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Abstract: The detection of chemical species and understanding their respective localisations in
tissues have important implications in plant science. The conventional methods for imaging spatial
localisation of chemical species are often restricted by the number of species that can be identified
and is mostly done in a targeted manner. Mass spectrometry imaging combines the ability of
traditional mass spectrometry to detect numerous chemical species in a sample with their spatial
localisation information by analysing the specimen in a 2D manner. This article details the popular
mass spectrometry imaging methodologies which are widely pursued along with their respective
sample preparation and the data analysis methods that are commonly used. We also review the
advancements through the years in the usage of the technique for the spatial profiling of endogenous
metabolites, detection of xenobiotic agrochemicals and disease detection in plants. As an actively
pursued area of research, we also address the hurdles in the analysis of plant tissues, the future scopes
and an integrated approach to analyse samples combining different mass spectrometry imaging
methods to obtain the most information from a sample of interest.

Keywords: mass spectrometry; plant; chemical imaging

1. Introduction

Understanding the physiological processes and associated molecular changes in plant
systems is of paramount importance in numerous fields of studies associated with plants.
Deciphering the molecular compositions of plants in a reliable, reproducible and precise
manner can help uncover metabolic changes associated with growth, structure, stress,
whole-plant resource allocation, plant–environment interactions, xenobiotic metabolism,
etc. [1,2]. Metabolism in plants usually refers to endogenous metabolites involved in
inherent physiological processes in plants. However, it is not limited to these, as xenobiotic
compounds absorbed into the plant often undergo molecular degradation and modification
in the plant systems. Plants produce an enormous wealth of primary and secondary
metabolites as a result of the biochemical processes occurring within their systems and
several methodologies are available to understand and analyse these. The metabolic
composition of a system can be investigated in two ways, either in an untargeted fashion
or in a targeted manner where the identity of the target molecule is known. Hence, the
method adopted for chemical analysis may vary with the needs of the experiment.

Generally, for any kind of metabolic investigations, the most sought-after methods
include the different kinds of mass spectrometric approaches such as gas chromatography-
mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and
capillary electrophoresis-mass spectrometry (CE-MS) alongside nuclear magnetic reso-
nance (NMR) spectroscopy [3]. Although these methods are well-established and can shed
light on the molecular compositions and aberrations in a system of interest, the spatial
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information associated with localisation and movement of the biochemicals is unavailable
as most of these techniques use homogenised samples. An insight into the spatial localisa-
tions of different chemicals in the plant system can be instrumental in understanding the
movement and localisation of plant biochemicals and xenobiotics as well as their responses
to different stress and metabolic pathways [4]. Fuelled by such motives, there has been a
growing interest in the spatial profiling of metabolites over the past years in plant biology
and this has been mostly achieved by immunohistochemistry, fluorescence microscopy
or in situ hybridisation [5]. However, the experiments conducted using such techniques
are limited to the visualisation of very few specific chemicals. In addition to the above-
mentioned techniques, autoradiography is prominently used in agrochemical research to
understand the uptake and translocation of xenobiotics in plant systems. Even though this
technique is sensitive and produces quantifiable results [6] with reported spatial resolu-
tions as low as 100 µm [7], there are several limitations including the time to synthesise
radiolabelled compounds, along with the cost and safety concerns. In addition to these
constraints, autoradiography does not discriminate between the chemicals of interest and
their metabolites in the plant systems, as images are generated concerning all molecules,
showing the radiolabelling and they do not detect those lacking the radioisotope.

Mass spectrometry imaging (MSI) is gaining popularity as a mainstream method for
spatial metabolic profiling as it addresses the limitations of these commonly used tech-
niques to a large extent. Technical and methodological advances in the capabilities of
MSI techniques in the past two decades make it possible to detect a wide array of bio-
chemicals from small molecules to large proteins with high spatial resolution. In many
cases, minimal sample preparation conserves the spatial information and increases the
throughput of the experiment. The most popular MSI techniques currently in use are
matrix-assisted laser desorption ionisation MSI (MALDI MSI), desorption electrospray
ionisation MSI (DESI MSI), secondary ion mass spectrometry imaging (SIMS imaging)
and laser ablation electrospray ionisation MSI (LAESI MSI). The reliability of MSI data
in chemical analysis is evident from its application in studies associated with disease
diagnosis [8–10], forensics [11,12], food analysis [12–15], analysis of environmental pol-
lutants [16,17] and plant metabolite analysis. According to the needs of the experiment,
the ideal MSI techniques can be chosen considering the spatial resolution and range of
detection of analyte concentration and targeted mass-to-charge (m/z) values [18,19]. This
review aims to explore the recent advances in the application of different mass spectrom-
etry imaging modalities MALDI, DESI, SIMS and LAESI for imaging the natural plant
metabolites, agrochemicals and disease detection in plant vegetative systems.

2. Mass Spectrometry Imaging

In a typical MSI experiment, the workflow is as shown in Figure 1. The sample/plant
species for an experiment is taken, e.g., leaf, root or stem section. If the experiment involves
the application of any external chemicals (e.g., agrochemicals), specific methodologies are
devised for this purpose. Samples are then collected and prepared as detailed in Section 2.2.
The prepared samples are then taken for mass spectrometry imaging studies wherein a
mass spectrum is collected from each point on the region of interest in the sample, such that
every pixel in the image corresponds to one mass spectrum. The large collection of spectra
obtained, along with their spatial information can be used to understand the localisation
and distribution of various biochemicals present in the samples. Often advanced data
analysis routines are applied to help interpretation (see Section 2.3).
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Table 1. MSI methodologies available for analysis of plant samples. 

MSI 

Methodology 

Ionisation 

Method 

Typical 

Spatial 

Resolution 

Pressure 

Conditions 

Depth 

Profiling 
Drawbacks 

MALDI Laser 5-50 µm Vacuum * - 

Interference of matrix 

signals.  

Matrix crystal size 

restrictions on spatial 

resolution. 

SIMS 
Primary 

ions 

50 nm–10 

m 
Vacuum yes Possible fragmentation. 

DESI Electrospray 50-200 m Ambient - 
Unfavourable for non-

polar molecules. 

LAESI 
Laser + 

electrospray 
150-200 m Ambient yes Low spatial resolution. 

*Although typically performed in high vacuum, low vacuum and atmospheric pressure MALDI 

sources are also available. 

Based on the number of research papers, MALDI is the most popular technique for 

MSI [20]. As the name suggests, MALDI involves a matrix-coated surface that is subjected 

to laser pulses for ionisation. Matrix species and analyte molecules are co-desorbed and 

ionised by a mechanism which is still the subject of active research, generally involving 

proton/energy transfer between co-desorbed species resulting in ionised analyte mole-

cules. MALDI is a soft ionisation technique as it imparts little residual energy to the target 

Ionization source

In
te

n
si

ty

m/z

MS inlet

a1

a2

a3
a4

a5

a1a2a3a4a5

Samplepreparation

(Cryosectioning/ Imprinting)
Mass spectrometry imaging Data analysis Image generation

Average Mass spectrum

Figure 1. General workflow in an MSI experiment of plant tissues. A suitable sample (for example, a
leaf section) from a plant is collected and prepared. With the aid of MS instruments such as MALDI,
DESI, SIMS and LAESI with varying ionisation sources, the surface can be mapped for the constituent
chemicals. The mass spectra obtained from each point in the sample along with the positional
information can be used to create several ion images showing localisation for numerous chemicals of
interest from a single scan.

2.1. Ionisation Sources for MSI

The choice of an MSI technique for a scientific investigation of any sample determines
several factors, of which the most prominent ones are the spatial resolution, range of
molecules detectable and the type of sample preparation required. Even though there
are several MSI methodologies available, in consideration of the above factors, the most
common MSI technologies in use are MALDI, DESI, SIMS and LAESI, each with its specific
sample preparation, range of detection and resolution (Table 1).

