and360
localization is regulated together (Torres et al, 2016). Here our quantitative proteome dataset361
with accurate protein abundance information provides a proteome-wide view of protein362
expression pattern, including protein subcellular localization. Using proteins in the aminoacyl-363
tRNA biosynthesis pathway as examples, we show that correlation of mRNA and protein364
abundance of this pathway is 0.91 (Fig 5C). All 39 proteins can be classified in 2 groups based on365
their mRNA abundance and protein abundance. Among the 21 high abundance proteins, 13 were366
annotated to localize in cytoplasm; 17 of the 18 low abundance proteins were annotated to367
localize in mitochondria. The one remaining low abundant protein (GRS2) is currently left368
unannotated in the SGD is probably localized in mitochondria. Confocal microscopy analysis369
confirms that GRS2 is indeed located in mitochondria (Fig 5D).370

371
Discussion372

In MS-based shotgun proteomics, a longstanding challenge is to identify the entire set of proteins373
that are complementary expressed by a genome, cell or tissue type (de Godoy et al., 2008; Kim et374
al., 2014; Mergner et al., 2020; Nagaraj et al., 2012; Picotti et al., 2009; Wilhelm et al., 2014).375
Sophisticated sample preparation and separation, high sequencing speed and sensitivity have376
significantly improved the protein identification in many species (Domon & Aebersold, 2006;377
Kumar & Mann, 2009; Shevchenko et al., 1996b; Washburn et al., 2001). Here, we take full378
advantage of the molecular size based separation that is enabled by high resolution SDS-PAGE,379
optimized LC gradient (Xu et al, 2009) and high resolution Orbitrap Velos MS (Li et al, 2012) to380
generate full coverage of yeast proteome. We have identified 5610 proteins in total, with their381
abundances spanning across nearly six orders of magnitude (Fig 4A). 94.1% of the theoretical382
core proteome has been identified (4851). 71% and 22% uncharacterized and dubious gene383
products (537 and 222) are identified (Fig S2C). The remaining unidentified proteins are due to384
LMW, absence in transcription or high sequence similarity (Fig 3). This is considerably higher than385
the previous comprehensive proteomics studies of yeast (de Godoy et al., 2008; Deutsch et al.,386
2008; Ghaemmaghami et al., 2003; Huh et al., 2003). We also demonstrate that our high quality387
dataset can facilitate gene annotation as well as gene expression pattern in defined growth388
conditions.389

We have utilized label-free as well as SILAC strategies under different growth conditions to390
generate spectra using our MS platform. We find that past a certain point there is a negative391
correlation between increasing spectra number and additional proteins identified (Fig 2B),392
suggesting the approach of a saturation point. SDS-PAGE gel-based label-free method identifies393
5179 proteins. Combining SDS-PAGE gel- and tricine gel-based label-free methods increases394
identification to 5548 proteins. Combining all label-free and SILAC methods brings an increase of395
only 62 proteins and a total of 5610. This indicates that more large-scale MS-based experiments396
cannot efficiently increase the number of identified proteins, even though different strategies of397
digestion and separation are used. As for the bioinformatics analysis, another search engine,398
Mascot (Perkins et al, 1999), only added 80 more proteins with low quality (data not shown),399
hence these proteins are not included in our proteome dataset. These analyses suggest that our400
proteome dataset has reached the limit for the yeast proteome, at least for the MS-based401
methods.402

Based on 6717 annotated yeast ORFs in SGD database, 1107 proteins are missing in our403
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proteome dataset. We comprehensively analyze the characteristics of these 1107 missing404
proteins from protein physicochemical properties to protein expression, which may provide new405
clues for further improving proteomics study. We find that LMW, absence in transcriptome406
dataset, uncharacterized and dubious genes, and high sequence similarity account for almost all407
of the missing proteins annotated in SGD. For example, among the 304 core proteins missed by408
our proteome dataset, 117 are proteins with MW<=20 kDa, 104 are highly homologous with409
identified proteins, and 118 are missed by RNA-seq dataset. The combination of these three410
catalogues (LMW, high sequence similarity and absence in transcriptome) proteins are 215,411
leaving 89 proteins as part of the denominator. In this way, the fixed proteome coverage of core412
proteins reaches 4274/(4274+89)=98.0%, indicating that MS-based proteomics technology413
achieve near complete coverage for basic ORFs (Fig 3D&E). These results further confirm the414
near complete coverage of our proteome dataset.415

