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Abstract: Several mass–spring–damper models have been developed to study the response of
the human body to the collision with the ground during hopping, trotting, or running. The
mass, spring, and damper elements represent the masses, stiffness properties, and damping
properties of hard and soft tissues. The masses that models are composed of are connected to
each other via springs and dampers. The present paper reviews the various types of mass–
spring–damper models including one-body and multi-body models. The models are further
categorized as being either passive or active. In passive models, the mechanical properties
(stiffness and damping) of soft tissues remain constant regardless of the type of footwear,
ground stiffness, etc. In active models, the mechanical properties adapt to external loads. The
governing equations of motion of all models as well as their parameters are presented. The
specific ways that the models take account of the shoe–ground interactions are discussed as
well. The methods used for determination of different modelling parameters are briefly sur-
veyed. The advantages and disadvantages of the different types of mass–spring–damper mod-
els are also discussed. The paper concludes with a brief discussion of possible future research
trends in the area of mass–spring–damper modelling.

Keywords: mechanical modelling, stiffness, damping, passive and active models, shoe–ground

model, ground reaction force

1 INTRODUCTION

Locomotion is one of the most important functions

of the musculoskeletal system and has been exten-

sively studied using both experimental and model-

ling techniques. Locomotion is studied primarily to

understand either the physiological mechanism of

locomotion or the locomotive deficiencies of the

musculoskeletal system. Despite this extensive effort

in understanding the locomotion mechanism, it is

not yet well understood even in physiological condi-

tions. This is partly due to the complexity of the

musculoskeletal system and partly due to the inter-

play between the musculoskeletal and neural

systems.

The experimental techniques used to study loco-

motion include the force plate measurement of

ground reaction forces, human motion tracking sys-

tems, and electromyography. Although experimental

techniques are valuable in understanding many

aspects of locomotion, they have some limitations.

First, not every quantity can be easily measured. For

example, there is no non-invasive easy way of mea-

suring muscle forces in vivo. Second, experiments

cannot be used to study the isolated effect of para-

meters. For example, it is hardly possible to study

experimentally the independent effects of body

mass distribution on locomotion [1], because one

cannot change body mass distribution while keep-

ing the other parameters constant. It is much easier

to run parametric studies using a model. Third,
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experiments may need access to a large number of

participants and to specific experimenting condi-

tions. For example, experimental study of the effects

of microgravity on the musculoskeletal system

requires prolonged access to microgravity that is

extremely difficult to secure. In modelling, one can

simulate microgravity by changing the gravitation

acceleration, g.

One of the approaches used for modelling of the

musculoskeletal system during locomotion is the

so-called mass–spring–damper (MSD) modelling

approach. In this approach, a limited number of

masses represent the inertia properties of the differ-

ent segments of the human body including hard

tissues and soft tissues. Springs and dampers repre-

sent the mechanical properties of the different seg-

ments including bones, muscles, tendons, and

ligaments. Such relatively simple models of the

human body are very useful in studying the general

principles of locomotion [2]. In particular, they can

be used to determine which features of a moving

human have significant impact on some particular

aspects of her/his locomotion [2]. Therefore, MSD

models have been used extensively for describing

different aspects of locomotion including the

dynamics of running and hopping and the loading

of the human body during these activities. Despite

their widespread use, no overview of the MSD mod-

els of the human body is currently available in the

literature.

Walking, posture, and running and hopping have

their own requirements that are often quite remote

from each other. The biomechanical models that

are developed for describing these phenomena are

therefore quite different. The present paper is con-

cerned only with running and hopping. Moreover,

the main focus is on the MSD models themselves

and not as much on the results that are obtained

using these models. The reviewed models include

one-body and multi-body models and passive as

well as active models. The modelling assumptions,

governing equations of motion, and model para-

meters are presented. The advantages and disadvan-

tages of the different classes of MSD models are

discussed as well. The paper ends with a brief sec-

tion on future research trends in MSD modelling of

running and hopping.

2 PASSIVE MODELS

As implied by their name, passive MSD models of

the human body do not include the effects of any

active element such as muscle. The response of

the model is entirely dependent on the passive

representation of the body segments and is there-

fore the same regardless of environmental para-

meters such as the stiffness of the ground or the

type of footwear. Many MSD models that have been

developed so far belong to this category. Based on

the number of their masses, passive models can be

categorized as either one-body or multi-body mod-

els. Each of the two following subsections covers

one of these two categories of passive models.

2.1 One-body models

Perhaps the simplest model of the interaction

between the human body and the ground during

bouncing gait (hopping, trotting, and running) is

built by attaching a lumped mass representing the

body mass to an in-plane weightless spring repre-

senting the body stiffness. This type of model was

originally proposed by Blickhan [3] and McMahon

and Cheng [4]. Two common types of one-body

mass–spring models have been developed:

(a) one-dimensional (1D) motion model (Fig. 1(a))

used for in-place hopping when there is no for-

ward motion;

(b) two-dimensional (2D) motion model (Fig. 1(b))

used to study in-plane forward running.

The governing equations of the motion of these two

types of one-body mass–spring models are pre-

sented in section 2.1.1.

