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We derive the mass-temperature relation using an improved top-hat model and a continuous

formation model which takes into account the effects of the ordered angular momentum acquired

through tidal-torque interaction between clusters, random angular momentum, dynamical friction, and

modifications of the virial theorem to include an external pressure term usually neglected. We show

that the mass-temperature relation differs from the classical self-similar behavior, M ∝ T3=2, and

shows a break at 3–4 keV and a steepening with a decreasing cluster temperature. We then compare

our mass-temperature relation with those obtained in the literature with N-body simulations for fðRÞ
and symmetron models. We find that the mass-temperature relation is not a good probe to test gravity

theories beyond Einstein’s general relativity, because the mass-temperature relation of the ΛCDM

model is similar to that of the modified gravity theories.
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I. INTRODUCTION

The wealth of astronomical observations available

nowadays clearly shows either that our Universe contains

more mass-energy than is seen or that the accepted

theory of gravity, general relativity (GR), is somehow

not correct, or both [1]. The central assumption of the

concordance ΛCDM model relies on gravity being

correctly described by GR so that dark matter (DM), a

nonbaryonic and nonrelativistic particle, and dark energy

(DE), in the form of the cosmological constant Λ,

constitute its dominant components [2]. Despite gravita-

tional evidence for DM from galaxies [3], cluster of

galaxies [4], cosmic microwave background (CMB)

anisotropies [5], cosmic shear [6], structure formation

[7], and large-scale structure of the Universe [8], decades

of direct and indirect searches of those DM particles did

not give any positive result [9]. In addition, the accel-

erated expansion of the universe modeled with Λ [10]

raised the “cosmological constant fine-tuning problem”

and the “cosmic coincidence problem” [11–13].

The success of the ΛCDM model in describing the

formation and evolution of the large-scale structures in

the Universe at early and late times [7,14,15] cannot hide the

tensions at small [16–22] and large scales [23–29] precision

data are currently revealing.

Small-scale problems [22] have sprung two sets of

attempts of solutions to save the ΛCDM paradigm:

cosmological and astrophysical recipes. The first are

based on either modifying the power spectrum on small

scales [30] or altering the kinematic or dynamical

gravitational behavior of the constituent DM particles.

The latter, like supernovae feedback [22,31,32] and

transfer of energy and angular momentum from baryon

clumps to DM through dynamical friction [33–37], rely

on some “heating” mechanism producing an expansion

of the galaxy’s DM component which reduces its inner

density.

The previous issues seeded the push for several

new modified gravity (MG) theories, to understand

our Universe without DM [38] or at least to connect

the accelerated expansion to some new features of

gravity [39].

A first drive for MG came from fundamental problems in

the hot big bang model (horizon, flatness, and monopole

problem solved within the inflationary paradigm [40,41])

and another one from galaxy rotation curves with solutions

attempted within the modified Newtonian dynamics

(MOND) [42] and the “modified gravity” (MOG) paradigm

]43 ] and fðRÞ theories [44].
Alternative proposals to explain the accelerated expan-

sion of the Universe increased exponentially. Besides
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DM-like DE schemes [45–48], MG theories attempted to

explain such acceleration as the manifestation of extra

dimensions or higher-order corrections effects, as in

the Dvali-Gabadadze-Porrati model [49] and in fðRÞ
gravity. Nowadays, the catalog of MG theories includes

many theories, among which we recall fðRÞ [44], fðTÞ
[50], MOND and BIMOND [42,51], tensor-vector-

scalar theory [52], scalar-tensor-vector gravity theory

(MOG) [43], Gauss-Bonnet models [53,54], Lovelock

models [55], Hořava-Lifshitz [56], Galileons [57],

and Horndeski [58,59]. The freedom allowed to MG

from observations reduces to modifications on large

scales (typically Hubble scales), low accelerations

(a0 ≲ 10−8 cm s−2), or small curvatures (typically RΛ ≃

1.2 × 10−30 R⊙ [60]). Some theories violate Birkhoff’s

theorem, and this induces effects that should be disen-

tangled wisely, as they make local tests complex. Such

local tests, using PPN-like parameters
1
[61–64] and

the GR condition on the two Newtonian potentials

Φ ¼ Ψ, provide a smoking gun for MG, combining

galaxy surveys (∝ Φ), the integrated Sachs-Wolfe effect

[65] in the CMB [∝
R

dlð _Φþ _ΨÞ], and weak lensing

[∝
R

dlðΦþ ΨÞ]. Real opportunities will come with

future surveys: both from satellites (Euclid [66] and

JDEM [67]) and ground-based (SKA [68] and LSST

[69]). Another smoking gun should proceed from the

best fitting of the CMB between DM and MG to

constrain the parameters of the models [70,71].