Table 1. MSI methodologies available for analysis of plant samples.

MSI
Methodology Ionisation Method Typical Spatial

Resolution
Pressure

Conditions Depth Profiling Drawbacks

MALDI Laser 5–50 µm Vacuum * -

Interference of
matrix signals.

Matrix crystal size
restrictions on

spatial resolution.

SIMS Primary ions 50 nm–10 µm Vacuum yes Possible
fragmentation.

DESI Electrospray 50–200 µm Ambient -
Unfavourable for

non-polar
molecules.

LAESI Laser + electrospray 150–200 µm Ambient yes Low spatial
resolution.

*Although typically performed in high vacuum, low vacuum and atmospheric pressure MALDI sources are
also available.

Based on the number of research papers, MALDI is the most popular technique for
MSI [20]. As the name suggests, MALDI involves a matrix-coated surface that is subjected
to laser pulses for ionisation. Matrix species and analyte molecules are co-desorbed and
ionised by a mechanism which is still the subject of active research, generally involving
proton/energy transfer between co-desorbed species resulting in ionised analyte molecules.
MALDI is a soft ionisation technique as it imparts little residual energy to the target analyte
hence resulting in a low rate of fragmentation of molecules. Although mostly performed
under high vacuum, low vacuum and atmospheric, (AP-)MALDI sources are also available,
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including a high-performance atmospheric-pressure scanning MALDI microprobe ion
source to obtain high-resolution ion images with the ability to image metabolites in the
spatial resolution of a few microns [21]. More typically, the resolution of reported MALDI
images is in the range 5–50 µm [22,23]. Atmospheric pressure MALDI widens the range
of analytes and matrices to include volatile compounds, although often at the cost of ion
transmission. Whereas UV lasers are most commonly used for MALDI, coupled to aromatic
chromophores in matrix molecules, IR lasers can be applied to hydrated samples using
the native water content as a matrix for laser absorption. However, IR lasers are more
difficult to focus on small spot sizes and are less commonly applied in MSI studies. The
wide detection capabilities of the MALDI technique is impressive, with the ability to detect
small metabolites to large proteins [24,25].

SIMS was the first MSI methodology to be developed and uses focused ion beams to
sputter surface chemicals under high vacuum conditions [26]. In biomolecular SIMS studies,
the primary ion beam is typically composed of atomic or molecular clusters such as C60

+,
(H2O)+

n or (Ar1000)+ [26]. These polyatomic primary ions can produce ‘secondary’ analyte
ions in a soft ionisation mode with 1–10 µm spatial resolution. With molecular depth
profiling capabilities, 3D imaging is possible with modern SIMS machines [27]. Atomic
primary ion beams (Ga+, Cs+, etc.) provide up to 50 nm spatial resolution for atomic
secondary ions and molecular fragments [28]. The capabilities of SIMS makes it possible to
analyse subcellular metabolomics with high spatial resolution and sensitivity [29].

In contrast to MALDI and SIMS, DESI is an ambient ionisation technique whereby the
samples can be analysed under atmospheric pressure conditions with little or no sample
preparation. Analysis with DESI is performed with an impinging spray of charged solvent
microdroplets which wets the surface and desorbs later upon the arrival of subsequent
droplets, forming secondary droplets, carrying with it the surface chemicals towards the
MS inlet. The ambient ionisation, minimal sample preparation and the nearly undamaged
surface of samples after imaging make DESI MSI ideal for in situ analysis of biological
samples and there have been several studies that have explored this aspect of DESI [30,31].
The spatial resolution for a DESI MSI experiment generally ranges from 150 to 200 µm but
with the relatively new nanoDESI developments, a spatial resolution of around 10 µm has
been reported [32].

LAESI is yet another ambient ionisation method in which a mid-IR laser ablates the
surface and produces particles which are then ionised on interaction with charged solvent
droplets. The IR-laser applied is resonant with the absorption of liquid water (wavelength
2.94 µm) so is well-suited to hydrated samples such as plant vegetative parts. Similar
to DESI, the ambient nature of imaging and the minimal sample preparation makes it a
preferred MSI method for surface analysis in near-physiological conditions. The typical
spatial resolution for LAESI is around 200 µm but a resolution of 40 µm has been recently
observed by Taylor et al. with a ‘LAESI microscope’ to image single cells [33]. An interesting
feature of LAESI is its ability to perform 3D imaging in ambient conditions [34], which is
not possible with MALDI, SIMS or DESI.

Although the scope of this review is limited to the most widely-used MSI techniques for
plant imaging, i.e., MALDI, DESI, SIMS and LAESI, several other MS methodologies have
also been applied, including laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) [35], colloidal graphite assisted laser desorption ionisation mass spectrometry
(GALDI) [36] and liquid extraction surface analysis (LESA) [37], etc.

2.2. Sample Preparation

Sample preparation involves steps from procurement of the sample until it is ready
to be analysed by analytical techniques such as mass spectrometry imaging. Sample
preparation of plant tissues for MSI has been reviewed by Dong et al. [38]. The main plant
parts of interest in this review are the leaf, stem and roots, and due to the differences in the
surface characteristics, each of these has slightly different preparation strategies for MSI.
Although, the general principles of MSI analysis remain similar for other plant parts such
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as fruits [39], seeds [40], flowers [41], etc. If xenobiotic metabolites are of interest, specific
strategies need to be adopted to apply the xenobiotic chemicals before the preparation of
plant parts for imaging.

When targeting endogenous plant metabolites, the sample preparation mainly involves
storage and preparation of surfaces for imaging with cryo-sectioning and pre-treatments.
Samples are stored at −80 ◦C before and after sectioning onto suitable substrate slides.
Freezing quenches metabolic processes and storing at such temperatures for up to 1 year
have not shown any degradation [42]. Delicate samples which might undergo degradation
such as certain leaves can also be stored after imprinting them on Teflon (PTFE) or thin-layer
chromatography (TLC) plates [43]. Samples are more easily sectioned by embedding in a
suitable medium such as optimal cutting temperature (OCT) compound, carboxymethyl
cellulose (CMC), gelatine, ice or their combinations. In a comparative study with leaf tissue,
Li et al. observed that among the many commonly employed embedding media, gelatine
gave the most favourable result with no delocalisation observed in specimens embedded in
it [44]. Ice can also be used for embedding but the delocalisation of water-soluble chemicals
can be an issue. OCT is not recommended for MSI methods due to the interference with
analytes and ion suppression [45]. The preparation of hydrated tissue samples is often
done by cryo-sectioning, wherein the samples are flash-frozen and sectioned at around
−20 ◦C. For dry samples such as those obtained from certain plant stems, sectioning can
also be done at room temperature conditions [46]. Sample sections are then mounted onto
slides generally using conductive double-sided adhesive tapes or by thaw mounting.