One-body models are probably the most widely

used MSD models. They are used for different pur-

poses, but the most widespread application of the

one-body mass–spring models is perhaps in deter-

mination of the lower-extremity stiffness and pre-

diction of the ground reaction force (GRF) during

hopping and running. In addition, one-body models

are used to study the stride frequency in running

[5], the energy cost of running [6], the aerobic

demand of running [7], and the effects of hopping

[8] and running [9] speed, various surfaces [10, 11],

and fatigue [12] on the dynamics of the human

my m mm
θ

Δy
ΔL

L0

(a) (b)

Fig. 1 Schematic representation of the (a) 1D motion
and (b) 2D motion passive one-body mass–
spring models [3, 4]
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body. Running in reduced-gravity conditions [13,

14] and the stability of running [15] are also

studied.

Given the importance of one-body models for

determination of the body stiffness, this application

of the one-body models is emphasized in the pres-

ent review. Farley and colleagues [16] used the 1D

motion model (hopping model) for prediction of the

vertical stiffness and force of the human body in in-

place hopping. In a more recent study [17], the 2D

motion model was recruited to calculate the vertical

and leg stiffness during running. The vertical stiff-

ness is defined as the ratio of the vertical leg spring

compression to peak vertical GRF at the middle of

the stance phase [3, 17, 18]. Butler et al. [18] sur-

veyed the available methods for calculating the ver-

tical and leg stiffness using the one-body mass–

spring models. These methods are summarized in

section 2.1.2 of the present paper. In a later study

[19], five different methods for calculation of the leg

stiffness were compared with each other based on

the running pattern estimated by the one-body

mass–spring model. Using experimental data,

Hunter [20] modified a forward (2D motion) run-

ning model for more accurate prediction of the ver-

tical stiffness and GRF in distance running.

Given the simplicity of one-body mass–spring

models, it is natural to question their accuracy in

predicting the characteristics of running. An exten-

sive work for quantitative evaluation of the one-

body mass–spring models was carried out by

Bullimore and Burn [2, 21]. By comparing the model

predictions with the experimental data in normal

and simulated reduced gravity [13], Bullimore and

Burn [2] concluded that one-body models predict

the parameters of the running human (e.g. vertical

active peak GRF, stance time, contact length, etc.)

reasonably well in the normal as well as simulated

reduced-gravity conditions. However, they showed

that one-body mass–spring models (systematically)

overestimate the peak horizontal GRF, the peak ver-

tical displacement of the centre of mass during

stance phase, and the aerial time.

2.1.1 Equations of motion

(a) 1D motion model (hopping model). The equation

of motion for a 1D motion model (Fig. 1(a)) can be

written as follows

m€y + kvery = mg (1)

where kver is the vertical stiffness and is calculated

as

kleg =
Fmax

Dymax (2)

where Fmax is the maximum vertical force and Dymax

is the maximum spring deformation.

(b) 2D motion model (running model). For the 2D

motion model, the equation of motion may be writ-

ten as follows

m€y + klegy = mg (3)

where kleg is the leg stiffness and is calculated as

kleg =
Fmax

DL
(4)

where Fmax is the maximum vertical force and DL is

the vertical displacement of the mass that is formu-

lated as

DL = Dy + L0 1� cos uð Þ (5)

where L0 is the standing leg length and the angle u

is calculated as follows

u = sin�1 _xtc

2L0

� �
(6)

where _x is the forward speed and tc is the contact

time with the ground.

2.1.2 Calculation of vertical and leg stiffness

Butler et al. [18] surveyed the different methods that

had been used to approximate the vertical stiffness

kver of 1D motion one-body mass–spring models.

They identified three general methods in the litera-

ture that are briefly discussed here.

The first and simplest method is proposed by

McMahon and Cheng [4] and was presented in sec-

tion 2.1.1 (equation (2)). As proposed by Cavagna

[22], the vertical displacement can be calculated by

integrating the vertical acceleration data.

The second method developed by Cavagna et al.

[23] uses the subject’s mass m and the period of the

vertical vibration T to calculate the vertical stiffness

and is formulated as follows

kver = m
2p

T

� �2

(7)

In this method, the vertical GRF is assumed to be a

sine wave with its peak happening at the midpoint

of the stance phase.

The third method, which was presented by

McMahon et al. [24], calculates the vertical stiffness
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by using the subject’s mass and the natural fre-

quency of vibrations v0 as follows

kver = mv2
0 (8)

where natural frequency v0 is the inverse of step

duration (time interval between two successive

strikes).

The leg stiffness kleg in 2D motion one-body

models is calculated using the method developed by

McMahon and Cheng [4] presented in section 2.1.1

(equations (3) to (6)).