For MG theories not to alter the behavior of gravity at

small scales (e.g., Solar System) and reproduce the obser-

vational measurements [63,72], it is necessary to have some

screening mechanism which hides undesired effects on

small scales [73]. Following Ref. [74], we consider the case

of the symmetron scalar-tensor theory [75] and the cha-

meleon fðRÞ gravity [76].

Effects of MG can be probed with structure formation

and verified by means of dark-matter-only N-body

simulations [77–81]. Nevertheless, hydrodynamical sim-

ulations are more suited from an observational point of

view, as they provide observables, such as the halo

profile, the turnaround [82,83], the splashback radius

[84], and the mass-temperature relation (MTR) [74]

which can be directly compared with observations.

While the halo profile is usually studied in DM-only

simulations and it is, as such, used for a variety of

studies, the MTR can be accurately inferred only with

hydrodynamic simulations, to avoid the necessary

approximations introduced, for example, by using scaling

relations. The MTR has been used to put constraints on

MG theories. By means of hydrodynamic simulations,

Ref. [74] showed that the MTR obtained in MG theories

is different from the expectations of GR.
2

In the present paper, we extended the results of Ref. [85]

to take into account the effects of dynamical friction and the

cosmological constant and revisited the results of Ref. [74]

to show that the MTR is not a good probe to disentangle

MG from GR. To this aim, we use a semianalytic model to

show that in a ΛCDM model the MTR has a behavior

similar to those obtained by Ref. [74], and this makes it

impossible to disentangle between the MG results and

those of GR.

The paper is organized as follows. Section II briefly

presents the modified gravity models analyzed in this work,

while Sec. III describes the model used to derive the MTR

relation in ΛCDM cosmologies. Section IV is devoted to

the presentation and the discussion of our results. We

conclude in Sec. V.

In this work, we use the following cosmological param-

eters: h0¼0.7,ΩΛ¼0.727,ΩDM ¼ 0.227, andΩb ¼ 0.046.

An overbar will indicate quantities evaluated at the back-

ground level.

II. MODIFIED GRAVITY: MODELS AND

SIMULATIONS

In this section, we summarize the modified gravity

theories used by Ref. [74] that we compare our model

to. These are scalar-tensor theories of gravity described by

the action

S ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

1

2
M2

plR −
1

2
∂iφ∂iφ − VðφÞ

�

þ Smðg̃μν;φiÞ; ð1Þ

where g is the determinant of the metric tensor gμν, R the

Ricci scalar, Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p

the reduced Planck mass (in

natural units where ℏ ¼ c ¼ 1), and φ and VðφÞ the scalar
field and the self-interacting potential, respectively. Matter

is described by the total matter action Sm. The scalar field is
conformally coupled to matter via g̃μν ¼ AðφÞgμν, with

AðφÞ the conformal factor.

The conformal coupling between matter and field gives

rise to a fifth force of the form

1
The parametrized post-Newtonian (PPN) formalism is a tool

expressing Einstein’s equations in terms of the lowest-order
deviations from Newton’s law of gravitation.

2
In the literature, there is no explicit emphasis onwhat is exactly

meant for mass. In general, when considering both numerical
simulations and observations, the mass has to be the virial mass, as
a result of the application of the virial theorem. This is more
appropriately true for observations but less for N-body simula-
tions, as the spherical overdensity procedure obtained to infer
structures assumes a virial overdensity but does not automatically
imply the virial theorem holding. Furthermore, the virial over-
density chosen will depend on which probe is considered (i.e.,
Sunyaev-Zel’dovich effect or x-ray emission); therefore, the virial
mass will be interpreted differently in different scenarios. We
therefore prefer to just call itmass, having inmind it is related to the
true virial mass of the object.
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Fφ ¼ −
A0ðφÞ
AðφÞ ∇φ; ð2Þ

where a prime indicates the derivative with respect to the

scalar field.

A. Symmetron

The screening mechanism of the symmetron model [76]

produces a strong coupling between matter and the extra

field in low-density regions, while in high-density regions

the scalar degree of freedom decouples from matter.