For stem and root tissues, the sectioning and fixation of tissues are quite straightfor-
ward as outlined above. However, for leaves, due to the presence of the cuticular waxes,
the surface chemicals are often inaccessible by direct imaging with soft-ionisation MSI
methods such as MALDI and DESI, and special sample preparation methods are needed to
circumvent this issue. Removal of cuticular waxes can be done by treating with chloroform
or chloroform/dichloromethane mixtures [47], by physical removal of the surface wax of
the leaves by scrapping [48] or by stripping the epidermis [47]. However, when chemically
treated, the surface delocalisation of chemicals can happen, causing signals to be unreli-
able. The physical removal of surface waxes may also affect the spatial resolution of the
experiment [36]. An alternate option to these methods is imprinting, wherein the surface to
be analysed is pressed against surfaces such as porous Teflon [49] or TLC plates [50] with
a vice to extract the chemicals in the tissue. This can be done with or without heating or
solvent extraction [43]. However, imprinting is restricted to relatively ‘fleshy’ plant tissues
and smearing can happen during the process, thus limiting the spatial resolution [51]. In a
recent study, Wu et al. used a nanoparticle immersed paper for imprinting in an LDI MSI
study [52]. The Au nanoparticle on the surface acted both as a matrix and an imprinting
medium to analyse xenobiotics and as a result, gave better desorption efficiency for the
analytes. In addition to the above-mentioned sample preparation methodologies, MALDI
involves an additional step for the application of matrix when compared to the other MSI
techniques. The choice of the matrix for an experiment largely depends on the chemical
properties of the analytes of interest. The most commonly used matrices in MALDI imaging
of plant tissues are 2,5-dihydroxybenzoic acid (DHB), alpha-Cyano-4-hydroxycinnamic
acid (CHCA), 1,8–bis (dimethyl-amino) naphthalene (DMAN), 9-aminoacridine (9-AA),
sinapinic acid (SA), etc. [53,54]. Alternatively, nanoparticles can be used as a matrix as
shown by Shiono et al. in an interesting study where Fe nanoparticles were used as a matrix
to image plant hormones in rice roots [55].

For MSI experiments analysing xenobiotics, mainly agrochemicals, in addition to the
general factors affecting the resolution and sensitivity of the experiment, the method of
application of them onto the plants also plays a major role in the outcome of the imaging
experiment. Generally, the agrochemicals are applied either by spraying onto the leaves to
understand uptake through surfaces, [56,57] or through hydroponic systems to understand
the shoot uptake [58,59]. A field application study can also be performed to understand
the uptake and distribution of agrochemicals in a practical setting. For understanding leaf
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uptake in a practical setting, a track sprayer system can be used by calibrating the pressure,
volume sprayed and speed of movement as demonstrated by Annangudi et al. [56].

2.3. Data Processing

After the imaging experiments are performed, large data sets containing informa-
tion about the spatial localisation of various chemical compounds are obtained as hun-
dreds or thousands of mass spectra. The large amount of data obtained is often inte-
grated with the help of modern software such as SCiLS labs (https://scils.de/), BioMap
(http://ms-imaging.org/biomap/) and MSireader (https://msireader.wordpress.ncsu.
edu/) to name a few, and/or with MATLAB or Python routines. In a targeted experiment,
the analyte is known and with the aid of tandem mass spectrometry experiments, confident
molecular assignment of the ion signal can be ascertained with the aid of authentic reference
materials or chemical standards. However, things are much more complex when looking
at the data of an untargeted MSI experiment, which usually involves the comparison of
a test and a control sample set. In such a case, the manual comparison of the data can be
done, and this approach has been in practice for a long time, albeit tedious and subject to
human error. Modern machine learning approaches [60,61] and deep learning [62,63] are
attracting more attention in fields such as MSI. Multivariate data analysis tools including
principal component analysis (PCA) [64,65], linear discriminant analysis (LDA) [66] and
least absolute shrinkage selection operator (LASSO) [67] can reveal the ‘hidden’ mass
spectral features that differentiate samples or regions of interest. Once the significant ion
signals are identified, the next step is to determine their molecular identity. High mass
resolution or tandem mass spectrometry data can be interpreted with the use of databases
such as MassBank [68] or lipidMaps [69], etc.

As with other MS methods, MS imaging can also be used (with care) for the quantifi-
cation of constituent analytes in a sample. Unlike in more conventional GC-MS or LC-MS
methodologies, MSI involves the analysis of surface compounds in a sample without any
chromatographic separation and often without any sample clean-up. Hence the same strate-
gies used in XC-MS involving bulk samples cannot be directly applied to MSI. Accurate
quantification of the constituents in a sample requires the careful consideration of extraction
efficiency and mass-dependent ion loss during analysis along with the matrix-dependent
ionisation efficiency of desorbed surface species [70]. Although relative quantification is
the most commonly used method, absolute quantification can also be performed with MSI
but is often more tedious due to the analyte being present in a complex mixture on the
surface of the sample. Normalisation to the total ion current or a standard [71] or the use of
a tissue extinction coefficient [72] over a region of interest for normalisation of endogenous
compounds can be used to compensate for the matrix effects in relative quantification. The
commonly used experimental quantification strategies are on-tissue spotting of standards
or the use of mimetic models [73]. However, when performing experiments for absolute
quantification, an extra step of determination of the extraction efficiency from different
tissues need to be calculated. Absolute quantification is straightforward if the extraction
efficiency is known [74], although, it depends on several factors including the thickness
and type of tissue section, chemical properties of the solvent used for extraction and the
analyte, the scan rate and the spatial resolution used for the experiment. Advanced data
processing has also been proposed to mitigate the main issue of signal variability caused
by matrix effects and extraction efficiency in quantification studies [75].

3. Mass Spectrometry Imaging of Plant Vegetative Parts
3.1. Endogenous Compounds

The ability of MSI technologies to image a multitude of chemical species at the same
time makes it a valuable approach to understanding the chemical localisation in plant
systems. The availability of high spatial resolution information along with the quantitative
and qualitative data for a broad range of chemical species is unparalleled for MSI in
comparison to the other contemporary technologies. The following sections focus on the
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applications of common MSI techniques to image endogenous metabolites in plant leaves,
roots and stems.

3.1.1. MALDI Imaging Studies

The first application of MSI to analyse vegetative plant parts was to image agrochemi-
cals in soybean leaf [59] at the start of the 21st century. Since then, the number of studies
utilising MSI in plant science has been steadily increasing year after year [4]. In one of the
initial studies, MALDI was used to image the distribution of water-soluble oligosaccha-
rides in the stems of Triticum aestivum (wheat). Water-soluble oligosaccharides were being
investigated as a potential indicator for grain yield [76] and the positive ionisation mode
MALDI detected the potassium adducts of a range of oligosaccharides up to Hex11 with α-
CHCA matrix.

Being a very important model species to understand plant physiology [77], there have
been numerous studies with MSI to understand the chemical localisation of compounds
in Arabidopsis thaliana. An early MALDI MSI study was performed to assess the feeding
patterns of lepidopteran larvae in A. thaliana leaves [78]. The spatial distribution of glycosi-
nolate, a compound involved in the plant defence [77], was assessed in negative ion mode
MALDI with a 9-AA matrix. The observation of an abundance in glycosinolates in the
midvein and periphery of leaves compared to other parts of the leaf, validated with HPLC
analysis, led the authors to conclude that the preferential localisation of these compounds
has profound roles in plant defence mechanisms. This study demonstrated the usefulness
of MSI in understanding the chemical distributions of compounds to access different situa-
tions and phenomena associated with the plant system. Following this study, the authors
did another investigation on the same plant species to develop a new MALDI imaging
protocol in negative ion mode to image only the surface glycosinolates in the leaves [79];
the major difference in the protocol being that the 9-AA matrix was deposited now by
sublimation rather than with an airbrush. In addition to imaging, surface quantification
was performed with the aid of standards and it was found that the abaxial surface of the
leaves contained about 50 pmol/mm2 surface area of the leaf with the adaxial surface
having about 15–30% less (Figure 2). In contrast to the earlier results mentioned before,
here, the surface distribution was relatively uniform with more abundance in the midrib
and periphery of the leaf. LAESI and liquid extraction surface analysis (LESA) helped
the authors to validate the distribution patterns observed. Another important class of
molecules involved in plant defence mechanisms are the cyclic peptides, cyclotides which
have insecticidal properties [80]. In an attempt to study novel cyclotide precursors in
hybrid petunia leaves, MALDI was used in conjugation with genetic studies to identify
and understand the localisations of potential cyclotide peptides [81]. MALDI imaging
in positive ion mode with CHCA matrix identified 4 potential cyclotides with one being
identified as Phyb A and the rest unidentified. The suspected species localised mostly in
the vasculature of the leaf much akin to the potential roles in plant defence.

