
PAPER www.rsc.org/analyst | Analyst
Mass spectrometry tools and metabolite-specific databases for molecular
identification in metabolomics

M. Brown,†*a W. B. Dunn,†*b P. Dobson,†a Y. Patel,†a C. L. Winder,b S. Francis-McIntyre,a P. Begley,a

K. Carroll,b D. Broadhurst,a A. Tseng,a N. Swainston,b I. Spasic,b R. Goodacrebc and D. B. Kellab

Received 20th January 2009, Accepted 27th March 2009

First published as an Advance Article on the web 9th April 2009

DOI: 10.1039/b901179j
The chemical identification of mass spectrometric signals in metabolomic applications is important to

provide conversion of analytical data to biological knowledge about metabolic pathways. The

complexity of electrospray mass spectrometric data acquired from a range of samples (serum, urine,

yeast intracellular extracts, yeast metabolic footprints, placental tissue metabolic footprints) has been

investigated and has defined the frequency of different ion types routinely detected. Although some ion

types were expected (protonated and deprotonated peaks, isotope peaks, multiply charged peaks)

others were not expected (sodium formate adduct ions). In parallel, the Manchester Metabolomics

Database (MMD) has been constructed with data from genome scale metabolic reconstructions,

HMDB, KEGG, Lipid Maps, BioCyc and DrugBank to provide knowledge on 42,687 endogenous and

exogenous metabolite species. The combination of accurate mass data for a large collection of

metabolites, theoretical isotope abundance data and knowledge of the different ion types detected

provided a greater number of electrospray mass spectrometric signals which were putatively identified

and with greater confidence in the samples studied. To provide definitive identification metabolite-

specific mass spectral libraries for UPLC-MS and GC-MS have been constructed for 1,065

commercially available authentic standards. The MMD data are available at http://dbkgroup.org/

MMD/
Introduction

The metabolome is defined as the quantitative complement of

small molecular weight chemicals present in a biological

system.1,2 The holistic study of the metabolome, defined as

metabolomics, offers distinct advantages when compared to

genomic, transcriptomic and proteomic investigations.2,3

However, the combined study of all functional levels and their

complex interactions to provide a systems-wide view of biolog-

ical organisation (systems biology) is beneficial.3–5 Metabolomics

is increasingly being applied in post-genomic sciences to study

biological systems including microorganisms,6,7 plants,8,9

mammals3,10–12 and the environment.13,14 From an analytical

perspective, metabolomics is a strategy that offers the ability to

perform high-throughput studies with relatively low operating

costs after initial instrument purchase.15

Metabolomes are complex systems to study being composed of

hundreds or thousands of metabolites (yeast 1168,16 plants
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200 000 in total kingdom, many fewer per species,1 mammals >

6500,17 and may be present from more than one organism either

from a symbiotic or pathogenic relationship8,18) with a wide

range of physical and chemical properties such as hydropho-

bicity/hydrophilicity, volatility, molecular weight and size. The

study of these systems requires an integrated approach or

metabolome pipeline19 and a number of strategies are

applied.15,20 Two orthogonal strategies are typically employed:

metabolic profiling and targeted analysis. Metabolic profiling

(sometimes referred to as untargeted analysis or metabolite

profiling) provides a more or less holistic study of a metabolome

with detection of hundreds or thousands of metabolites. The

strategy is applied as a hypothesis-generation strategy in

metabolomic studies. Although metabolic profiling has been

described as unbiased and global, in reality all methods of sample

preparation and all analytical platforms introduce a level of

chemical bias. Consequently, a range of analytical platforms are

applied in metabolomics21–23 including gas chromatography-

mass spectrometry (GC-MS), liquid chromatography-mass

spectrometry (LC-MS), capillary electrophoresis-mass spec-

trometry (CE-MS), nuclear magnetic resonance spectroscopy

(NMR), direct infusion mass spectrometry (DIMS) and FT-IR

and Raman spectroscopies. Of these, chromatography-mass

spectrometry and NMR are the most widely applied.

One of the limiting factors in metabolomics is that of identi-

fying molecules from spectroscopic/spectrometric signals.15,24

For metabolomics to be successful there is a requirement to

convert raw analytical data to metabolites (named chemicals)

that may confer biological knowledge. In many studies, entities
This journal is ª The Royal Society of Chemistry 2009



of biological significance are reported with no chemical identifi-

cation, and generally referred to as unknowns. Consequently,

a number of strategies are being brought forward to assist in the

chemical identification of these unknowns, including the devel-

opment of metabolite-specific mass spectral libraries and data-

bases.17,25–28 Two types of identification are achievable, putative

or preliminary identification and definitive identification. Puta-

tive identification usually employs one or more molecular

properties for identification but does not compare these to the

same properties of an authentic standard as is performed for

definitive identification. Experimentally determined accurate

mass or electron-impact mass spectrum are typically applied. In

LC-MS and DIMS the accurate mass is used to define molecular

formulae from which suitable metabolites can be derived by

searching electronic resources. However, isomers have the same

accurate mass and therefore require a separate, orthogonal

property for definitive identification of all potential isomers.

Definitive identification employs at least two properties (typically

retention time or index and fragmentation mass spectrum) and

provides confidence via the use of authentic chemical standards.

Recent informatics standards for reporting the basis of metab-

olite identifications have been described.29

The application of electrospray ionisation-mass spectrometry

in metabolomics has increased rapidly in the previous five years,

whether as LC-MS, CE-MS or DIMS. Electrospray (ES+ and

ES�) and nanoelectrospray ionisation sources enable detection

of hundreds or thousands of features in a run, where features are

defined as a single mass (DIMS) or a chromatographic peak

defined by the same nominal or accurate mass across the peak

(LC-MS, CE-MS). Electrospray ion sources can be viewed as

chemical reactors possessing the ability to produce a wide range

of non-covalent and ionic interactions between metabolites and

other species present. The potential for covalent bond fission is

also high when operating under specific instrument conditions.