Integrative analysis of our proteomics data and in-depth RNA-seq data not only help to416
figure out the reason for missing proteins, but also provided insights into the global proteomics417
dynamics and function of metabolic and cellular regulatory networks in yeast. Protein abundance418
of our proteomics data spans approximately 6 orders of magnitude, one magnitude larger than419
that in the previous 21 quantitative yeast proteome datasets (Ho et al., 2018) and 2 magnitudes420
larger than the mRNA abundance (Fig 4A, (Li et al., 2019)), suggesting the high sensitivity of our421
MS platform.422

Our nearly complete proteome dataset can also be used to validate and revise yeast423
genome annotation. It can help to characterize protein N- or C- terminal sequence, and to424
provide expression evidence of pseudogenes. Moreover, based on the accurate protein425
abundance information, it can also provide reliable information about protein localization in cells426
(Fig 5C&D). These results suggest that our proteome dataset would be a useful blueprint for427
yeast proteogenomics study, to further optimize yeast genome annotation.428

In conclusion, we provide the largest yeast proteome dataset so far based on MS technology,429
and highlight the characteristics and some of many uses that can be applied of this resource.430
These advances, combined with the fast multi-omics studies, will make the complete yeast431
proteome map possible for the foreseeable future.432

433
434

Materials and Methods435

Yeast Strains, medium and cultured protocols436

Yeast strains used in this study were described in supplementary table 1. Yeast strains SUB592437
were used in this study for yeast proteomic study. MHY500 was used to study localization of438
GRS2 and PET112.439

To investigate the localization of GRS2 and PET112 proteins in yeast cells, we generated the440
plasmid expressing GFP-GRS2 or GFP-PET112 fusion proteins. The DNA fragments of Grs2 and441
Pet112 were amplified from JMP024 by colony PCR (Grs2-F: 5’-442
GGGGTACCATGCCGTTAATGTCCAATTCGG-3’; Grs2-R: 5’-443
TAGCGGCCGCATATCTTAACAGGCGACAGTCC; Pet112-F: GGGGTACCATGTTGCGGCTTGCACGT;444
Pet112-R: TAGCGGCCGCACCATTGAATATTTAAGATCTC-3’). The plasmids were made by inserting445
Grs2 or Pet112 into the pYES2-GFP vector (a gift from Dr. Matther J Higgins) using KpnI and NotI446
sites, resulting in plasmids pYES2-GRS2-GFP and pYES2-PET112-GFP, respectively (Supplemental447
table 1). In these plasmids, GRS2 or PET112 was tagged at the carboxy terminal end with green448
fluorescent protein (GFP), under the control of the inducible GAL1 promoter. Then plasmids449
pYES2-GRS2-GFP and pYES2-PET112-GFP were transferred to strain MYH500 (Swanson et al,450
2001), screened by SC medium without uracil to generate the strain PX001 and PX002,451
respectively. In addition, transformations were carried out according to the standard LiOAc452
method (Gietz & Woods, 2002).453

In general, yeast strains were grown at 30°C in YPD medium (1% yeast extract, 2% Bacto-454
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peptone, and 2% dextrose) and harvested at A600 of 1.5 unless indicated. The SC medium (0.67%455
yeast nitrogen base, 2% glucose, and supplemented with the appropriate amino acids) was used456
to generate yeast strains PX001 and PX002.457

Sample preparation for yeast S. cerevisiae and mass spectrometric analysis458

The yeast strain S. cerevisiae SUB 592 was grown at 30°C in YPD medium, and harvested at the459
mid exponential phase. Cells were lysed in a 1.5 mL centrifuge tube with denaturing lysis buffer460
(8 M urea, 50 mM NH4HCO3, 10 mM IAA) and 0.5 mm glass beads (Biospec Products Inc.,461
Bartlesville, OK). Protein concentration of yeast lysate was measured by a Coomassie stained SDS462
gel(Xu et al., 2009). The certain amount of TCL was separated through SDS-PAGE and Tricine gel463
and sliced into 26-35 fractions based on molecular weight markers and digested with trypsin or464
Lys C, respectively. After digestion overnight, the peptides were extracted in the extraction465
buffer (5%FA+45%ACN) and ACN, and finally dried with the vacuum dryer (Labco, CENTRIVAP).466