For this mechanism to work, one requires, around φ ¼ 0,

a coupling of the form

AðφÞ ¼ 1þ 1

2

�

φ

M

�

2

ð3Þ

and a potential

VðφÞ ¼ V0 −
1

2
μ2φ2 þ 1

4
λφ4; ð4Þ

where M and μ are mass scales and λ a dimensionless

parameter.

The free parameters can be recast in terms of the strength

of the scalar field, β, the expansion factor at the symmetry

breaking time, aSSB, and the range of the fifth force, λ0. The
fifth force then reads

Fφ ¼ −
φ

M2
∇φ ¼ 6ΩmH

2

0

β2λ2
0

a3SSB
φ̃∇φ̃; ð5Þ

where the quantities with tilde are in the supercomoving

coordinates [86].

B. f ðRÞ gravity
The fðRÞ-gravity models are theories in which the Ricci

scalar in the Einstein-Hilbert action is substituted by a

function of the same quantity, and it is described by the

following action:

S ¼ 1

2
M2

pl

Z

d4x
ffiffiffiffiffiffi

−g
p ½Rþ fðRÞ�: ð6Þ

When fðRÞ ¼ −2Λ, the ΛCDM model is recovered.

Typical of these theories is the chameleon screening

mechanism, characterized by a local density dependence of

the scalar field mass. In high-density environments, the

scalar degree of freedom is very short ranged, and the

opposite happens in low-density fields, where deviations

from GR are maximized.

Reference [74] used the Hu-Sawicki [75] model, whose

functional form is

fðRÞ ¼ −m2
c1ðR=m2Þn

1þ c2ðR=m2Þn ; ð7Þ

where the free parameter m2 ¼ H2

0
Ωm;0 has dimensions of

mass squared and n > 0. The two additional constants c1
and c2 can be determined by requiring that, in the large

curvature regime (R=m2 ≫ 1), fðRÞ ≈ −2Λ:

c1

c2
≈ 6

ΩΛ;0

Ωm;0

: ð8Þ

The strength of gravity modifications is encoded in the

value of fR ¼ df=dR today:

fR0 ¼ −n
c1

c2
2

�

ΩΛ;0

3ðΩm;0 þ 4ΩΛ;0Þ

�

nþ1

: ð9Þ

The range of the scalar degree of freedom is λ0 ∝
ffiffiffiffiffiffiffiffiffiffiffiffi

1=fR0
p

.

To derive the expressionof the fifth force forfðRÞmodels,

it is useful to transform them into scalar-tensor theories

using the conformal transformationAðφÞ¼ expð−βφ=MplÞ,
where β ¼

ffiffiffi

6
p

=6. We then find

Fφ ¼ −
a2β

Mpl

∇φ; ð10Þ

with a the scale factor.

C. Simulations

In order to get the MTR for fðRÞ and symmetron models,

Ref. [74] modified the ISIS code [80] and ran two sets of

simulations, one for fðRÞ-gravity models and another one

for the symmetron models, both containing 2563 DM

particles. The box size and background cosmology were

different for the two models, due to consistency with

previous works of the authors [87]. In the case of the

fðRÞ gravity (symmetron), the DM particle mass was

3 × 1010 M⊙=h (8.32×1010M⊙=h), ΩΛ¼0.727, ΩCDM¼
0.227, and Ωb ¼ 0.045 (ΩΛ ¼ 0.65, ΩCDM ¼ 0.3,

and Ωb ¼ 0.05), and the box size 200 Mpc h−1

(256 Mpc h−1), with h ¼ 0.7 (h ¼ 0.65).

Because of the different parameters for fðRÞ and

symmetron models, the background ΛCDM model of

the two models is different. Table 2 in Ref. [74] summarizes

the parameters employed.

III. THE MODEL

In the next sections, we will discuss how the top-hat

model (THM) can be improved and how the MTR is

calculated. We show two different models, the “late-

formation approximation” (see the following) and a model

in which structures form continuously.
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A. Improvements to the top-hat model

Using scaling arguments, one can show that there

exists a relation between the x-ray mass of clusters and

their temperature TX. The mass in the virial radius can be

written as MðΔvirÞ ∝ T
3=2
X ρ

−1=2
c Δ

−1=2
vir , where ρc is the

critical density and Δvir the density contrast of a spherical

top-hat perturbation after collapse and virialization.

The previous relation shows a correlation between the

mass and temperature, but this result can be highly improved.