These processes are observed where populations of all neutral

species and ions are present at atmospheric pressures and the

probability of interactions are high. As a result, a single metab-

olite can be detected as multiple features in either positive or

negative ion modes. For example, a metabolite may be detected

as the protonated and sodiated ions in positive ion mode and as

the deprotonated ion in negative ion mode. These multiplicities

result in overestimation of the number of detected metabolites

and provide difficulties in determining the molecular formula of

detected metabolites as the type of ion formed is often unknown.

These multiplicities are observed because the sample matrix is

generally not separated from the metabolites in metabolic

profiling applications and therefore the sample is a mixture of

metabolites and high concentration matrix components

including inorganic salts.

High mass-accuracy mass spectrometers have been applied to

assist in the chemical identification of mass signals. Typically, the

combination of accurate mass and isotope ratios are employed to

calculate probable molecular formulae from which potential

metabolites can be derived by searching metabolomic or chem-

ical databases (for example, The Human Metabolome Data-

base,17 PubChem,30 Biospider,31 KEGG32). However, the number

of probable molecular formulae increases exponentially as the

mass increases.26 High mass resolution and mass accuracy can be

observed when employing Fourier transform ion cyclotron
This journal is ª The Royal Society of Chemistry 2009
resonance (FT-ICR) and Orbitrap mass analysers and to a lesser

extent time of flight (ToF) mass analysers.33,34 The Orbitrap mass

analyser has accurate and precise mass measurements and high

mass resolution, as shown previously in metabolomic applica-

tions.35–40 The application of statistical analysis in metabolomics

to describe biological-related or analytical-related correlations

have been described, including its application to mass spectro-

metric and other analytical data.5,41–45 Other researchers have

detailed accurate-mass lists of possible contaminants in LC-MS

datasets.29

We here describe methodologies used to interrogate data

acquired from a wide range of complex metabolomes by ultra

performance liquid chromatography (UPLC) coupled to an

electrospray LTQ-Orbitrap hybrid mass spectrometer. Methods

to assign and correlate mass signals deriving from the same

metabolite and to use these data to increase the efficiency of

putative metabolite identification are described. The construc-

tion of metabolite-specific databases (using data from a range of

electronic sources) and mass spectral libraries (from analysis of

authentic standards) will be described. We also give methodol-

ogies to search electronic data to provide accurate mass matching

of experimental data to reported metabolites (and where possible

biological naming).

Experimental

Chemicals

All chemicals and solvents used were of Analytical Grade purity

or greater. Methanol and water were purchased from Sigma-

Aldrich (Gillingham, UK) and formic acid was purchased from

VWR (Loughborough, UK).

Sample preparation

Serum. Serum was obtained from 90 healthy subjects (41 male,

49 female) as part of the HUSERMET project.46 Samples were

prepared and analysed in one analytical batch for each of posi-

tive (ES+) and negative (ES�) ion modes as described previ-

ously.36

Urine. Urine was obtained from 40 healthy subjects as part of

the UK Biobank sample collection and transport validation

study.47 Samples were deproteinised by addition of 200 mL

methanol to 100 mL urine at room temperature, vortex mixing

and centrifugation (13456g, 15 minutes). The supernatant was

lyophilised (HETO VR MAXI vacuum centrifuge attached to

a HETO CT/DW 60E cooling trap; Thermo Life Sciences,

Basingstoke, UK) and reconstituted in 200 mL water. All samples

were analysed in one analytical batch for each of ES+ and ES�.

Saccharomyces cerevisiae intracellular extracts and metabolic

footprints. Samples were collected from a fermentor (Applikon

Biotechnology, Netherlands) operating under turbidostat

conditions.48 A diploid heterozygous deletion yeast strain

BY4743 hoD/HO, (YDL227C; MATa/MATa; his3D1/his3D1;

leu2D0/leu2D0; met15D0/MET15; LYS2/lys2D0; ura3D0/

ura3D0) was grown aerobically in a synthetic media49 with

a working volume of 2 L. Metabolic footprint (exometabolome)

samples (n ¼ 16) were collected by sampling 5 mL of culture
Analyst, 2009, 134, 1322–1332 | 1323



followed by separation of cells and metabolic footprint by

syringe filtration (0.22 mm, Sartorius, UK). Intracellular extracts

(n¼ 49) were obtained employing a range of quenching solutions

containing either 0.9% saline, 60% methanol, 90% methanol,

60% methanol and 0.85% ammonium carbonate, glycerol–water

(3:2 v/v) or ethanol and extraction protocols (ethanol, methanol/

chloroform and either 100% or 60% methanol) as described

previously.50 All samples were lyophilised (200 mL-footprint,

800 mL-intracellular extract), reconstituted in 200 mL water and

analysed in one analytical batch for each sample type for each of

ES+ and ES�.