Peptides were analyzed using a LC-MS/MS platform of hybrid LTQ-Orbitrap Velos mass467
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a Waters468
nanoACQUITY ultra performance liquid chromatography (UPLC) system (Waters, Milford, MA,469
USA) as described previously (Li et al., 2019).470

471
Database searching for protein identification472

Database searching was operated as described previously (Li et al., 2019). Briefly, all raw files473
were converted into mzXML using Trans-Proteomic Pipeline (version4.5.2) (Xu et al., 2009), and474
searched by the Sequest-Sorcerer algorithm (version 4.0.4 build, Sage-N Research, Inc, Sage-N-475
Research, Inc., San Jose, CA, USA) (Pedrioli, 2010) against the combined target-decoy proteins476
from Saccharomyces genome database (version released in 2011.02, 6717 entries477
http://www.yeastgenome.org/) along with 112 common contaminants478
(ftp.thegpm.org/fasta/cRAP).479

The same parameters were employed for Mascot (version, 2.3.0) search (Chang et al.,480
2014a). The application of additional search engine can improve the identification coverage, but481
induce more false positive results (Cox & Mann, 2008). So we only adopted the results from the482
sorcerer software.483

We also constructed a sequence database with different splices for the proteins with more484
than two exons, and searched it with the sorcerer software. As a result, no positive peptides485
were found.486

487
Protein quantitation488

Label-free quantitation was operated as described previously (Li et al., 2019). The area under the489
extracted ion chromatograms (XICs) for each full digestion peptide in the YPD sample was490
calculated using SILVER (Chang et al, 2014b). As shown in supplementary fig 6, the intensity of a491
peptide was firstly normalized by the median of all peptide intensities in the corresponding492
sample, then the geometric mean of the intensities from four samples was calculated as the final493
intensity for each peptide. The mean and standard intensity of the unique peptides from the494
same protein was calculated. The peptides with intensity out of mean±2sd were removed as495
isolated points. The sum of the remaining peptides was divided by the protein MW as the final496
intensity of each protein.497

498
Bioinformatics analysis of identified peptide and proteins499

Protein information, including gene symbol, chromosome loci, gene model and modifications,500
was mainly generated from SGD annotations. Four published datasets, Tandem Affinity Tag (TAP)501
(Ghaemmaghami et al., 2003), Green Fluorescent Protein (GFP) (Huh et al., 2003), PeptideAtlas502
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(Deutsch et al., 2008) and Mann 2008 (de Godoy et al., 2008), were selected to compare with our503
proteome dataset. According to the SGD annotations, all proteins were classified into three504
catalogs including “Core”, ‘’uncharacterized (including Putative or Hypothetical)’’ and “Dubious”.505
Core proteins represent the verified ORFs or the uncharacterized ORFs with essential function.506
“Put or Hypo” proteins represent the putative or hypothetical uncharacterized ORFs. “Dubious”507
proteins represent the dubious ORFs. Protein molecular weight and hydrophobicity were508
calculated using ProPAS (Wu & Zhu, 2012). Proteotypic peptides were predicted by PeptideSieve509
with threshold scores larger than 80 (Mallick et al., 2007). GO enrichment analysis was achieved510
by DAVID (http://david.abcc.ncifcrf.gov/) (Huang et al, 2009), and GO-slim information was511
generated from online tool GOTermMapper (http://go.princeton.edu/cgi-bin/GOTermMapper).512
Pathway information came from the database Kyoto Encyclopedia of Genes and Genomes (KEGG,513
http://www.genome.jp/kegg/) (Kanehisa, 2002). Mitosis annotations were generated from514
database MiCroKiTS 3.0 (http://microkit.biocuckoo.org/) (Ren et al., 2010). Venn was drawn by515
the online tool jvenn (http://bioinfo.genotoul.fr/jvenn/example.html) (Bardou et al, 2014). The516
figure of the cell structure was drawn using business software SmartDraw517
(http://www.smartdraw.com/).518