In another example with A. thaliana, the surface waxes on leaves were imaged with
MALDI in both positive and negative ion mode with the lithium adduct of DHB as ma-
trix [82]. Even though the laser irradiation time was longer than it would have been
for polar target molecules, this study proved the ability of MALDI MSI to image neutral
molecules such as wax esters and hydrocarbons in biological samples. The power of MSI
in plant physiological experiments was also demonstrated in a study by Griffiths et al.,
using MALDI with CHCA matrix to visualise the effect of chemical intervention in the
trehalose-6-phospate pathway in A. thaliana leaves [83]. With positive and negative ion
mode MALDI studies, along with SIMS and plant physiological studies, artificial precursors
to sugar were seen to increase grain size and total sugar production of the plant species.
These results provide an alternate path to crop yield improvement through ‘biosynthetic
amplification’ compared to the genomic methods.
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Saccharides and surface waxes are essential to the survival of the plant system and are
abundant in the plant biome, but the most abundant biopolymer present in the biological
systems and in the world is cellulose [84]. The wide applicability of cellulose in paper
manufacturing, food industry and as an alternative biofuel makes its spatial characterisation
an important analytical problem [85]. For MALDI imaging of cellulose, DHB was found to
be an ideal matrix by Jung et al., with microcrystalline cellulose standards compared to
other popular matrices such as CHCA and sinapinic acid in positive ion mode [86]. The
choice of matrix was also justified when the stem sections of Populus deltoides were imaged
for cellulose. In another independent study with P. deltoides [87], MALDI with a linear ion
trap for tandem MS measurements was used to image cellulose and hemicellulose in the
stem sections in a more specific way, eliminating isobaric ions. In this study, too, with the
help of microcrystalline cellulose and hemicellulose standards, DHB matrix was found to
be the best for positive ion imaging compared to other matrices considered.

Lipids in plants have storage functions, roles in plant defence and are signalling
molecules [88], making the chemical mapping of lipid species in plants with MSI an
important question for lipidomic investigations. In an early study to image lipids with
MALDI, the lipid content of barley seed and tobacco root (Nicotiana tabacum) was assessed
with HCCA and DHB as matrices in positive ion mode [89]. Lysophosphatidylcholines
were identified and imaged, correlating with the data from standards and tandem MS
measurements. An interesting investigation that utilised MALDI to image lipids was to
understand the distribution of triacylglycerol in a transgenic model of N. tabacum leaves [90].
MALDI with DHB as matrix along with other mass spectrometry techniques such as GC-MS
and tandem mass spectrometry revealed that the transgenic species of N. tabacum has a 15%
more content of triacyl glycerol compared to the wild type. When comparing with the large
biomass oil crops, such genomic changes can drastically affect the total oil yield relating
to crops.

Root nodules in plants form as a result of a symbiotic relationship between the rhizo-
bium bacteria and the plant to convert atmospheric nitrogen to ammonia for the plant [91].
An example of such a relationship exists between the plant Medicago truncatula and the
rhizohium bacteria, Sinorhizobium meliloti. MALDI-MSI was used in an attempt to analyse
the metabolic disparities in the root nodules formed by the symbiotic relationship [92].
With the complementary use of DHB and DMAN matrices in positive ionisation mode,
the authors identified amino acids, organic acids, carbohydrates and flavonoids in the
samples. Statistical data analysis performed with ClinProTools [93] showed that the root
nodules contained higher glutamine and sucrose compared to the roots. In the 3D PCA
plot, root and root nodule samples revealed very distinct distribution patterns implying
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distinct metabolic levels. In a subsequent study by the same group, the effect of salt stress
on root nodules on the same species was studied [94]. In these experiments, in addition to
MALDI wherein the system operated in a vacuum state, an atmospheric pressure MALDI
(AP-MALDI) system was also used. The imaging experiments performed in positive ion
mode were done with two matrices, DHB and CHCA, and were complemented by the
tandem MS data of ion signals of interest. As a result of the Discriminative Analysis done
with Receiver-Operating Characteristics (ROC), it was identified that control samples were
enriched in asparagine, adenosine and nicotianamine, and the salt-treated samples in argi-
nine and soyasaponin I. Even though AP-MALDI could achieve a higher resolution with
smaller laser spot size, vacuum MALDI was able to detect significantly more m/z values.

Being sessile organisms, plants have developed several chemical mechanisms to cope
with stress or situations of unfavourable growth conditions [95]. One such chemicals re-
leased in plants in response to biotic and abiotic stresses are the phytoalexins which are also
known to induce antifungal activity [96]. When grapevine leaves were subjected to stress by
exposure to UV-C radiation, MALDI in negative ion mode was able to find the peculiar local-
isations of phytoalexin compounds Resveratrol, Pterostilbene and Viniferins [97]. Although
many matrices were tested, DHB gave the best results for imaging these phytoalexins.
All three compounds of interest showed heterogenous distribution with co-localisations
in the veins. In another study, Kaempferol-3-O-galactoside [trifolin + Na]+, a galactose-
conjugated flavanol exhibiting antifungal and anti-cancer effects [97], was imaged in high
abundance in the veins of the clover leaf with an atmospheric pressure MALDI MSI sys-
tem [98]. With CHCA as matrix, the AP-MALDI could image these biological samples in
atmospheric pressure conditions.

Ginkgo biloba is considered a ‘living fossil’ being the only extant member of the division
of Ginkgophyta [99]. The roots, stem, leaves and seeds of G. biloba are a source of various
bioactive metabolites, especially the leaves, which contains numerous secondary metabo-
lites of pharmacological interest [100]. With MALDI and LDI MSI, Li et.al was able to image
several metabolites on the surface of G. biloba leaves including rare flavonoid cyclodimers
along with other substrates such as chlorophyll, phospholipids and saccharides [101]. The
studies were utilised to obtain metabolic data in both positive and negative ion modes with
CHCA and 9-AA as matrices, respectively. The relative quantification study done using
selected flavonoids with LC-MS showed a slightly higher flavonoid content, in general, in
the upper epidermis compared to the lower as seen in Figure 3.