Placental tissue metabolic footprints. Placental tissue was

cultured for 96 hours in a serum-based growth medium at 3

different oxygen tensions (1, 6 and 20%) as described previ-

ously.51 A total of 36 samples were analysed following lyophili-

sation of 100 mL of the metabolic footprint and reconstitution in

200 mL water. All samples were analysed in one analytical batch

for each of ES+ and ES�.
Ultra performance liquid chromatography-LTQ/Orbitrap mass

spectrometry

All samples were analysed using an Acquity UPLC chromato-

graphic system (Waters, Elstree, UK) coupled to an electrospray

LTQ-Orbitrap hybrid mass spectrometer (ThermoFisher Scien-

tific, Bremen, Germany). 10 mL of each sample was injected on to

the chromatographic system and was eluted as previously

reported 52 on an Acquity UPLC BEH 1.7 mm-C18 column. The

LTQ-Orbitrap hybrid mass spectrometer was operated in posi-

tive (ES+) and negative (ES�) ion modes, with a mass resolution

of 30 000 (FWHM) and with operating parameters being tuned

for maximum sensitivity for MRFA (Sigma-Aldrich, UK) at

mass 514.28 Da in ES� and 524.26 Da in ES+. This mass was

chosen because it is central in the typical mass ranges acquired of

50–1000 Da. The instrumental parameters were constant for each

sample set but changed for the analysis of different sample types

because of the tuning process applied. The Orbitrap mass ana-

lyser was mass calibrated each day using a calibration solution

defined by the manufacturers.
Gas chromatography-TOF-mass spectrometry (GC-TOF-MS)

All samples were analysed as previously described on an Agilent

6890 GC (Agilent Technologies, Stockport, UK) coupled to

a LECO Pegasus III electron impact mass spectrometer (LECO

Corp., St. Joseph, MO). Lyophilised single component solutions

(0.22–1.09 millimoles L�1) were chemically derivatised in

a two-step process. Firstly, 50 mL of 20 mg mL�1 O-methoxyl-

amine in pyridine was added, vortexed, and incubated at 40 �C

for 80 minutes in a dri-block heater. The second step involved

addition of 50 mL N-methyl-N-trimethylsilyltrifluoroacetamide

(MSTFA), vortexing, and incubation at 40 �C for a further 80

minutes. On completion, 20 mL of retention index marker solu-

tion was added (0.6 mg mL�1 docosane, nonadecane, decane,

dodecane and pentadecane in pyridine). Derivatised samples

were analysed using two methods as previously described.53
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Data processing of UPLC-MS data

Raw data processing. All raw data (in.raw file format) were

converted to netCDF file format with the FileConverter program

available in XCalibur (ThermoFisher Scientific, Bremen,

Germany).

XCMS deconvolution. XCMS is an open-source deconvolution

program available for LC-MS data.54 Deconvolution using the

XCMS program was performed using similar settings to those

reported previously36 with the exception of sn threshold ¼ 3,

step ¼ 0.02, m/z diff ¼ 0.05 and for grouping bandwidth ¼ 10

and mzwidth¼ 0.05. The esi program55 available with the XCMS

software package was used to write peak output files to an

annotated version (as a .csv file) which is more appropriate for

these studies.56 XCMS and esi were run using R version 2.6.0.

Subsequent analysis of the data was performed using the

Matlab� scripting language 7.4.057 and all workflows were

written using Taverna 1.7.0.58 These processes were performed

on a Windows-based PC with 2GB RAM.

Frequency of mass differences

(a) mass difference versus Pearson correlation calculations.

The procedure described was applied to each sample set indi-

vidually in positive ion mode and then repeated in negative ion

mode. Taking each peak in turn in increasing mass order, all

mass differences between all peaks were calculated and results

were binned to mass windows of 0.025 Da in the mass range

0–1000 Da, in total 40 000 bins. Simultaneously Pearson corre-

lations using chromatographic peak area data were calculated

between all binary peak combinations and results were binned to

windows of 0.05 in the range �1 to +1 (a total of 40 bins). The

data for mass differences and Pearson correlations were

combined in to a two-dimensional data matrix of mass difference

versus Pearson correlation. The data matrix was completed with

the number of entries for each mass difference-Pearson correla-

tion pairing (40 000� 40 provides a total of 1.6 million pairings).

(b) mass difference versus retention time (RT) difference

calculations. The procedure described was applied to each sample

set individually in positive ion mode and then repeated in

negative ion mode. Taking each peak in turn in increasing mass

order, all mass differences between all peaks were calculated and

results were binned to mass windows of 0.025 Da in the mass

range 0–1000 Da, in total 40 000 bins. Simultaneously, retention

time differences were binned to 2 seconds, range 0–1200 for each

binary peak combination, in total 600 bins. The data for mass

and retention time differences were combined in to a two-

dimensional data matrix of mass difference versus retention time

difference. The data matrix was completed with the number of

entries for each mass difference-retention time difference pairing

(a total of 24 million pairings).

To note is that mass differences and retention times are peak-

specific whereas Pearson correlations are peak- and sample-

specific. The comparatively large sample sizes applied in this

study allow correlation coefficients to be calculated with narrow

confidence intervals. For smaller sample sets the results are less

precise with larger confidence intervals and the results can be

unreliable.44
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Results and discussion

1. Determination of typical mass signals and ion categories

detected

LC-MS, CE-MS and DIMS analytical platforms are increasingly

being applied with electrospray ionisation and provide thou-

sands of mass signals.36 A particularly intricate collection of mass

signals is detected where one metabolite can be detected as

multiple ions, each of a different mass. These ions of different

mass are highly correlated to the parent metabolite and are

detected at the same retention time when chromatography is

interfaced to the mass spectrometer. This pattern of behaviour

was used to identify, in five different sample types, the different

types of ions that are detected frequently. Calculations to

compare mass differences versus Pearson correlations and to

compare mass differences versus retention time (RT) difference

were performed as described in the Experimental section. Data

calculated were visualised in surf plots (3D plot of the surface for

the frequency (z axis) compared to the mass difference (x axis)

versus correlation data (y axis) and separately for the mass
Fig. 1 Surf plots describing the frequency of mass differences detected in

metabolic profiling experiments with data acquired on an Acquity UPLC

coupled to an electrospray LTQ-Orbitrap hybrid mass spectrometer.