2.2 Multi-body models

The human body is a very complex system with

many masses (bodies). Therefore, an oversimplified

model, like a simple one-body mass–spring model,

cannot fully explain the various aspects of such a

complex system. For example, the vertical GRF ver-

sus time typically includes two force peaks. Different

names have been used for these two peaks [25]: the

first and second peaks [1, 26], impact and active

force peaks [27–30], passive and active peaks [31],

and impact and propulsion peaks [32, 33], respec-

tively. It is shown that while the active GRF peaks

predicted by simple one-body mass–spring models

during the stance phase of running are comparable

to those obtained from experiments [2], one-body

models are not capable of accurately predicting the

impact (passive) GRF peaks (Fig. 2) [34]. This seems

to be related to the simple sinusoidal shape of the

GRF curves produced by this kind of model.

Several multi-body mass–spring–damper models

(Tables 1 to 3, Figs 3 to 7) have therefore been

proposed for more detailed description of the phe-

nomena observed during human locomotion.

The simplest examples of multi-body models are

two-body models (Fig. 3). Mizrahi and Susak [35]

developed a two-body model (Fig. 3(a)) for estima-

tion of the peak accelerations during impact. A simi-

lar model (Fig. 3(b)) was used for prediction of the

GRF during jumping on hard surfaces [36]. The

model was made of two masses, m1 and m2, repre-

senting the upper and lower body, respectively. The

masses were connected to each other and to the

ground via linear springs, k2 and k1, and dampers, c2

and c1. A simpler but similar model (Fig. 3(c)) was

introduced by Derrick et al. [37] in which the

masses were connected only via a linear spring, k2.

c1 and k1 are the connection between mass m1 and

the ground. That model was used to study the GRF

during running with different stride lengths.

A three-body model was developed by Kim et al.

[38] (Fig. 4(a)) to investigate the shock absorption of

the human body as well as the effects of stiffness

and damping coefficients of the ground–shoe com-

plex on loading. Of the three masses that are present

in the model (Fig. 4(a)), two masses m1 and m2 rep-

resent the foot and tibia, and the other mass m3 rep-

resents the rest of the body. The masses are

connected together via linear springs and dampers.

The shoe–ground interaction is modelled using a

spring and a damper, k1 and c1.

The four-body model developed by Liu and Nigg

(LN model) [1, 39] (Fig. 5(a)) is probably the most

widely used multi-body MSD model of the human

body during hopping and running. The model consists

of four masses, five springs, and four dampers. Two

important novelties separate this model from the pre-

viously discussed models: first, the upper- and lower-

body masses have been divided into rigid (m1 and m3)

and wobbling (m2 and m4) masses. The wobbling

masses represent all non-rigid parts of the body such

as muscles, skin, blood vessels, etc. Second, the shoe–

ground interaction is modelled with a non-linear func-

tion (Table 3) that relates the GRF, Fg, to the touch-

down velocity, _x1, and shoe hardness parameters, a, b,

c, d, and e. Liu and Nigg used this model to study the

effects of the stiffness and damping coefficients [39] as

well as the effects of mass and mass distributions [1]

on the GRF during running and hopping. This model

is used as the basis of a variety of further studies.

Yue and Mester [40] presented two modified ver-

sions of the LN model (Figs 4(b) and 5(b)). The first

model is a four-body model in which the shoe–

ground element is replaced by a vibrating platform

that is fixed to the lower-body rigid mass (Fig. 5(b)).

The second model is a three-body model in which

the upper body is represented by a single rigid mass
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Fig. 2 Typical vertical GRF versus stance time for one-
body (SDOF) and multi-body models (MDOF).
The four-body model by Zadpoor et al. [26] was
used to generate the plot for the multi-body
case
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connected to the lower-body wobbling and rigid

masses (Fig. 4(b)). They used these modified ver-

sions of the LN model to study the effects of taking

account of the wobbling masses in the vibration

analysis of the human body. The outcome of that

study showed that implementing the wobbling mass

in the upper body considerably reduces the loads

sustained by the upper-body rigid mass. In a later

study, Yue and Mester [41] used the modified four-

body model (Fig. 5(b)) to run a modal analysis of

the human body vibrations. Even though these

models are not directly used to study running or

hopping, they are still mentioned in this review

because of their importance in the development of

some other multi-body MSD models. These models

specifically showed the importance of the inclusion

of the wobbling mass in multi-body MSD models.

Zadpoor and Nikooyan [42] showed that the LN

model was not correctly simulated and that if it is

correctly simulated, it will not match experimental

results. In a following study, Zadpoor et al. [26]

modified the parameters of the LN model such that

the predictions of the model agreed with experi-

mental observations.

In a recent study, Ly et al. [43] developed a five-

body model of the human body (Fig. 6) based on

the LN model in which the ground reaction model

in the LN model is replaced with a two-body MSD

system representing the stiffness of the shoe mid-

sole, k6, b6, and c6 (Table 3), and that of the ground,

ks (Table 3). In this model, the force between the

foot and the shoe midsole is modelled using a non-

linear function (Table 3). The ground–shoe interac-

tion is represented using a simple linear function of

the ground stiffness (Table 3). The aim of such mod-

ification is to investigate the independent effects of

the shoe midsole and the ground stiffness on the

impact force during running. The effects of six dif-

ferent soil types representing different ground stiff-

ness values as well as the effects of four different

shoe types on the GRF were studied.