Among the many factors affecting the spatial resolution of a MALDI MSI experiment,
the spot size of the laser beam focus is very significant. In an attempt to achieve higher
spatial resolution, Korte et al. adapted an instrument modification concept of Caprioli
and co-workers [102,103], and modified the laser optics of a MALDI linear ion trap (LIT)
Orbitrap mass spectrometer to image maize leaves in sub-cellular resolution with the
use of 1,5-Diaminonaphthalene (DAN) matrix in negative ion mode [104]. The modified
instrument allowed the detection and imaging of a variety of compounds including amino
acids, ascorbic acid, phenolics, benzoxazinone derivatives, sugars and phosphate sugars,
flavonoids and flavonoid glycosides and glycerolipids. Even though the achievable laser
spot size was around 5 µm, for sufficient ion signals, 9 µm was considered a more practical
laser spot size. In a subsequent attempt by the same group, a practical laser spot size of
5 µm was achieved by combining spatial filtering, beam expansion and reduction of the
final focal length [105]. With maize root samples, the new MALDI system could image
several molecules including phosphocholines and disaccharides in positive ion mode with
DHB matrix. A feature of this system was that a user selectable laser spot size of ~4, ~7
and ~45 µm was subsequently achievable in about 5 min through an interchanging of the
beam expander component. In another attempt to improve the resolution of MALDI MSI,
Spengler and co-workers developed the atmospheric pressure scanning microprobe matrix-
assisted laser desorption/ionisation mass spectrometer (AP-SMALDI) [21]. This novel
system can image plant metabolites at cellular levels as demonstrated by Li et al. [106],
where AP-SMALDI was used to analyse several plant secondary metabolites including
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gallotanins and monoterpene glucosides in Paeonia lactiflora roots. Another factor that
affects the quality of images obtained with MALDI is the self-ionisation of matrix that
interferes mostly with the ion signals in lower m/z values (~500 Da) [107]. For example,
plant hormones are involved in signalling crosstalk and the basic physiological responses of
cell [108], but being in the low mass range, many of them are not effectively detected with
MALDI due to the chemical noise. With the introduction of Fe nanoparticles (Fe NPs) as
the matrix, Shiono et al. [55] tried to circumvent this issue to image lower molecular mass
plant hormones in positive ion mode in the leaves of the rice plant. When the results were
compared with that of DHB matrix, nanoparticle assisted laser desorption ionisation (nano-
PALDI) imaging was able to detect at least 4 more plant hormones and their precursors
than MALDI.
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Figure 3. Cross-sections of ginkgo leaves imaged in positive mode MALDI showing images of selected
flavonoid ions, including aglycones (m/z 271.0601–317.0655), biflavonoids (m/z 539.0973– 583.1235),
glycosides (m/z 617.1477–795.1745) and biginkgosides (m/z 1519.3537–1551.3435) in ginkgo leaf.
Ion images were recorded with a step size of 50 µm. The mass accuracy was less than 2 ppm and
a bin width of m/z = ±5 ppm was used for image generation. Images represent the protonated,
sodium and potassium adducts of metabolites. Glc: glucoside/glucosyl moiety; K: kaempferol; Rha:
rhamnoside/rhamnosyl moiety; Q: quercetin. Figure reproduced with permission from Li et al. [101].

3.1.2. SIMS Imaging

The minimal sample preparation and the high spatial resolution are two of the factors
for the increasing interest in SIMS for metabolic imaging, either used alone or in conjunction
with other MS methods. Li et al. investigated the saccharides in switchgrass (Miscanthus X
giganteus) roots with LDI MSI and SIMS imaging with gold primary ion source in positive
and negative ion modes [109]. Several surface additives were used to check the signal
improvements such as Au coating on samples and matrix enhancement with CHCA and
DHB. The authors observed that in LDI MSI, a thin Au coating and DHB improved the
signal intensity, and CHCA did not drastically affect the intensities. No one condition
could image all the metabolites of interest and hence it required information from all the
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surface conditions for a complete overview. Unlike in LDI, the Au coating did not improve
the signal intensities for SIMS and interestingly, it was seen that the non-coated section
displayed higher quality images in negative than the positive ion mode.

In many trees, the central part of the wood is dark with a high density of organic
solvent extractable compounds surrounded by lighter coloured sapwood. In Japanese
cedar (Cryptomeria japonica), SIMS could identify exclusive ion signals of ferruginol, a
diterpene phenol in high intensity in the heartwood tissue and not the sapwood tissue
taken with a Ga+ ion beam in positive ion mode [110]. Although exclusive to heartwood,
ferruginol was seen to uniformly distribute in the heartwood part of the wood tissue. In a
following study by the same group, specific chemicals could be detected in the sapwood and
heartwood-sapwood boundary in a 1500-year-old sample of Hinoki cypress (Chamaecyparis
obtusa), helping to distinguish them in a visibly indistinguishable sample [111]. Using
a Au+ primary beam in both secondary ion polarities, chemical substances hinokinin,
hinokiresinol, hinokione and hinokiol were observed to be accumulated in the heartwood-
sapwood boundary. Among these chemicals, only hinokinin was seen to accumulate in
the ray parenchyma cells. This study is another example for the ability of SIMS in imaging
even minute chemicals in biological samples such as wood tissue.

In another innovative study, Zhao et al. used a combination of Bi3+ SIMS with C60
+

sputtering to image single-cell walls for the presence of syringyl (S) and guaiacyl (G) lignins
in Populus trichocarpa wood tissue [46]. With positive ion mode imaging, the S-lignins
were predominantly located in the fibre cell walls and the G-lignins in the vessel cell walls.
The G/S-lignin ion intensity ratio in vessel cell walls was found to be double that in fibre
cell walls, thus agreeing with the earlier study with UV microscopy which gave similar
results [112]. In another study, G- and S-lignin levels were evaluated in the wood tissue of
maple trees [113]. With Au+ ion beam in positive mode, the vessel walls were seen to be rich
in G-lignin with varied S/G ratios through the growth ring in which the earlywood was
seen to be rich in S-lignin and latewood had comparatively lesser. Both studies demonstrate
the utility of SIMS in analysing the lignin composition in wood.

By providing the highest resolution among other mass spectrometry imaging tech-
niques, SIMS is well-suited to analyse cellular localisation of metabolites and intermediates
to understand the basic biochemistry. When SIMS was used to image γ-lactones and its
intermediates in Sextonia rubra [114], some surprising observations were made contrary
to the established metabolic pathways. SIMS in positive ion mode with Bi3+ ion beam
for analysis and Ar1000

+ for sputter could identify 5 γ-lactones including rubrynolide
and rubrenolide along with the intermediates and their cellular localisation in the wood
tissue samples. In light of the surprising new data obtained, the authors proposed a re-
vised metabolic route for rubrynolide involving a reaction between 2-hydroxysuccinic acid
and 3-oxotetradecanoic acid in place of an earlier biosynthesis with a single polyketide
synthesis [115].

High resolution MSI provides huge data sets which, when the appropriate data
analysis tools are used, can yield significant information. When SIMS was performed
on the leaves of P. trichocarpa leaves, multivariate data analysis could detect chemical
localisations and diverse patterns underlying the leaf surface [64]. The Bi3+ cluster ion
beams in positive and negative ion modes detected several alcohols, hydrocarbons and wax
esters in the epicuticular layer on the surface of the leaf similar to the MALDI data taken
as reference, but with higher spatial resolution. For PCA, with 19 ions as variables, only a
small number of principal components were sufficient to establish the maximum variability
in the data. To complement the PCA data, when five-factors multivariate curve resolution
(MCR) was done, distinct patterns of islets were apparent from the score plots. However,
the authors recommend that the multivariate analysis, when done using cluster analysis,
gives the best results as they showed more localisation and distinct chemical specificity.
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3.1.3. DESI Imaging