Data for (a) mass difference versus Pearson correlation versus frequency

and (b) mass difference versus retention time difference versus frequency

are shown.
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difference (x axis) versus retention time difference (y axis)). Surf

plots for ES+ data acquired by the analysis of serum are shown in

Fig. 1(a) (mass difference versus Pearson correlation versus

frequency) and Fig. 1(b) (mass difference versus retention time

difference versus frequency) for expanded regions defining the

ions detected of highest frequency.

The surf plots describe the distribution of the mass differences

with either correlation using peak area (Fig. 1(a)) or retention

time difference (Fig. 1(b)). Some mass differences are observed

more frequently above the general background of mass differ-

ences, at high positive correlations (>0.9) and at small retention

time differences (<2 seconds). Only positive Pearson correlations

indicated a relationship between ions originating from the same

metabolite. As a separate calculation for those pairings (Pearson

correlation coefficient > 0.9 and RT < 2 seconds) of higher

frequency the exact mass differences were calculated from

accurate mass data (not binned data) and the median mass

difference reported. This was performed to increase the mass

accuracy from the initial 0.025 Da bin size to an accurate mass.

The bin size of 0.025 was chosen to provide an overview (while

ensuring acceptable calculation speeds) from which the data for

these bins only were used to calculate mass differences accu-

rately.

Some of the most frequent mass differences (associated with

retention time differences of less than 2 seconds) could be easily

identified. It should be noted that other programs can undertake

one or more of these processes (for example, the esi program55),

though not employing the same method of calculation. A list of

these mass differences and associated chemical identifications are

shown in Table 1. Of specific interest is the high mass accuracy

(mass error of less than 0.0003 Da) observed between measured

and expected mass differences, even when the mass differences

are measured for ions of different ion intensities (for example, for

low molecular weight metabolites the 13C isotope is commonly

only detected at responses of less than 5% of the detected 12C

metabolite response, which itself can be of low intensity). The

mass difference relating to the carbon isotope peak (1.0033) was

the most frequent mass difference observed in all studies. Other

frequently observed mass differences were those relating to

sodium adducts, sulfur (34S) isotope peaks, chlorine (37Cl) isotope

peaks and doubly/triply charged ions.

Mass differences relating to the 2H, 15N, 18O isotopes were not

detected. Theoretically the Orbitrap mass analyzer can resolve

mass differences associated with the mass difference between 12C

and 13C isotopes (mass difference ¼ 1.0034 Da) and 1H and 2H

isotopes (mass difference ¼ 1.0063 Da). However, the mass

difference for hydrogen isotopes was not detected because of the

low natural abundance of 2H (0.015%). The instrumental limit of

detection restricts the possibility of detecting other low natural

abundance isotopes for most metabolites which are present at

low concentrations. The detection of sulfur (34S) and chlorine

(37Cl) isotopes can assist in reducing the number of possible

molecular formulae in putative identification processes. The

isotope ratio can also be applied to deduce the number of

elemental atoms present in the molecule to further reduce the

molecular formulae possibilities.26

The detection of adduct ions was expected and sodium (and to

a lesser degree potassium) adducts were frequent. Ammonium

adducts were also detected though this could also be the loss of
Analyst, 2009, 134, 1322–1332 | 1325



Table 1 Frequently detected mass differences observed using the electrospray LTQ-Orbitrap hybrid mass spectrometry system. The experimental
accurate mass difference is the median for all sample types analysed. The theoretical mass difference is defined in parenthesis. The 34S and 37Cl mass
differences were detected in the same mass bin of width 0.025 Da

Peak
Experimental accurate mass
difference (Theoretical) Type

13C isotope 1.0033 (1.0034) Isotope
Doubly charged (C isotope) 0.5018 (0.5017) Isotope
Triply charged (C isotope) 0.3372 (0.3344) Isotope
34S isotope 1.9956 (1.9958)* Isotope
37Cl isotope 1.9971 (1.9972)* Isotope

<0.3 Artifact
Sodium (Na) 21.9820 (21.9820) Adduct
Doubly charged Na ion 10.9870 (10.991) Charged adduct
Potassium (K) 37.9570 (37.9555) Adduct
H2O 18.0106 (18.0106) Adduct/fragment
NH3 17.0266 (17.0265) Fragment
CO 27.9950 (27.9950) Fragment
CO2 43.9898 (43.9898) Fragment
HCOOH 46.0055 (46.0054) Fragment
HCOONa 67.9876 (67.9874) Adduct or fragment
NaCl 57.9588 (57.9586) Adduct
C3H4O2 72.0206 (72.0211) Fragment
HCOOK 83.9615 (83.9613) Adduct or fragment
Na � K 15.9734 (15.9739) Adduct difference
NH3 � Na 4.9554 (4.9554) Adduct difference
NaCl � HCOONa 10.0288 (10.0288) Adduct difference
ammonia from amine-containing metabolites. With the method

of calculation this shows that protonated and one or both salt

adducts are detected which means that the number of metabolites

detected is lower than the number of mass features observed.

This is also observed in GC-MS data where multiple trime-

thylsilyl derivatives are detected.15

Other mass differences required further investigation to

determine their origin. Fragmentation of molecular ions

including the loss of water, ammonia, carbon monoxide, carbon

dioxide and formic acid was observed. The loss of formic acid

can imply decarboxylation of a carboxylic acid or the loss of

formate from a formate adduct ion. Of interest is that loss of

glycine from conjugated metabolites was detected at a low

frequency. The loss of taurine from conjugated metabolites was

not observed. Results are inconclusive as to whether fragmen-

tation of conjugated metabolites occurs under the instrument

conditions employed. The frequency with which salts bind non-

covalently to charged ions (adductation) was of interest. For

example, the binding of sodium formate to hydroxybutanoic acid

was detected. Other common adductations were observed

involving sodium, formate, sodium formate and sodium chloride

addition to metabolites.