One possibility is to improve the THM, taking into account

the angular momentum acquired by the interaction with

neighboring protostructures, dynamical friction, and a modi-

fied version of the virial theorem, including a surface

pressure term [88–91] due to the fact that at the virial radius

rvir the density is different from zero, as done in Ref. [92].

A further improvement can be obtained by taking into

account that clusters form in a quasicontinuous way. To this

aim, one substitutes the top-hat cluster formation model by

a model of cluster formation from spherically symmetric

perturbations with negative radial density gradients. The

merging-halo formalism of Ref. [93] is used to take into

account the gradual way clusters form.

To start with, we consider some gravitationally growing

mass concentration collecting into a potentialwell. Let dP ¼
fðL; r; vr; tÞdLdvrdr be the probability that a particle,

having angular momentum L ¼ rvθ, is located at

½r; rþ dr�, with velocity (vr ¼ _r) ½vr; vr þ dvr� and angular
momentum ½L; Lþ dL�. The term L takes into account

ordered angular momentum generated by tidal torques and

randomangularmomentum (seeAppendixC.2 inRef. [35]).

The radial acceleration of the particle [92,94–97] is

dvr

dt
¼ −

GM

r2
þ L2ðrÞ

M2r3
þ Λ

3
r − η

dr

dt
; ð11Þ

withΛ being the cosmological constant and η the dynamical

friction coefficient. The previous equation can be obtained

via Liouville’s theorem [92]. The last term, the dynamical

friction force per unit mass, is more explicitly given in

Ref. [35] [Appendix D, Eq. (D5)]. A similar equation

(excluding the dynamical friction term) was obtained by

several authors (see, e.g., [98–100]) and generalized to

smooth dark energy models in Ref. [101].

In the framework of general relativity, Refs. [102,103]

derived the nonlinear evolution equation of the overdensity

δ ¼ δρm=ρ̄m of nonrelativistic matter:

δ̈þ 2H _δ −
4

3

_δ2

1þ δ
− 4πGρ̄mδð1þ δÞ

− ð1þ δÞðσ2 − ω2Þ ¼ 0: ð12Þ

Recalling that δ ¼ 2GMm

Ωm;0H
2

0

ða=RÞ3 − 1, where R is the effec-

tive perturbation radius and a the scale factor, substituting

into Eq. (12) one gets [101]

R̈ ¼ −
GMm

R2
−
GMde

R2
ð1þ 3wdeÞ −

σ2 − ω2

3
R; ð13Þ

where Mm and Mde are the matter mass content of the

perturbation and the mass of the dark energy component,

respectively. The previous equations can be generalized to

account for the presence of dynamical friction using

Eckart’s formalism [104]. The standard Friedmann equa-

tion is now augmented with a fluid describing the con-

tribution of the viscosity:

�

_a

a

�

2

¼ H2 ¼ 8πG

3
ðρ̄v þ ρ̄m þ ρ̄ΛÞ; ð14Þ

where ρ̄Λ is the energy density of the cosmological

constant, ρ̄m ¼ ρ̄m;0a
−3 the matter component, and _̄ρv þ

3Hρ̄v ¼ 3H2ξ0ρ̄
ν
v the viscous component, with ξ0 the bulk

viscosity coefficient. The bulk viscosity is expressed as

ξ ¼ ξ0ρ̄
ν
v, where ν is a real constant.

Integrating Eq. (11) with respect to r, we have

1

2

�

dr

dt

�

2

¼ GM

r
þ
Z

r

0

L2

M2r3
drþ Λ

6
r2 −

Z

r

0

η
dr

dt
þ ϵ:

ð15Þ

The specific binding energy of the shell, ϵ, can be obtained

from the turnaround condition dr
dt
¼ 0.

One can obtain the MTR combining energy conserva-

tion, the virial theorem, using Eq. (15) and the connection

between kinetic energy K and the temperature [90]:

hKi ¼ 3β̃MkBT

2μmp

; ð16Þ

where μ ¼ 0.59 is the mean molecular weight, kB
is the Boltzmann constant, mp is the proton mass,

β̃ ¼ β½1þ fð1=β − 1ÞΩb;0=Ωm;0�, Ωb;0 (Ωm;0) is the bar-

yonic (total) matter density parameter today, f is the fraction
of the baryonic matter in the hot gas, and the parameter

β ¼ μmpσ
2
v

kBT
, σv being the ratio of the mass-weighted mean

velocity dispersion of the dark matter particles.