The last example of the multi-body MSD models

that are discussed here is the five-body model devel-

oped by Klute and Berge [44]. The model (Fig. 7) is

composed of upper- and lower-body rigid (m4 and

m3) and wobbling (m5 and m2) masses, the mass m1

of the prosthetic foot, the connecting spring and

dampers, and the prosthetic foot–ground interaction

element. The vertical GRF, Fg, acting on the prosthe-

tic shoe and foot is represented by a non-linear

function of the prosthetic foot and shoe parameters

(Table 3). The model is developed to study the

Table 2 The entries of the mass, stiffness, and damping matrices introduced in Table 1 for various multi-body

MSD models (m, mass; k, stiffness coefficient; c, damping coefficient; NA, not available)

Reference Description mi (kg) ci (kNs/m) ki (kN/m)

[35]
(Fig. 3(a))

Subject A: m1 ’ 62 c1 ’ 0.81 k1 ’ 8.45
m2 ’ 10 c2 ’ 0.94 k2 ’ 45.2

Subject B: m1 ’ 56 c1 ’ 0.79 k1 ’ 5.32
m2 ’ 9 c2 ’ 0.78 k2 ’ 42.3

[36]
(Fig. 3(b))

There were insufficient data in
the original paper to calculate
the magnitude of c1

m1 = 12.05 c1 = NA k1 = 122.00
m2 = 63.45 c2 = 0.84 k2 = 11.22

[37]
(Fig. 3(c))

Values are given for the average
masses (ten subjects) and for
the preferred stride length
condition

m1 = 15 c1 = 0.76 k1 = 78.4
m2 = 61 k2 = 34.1

[38]
(Fig. 4(a))

m1 = 1.12 c1 = 0.17 k1 = 0.05
m2 = 3.26 c2 = 0.44 k2 = 94.10
m3 = 50.62 c3 = 0.04 k3 = 40.10

[39], [40]
(Figs 4(b), 5(a), and 5(b))

m1 = 6.15 c1 = 0.30 k1 = 6
m2 = 6.00 c2 = 0.65 k2 = 6
m3 = 12.58 c4 = 1.90 k3 = 10
m4 = 50.34 k4 = 10

k5 = 18

[43]
(Fig. 6)

m1 = 6.15 c1 = 0.30 k1 = 6
m2 = 6.00 c2 = 0.65 k2 = 6
m3 = 12.58 c4 = 1.90 k3 = 10
m4 = 50.34 k4 = 10
m5 = 0.30 k5 = 18

[44]
(Fig. 7)

m1 = 1.8 c2 = 10.0 k2 = 1.0 3 105

m2 = 6.3 c3 = 0.5 k3 = 50
m3 = 5.4 c4 = 1.5 k4 = 75
m4 = 22.5 c5 = 1.1 k5 = 10
m5 = 54
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effects of the prosthetic feet or shoes on the impact

force during amputee locomotion. The parameters

of seven different prosthetic feet and three different

shoe types are used (Table 3).

2.2.1 Governing equations of motion

For a multi-body system, the governing equations of

motion may be written in a general form as follows

M €X + C _X + KX = W (9)

where M is the mass matrix, C is the matrix of

damping coefficients, K is the stiffness matrix, X, _X ,

and €X are respectively the displacement, velocity,

and acceleration vectors. W is a column vector that

contains the weight of the masses included in the

model. Each element of W is not a scalar compo-

nent of a spatial vector along the axes of a Cartesian

coordinate system but only the magnitude of the

weight of (one of) the masses. In some cases

(Table 1), the force produced by the element of the

model that represents ground–shoe interactions is

also included in W.

For the various models shown in Figs 3 to 7, the

mass, damping, and stiffness matrices as well as

the weight vectors are listed in Table 1. Even

though the left side of equation (9) is linear, the

overall equation is often non-linear due to the

dependence of the force on the position and velo-

city of certain masses within the model. Having the

initial conditions such as touchdown velocities of

the masses, the governing equations of the motion

can be solved numerically using non-linear

Table 3 The formulation and parameters of the shoe–ground and shoe–foot reaction models used in some of the

multi-body models (Figs 4 to 7)

Reference Formulation Parameters

[39], [40]
(Figs 4(b), 5(a), and 5(b))

The vertical GRF (acting on the shoe and foot):

Fg =
Ac axb

1 + cxd
1

_xe
1

� �
; x1.0

0; x1<0

� Ac = 2.00
a = 1.003106

b =
1:56; soft shoe
1:38; hard shoe

�

c = 2.003104

d =
0:73; soft shoe
0:75; hard shoe

�

e = 1.00

[43]
(Fig. 6)

The vertical GRF:
Fg = � ksx5

The values of the parameter are given for six different soil
types

The force between the foot and the shoe sole:

Fs = � k6 x1 � x5ð Þ x1�x5

R0

	 
b6�1

� c6 _x1 � _x5ð Þ
The values of the parameter are given for four different
shoe types

ks =

99
143
210
359
429
880

8>>>>>><
>>>>>>:

, k6 =

222
218
362
403

8>><
>>:

b6 =

2:1679
1:9519
2:3018
2:4346

8>><
>>:

, c6 =

914
1370
1870
2170

8>><
>>:

R0 = 40 mm

[44]
(Fig. 7)

The vertical GRF (acting on the prosthetic shoe and foot):

Fg = axb
1 + sgn _x1ð Þcxd

1
_x1j je

The values of the parameter are given for seven different
prosthetic feet and three different shoes

a =

23:53105

8:43105

5:23105

7:13105

53:83105

7:93105

4:03105

0:163105

0:503105

0:853105

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

, b =

1:72
1:59
1:53
1:59
2:05
1:70
1:68
0:90
1:06
1:15

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

, c =

2:03104

2:03104

54:93104

3:63104

1:13104

5:03104

0:053104

3:83104

9:93104

12:33104

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

d =

0:91
0:95
1:56
1:05
0:90
1:14
0:44
1:25
1:71
1:81

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

, e =

1:00
1:00
1:00
1:00
1:00
1:00
1:00
0:73
0:65
0:61

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
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ordinary differential equation solvers such as

Runge–Kutta solvers.

2.2.2 Determination of the modelling parameters

The values of the modelling parameters for each

multi-body model (Table 1) are summarized in

Table 2. In this section, the methods used for deter-

mination of these parameters are briefly discussed.

In the two-body model developed by Mizrahi and

Susak [35] (Fig. 3(a)), a 1:6 ratio between the lower

and upper masses m1 and m2 (Table 2) was

assumed. Having the magnitude of the whole-body

m4

m2

m1

m3

k3

k2 c2

c1k1

k4 c4

k5

x3

x2

x1

x4

ground 
reaction 
model

x4

x1

x2

x3

k5

c4
k4

k1 c1

c2k2

k3

m3

m1

m2

m4

(a)

(b)

Fig. 5 Schematic representation of the passive four-
body MSD model developed by (a) Liu and
Nigg [1, 39] and (b) Yue and Mester [40]

x2 c2k2

m2

m1

k1 c1x1

h
x1 c1k1

m1

m2

k2 c2x2

x2
k2

m2

m1

k1 c1x1

(a) (b)

(c)

Fig. 3 Schematic representation of the passive two-
body MSD models developed by (a) Mizrahi
and Susak [35], (b) Nevzat Özgüven and Berme
[36], and (c) Derrick et al. [37]

x2 c2k2

m2

m1

k1 c1x1

m3

k3x3 c3

x2

x3

k1 c1

c2k2

k3

m3+m4

m2

m1

x1

(a)

(b)

Fig. 4 Schematic representation of the passive three-
body MSD model developed by (a) Kim et al.
[38] and (b) Yue and Mester [40]
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mass of two measured subjects (subjects A and B,

Table 2) and the mass ratio, the m1 and m2 values

were determined (Table 2). For each subject, the

stiffness and damping coefficients (Table 2) were

estimated by minimizing the difference between the

peaks of the model-predicted and measured

accelerations.

The values of the lower- and upper-body masses

m1 and m2 (Table 2) in the two-body model by

Nevzat Özgüven and Berme [36] (Fig. 3(b)) were cal-

culated by using the average masses of four mea-

sured subjects (75.5 kg). A mass ratio of 0.19

between m1 and m2 was estimated from a set of

experimental data. The values of the spring coeffi-

cients k1 and k2 are the mean of the stiffness values

identified in the original paper for different subjects

and different combinations of natural frequencies

v1 and v2 [36]. The damping coefficients, c, were

calculated as follows

c =
2zk

v
(10)

where z is the damping ratio. A damping ratio of 0.5

was used for the second mode, because it resulted

in the best correspondence between the predictions

and experimental results. Given these data, one can

calculate the damping coefficient of the upper body,

c2. The mean value or the damping coefficient c2 is

given in Table 2. However, the damping ratio of the

first mode was not given in the original paper.

Therefore, the damping coefficient of the lower

body, c1, could not be calculated.

In the two-body model by Derrick et al. [37]

(Fig. 3(c)), the optimization results showed that the

best agreement between the simulated and measured

vertical GRF is obtained when the lower-body mass

m1 is 20 per cent of the total body mass. Ten subjects

participated in the measurements of that study.

Considering an average body mass of 76 kg, the

lower- and upper-body masses were estimated

(Table 2). The best fit between the model predictions

and the GRF measurements was used to determine

the stiffness and damping parameters at different

stride lengths. The values of k1, k2, and c1 presented

in Table 2 relate to the preferred stride length.

The distribution of the masses m1, m2, and m3

(Table 2) in the three-body model by Kim et al. [38]

(Fig. 4(a)) was adopted from the anthropometric

data in reference [45]. The total-body mass was con-

sidered to be about 55 kg. The values of the stiffness

and damping parameters were identified using the

data measured during three consecutive heel strikes.

The mean values of the stiffness and damping para-

meters k1, k2, k3, c1, c2, and c3 are listed in Table 2.

