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ABSTRACT

Motivation: Experimental spatial proteomics, i.e. the high-throughput

assignment of proteins to sub-cellular compartments based on quan-

titative proteomics data, promises to shed new light on many biolo-

gical processes given adequate computational tools.

Results: Here we present pRoloc, a complete infrastructure to

support and guide the sound analysis of quantitative mass-

spectrometry-based spatial proteomics data. It provides functionality

for unsupervised and supervised machine learning for data exploration

and protein classification and novelty detection to identify new puta-

tive sub-cellular clusters. The software builds upon existing infrastruc-

ture for data management and data processing.

Availability: pRoloc is implemented in the R language and available

under an open-source license from the Bioconductor project (http://

www.bioconductor.org/). A vignette with a complete tutorial describing

data import/export and analysis is included in the package. Test data

is available in the companion package pRolocdata.
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1 INTRODUCTION

Knowledge of the spatial distribution of proteins is of critical

importance to elucidate their role and refine our understanding

of cellular processes. Mis-localization of proteins have been asso-

ciated with cellular dysfunction and disease states (Kau et al.,

2004; Laurila et al., 2009; Park et al., 2011), highlighting the

importance of localization studies. Spatial or organelle prote-

omics is the systematic study of the proteins and their sub-

cellular localization; these compartments can be organelles, i.e.

structures defined by lipid bi-layers, macro-molecular assemblies

of proteins and nucleic acids or large protein complexes. Despite

technological advances in spatial proteomics experimental de-

signs and progress in mass-spectrometry (Gatto et al., 2010),

software support is lacking. To address this, we developed the

pRoloc package that provides a wide range of thoroughly docu-

mented analysis methodologies. The software includes state-

of-the-art statistical machine-learning algorithms and bundles

them in a consistent framework, accommodating any experimen-

tal designs and quantitation strategies.

2 AVAILABLE FUNCTIONALITY

pRoloc makes use of the architecture implemented in the

MSnbase package (Gatto and Lilley, 2012) for data storage,

feature and sample annotation (meta-data) and data processing,

such as scaling, normalization and missing data imputation. We

also distribute 16 annotated datasets in the pRolocdata pack-

age, which are used for illustration of different pipelines as well

as algorithm testing and development. Algorithms for (i) cluster-

ing, (ii) novelty detection and (iii) classification are proposed

along with visualization functionalities.

2.1 Clustering

The unsupervised machine-learning techniques are used, among

other aims, as exploration and quality control tools. Several crit-

ical factors such as feature-level quantitation values, the extent of

missing values and organelle markers can be overlaid on the data

clusters as effective data exploration and quality control.

2.2 Novelty detection

An essential step for reliable classification is the availability of

well-characterized labeled data, termed ‘marker proteins’. These

reliable organelle residents define the set of observed organelles

and are used to train a classifier. It is however laborious and

extremely difficult to manually define reliable markers for all

possible sub-cellular structures. As such, any organelles without

any suitable markers will be completely omitted from subsequent

classification. pRoloc provides the implementation for the

phenoDisco novelty detection algorithm (Breckels et al., 2013)

that, based on a minimal set of markers and unlabeled data,

can be used to effectively detect new putative clusters in

the data, beyond those that were initially manually described

(Fig. 1).

2.3 Classification

Since the development and refinement of spatial proteomics ex-

periments, several classification methods have been used: partial

least-square discriminant analysis (Dunkley et al., 2006), SVMs

(Trotter et al., 2010), random forest (Ohta et al., 2010), neural*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
0
/9

/1
3
2
2
/2

3
6
3
6
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://www.bioconductor.org/
http://www.bioconductor.org/
mailto:lg390@cam.ac.uk
localisation 
;
;
localisation 
,
localisation
machine 
normalisation 
that
1
2
3
visualisation 
machine 
s
well 
characterised 
l
l
least 
support vector machines (
)


networks (Tardif et al., 2012) and naive Bayes (Nikolovski et al.,

2012), all available in pRoloc. In addition, other novel algo-

rithms are proposed, such as PerTurbo (Courty et al., 2011). We

have compared and contrasted these algorithms using reliable

marker sets and demonstrate in the package documentation

that the driving factor for good classification is reflected in the

intrinsic quality of the data itself, i.e. efficient cellular content

separation, accurate quantitation (Jakobsen et al., 2011), etc.

illustrating the minor importance of the classification algorithm

with respect to thorough data exploration and quality control.

While the exact algorithm might not be the major reason for a

good analysis, it is essential to guarantee optimal application of

the algorithm. A central design decision in the development of

the classification schema was to explicitly implement model par-

ameter optimization routines to maximize the generalization

power of the results.

3 A TYPICAL PIPELINE

A typical pipeline is summarized below using data from

Arabidopsis thaliana callus (Dunkley et al., 2006). We first

load the required packages and example data. The

phenoDisco function is then run to identify new putative clus-

ters that, after validation (the pd.markers feature meta-data),

can be used for the classification using the SVM algorithm (with

a Gaussian kernel). The algorithms parameters are first

optimized and then subsequently applied in the actual classifi-

cation. Finally, the plot2D function is used to generate an

annotated scatter plot along the two first principal components

(Fig. 1).

library(pRoloc)

library(pRolocdata)

data(dunkley2006)

res5- phenoDisco(dunkley2006)

p5- svmOptimisation(res, fcol¼"pd.markers")

res5- svmClassification(res, p,

fcol¼"pd.markers")

plot2D(res, fcol¼"svm")

4 CONCLUSIONS

The need for statistically sound proteomics data analysis has

spawned interest in the proteomics community (Gatto and

Christoforou, 2013) for R and Bioconductor (Gentleman et al.,

2004). pRoloc is a mature R package that provide users with

dedicated data infrastructure, visualization functionality and

state-of-the-art machine-learning methodologies, enabling un-

paralleled insight into experimental spatial proteomics data. It

is also a framework to further develop spatial proteomics data

analysis and novel pipelines. Multiple organelle proteomics

datasets illustrating various and diverse experimental designs

are available in pRolocdata. Both packages come with thor-

ough documentation and represent a unique framework for

sound and reproducible organelle proteomics data analysis.
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