The detection of multiply-charged ions was observed. The

multiply charged metabolites were generally observed for

metabolites of higher molecular weight (mass > 450 Da) where

the charge can be distributed across the molecule. Dimers ([2M +

H]+ and [2M � H]�) will not be reported when applying the

described methodology but were observed from manual inter-

pretation of electrospray data. This has been observed previ-

ously.59 Any dimers will have a frequency of one as the mass

difference is unique for each metabolite and therefore were not

highlighted as frequently observed using the process applied. Of

these there are no retention time differences and therefore

dimerisation is a process which occurs in the electrospray process
1326 | Analyst, 2009, 134, 1322–1332
and not prior to chromatography (where a different RT may be

expected).

An instrument-specific artifact was observed for the Orbitrap

mass analyser which required further investigation. The Orbitrap

mass spectrometer operates by measuring ion oscillations within

its mass analyser, where the frequencies of ion oscillations are

inversely proportional to the square root of the mass-to-charge

ratio. Ions of the same m/z will oscillate in phase at the same

frequency (in a packet). The oscillation signal is detected as an

image current on a pair of plates across the mass analyser. The

resulting interferogram (consisting of a superposition of sine

waves) is converted into the frequency domain, and hence the m/z

domain, using a Fourier transform algorithm. If there is an over-

abundance of ions of a certain m/z then the detector is seen to

overload and clip the associated oscillation sinusoid. This artifact

can easily be seen after the Fourier transform as a symmetrical

pattern of decaying low intensity peaks centred round the main

high intensity peak with a range of mass differences of less than

0.3 Da. We describe these extra peaks as Fourier Artifact (FA)

peaks and they must not be misinterpreted as real ion detection.

In-source fragmentation of metabolites is of concern, though it

can provide greater structural information without the require-

ment for tandem mass spectrometry (and more expensive

instrumentation). The extent of fragmentation is instrument-

specific and instrument-tuning-specific. The instrumental

parameter which has a high potential to cause fragmentation of

molecular ions is the tube lens voltage. The types of metabolites

which fragment are metabolite-class specific (for example, loss of

ammonia and/or carbon dioxide from amino acids). To test

whether the tube lens voltage was creating significant fragmen-

tation we analysed a single serum sample in negative ion mode at

five different tube lens voltages, with eight injections for each

voltage. The results are described in Table 2. As the voltage

increases the number of peaks detected increases. However, the
This journal is ª The Royal Society of Chemistry 2009



Table 2 Comparison of detection of different ion types as a relationship with tube lens voltages using accurate mass and retention time differences of
less than 2 seconds. Correlation analysis was not used as sample sizes were low (n ¼ 8). Data for negative ion mode only for serum samples analysed in
a single batch are shown with the number of peaks detected for each ion type and tube lens voltage. Detected peaks is defined as all peaks detected in
a minimum of 75% of all samples at a specific voltage

20 V 40 V 60 V 80 V 100 V All
Negative
ion mode
(1835 peaks)

No. of samples 8 8 8 8 8 40
Detected peaks 901 1040 1321 1655 1697 —
Fourier peaks 30 40 42 42 40 44
Isotope peaks 296 313 322 348 341 350
Doubly charged 1 4 2 4 4 4
Triply charged 0 0 0 0 0 0
Dimers 5 5 5 5 5 5
Adducts 0 0 0 0 0 0
(Na, K) 13 13 19 19 19 19
Fragments + others 226 237 256 263 261 264
Total classified 571 612 646 681 670 687
percentage of any ion type does not increase or decrease signif-

icantly, though there is a small (less than 10%) increase in the

number of fragment ions detected as the tube lens voltage

increases. Increasing the tube lens voltage provides increased

efficiency of ion transfer from electrospray source to mass ana-

lyser though without significant increases in the amount of

fragmentation observed. Most probable is that the sub-atmo-

spheric pressure in the tube lens reduces the probability of ion-

molecule collisions required for fragmentation. The number of

ions detected and the frequency of fragmentation requires

balancing to maximise the detected coverage of the metabolome

while minimising the fragmentation of molecular ions. Operating

the UPLC system at a column temperature of 50 �C may also

cause dissociation of metabolites though it would be expected

that these fragments would be detected at different retention

times and hence not be highlighted as fragment ions with the

methodologies applied by the authors.

2. Chemical annotation of detected mass signals

As described above, a range of different types of ions can be

detected for a single metabolite. The frequencies of mass differ-

ences were determined for a range of different sample types

which were analysed using a UPLC-LTQ/Orbitrap platform.

These included serum, urine, yeast intracellular extracts, yeast

metabolic footprints and placental explant metabolic footprints.

For all data the frequencies (as a percentage of total number of

detected features) of each ion type (protonated and deprotonated

metabolite ions, isotopes, multiply charged ions, FA peaks,

adducts, fragment ions and dimers) were calculated. For a single

metabolite these different ion types have similar retention times

(�2s) and a Pearson correlation greater than 0.9. The results are

shown in Table 3.