In the LN model [1, 39], the total body was

assumed to be 75 kg. The values of the masses were

adopted from a study by Cole [46] in which the dis-

tribution of the wobbling and rigid masses was esti-

mated based on the formulas developed in

references [47] and [48]. The muscle–tendon prop-

erties presented by Cole [46] were used to approxi-

mate the stiffness values of the springs connecting

the upper-body wobbling and rigid masses, i.e. k4

and k5. The damping coefficient c4 was estimated

using the critical damping assumption [49]. The

spring constant k1 and damping coefficient c1 were

x4

x1

x2

x3

k5

c4
k4

k1 c1

c2k2

k3

m3

m1

m2

m4

x5

m5

c6k6 , b6 

ks

Fig. 6 Schematic representation of the passive five-
body MSD model developed by Ly et al. [43]

k2 c2

m2 c3k3

m3

k4 c4

x3

x1

m1

x5

x4

c5k5

m4

m5

x2

Fg

Fig. 7 Schematic representation of the passive five-
body MSD model developed by Klute and Berge
[44]
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similar to the values used for the overall stiffness

and damping properties of the human leg in refer-

ences [4] and [5]. The parameters of the hard and

soft shoe models, i.e. a, b, c, d, and e (Table 3), were

determined using a least-square algorithm that

fitted the simulated force–deformation curves of

pendulum impact tests to the data presented in ref-

erence [50].

The same values of model parameters as in the

LN model were used in the three- and four-body

models developed by Yue and Mester [40] (Figs 4(b)

and 5(b)).

In the five-body model developed by Ly et al. [43]

(Fig. 6), the same values as in the LN model were

used for m1 to m4, k1 to k5, c1, c2, and c4 (Table 2).

The ground stiffness ks (Table 3) was estimated for

six different soil types through a finite element

method and by using the elastic moduli of the dif-

ferent types of soil obtained from the literature.

Four running shoes with the same shapes and

masses were tested to determine the viscoelastic

properties of the shoe midsole, k6 and b6. The tests

were performed using a hydraulic machine and by

applying a sinusoidal force to the rear part of the

sole. The c6 values were subsequently calculated.

For the five-body model developed by Klute and

Berge [44], a total body mass of 90 kg was consid-

ered to calculate the model parameters. The mass of

the prosthetic foot, pylon, and socket system m1,

the lower-body wobbling mass m2, the lower-body

rigid mass m3, the upper-body wobbling mass m5,

and the upper-body rigid mass m4 were estimated

to be 2 per cent, 7 per cent, 6 per cent, 60 per cent,

and 25 per cent of the total-body mass, respectively.

The stiffness and damping coefficients of the rigid

pylon, k2 and c2, were approximated from the mate-

rial properties of a thin-walled aluminium tube. The

stiffness and damping coefficients of the spring and

the damper connecting the lower-body wobbling

and rigid masses, k3 and c3, were estimated from the

data provided by Cavagna [51]. Field observations of

subjects walking and jumping were utilized to pre-

dict the vibration frequency of the upper-body wob-

bling mass and to subsequently estimate the upper-

body stiffness constants k4 and k5. The upper-body

damping coefficients c4 and c5 were approximated

by applying the critical damping ratio assumption.

3 ACTIVE MODELS

There are two types of muscle activity during the

bounce gait, namely pre-landing and post-landing

muscle activities [52]. The pre-landing muscle activ-

ity is a preparatory mechanism of the human body

to minimize impact shock or other undesirable

effects of landing such as excessive joint rotation.

The post-landing muscle activity is the active

response of the human body to the forces experi-

enced during the collision with the ground. In pas-

sive MSD models, the mechanical properties of the

spring–damper elements of the model are consid-

ered to be constant regardless of the type of foot-

wear, ground stiffness, etc. Neither pre-landing nor

post-landing is therefore taken into account in pas-

sive MSD models. In active MSD models, the pre-

landing activity of the lower-limb muscles is taken

into account. The mechanical properties of the

spring–damper elements are, therefore, no longer

constant in an active model but are adjustable. A

mechanism that mimics the functionality of the pre-

paratory mechanism of the human body adjusts the

properties of the lower-body soft tissues to mini-

mize the undesirable effects that are defined in the

model in terms of the cost function of an optimiza-

tion process.

The GRF predicted with the passive MSD models

is shown to be strongly dependent on the mechani-

cal properties of the footwear [26, 39]. This conclu-

sion is in line with the observations in studies in

which the leg is fixed and exposed to impact [53].

Nevertheless, experiments on actual runners

showed no or little dependency of the GRF on the

shoe type and/or stiffness of the running platform

[54–58]. It has been suggested that the muscle activ-

ity during running is the reason why these two dif-

ferent types of experiments (fixed-leg and actual

runners) yield different results [59].

There is a second experimental observation that

concerns the level of vibrations during running. It is

shown that the vibrations of soft tissues are heavily

damped regardless of the parameters of the system

(e.g. the stiffness of the footwear) [60]. Once more,

it is proposed that muscle activity is responsible for

this behaviour [60–64]. Similar to the GRF, it is

shown that the level of vibrations predicted by a

passive MSD model changes significantly when the

properties of the footwear change [65].