DESI being an ambient ionisation method, with minimal sample handling it offers
the opportunity to image samples in near-physiological conditions in an efficient manner.
As it is a soft ionisation method, many of the chemicals can be imaged as ions without
much fragmentation. With no application of matrix, it also frees the investigation from
matrix-related issues and concerns. One of the earliest studies to use DESI in plant sciences
was by Thunig et al. wherein the leaves and petals of Hypericum perforatum were imaged
in negative ion mode and the leaves of Datura stramonium in positive ion mode [49]. To
overcome the hurdles posed by the waxy cuticular layer of the leaves, the imaging was
done in an indirect manner with Teflon imprints of the leaf. Several secondary metabolites
were imaged in the leaves and petals of H. perforatum including hyperforin and hypericin,
and the leaves of D. stramonium revealed the presence of a few terpene alkaloids. Secondary
metabolites are of great interest to many industries with plant-based raw materials. Such is
the case with hydroxynitrile glucosides which are of interest due to their role in whiskey
production [116] and its antifungal actions [117]. In a subsequent study by the same group,
the hydroxynitrile glucosides in barley leaves were analysed with DESI MSI in positive ion
mode [47]. Even though the hydroxynitrile glucosides are present on the epidermis of the
leaf, direct imaging could not successfully image it and the effort to remove the cuticular
waxes by chloroform treatment was not very efficient and reliable. However, the target
signals were observed when analysis was performed in the peeled- off epidermis and in
the Teflon imprints of the leaf, as seen in the mass spectra obtained shown in Figure 4a–c.
Imaging of imprints proved to be an efficient way to analyse samples as seen by comparing
Figure 4d–f. The ion signal abundances observed for different varieties of barley agreed
with the corresponding LC-MS analysis. In the following study, along with visualisation,
the enzymatic conversion of hydroxynitrile glucosides was also imaged in a Teflon imprint
of Lotus japonicus leaf with indirect DESI MSI [118]. Hydroxynitrile glucosides are very
sensitive phytochemicals that undergo degradation by specific β-glucosidases upon cell
disruption [119]. Following damage to a restricted area in the plant, DESI was able to
visualise the enzymatic degradation and localisation as well as the concomitant release of
glucose. The effectiveness of DESI in both ionisation modes for metabolite visualisations
was demonstrated with L. japonicus and was supported by an adjacent investigation in the
cassava tubers in the same study.

The de-greening or colour loss of leaves in autumn is a result of the seasonal degrada-
tion of chlorophyll in leaves [120]. The final product of this degradation process are the
molecules polyfunctionalised nonfluorescent chlorophyll catabolites (NCCs) [121]. When
the presence of the NCCs was investigated in the Katsura tree (Cercidiphyllum japonicum),
American sweetgum (Liquidambar styraciflua) and hophornbeam (Ostrya virginiana) with
DESI, the direct imaging did not produce sufficient signals in both ionisation modes [122].
However, when the leaf imprints were used, several NCCs showed higher signal intensities
and could be identified and localised in a more efficient manner along with tandem MS
and reactive DESI experiments using modified solvent sprays. The ability of the imprinting
technique to image subtle features of leaves was demonstrated by Hemalatha et al. with
Catharanthus roseus leaves and petals [50]. The secondary metabolites detected in this study
in positive ion mode were able to image delicate features such as eye colour of petals, leaf
vacuole, leaf margin and veins.

In efforts to improve the imaging capabilities of DESI MSI for plant parts, many studies
have been conducted. For example, Li et al. tried a ternary solvent system of CHCl3–ACN–
H2O (1:1:0.04) in place of the traditional binary solvent system such as CHCl3–ACN for
direct DESI MSI [123]. This new solvent system, when tried on Hypericum perforatum
leaves and petals in negative ion mode, DESI could image several very long-chain fatty
acids (VLCFAs) and several other metabolites. When compared to the traditional binary
solvent systems, numerous new metabolites could be visualised with this new system in
the petals. The leaves also showed a better metabolic profile with the new solvent system
than with the binary solvents. When treated with chloroform, even more metabolites could
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be analysed as the inner leaf layers were exposed. In indirect DESI MSI, among the many
factors that control the quality of the image, blotting is a step of paramount importance.
In an interesting study, to achieve improved transfer of metabolites to the surface of TLC
plates, solvent extraction and heating was used independently and together for negative
and positive ion mode DESI [43]. The novel blotting technique was tried on potato sprout
(Solanum tuberosum L.), gingko leaves (G. biloba L.) and strawberries (Fragaria x ananassa
Duch.). DESI MSI analysis could image glycoalkaloid toxins in potato sprout, ginkgolic
acids and flavonoids in ginkgo leaves, and sugars and anthocyanidin in strawberries. The
different samples taken in this study showed different optimal blotting conditions. Hence
it was evident that the suitable blotting technique for an indirect imaging experiment
depended on multiple factors such as the chemical property of the molecule of interest,
chemical properties of the surface and that of the solvent when solvent was extracted.
This technique of blotting with solvent and heating was also used in another study to
image alkaloids in Sassafras albidum [124]. For improved separation and detection, the
root, twig sections and leaves of S.albidum were analysed with high-performance thin-layer
chromatography with multistage DESI MS along with DESI MSI. A total of 12 alkaloids
were observed in the roots and twigs, of which 6 had not been detected before. Interestingly,
all the alkaloids were localised around the root outer lines and no alkaloids were detected
in the leaves.
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Figure 4. DESI MS spectrum and images of barley leaf under different sample preparation conditions:
(a) DESI MS spectrum of a barley leaf (cv Mentor) treated with chloroform; (b) DESI MS spectrum of
the Teflon imprint of the leaf epidermis; (c) DESI MS spectrum of the Teflon imprint of the intact leaf.
DESI images are of the hydroxynitrile glucosides of m/z = 276, 298 and 300 from barley (cv Mentor);
(d) Direct DESI images of the isolated epidermis; (e) Indirect DESI images of the isolated epidermis;
(f) Indirect DESI images of the intact leaf; (g) Photo of the transparent leaf epidermis mounted on
double-sided tape. All spectra were recorded in positive ion mode. The pixel size is 100 µm and the
acquisition times were 120 min. Figure has been adapted with permission from Li et al. [47].

3.1.4. LAESI Imaging

For analysis, MALDI requires the application of a matrix to the sample surface and
electrospray ionisation (ESI) requires samples to be in solution form, as imaging of biological
samples in vivo in the native environment is not possible with these methods. LAESI, being
an ambient technique with little or no sample preparation presents an alternative option
along with DESI to image biological samples with sufficient water content [125].

In one of the very first studies with LAESI, the variegation pattern of A. squarrosa
leaf tissues was analysed to understand the metabolic differences in the green and yellow
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sectors of the leaf [126]. Several primary and secondary metabolites were visualised in
positive ion mode including those involved in the biosynthesis of flavonoid kaempferol. A
lateral resolution of ~350 µm and a depth resolution of ~50 µm was achieved in this study.
However, an improved spatial resolution of ~300 µm and depth resolution of ~30–40 µm
was achieved in a subsequent study by the same group in A. squarrosa and Spathiphyllum
lynise leaf tissues [34]. In addition to the improved resolution, this study also reports the 3D
imaging of leaf tissues with LAESI in positive ion mode. The accumulation of phytochem-
icals with respect to the variegation and their changing distribution with respect to the
various cell layers of A.squarossa leaf is clearly visible in Figure 5A–E, adding to the results
of the earlier study in 2D imaging [126]. Coupled with tandem mass spectrometry, the au-
thors were able to image several secondary plant metabolites and found the tissue-specific
distribution and accumulation patterns for them. The direct sampling and subsequent
ionisation of surfaces by MSI techniques limits the differentiation of isobaric ions. Li et al.
integrated ion mobility spectrometry to normal LAESI MSI so that molecules with the same
m/z values could be separated and visualised [127]. To test this new system, frozen mouse
brain tissue sections and leaf sections of Pelargonium peltatum were imaged in positive
ion mode. The analysis of the abaxial surface of P.peltatum revealed the distributions of
flavonoid glycoside ions.Plants 2022, 11, 1234 15 of 28 
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Figure 5. LAESI 3D imaging MS of A.squarossa leaf tissue where metabolites in relation to tissue
architecture captured. Optical image of A. squarrosa leaves (A) before and (B) after analysis; (C) LAESI
3D imaging MS distribution of kaempferol/luteolin with m/z 287.0 (yellow/orange scale) followed
the variegation pattern. Chlorophyll a with m/z 893.5 (blue scale) accumulated in the mesophyll
layers; (D) Acacetin with m/z 285.0 showed higher abundance in the yellow sectors of the second
and third layers with a homogeneous distribution in the others; (E) Kaempferol-(diacetyl coumaryl-
rhamnoside) with m/z 663.2 accumulated in the mesophyll layers (third and fourth) with uniform
lateral distributions. Figure reproduced with permission from Nemes et al. [34].
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3.2. Crop-Protection Products

Xenobiotics refer to any foreign chemical introduced to a biological system be it animal
or plant [128]. The main xenobiotics of interest imaged in plants are agrochemicals or
crop-protection products including insecticides, herbicides and pesticides. The field of crop
protection product imaging with MSI is quite unexplored (Table 2) when compared to the
wealth of studies done to image endogenous plant chemicals. However, the need to under-
stand and image the distribution and localisation of various agrochemicals are becoming
critical in the present times when a global food crisis is an imminent possibility [129].