519
MS analysis of synthesized peptides for validation of pseudogenes520

Peptides for validation of pseudogenes were synthesized and roughly purified (Shanghai Leon521
Chemical Ltd., Shanghai, China). The peptides (0.1-1pmol) were dissolved in ddH2O and desalted522
with homemade Stage-Tip (Zhai et al, 2013) and analyzed with LC-MS/MS as described above.523

524
Confocal fluorescence microscopy525

The strain PX001 and PX002 were grown in SC medium to early-exponential phase (A600=0.7) and526
then washed three times by SC medium without glucose. Then GFP-GRS2 and GFP-PET112 fusion527
proteins were induced for 3 hr by addition of 2 % galactose. For staining of mitochondria in living528
cells, cultures of exponentially growing PX001 and PX002 were resuspended in 10 mM HEPES (Ph529
7.4), 5% (w/v) glucose, 100 nM rhodamine B hexyl ester and incubated at room temperature for530
30min. Cells were visualized with a Zeiss LSM510 META confocal fluorescence microscope with531
40x objective. GFP was excited with a 488 nm laser, and its emission was collected at 509 nm,532
while rhodamine B hexyl ester was excited with a 555 nm laser and its excitation collected at 577533
nm.534

535

Data availability536

All the proteome raw and meta data was uploaded on proteomeXchange537
(http://www.proteomexchange.org/) with ID PXD001928.538
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695
696

Figure legends697
698

Fig 1 A nearly complete draft of the yeast proteome using MS-based proteomics.699
A, Three strategies used for the nearly complete coverage of yeast proteome.700
B, Sampling the yeast proteome by 10% SDS-PAGE and LC-MS/MS.701
C, Sampling the yeast proteome by 12% Tricine SDS-PAGE and LC-MS/MS.702
D, Venn diagram of proteins identified by SDS-PAGE by trypsin and lysC digestion.703
E, Venn diagram of proteins identified by Tricine SDS-PAGE by trypsin and lysC digestion.704
F, Venn diagram of proteins identified by SDS-PAGE and Tricine SDS-PAGE.705

706
Fig 2. In-depth coverage of yeast proteome.707
A, Proteome coverage of current study.708
B, Number of identified proteins by the accumulated spectra from different approaches.709
C, Proteome coverage of current sutdy in comparison to previous studies.710
D, Sequence coverage of identified proteins by different experimental strategies.711
The number above the bracket represents the sum of the corresponding proteins. The percentage in712
the bracket represents the proportion of the corresponding proteins among all the proteins identified713
in this proteome.714
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E, Venn diagram of the identified proteins having identified theoretical N- or C-terminal peptides in715
this proteome. The percentage below the number represents the average sequence coverage of the716
corresponding proteins.717
F, Identification of intron-containing gene products by this proteome.718

719
Fig 3. Characterization of missing proteins in our proteome.720
A, MW distribution of missed and identified proteins. The persentage of core proteins for the721
indicated MW range.722
B, Comparison of coverage by MS-based proteome and RNA-seq-based transcriptome (Li et al., 2019).723
C, Distribution of missed and identified proteins based on the mRNA abundance reflected by RPKM.724
The histogram represents the number of proteins identified (blue bars) or missed (red bars) by725
proteome in different bins of mRNA abundance. The green line represents the proportion of proteins726
identified by proteome in different bins of mRNA abundance.727
D, Distribution of 1107 missing proteins based on molecular weight, gene annotation, mRNA728
abundance, homology property, and protein physicochemical properties. Each column represents a729
missing protein.730
E, Legend for gene properties in different levels in D.731

732
Fig 4. High correlation of our quantified proteome with trancriptome.733
A, Dynamic range of protein abundance.734
B, Comparison of the coverage of quantified proteome and RNA-seq-based transcriptome(Li et al.,735
2019).736
C, Correlations between quantified proteome and transcriptome (Li et al., 2019). The x-axis737
represents the log2 FPKM, and the y-axis represents the log2 protein intensity.738
D, The curve of the number of quantitative peptides for a protein and the pearson correlation of the739
intensity between proteome and transcriptome. The x-axis represents the number of quantitative740
peptides for each protein. The left y-axis represents the number of proteins corresponding to the741
number of quantitative peptides, and the right y-axis represents the pearson correlation of the742
intensity between proteome and transcriptome for these proteins.743
E, Correlations between our quantified proteome and TAP&GFP datasets (Ghaemmaghami et al.,744
2003; Huh et al., 2003). The x-axis represents the log2 protein copy number in TAP&GFP datasets, and745
the y-axis represents the log2 protein intensity in our quantitative proteome.746
F, Correlations between TAP&GFP datasets (Ghaemmaghami et al., 2003; Huh et al., 2003) and747
transcriptome (Li et al., 2019). The x-axis represents the log2 protein copy number in TAP&GFP748
datasets, and the y-axis represents the log2 FPKM.749