Based on the above-mentioned experimental

findings, an accurate MSD model should take the

muscle activity into account. However, active mod-

els are not yet extensively developed. In a recent

study, Zadpoor and Nikooyan [66] improved a pre-

viously developed model [26] in such a way that it

can take the pre-landing muscle activity into

account. A controller is added to the model shown

in Fig. 5(a) and adjusts the stiffness and damping

properties of the lower-body soft-tissue package (k2

and c2). Although the controller is meant to mimic

the functionality of the central nervous system

1130 A A Nikooyan and A A Zadpoor

Proc. IMechE Vol. 225 Part H: J. Engineering in Medicine

 at Bibliotheek TU Delft on December 23, 2011pih.sagepub.comDownloaded from 

http://pih.sagepub.com/


(CNS) in adjusting the mechanical properties of the

soft-tissue package, it is by no means similar to the

CNS in terms of structure. The controller is a non-

linear optimizer that minimizes some objective

functions that are based on two physiological

hypotheses. The first objective function was

designed based on the constant force hypothesis

according to which the human body adjusts the

mechanical properties of the lower-body soft tissues

such that the changes in the GRF are minimal. The

objective function, Jf, can be formulated as follows

Jf = p1 bi, dih i � p1, 0 b0, d0h ij j+ p2 bi, dih i � p2, 0 b0, d0h ij j (11)

where p1 and p2 are the first (impact) and second

(active) peaks of the GRF (Fig. 2) as functions of the

shoe hardness parameters, and p1,0 and p2,0 are the

initial force peaks [26] calculated using the default

shoe parameters b0 and d0 (Table 3).

The second objective function is based on the

vibration hypothesis. According to this hypothesis,

the human body adjusts the mechanical properties

of the lower-body soft tissues such that the changes

in the level of vibrations are minimal. The vibration

level is quantified based on the amplitude L of the

displacements of the lower-body soft-tissue pack-

age. Based on the vibration hypothesis, the vibration

amplitude cost function, Jv1, can be defined as

Jv1 = Li bi, dih i � L0 b0, d0h ij j (12)

The default values of the amplitude, L0, are calcu-

lated using the default values of b and d, i.e. b0 and

d0. In a previous study of the authors [65], the val-

ues of L0 were calculated. In addition to the cost

function formulated by equation (12), another cost

function was formulated using a different way of

quantifying the vibration level. That second cost

function is, however, not discussed here due to its

failure in providing predictions that were in agree-

ment with experimental observations [66].

The pattern search method was applied for bound-

constrained minimization of the objective functions

[67]. The independent variables of the objective func-

tion were the stiffness and damping coefficients k2

and c2 of the lower-body wobbling mass.

The simulation results using the force cost func-

tion Jf showed that the improved model can predict

the GRF that matches the experiments on actual

runners. The model can also predict the vibration

levels that are in agreement with the experimental

observations when applying the vibration criterion

Jv1. However, the predicted level of vibrations does

not match experimental results when the constant

force objective function is used. Similarly, the

predicted GRF does not match experimental obser-

vations when the vibration objective function is

employed. Thus, in a more recent study, Nikooyan

and Zadpoor [68] introduced a combined cost func-

tion that matches experimental observations better.

The improved cost function, Jfv, is the normalized

sum of the two previously proposed (force and

vibration) cost functions and is formulated as

Jfv =
p1 bi, dih i � p1, 0

p1, 0

����
����+

p2 bi, dih i � p2, 0

p2, 0

����
����

� �

+
Li bi, dih i � L0

L0

����
����

(13)

Nikooyan and Zadpoor [68] repeated their simula-

tions using this improved cost function and showed

that the new cost function can predict the GRF and

vibration levels that are in agreement with experi-

mental observations.

4 DISCUSSION

In this section, the pros and cons of the MSD mod-

els are discussed. First, the entire class of MSD

models is compared with the class of musculoskele-

tal models. Even though these two classes of models

are not parallel and differ in many aspects, they are

sometimes compared [2] in the sense that both

present mechanical models of locomotion. A com-

parison between these two classes of biomechanical

models helps one put the MSD modelling approach

in perspective. Second, a comparison is made

between the different types of MSD models and the

pros and cons of one-body versus multi-body mod-

els, and passive models versus active models, are

discussed. Finally, possible future research trends in

MSD modelling are presented.

4.1 Mass–spring–damper models versus
musculoskeletal models

There are two major approaches to the modelling of

the musculoskeletal system during locomotion,

namely musculoskeletal (or detailed) modelling [69]

and MSD (or simple) modelling. As mentioned

already, these two approaches are quite different and

are therefore not comparable in all aspects. However,

they can be compared in a few aspects. For example,

both modelling approaches try to describe locomo-

tion using mechanical models. Moreover, both

approaches provide some measures of the loading of

the musculoskeletal system during locomotion.

Musculoskeletal modelling is based on detailed

descriptions of the musculoskeletal system. The
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detailed geometry of bones and their inertia proper-

ties, individual muscles and their lines of actions,

and the accurate anatomical architecture of the

musculoskeletal system are implemented in a

sophisticated multi-body model. The models can be

even scaled to account for the differences between

different individuals (subject-specific musculoskele-

tal modelling [70]). These models can provide infor-

mation about the state of individual muscles and

body segments during locomotion. Moreover, they

can be used for determining the detailed loading of

skeletal tissues during locomotion. This type of

information is useful, for example, in finite element

modelling of skeletal tissues.