Of specific interest is that a single metabolite can be detected as

multiple ions of different mass. The frequency of metabolites

detected as multiple ions range from 14.0% to 33.1% of all peaks

detected for the sample types analysed and for the mass spec-

trometer employed. The percentage describes the number of

features (relative to all detected features) which can be reported

as a single metabolite. For placental footprints, 1 in 3 or 33.1%

metabolites were detected as multiple mass ions in one analytical
This journal is ª The Royal Society of Chemistry 2009
run. 2271 detected features relate to 1519 metabolites being

present in the samples. These ranges can be expected to change

for different instrument types and specific instrument operating

conditions. Data also showed that the number of multiple

features for a single metabolite is not concentration dependant,

but the relative ratio of responses for each feature can be

concentration dependant.

No ion type was uniquely observed in one ion mode only,

though the frequency can be much higher for one ion mode. For

example, sodium and potassium adduct ions are observed more

frequently in positive ion mode. However, sodium formate and

sodium chloride adduct ions are more frequently observed in

negative ion mode as singly charged ions. This exhibits the non-

covalent addition of ionic or neutral species to metabolites. The

percentage of total peaks which are defined as sodium adducts is

dependent on the sample type and therefore it could be influ-

enced by the concentration of sodium in the sample. Serum

contains 142.6 mmol L�1 sodium according to HMDB and ES+

has the greatest frequency of sodiated adduct ions. Urine has

lower concentrations of sodium (14.7 mmol L�1) and lower

frequencies of sodiated adduct ions. Yeast intracellular extracts

and footprint samples were observed to have similar levels of

sodiated adduct ions. Of interest is that sodiated ions are

observed not only in ES+ but also in ES� where sodium can

create a non-covalent interaction with the metabolite.

3. Metabolite database and mass spectral libraries

The results described above highlight the complexity of the kind

of raw analytical data typically obtained. We perform two iter-

ative processes to provide, where possible, the chemical identi-

fication of a wide range of metabolites detected when applying

GC-MS and UPLC-MS analytical platforms. These processes

have involved the construction of (a) The Manchester Metab-

olomics Database (MMD) containing accurate mass data for all

potential metabolites detected and other chemical and physical

properties and (b) mass spectral metabolite libraries constructed

using authentic standards.

(a) The Manchester Metabolomics Database. Molecular

structures of metabolites from a range of sources have been
Analyst, 2009, 134, 1322–1332 | 1327



Table 3 Summary of the frequency of different ion types detected in all sample types investigated. All results are reported as a percentage of the total
number of ions detected for ES� (upper) and ES+ (lower). % Annotated describes the percentage of all detected peaks which have been identified as FA,
isotope, doubly or triply charged, dimmers, adducts or fragment peaks

Serum Yeast intracellular extract Yeast footprint Placenta Urine

No. of samples 90 49.0 16.0 36.0 108
No. of peaks 4513 595 595 2271 4804
FA peaks 1.60 4.00 4.20 1.06 2.58
Isotope peaks (C, Cl, S) 18.1 16.1 10.3 17.79 7.50
Doubly charged 3.35 <0.01 0.00 0.57 0.44
Triply charged <0.02 <0.01 <0.01 0.00 0.10
Dimers 0.01 0.00 0.00 0.13 0.17
Adducts (Na, K) 1.60 0.67 0.50 0.97 0.71
Fragments/adducts 8.10 2.00 0.67 11.6 2.45
% Annotated 32.8 22.8 15.7 33.1 14.0

Serum Yeast intracellular extract Yeast footprint Placenta

No. of samples 100 49.0 16.0 36.0
No. of peaks 2079 979 979 1906
FA peaks 0.77 3.90 4.60 1.47
Isotope peaks (C, Cl, S) 13.7 14.6 11.5 13.27
Doubly charged 8.13 0.00 0.00 1.52
Triply charged 0.80 <0.01 <0.01 <0.01
Dimers <0.01 0.00 0.00 0.00
Adducts (Na, K) 3.40 2.76 1.84 2.57
Fragments/adducts 1.92 5.40 4.80 5.67
% Annotated 28.7 26.7 22.8 24.5
collated in a cheminformatics workflow environment60 (Pipeline

Pilot61). Human metabolite structures were retrieved from the

HMDB62 and Lipid Maps63 databases, plus human metabolic

network reconstructions.64–66 Saccharomyces cerevisiae metabo-

lite structures were obtained from the yeast metabolic network

reconstruction of Herrgard et al..16 Further metabolic structures

not assigned to a specific species were retrieved from KEGG67

and BioCyc.68 Drug structures, which may also appear in

samples, were taken from DrugBank69 and KEGG Drug.67

Duplicate molecules, as identified by equivalent canonical

SMILES70 (a unique line notation of molecular structure) were

merged to a single entry. Where records contained salts in the

structure, a further record was generated without the salt. For

charged metabolites a further record representing the uncharged

form was generated (e.g., glutamate and glutamic acid) and are

represented as two separate entries in the database. The prove-

nance of these derived molecules is preserved by linking back to

the original molecule from which they were generated. Each

metabolite record contains a range of chemical, physical and

other properties, including preferred names and synonyms,

molecular formula and accurate molecular masses to allow

putative identification of metabolites from accurate mass data

acquired on UPLC-MS instrumentation, SMILES and InChI

strings depicting structure, internal identifiers, and links back to

the source databases. SMILES and InChI are unambiguous

representations of structure, including steroisomerism, and are

database independent and we recommend the use of these iden-

tifiers.16 Construction of the database is an ongoing process as

metabolomics is a relatively new scientific discipline and

resources are frequently updated. For example, HMDB was

updated from version 1.0 to 2.0 in November 2008 and the new

data are included in the MMD. The current version of the MMD
1328 | Analyst, 2009, 134, 1322–1332
database contains 42 687 records. This number is high (compare

to HMDB 2.0 which contains 6500 metabolites) due to the

inclusion of non-species specific metabolites and structural

isomers (for example D and L isomers), but this strategy provides

greater coverage.