750
Fig5. Functional protein-coding genes and pathways profiling based on our quantitative proteome.751
A, Protein coverage of the different biological pathways.752
B, 21 KEGG pathways with high correlations between transcriptome and quantified proteome. Top 21753
pathways enriched by the quantitative proteins were selected, and ranked by the correlation of754
transcriptome and quantified proteome from high to low. Different colors represent different755
abundance of proteins. Blank refers to the proteins that cannot be quantified in proteome. The756
percentage on the right represents the proteome coverage for each pathway.757
C, Two groups of aminoacyl-tRNA biosynthesis enzymes based on their protein/RNA abundance. The758
correlation between transcriptome and proteome for these genes was analyzed. GRS family was759
highlighted in red.760
D, Visualization of the mitochondrial localization of the C-terminally GFP-tagged GRS2 and PET112 by761
confocal microscopy. The three images show the same group of cells visualized by fluorescence using762
the GFP (GFP), or the rhodamine B hexyl ester (Rhodamine B) channels, or an overlay of the GFP763
signal to Rhodamine B signal (Merge).764

765
Supplemental figures:766

767
Fig. S1 Contribution of different experimental strategies for deep proteome coverage768
A, Distribution of the sequence coverage of identified proteins by trypsin and lys C in SDS-PAGE769
method. The number on the left of the legend represents the average sequence coverage of the770
corresponding identified proteins.771
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B, MW distribution of theoretical and identified proteins by trypsin and lys C in SDS-PAGE method.772
C, MW distribution of added proteins identified by Tricine SDS-PAGE based on the result of SDS-PAGE.773
Percentage represents the proportion of identified proteins added by the Tricine SDS-PAGE.774
D, Venn diagram of identified proteins by YPD and SILAC (Li et al., 2019) medium.775
E, MW distribution of added proteins identified by SILAC dataset based on the result of YPD dataset.776
Number represents the number of identified proteins added by SILAC dataset.777

778
Fig. S2 High coverage of different protein categories proteins by our proteome dataset.779
A, Number of unique peptides in identified protein. The number on the left y-axis represents the sum780
of proteins among each bin of peptide number. The percentage on the right y-axis represents the781
cumulative ratio of proteins with peptides greater than or equal to each bin.782
B, Distribution of Xcorr value assigned for identified proteins. The number on the left y-axis783
represents the sum of proteins among each bin of Xcorr value. The percentage on the right y-axis784
represents the cumulative ratio of proteins with Xcorr value greater than or equal to each bin.785
C, Comparison of proteome coverage of MS-based proteomic strategies from this study with four786
datasets of Mann 2008, Peptide Atlas, GFP- and TAP-tagging methods among the categories of core,787
uncharacterized (putative or hypothetical), and dubious proteins. Number above the dotted line788
represents the sum of each catalogue. Percentage above the bar represents the coverage of each789
dataset for the corresponding catalogue.790
D,Overview of the pseudogenes identified by our proteome dataset. Pseudo genes YLL016W was791
selected for validation.792
E, Comparison and validation of the MS2 spectra of the identified peptide generated from the793
pseudogene YLL016W in large scale proteomics with that of synthesized peptide.794

795
Fig S3 Validation of protein N- and C- termini sequence and splicing site based on identified spectra796
by our MS platform.797
A, Venn diagram of the identified proteins having annotated N- or C-terminal peptides identification798
in our proteome. The percentage below the number represents the average sequence coverage of the799
corresponding proteins.800
B, Number of proteins with identified peptides covering different sites in the N-termini. Each black801
block represents an amino acid covered by an identified peptide. The top line represent the proteins802
with identified peptides which have the whole exact N-termini in the corresponding proteins. Among803
the proteins belonging to the top line, if a protein owns identified peptides with N-termini located on804
the second amino acid of the protein N-termini, it would be cataloged into the second line. The same805
rule was applies to the other four lines. Percentage represents the average sequence coverage of the806
proteins in the corresponding line.807
C, Identification of the ‘junction’ peptides in YBR111W-A. The nucleotides refers to the sequence of808
junction after splicing, corresponding to below peptide identified in this study.809