In MSD modelling approach, a limited number of

lumped masses represent hard tissues and soft tis-

sues. The number of elements present in a typical

MSD model is generally far smaller than the number

of elements present in a typical musculoskeletal sys-

tem. Many tissues are lumped together and are rep-

resented as one single element of the model. Due to

the limited number of elements present in the MSD

models, they are far easier to understand and simu-

late. Therefore, it is much easier to determine the

parameters of an MSD system. Moreover, one can

more easily implement the lesser-known aspects of

locomotion in MSD models. This is because the

overall complexity of the system including the addi-

tional complexity caused by the aspect under study

is less. Moreover, one does not need many para-

meters for implementation of the lesser-known

aspects of locomotion in an MSD model. The gov-

erning equations of motion are also much easier to

derive and to solve numerically. The simplicity of

MSD models comes at the cost of accuracy.

Moreover, the loading of the skeletal system that is

predicted by MSD models is not detailed enough to

be used, for example, in finite element modelling of

skeletal tissues. One of the consequences of the sim-

plicity of MSD models is that they can be more eas-

ily used for pedagogical purposes such as teaching

the biomechanical modelling of locomotion.

Furthermore, MSD models are used in the design

and analysis of other moving objects such as huma-

noid legged robots [71, 72].

4.2 One-body versus multi-body models

The one-body models are simple and need few

parameters. Due to their simplicity, it is easier to

connect experimental observations and model pre-

dictions. As explained in previous sections, the stiff-

ness of the human body during running is often

calculated using the one-body models. However,

one-body models are not capable of producing the

actual pattern of the GRF. In particular, the GRF

resulting from simulation of one-body models is

always with one peak (Fig. 2). It is well known that

the GRF has two distinct peaks (Fig. 2) in many

cases. Multi-body models are more complicated

and need more parameters, meaning that the deter-

mination of the parameters of multi-body systems is

not as easy as for one-body systems. Connecting

experimental observations to simulation results is

also more difficult. There is no such a thing as the

stiffness of the human body when multi-body sys-

tems are used. There are several stiffness values and

a parameter identification procedure is normally

needed for matching the experimental observations

with simulation results. However, multi-body mod-

els are more capable than one-body systems and

can produce the actual shape of the GRF including

two distinct peaks. In addition, several phenomena

that cannot be studied using the one-body can be

studied using a multi-body system. For example,

one could study the isolated effects of the wobbling

mass on the dynamic behaviour of the human body

during running.

4.3 Active versus passive models

Passive models do not take the muscle activity into

account. The muscle activity during running is

known to be associated with changes in the stiffness

of soft tissues [26]. Neglecting the muscle activity

means that the validity of the simulation results of

the passive models is limited to the cases where

there is not much change in the stiffness of soft tis-

sues. Active models take the muscle activity into

account and are therefore capable of coping with

the changes in the stiffness of soft tissues. However,

the development of the active models has just

recently started and the currently available active

models are capable only of taking the pre-landing

muscle activity into account. The post-landing mus-

cle activity needs to be also taken into account in

order to enhance the range of the validity of active

models.

4.4 Future research trends

There are several aspects of MSD models that need

further improvement. One of the limitations associ-

ated with most multi-body models is that they can

only capture the vertical behaviour of the body dur-

ing locomotion. A natural enhancement of multi-

body MSD models is to incorporate the effects of

contact angle (similar to the 2D motion one-body

model presented in section 2.1). The other limita-

tions of MSD models are the lack of a standard
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procedure for determination of their parameters

and the lack of appropriately determined para-

meters. Since a lot of effort has been put into accu-

rate determination of the parameters of

musculoskeletal systems, the authors propose that

one can use musculoskeletal systems to determine

the parameters of MSD models. A standard compu-

tational procedure is needed for that purpose.

Active models are a relatively new subcategory

of MSD models. Several enhancements are needed

in order to make this subcategory of models capa-

ble of accurately simulating the interplay between

the neural system and musculoskeletal system dur-

ing running. For example, the post-landing muscle

activities need to be implemented in the models.

The merit of the proposed cost functions needs to

be researched as well to determine whether or not

they provide predictions that are in agreement with

detailed experimental observations. Depending on

the results of the validation study, additional cost

functions may be needed. These enhancements

will improve the usability of MSD models particu-

larly in the areas where they were not previously

used.

5 CONCLUSIONS

The MSD models developed for simulation of the

mechanics of the human body during running and

hopping were reviewed in the present paper. The

different categories of these models were covered

including active and passive one-body and multi-

body models. The governing equations of motion of

the models as well as their parameters were pre-

sented. The pros and cons of the different types of

MSD models were discussed. It was shown that even

though these models are not detailed enough to be

used for prediction of the detailed loading of skele-

tal tissues during bouncing gait, they can be used in

a descriptive capacity for studying the general prin-

ciples of running and hopping.
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