Conventionally, autoradiography has been used to image the uptake and translocation
of crop protection products in plant systems for agrochemical research [130]. In autoradiog-
raphy, the radiolabelled compounds of interest are either applied in the foliage or mixed in
the nutrient solution in hydroponic systems to study the foliar and shoot uptake, respec-
tively [130–132]. Although widely used, the need for tedious synthesis of radiolabelled
compounds and the ambiguity in distinguishing the principal compound and metabolites
along with the safety concerns, necessitates the availability of an alternative approach to
autoradiography. Mass spectrometry imaging provides such an option, being an untargeted
screening method with a relatively easier and fast sample preparation methodology.

The earliest study with plants to image xenobiotics was done in soy plants to image
the herbicide, Mesotrione, and the fungicide, Azoxystrobin with MALDI MSI [59]. For
direct and indirect imaging (with blotting), the leaves were spotted with 1 µL droplets of
Mesotrione (1.7 mg/mL) and Azoxystrobin (1.8 mg/mL) in 50:50 acetone/0.1% Tween20
and the samples were imaged at different time periods after application. Azoxystrobin was
imaged in negative ion mode with SA matrix and Mesotrione in positive ion mode with
CHCA matrix. Along with leaf surface detection for both the compounds, the authors also
imaged the uptake of Azoxystrobin through the roots of the plants to the stem by spiking
the growth medium until a concentration of 40 ppm was achieved with Azoxystrobin.
Spiking individual plants growing in hydroponics with Azoxystrobin also enabled the
shoot mobility analysis experiments which were performed 48 h after application. This
showed that Azoxystrobin was indeed absorbed through the roots of the plant and was
translocated through the stem. In a similar study Nicosulfron, a pyramidylsulfonyl urea
herbicide, was imaged in sunflower plants with MALDI MSI in positive ion mode with
CHCA matrix [57]. This study looked into both the foliar as well as the shoot uptake
of the herbicide. For the shoot uptake experiments, the growth solution of the plant
was spiked until a concentration of 40 ppm was reached, and for the foliar uptake, 1 µL
aliquots of 1.25 mg/mL Nicosulfron in 50:50 acetonitrile/Tween was applied and sec-
tions varying in lengths from the plants were taken later for analysis. Interestingly, the
major metabolites used for imaging in these experiments were formed by the breaking
of the urea bonds in the substituted pyramidylsulfonyl urea herbicide. In a study by
Annangudi et al. [56] on wheat leaf surfaces, MALDI MSI was used to detect 500 ng of
commercial fungicides Epoxiconazole, Azoxystrobin and Pyraclostrobin in 1 µL drops on
the leaf surfaces. The imaging studies done with DHB matrix in positive ion mode could
even detect Pyraclostrobin in amounts as low as 60 ng in 1 µL droplets. The field application
study performed also showed promising results as the fungicides could be visualised when
applied at a field rate of 100 gai/ha in 200 L water using a track sprayer system.

Although most studies involving agrochemical compound imaging have been done
with MALDI, researchers have also applied other MSI methodologies for imaging. An
example is that of an investigation to analyse contact and systemic pesticides with DESI
MSI in positive ion mode [133]. The authors considered two commercial contact insecticide
sprays for the experiments on Cotoneaster horizontalis, one containing natural insecticides
pyrethrin and rapeseed oil, and the second containing synthetic insecticides, Imidacloprid
and Methiocarb. Even though both natural and synthetic contact pesticides were subjected
to similar spraying methods and drying time of 30 min, the latter showed a more homo-
geneous distribution compared to the former. For the systemic insecticide experiment,
dimethoate tablets were spiked into the soil to gain a concentration of 33 mg/kg of the
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soil of Kalanchoe blossfeldiana and were detected in the transport system of the plant in
25 days. The stem cross sections showing the distribution of associated ions can be seen in
Figure 6d–f along with the associated MS spectra in Figure 6a. After 60 days of application
of dimethoate, the presence of it was detected as a homogenous distribution in the leaves.

MSI can also be performed in conjunction with other analytical techniques to yield
a more holistic result providing a broad wealth of information. The common methods
usually used with MSI for multimodal imaging include vibrational spectroscopic methods
including Fourier transform infrared (FTIR) and confocal Raman microscopy (CRM) [134],
fluorescence microscopy [135], Liquid extraction surface analysis (LESA) [136], etc., to
name a few. An example of this in the field of plant biology is a multimodal study to
analyse the phenylamide fungicide Metalaxyl in tomato plants where LC-HRMSn (liq-
uid chromatography-high resolution accurate mass spectrometry), autoradiography and
MALDI MSI with CHCA matrix in positive ion mode were used together to aid in identifi-
cation and quantification [58]. In this study, with hydroponic systems containing 0.2 ppm
Metalaxyl concentration, extensive metabolism of the parent compound was observed after
10 days in shoots and leaves but the parent compound was only detected in the roots.

Table 2. MSI studies to image crop-protection products in plant vegetative structures.

MSI Technique Plant Species Agrochemical Type of Uptake Reference

MALDI Soy

Mesotrione
(Herbicide)

Azoxystrobin
(Fungicide)

Leaf and root [59]

MALDI Sunflower Nicosulfron
(Herbicide) Leaf and root [57]

MALDI Wheat

Epoxiconazole
Azoxystrobin
Pyraclostrobin
(All fungicides)

Leaf [56]

MALDI Tomato Metalaxyl
(Fungicide) Root [58]

DESI

Cotoneaster
horizontalis

Kalanhoe
blossfeldiana

Rapeseed oil and
pyrethrins

Imidacloprid
and Methiocarb

Dimethoate
(All insecticides)

Leaf

Leaf

Root

[133]

LA-APCI Tomato Isotianil
(Fungicide) Leaf [137]

Nano-PALDI Flowering
cabbage

Chlorantraniliprole
(Insecticide) Leaf [52]