810
Fig S4 Overlapping of missing proteins belonging to LMW, no RNA expression and uncharacterized811
proteins.812
A, Venn diagram of the missing proteins belonging to LMW, no RNA expression and uncharacterized813
proteins.814
B&C, 3-Dimensional distribution of identified (B) and missing (C) proteins vs their theoretical MW and815
mRNA abundance. NR, not detected in RNA-seq dataset.816

817
Fig. S5 Missing proteins are heavily enriched for protein groups with high sequence homology.818
A, 149 proteins missed by our proteome dataset shared high-confidence peptides with the identified819
proteins.820
B, Classification of missing proteins with identified peptides. Protein with sequence coverage less than821
10% would be signed as “no homology”. Three groups, retrotransposon, helicase, and ribosome, were822
found to be significantly enriched with conserved sequences.823
C, Visualization of the alignment of the sequenceable peptides for the protein group of helicase. 10824
proteins were regarded as identified proteins for their unique peptides identification. 21 proteins825
were regarded as missing proteins for the absence of unique peptides.826
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D, Visualization of the alignment of the sequenceable peptides for the protein group of827
retrotransposon. 28 proteins were regarded as identified proteins for their unique peptides828
identification. 61 proteins were regarded as missing proteins for the absence of unique peptides.829
E, Hydrophobicity distribution of missing proteins and all theoretical proteins.830
F, Distribution of the number of the predict proteotypic peptides among missing proteins and all831
theoretical proteins. Proteotypic peptides were predicted by PeptideSieve with threshold score larger832
than 80.833
G, Gene loci distribution of identified and missing proteins on chromosome. Green points represent834
the identified proteins in transcriptome and proteome. Yellow points represent the proteins835
identified by transcriptome but missed by proteome. Red points represent the proteins missed in836
both. Percentage represents the proportion of proteins identified by our proteome.837
H, Gene Ontology categories of biological processes of 44 missing proteins which have no significant838
characteristics on mRNA abundance, gene annotations, and protein physicochemical properties.839

840
Fig. S6 Dynamic range of our quantitative proteome based on label-free quantification analysis.841
A, Workflow for the normalization of label-free quantification of our proteome dataset.842
B, Normalized intensity of all identified peptides from YML120C. The red bar represents the peptide843
with abnormal intensity.844
C, Correlations between our quantified proteome and SRM datasets (Picotti et al., 2013). The x-axis845
represents the log2 protein copy number in SRM dataset, and the y-axis represents the log2 protein846
intensity in our quantitative proteome.847
D, Correlations between SRM dataset(Picotti et al., 2013) and transcriptome (Li et al., 2019). The x-848
axis represents the log2 protein copy number in SRM dataset, and the y-axis represents the log2 FPKM.849
E, Dynamic range of our quantified proteome.850
F, Dynamic range of TAP&GFP datasets(Ghaemmaghami et al., 2003; Huh et al., 2003).851

852
Fig S7 Intensity distribution of unique identified proteins in our proteome dataset.853
A, The intensity distribution of 241 unique proteins identified in our dataset vs RNA-seq dataset (Fig854
3B).855
B, The intensity distribution of 609 unique proteins identified in our dataset vs four published856
datasets (Fig 2C).857
C, The distribution of unique proteins in our dataset (green line, right y-axis) (Fig 2C), uniquely in four858
published datasets (red line, right y-axis) (Fig 2C), and all proteins quantified by RNA-seq (blue line,859
left y-axis)(Fig 4B) based on mRNA abundance.860

861
Figure S8. Intensity distribution of core proteins (A), uncharacterized proteins (B), and dubious862
proteins (C).863

864
Fig S9 High coverage of all cellular components.865
A, Overview of proteome coverage in yeast cell. Percentage represents the proportion of identified866
proteins over the theoretical proteins in the given component of cell.867
B, Proteome coverage for five subgroups of mitosis proteins in yeast.868
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