Metabolites can be identified by many names. For example, D-

glucose has 23 named entries in HMDB, including ‘grape juice’

and ‘corn sugar’. This illustrates how different researchers and

databases use different names for the same metabolite. It is useful

to agree on names as much as possible, and to this end we have

defined a methodology for naming from the synonyms found in

the source databases. Where possible we have adopted the name

used in the yeast metabolic network reconstruction as these we

know to have been assessed rigorously by multiple parties

(further emphasising the utility of a community approach to

Systems Biology16). Our second preference is for names derived

from KEGG, then HMDB, BioCyc, LipidMaps, and the human

metabolic network reconstructions. Drug names are taken

principally from KEGG Drug and then DrugBank. Clearly this

does not result in perfect naming, but all known synonyms are

also stored for searching. IUPAC names are only provided if

they are present as the unique name or synonym from the sources

used. Further work may provide the matching of species to

ChEBI.71

(b) Experimentally derived mass spectral metabolomic

libraries. The first stage of creating the Manchester Metabolomic

Database resulted in 4915 unique metabolites. Definitive identi-

fication of metabolites requires the matching of at least two

orthogonal properties of the detected metabolite to that of an

authentic standard. All available authentic standards were

purchased to enable the construction of mass spectral libraries
This journal is ª The Royal Society of Chemistry 2009



for GC-MS and UPLC-MS. SMILES strings were applied to

define metabolites which were available to be purchased as

authentic standards, with Sigma-Aldrich as the supplier (Dis-

coveryCPR72). 1068 metabolites were found to be available

commercially and were purchased. Each metabolite was analysed

using our standard analytical methods36,53 on two analytical

platforms, GC-MS and UPLC-MS.

High quality GC-MS data for 637 oxime/trimethylsilylated

metabolites were acquired, resulting in 794 metabolite peak

entries, since multiple products were formed during trimethylsi-

lylation derivatisation. Retention index, electron impact mass

spectrum and InCHI identifier data have been collated in a single

mass spectral library using the LECO ChromaTOF software

(v2.24) in a format applicable for use on multiple software

packages including the NIST MS Search 2.0 program. This

library is applied for metabolite identification in GC-MS datasets

acquired by the authors using retention indices and electron-

impact mass spectra as two orthogonal properties. We also apply

other libraries including the NIST/EPA/NIH02 library and The

Golm Metabolome Database27 for preliminary identification.

The inclusion of drugs present in the Sigma-Aldrich LOPAC

library73 is currently being performed. The library contains many

metabolites previously reported (for example in the NIST/EPA/

NIH02 library), though some metabolites have not previously

been reported or have not been reported as data acquired on

TOF instruments. The novelty of the library is three-fold; (a)

inclusion of retention indices for a specific instrumental method

(b) the method in which the metabolites were chosen was

a logical bioinformatical process and (c) the application of

InCHI identifiers which allows direct connectivity to other elec-

tronic resources. Metabolite names can not always provide this

connectivity (see ref. 16 for further information).

A total of 788 metabolites were detected using UPLC-MS in

positive ion, negative ion or in both ion modes. These data have

been collated with accurate mass and molecular formula data as

described in the MMD to allow preliminary identification of

metabolites using two properties (retention time and accurate

mass). Currently MS/MS spectra are being acquired at two

normalized collision energies of 20% and 40% and included in the

database and a separate library which can be employed in the

NIST MS Search 2.0 program to allow definitive identification of

those metabolites available as authentic standards. These data

being acquired are for the protonated and deprotonated ions

only at present. The inclusion of other ions such as adducts to the

library is not currently planned though is of importance as these

types of ions are also detected in biological samples. Definitive

identification using libraries is only possible for those metabolites

commercially available. Approximately, 78% of known metab-

olites are not commercially available from Sigma-Aldrich and

therefore methodologies to identify such metabolites putatively

are required. The first stage of this process for UPLC-MS data is

the construction of the MMD containing all reported metabo-

lites, which can then be interrogated.
Fig. 2 Flow diagram describing the protocol applied to determine

chemical and biological identification of detected mass features.
4. Matching of UPLC-MS acquired accurate mass data to

molecular formulae and the Manchester Metabolomics Database

After raw data deconvolution and grouping of UPLC-MS data

using XCMS, a list of mass peaks with accurate mass (median)
This journal is ª The Royal Society of Chemistry 2009
and mass range with median RT and RT range is reported.

Following processing of the raw data and univariate or multi-

variate analysis to identify peaks of biological interest we applied

a two-step process (Fig. 2) using Taverna workflows74–76 which

allows putative identification of metabolites in an automated

manner.

Step One matches the experimentally observed accurate mass

(defined as median mass from XCMS) to the mass of a molecular

formula present in PubChem as has been described by Kind and

Fiehn.26 This list (sorted to increasing mass) contains all known

molecular formulae (as defined in PubChem) and accurate

masses in the mass range 50–1000 Da for all common elements

(including H, C, N, O, P, S, F, Cl, Si, but not Na or K). Isomers

have identical molecular formulae and so are grouped as a single

molecular formula. The PubChem list contains endogenous

metabolites, drugs and other chemicals not generally classified as

endogenous or exogenous metabolites. No checks are made for

validity of the molecular formula (MF) e.g. valency or nitrogen

rules as all molecular formulae relate to known compounds.