In another study, a novel probe design combining electrospray ionisation (ESI) and
atmospheric pressure chemical ionisation (APCI) compatible with the LAESI instrument
was introduced to study the translocation of fungicide Isotianil and its metabolite in tomato
leaves [137]. Leaves were spotted with 10 µL of commercial fungicide formulation having
a concentration of 250 ppm at the base of the leaf. The novel probe was seen to provide
improved pixel to pixel repeatability for LA-APCI than the traditional LAESI in both
ionisation modes. The applicability of this novel design was demonstrated by its ability
to investigate the translocation of Isotianil and its metabolite, anthranilonitrile, showing
the movement of anthranilonitrile from treated to untreated leaves. Innovation and novel
strategies can also be adapted to improve the sample preparation methods. An example of a
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study, along these lines is by Wu et al. where a gold nanoparticle immersed paper was used
for imprinting for laser desorption ionisation MSI (LDI MSI) to image a carrier-mediated
form of the insecticide, chlorantraniliprole, in flowering cabbage leaves [52]. Generally,
porous Teflon and TLC materials are used for imprinting [49,50], but low laser absorption
and surface charge accumulation associated with these materials are often not ideal for
laser-based MSI techniques. The flowering cabbage leaves were brushed with 10−4 mol/L
of chlorantraniliprole and air-dried to prepare samples for imprinting. The nanoparticle
imprinted paper seemed to show an improved ionisation efficiency while imaging the
alanine ethyl ester-chlorantraniliprole conjugate (CAP-Ala), the carrier-mediated pesticide.
With the aid of the nanoparticle imprinted paper, the authors observed that the carrier-
mediated pesticide moved faster than the native pesticide towards the phloem and the
primary vein.
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Figure 6. Images obtained from the dimethoate experiment on Kalanhoe blossfeldiana to see root
uptake: (a) DESI mass spectrum of protonated dimethoate and sodium adduct detected in spiked
soil; (b) Optical image of Kalanchoe stem cross-section; (c) Enlarged area of stem section to improve
visualisation of xylem and phloem area; (d–f) Distribution of dimethoate in the plant stem, detected
as protonated species, sodium and potassium adduct; (g–i) DESI-MS images of different naturally
occurring substances. Pixel size of the DESI-MSI experiment was set to 60 µm. Figure reproduced
with permission from Gerbig et al. [133].
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3.3. Disease and Pathogen Detection

Similarly, as in humans and other organisms, the diseases affecting plants can also
vary in the level of fatality. However, with plants being the primary source of food for
the growing populations around the world, plant disease has great implications [138].
The cause of such diseases include fungi, bacteria, viruses, viroids, algae and many other
pathogens [139]. Huanglongbing disease (HLB) is such an example of a plant disease
affecting citrus species. Caused by the bacteria Candidatus Liberibacter spp through the
vector Diaphorina citri or Trioza erytreae and by grafting [140,141], HLB disease can lead
to the formation of defective, small lopsided fruits. Pontes et al. proposed MSI as an
alternative diagnostic method for HLB disease with leaves in place of the generally used
polymerase chain reaction [48]. Direct DESI MSI in positive and negative ion mode with
tandem mass spectrometry could identify several metabolite classes and their variations
characteristic of the disease. Among other metabolites which showed variations in the
disease, the images showed an increased quinic acid, nobiletin, sucrose and phenylalanine
in the diseased leaves when compared to healthy ones (Figure 7). The minimal sample
preparation and fast and efficient imaging make DESI MSI a potential alternative to the
traditional PCR analysis.

Epiphytes are organisms that non-parasitically survive on the surface of the plants [142].
Even though non-parasitic, their presence can alter the metabolic composition on leaf sur-
faces. When analysed with a commercial ‘universal MALDI matrix’ in positive ion mode on
Arabidopsis thaliana leaves, it was seen that after epiphytic colonisation, the surface sucrose,
fructose and glucose levels were altered [143]. For the organoheterotroph, Sphingomonas
melonis or the phytopathogen, Pseudomonas syringae, the levels of above-mentioned sugars
were significantly altered, but for the methylotroph, Methylobacterium extorquens, changes
were minor compared to the control. The alterations were also observed in the arginine
metabolism and phytoalexin synthesis in the leaves hosting these micro-organisms. Interest-
ingly, it was observed that the magnitude changes in the levels of characteristic metabolites
were comparable to that usually seen in a mammalian host–microbe interaction [144].

Mycotoxins represent a class of fungal secondary metabolites with a pre-eminent
role in plant infection [145]. MSI represents an ideal methodology to understand the
complex biochemical responses of plants against such unfavoured xenobiotics [146,147].
Righetti et al. used high spatial resolution atmospheric pressure scanning microprobe
matrix-assisted laser desorption/ionisation mass spectrometry imaging (AP-SMALDI MSI)
to investigate the interplay between Zea mays (maize), the mycotoxin aflatoxin [148]. In
response to the unfavourable xenobiotic presence in the system, the authors found that the
anthocyanin and chlorophyll metabolism appears to be inhibited by the accumulation of
aflatoxin in the maize roots.
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Figure 7. Images acquired for the various biomarkers identified for HLB disease with DESI MSI
in positive ion mode. In the images acquired, the red colour indicates the ion distribution on the
abaxial leaf surface in asymptomatic, symptomatic and healthy samples. The images acquired were at:
(a) m/z 403; (b) m/z 166; (c) m/z 343 and (d) m/z 193, which were the exact masses found in Xcalibur
software (m/z 403.1387, m/z 166.0863, m/z 343.1235, and m/z 193.0712) corresponding to nobiletin,
phenylalanine, sucrose and quinic acid, respectively. Figure reproduced with permission from de
Moraes Pontes et al. [48].

4. Concluding Remarks

Plant imaging with mass spectrometry is a rapidly developing field of wide signifi-
cance. With the ability to image a multitude of chemicals in a sample with a single scan
retaining the spatial information, MSI is an efficient and relatively fast alternative to the
traditional metabolomic approaches. However, the issues related to sample preparation
of leaves, quantification and the limit of detection are targets for current and further de-
velopment in MSI as described in this article. This review focuses on the imaging of plant
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vegetative parts such as leaf, stem and roots. However, the mass spectrometry imaging
in plants is not limited to these samples and the imaging of seeds [40,149], fruits [39,150]
and flowers [41,50] are actively pursued along with that of the vegetative parts of the plant.
MSI is also applied in environmental studies to understand various related mechanisms
and processes such as the effect of pollutants and contaminants in ecosystems [17].

For quantification studies with MSI, matrix effects are one of the main challenges
for determining the ionisation efficiency and limit of detection and need to be accounted
for in accurate quantification. In MALDI MSI, matrix crystal size, laser focus restrictions,
analyte delocalisation and degradation within matrix crystals and detector sensitivity are
the major factors limiting the spatial resolution. Novel methodologies are being devised
to improve MALDI imaging considering these issues [151]. In SIMS imaging, primary ion
beams with higher energy, smaller spot size and softer ionisation capabilities to detect
a wide range of analytes present the major areas of development [152]. Even though
analysis can be conducted in atmospheric pressure conditions for ambient ionisation MSI
techniques, the achievable spatial resolution, detection range of molecules, quantitative
ability and sensitivity still are issues to be dealt with in techniques such as DESI and LAESI
MSI [153]. One approach to enhance selectivity and efficiency in the ionisation step in
electrospray-based methods is to include additives or reagents in the solvent spray, for
example, in the methodologies termed ‘reactive DESI’ [154,155] and ‘reactive LAESI’ [156].
An alternative approach, for (MA)LDI and SIMS-based methods is to decouple the des-
orption and ionisation steps in order to provide routes to optimise each independently.
Laser post-ionisation methods have been shown to offer considerable advantages in terms
of analyte coverage and detection sensitivity [157–160]. In this approach, a laser beam is
directed parallel to the sample surface to ionise the neutral fraction of the desorbed analyte
plume, which typically dominates the desorbed ion fraction by several orders of magnitude.
A promising approach for post-ionisation in atmospheric ion sources including AP-MALDI
is the application of plasma sources [161].

With the capabilities of MSI imaging evolving in terms of resolution, sensitivity and
depth profiling, the complexity of data is also increasing hence demanding robust, high
throughput data analysis tools. Machine learning, deep learning and artificial intelligence
present a possible way to deal with this to make pattern recognition, multivariate analysis
and compound identification better, faster and easier. For a recent review of the subject of
machine learning in mass spectrometry imaging applications, see Verbeeck et al. [162].

Finally, it is important to note that no one MSI technique is likely to ever be suitable to
image all chemicals in a plant sample. Hence, to achieve a more conclusive and broader
picture, MSI techniques should be used in a multimodal fashion in combination with other
chemical imaging approaches or with other metabolomic approaches such as LC-MS to
provide complementary data and validation [58,163].
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