During this process ‘potential’ isotope, charged and adduct

peaks are identified based on accurate mass difference and

retention time similarity (these can be confirmed using correla-

tion analysis or scatter plots of the raw data). Using the median
Analyst, 2009, 134, 1322–1332 | 1329
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peak response for each peak the ratio for potential 12C/13C,
35Cl/37Cl and 32S/34S isotope peaks is calculated and the number of

C, Cl or S atoms is included in the output data. For each sample

set the workflow reports all matched molecular formula within

a user-defined mass error range for protonated and deprotonated

ions and a range of commonly-detected adduct ions (sodium,

potassium, ammonium, sodium chloride, sodium formate,

potassium formate). Table 4 lists for all the sample sets the

number of protonated, deprotonated and adduct ions which

matched with at least one molecular formula in PubChem using

a mass tolerance of 5ppm. The percentage of peaks assigned as

isotope or Fourier artifact peaks ranged from 15–32% and were

highest for serum in ES+ and ES�. These assignments are based

on accurate mass and retention time differences only and do not

include correlation-based analysis. The data presented in Table 4

applies these two parameters and correlation analysis to assign

isotope and FA peaks and therefore small differences are

observed in the results described in Tables 3 and 4. The

percentage of the total peaks matched with at least one molecular

formula in PubChem using a mass tolerance of 5 ppm ranged

from 53–67% and was dependent on the sample type.

This is complementary to experimentally derived metabolite

library or MMD searches as these libraries are dependent on

their source and currently not all metabolites (both endogenous

and exogenous) are publicly available (for example, drug

metabolites, exogenous metabolites from food and environ-

ment). Therefore the ability to provide a molecular formula

without a definitive match is still helpful in a range of investi-

gations, and the absence of a match can highlight an atypical ion

which can be, for example, a fragment ion. n-alkyl ions were

observed in positive ion mode and were being matched to MF

but would not be matched to a metabolite library. These ions are

probably created by cleavage of alkyl-containing metabolites to

produce the alkyl group as a charged species.

In Step Two, a Taverna workflow has been implemented to

match the observed accurate mass (median) to the accurate mass

of a metabolite in the MMD described above for protonated,

deprotonated ions and adduct ions (sodium, potassium, ammo-

nium, sodium chloride, sodium formate, potassium formate). A

match to a user-defined mass accuracy (usually set to 5 ppm)

provides a result. Common name, internal unique identifier,

molecular formula and retention time are reported as

a minimum. Matching to accurate mass and not molecular

formula is performed because of the much greater search speed

achieved using this approach. The additional information

relating to isotopes, adducts and atom numbers passed through

from Step One helps reduce the number of false positive matches

for molecular formulae or named metabolites giving more

confidence in the putative identification. Both Taverna work-

flows will be available at myExperiment.77 The percentage of the

total peaks matched with at least one molecular formula in

MMD using the same mass tolerance of 5 ppm ranged from

39–52% where serum contained the lowest number of metabolites

identified and yeast the highest number of metabolites identified.

This shows the probable greater knowledge of metabolites

present in yeast metabolomes compared to mammalian metab-

olomes. In total 74–90% of all mass ions detected were identified

as either an isotope peak, FA peak, multiply-charged peak or

matched to a molecular formula. These results show that further
1330 | Analyst, 2009, 134, 1322–1332 This journal is ª The Royal Society of Chemistry 2009



experimental and bioinformatics work is still required to provide

a molecular identification to metabolites, and not just a molec-

ular formula. The application of accurate mass and isotope ratio

data for precursor ions and for corresponding product ions

derived from MSn experiments, coupled with retention time data,

would provide greater accuracy of metabolite identification.

Currently, no methods for automated processing of all data to

acquire the information are available.
Conclusions

The research described provides significant advances in the

ability to identify the chemicals causing mass spectrometric

signals detected in metabolic profiling applications, and thus to

provide greater biological significance to results obtained in

metabolomic investigations.

The studies described have provided greater insights into the

complexity of electrospray mass spectrometry data and their

application in metabolomics research. Methodologies have been

applied to acquired experimental data to describe the multiple

types of ions that can be detected for a single metabolite and the

frequency of which these ions are typically detected in a range of

different sample types. On average 14.0–33.1% of ions detected

are multiplicities of a single metabolite showing the over-esti-

mation of the number of metabolites detected. The type and

frequency of ions detected has been shown to be sample type-

dependent and can be expected to be instrument-dependent.

In this study related peaks were grouped together using both

correlation and small retention time differences. However,

methods can be adapted to obtain ‘useful’ information when

either but not both are available or calculated. For example,

when sample sets are small (n < 10) where correlations are

unstable at these small sample sizes. Alternatively, this method-

ology could be applied to DIMS data where no retention time

data are available but the high-throughput nature allows

hundreds of samples to be analysed and therefore correlation

coefficients are valid where sample sizes are large.78

In parallel, the Manchester Metabolomics Database (MMD)

was constructed from the accumulation of metabolite-specific

data from a range of sources including genome scale metabolic

reconstructions, HMDB, KEGG and Lipid Maps. In combina-

tion with the knowledge acquired on the complexity of electro-

spray mass spectrometry data, greater numbers of detected

features could be putatively identified than was previously

achievable and with a greater confidence of identification. To

provide definitive identifications mass spectral-based metabolite

libraries (UPLC-MS and GC-MS) are being constructed which

apply orthogonal chromatographic (retention time/index related

to polarity or volatility) and mass spectral (mass spectrum or

accurate mass related to metabolite structure) for confident

metabolite identification. However, the research highlights the

difficulties in providing definitive identifications of metabolites,

where the majority of metabolites are not commercially available

and therefore other methods are required including the combi-

nation of NMR and mass spectral elucidation of metabolites in

either complex or purified samples.
This journal is ª The Royal Society of Chemistry 2009
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