Using the virial theorem, we have [92,96,105]

hKi¼ 3β̃MkBT

2μmp

¼−
1

2
hUGi− hULiþhUΛiþhUηi: ð17Þ

The brackets indicate time average (see [95]). The four

terms represent the energy related to the gravitational

potential, the angular momentum, the cosmological con-

stant, and the dynamical friction, respectively.

Equation (17) does not take into account the surface

pressure term we spoke about, though. Assuming [90]
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hKi þ hEi ¼ 3PextV ¼ −νU; ð18Þ

with V the volume of the outer boundary of the virialized

region, Pext the pressure on the boundary, ν a constant, and

U the total potential (see [90]), Eq. (17) reads now

hKi ¼ ð1þ νÞ
�

−
1

2
hUGi − hULi þ hUΛi þ hUηi

�

: ð19Þ

In other words, the averaged kinetic energy differs by a

factor 1þ ν from before.

In order to estimate the effect of the boundary pressure

on the virial theorem, we consider an isothermal velocity

dispersion (σ1D ¼ const), and then P ¼ ρvirσ
2

1D, for which

we have [89]

hKi ¼ ρ̄m;vir

2ρðrvirÞ − ρ̄m;vir

hEi; ð20Þ

where ρ̄ is the mean density within the virial radius. If the

local density is negligible at rvir, the confining pressure is

zero and hKi ¼ −hEi. For a Navarro-Frenk-White profile

and a typical cluster value of the concentration parameter

c ≃ 5, we have jhKi=hEij ≃ 2. References [106,107] stud-

ied in detail the effect of the quoted boundary pressure,

finding that it changes significantly the final object. More

in detail, it is found that the virial temperature is affected

(larger than a uniform sphere but smaller than a truncated

singular approximation sphere) and the extrapolated linear

overdensity contrast δc is slightly smaller, implying an

earlier collapse.

We now use energy conservation in the form (see [92,96])

hEi ¼ hKi þ hUGi þ hUΛi þ hULi þ hUηi
¼ UG;ta þ UΛ;ta þ UL;ta þ Uη;ta; ð21Þ

where the subscript “ta” stands for turnaround.

Combining Eqs. (19) and (21), solving for hKi, and
recalling Eq. (16), we obtain

kBT

keV
¼ 1.58ðνþ 1Þμ

β

1

ψξ
Ω

1=3
m;0

�

M

1015 M⊙h
−1

�

2=3

ð1þ ztaÞ

×

�

1þ
�

32π

3

�

2=3

ψξρ̄
2=3
m;ta

1

H2

0
Ωm;0M

8=3ð1þ ztaÞ

×

Z

reff

0

L2

r3
dr−

2

3

Λ

Ωm;0H
2

0
ð1þ ztaÞ3

ðψξÞ3

−
210=3

32=3
π2=3

�

ψξ

Ωm;0H
2

0

��

ρm;0

M

�

2=3 1

1þ zta

Z

η
dr

dt
dr

�

;

ð22Þ

where reff ¼ ψrta ¼ ψξð 2GM
Ωm;0H

2

0

Þ1=3, rta is the radius at the

turnaround epoch zta, Ωm;0 ¼ 8πGρ̄m;0

3H2

0

, M ¼ 4πρ̄m;0x
3

1
=3,

and ξ ¼ rta=x1.

The product ψξ, using the definitions of ψ , ξ, andM can

be written as [see also Eq. (26) and Ref. [108]]

ψξ ¼ reff

rta

rta

x1
¼ reff

rta

�

ρ̄m;0

ρta

�

1=3

ð1þ ztaÞ−1; ð23Þ

where ρta is the average density inside the perturbation at

the turnaround.

Equation (22) can be also equivalently written, by using

the notation of Ref. [108], in terms of rvir:

kBT

keV
¼ 0.94ðνþ 1Þμ

β

�

rta

rvir

��

ρta

ρ̄m;ta

�

1=3

Ω
1=3
m;0

×

�

M

1015 M⊙h
−1

�

2=3

ð1þ ztaÞ

×

�

1þ 15rvirρ̄m;ta

π2H2
0
Ωm;0ρ

3
tar

9
tað1þ ztaÞ

Z

rvir

0

L2dr

r3

−
2

3

Λ

H2

0
Ωm;0

�

rvir

rta

�

3
�

ρ̄m;ta

ρta

�

1

ð1þ ztaÞ3

−
61=3

π1=3
rvirrta

�

ρ̄m;ta

ρta

�

1=3
�

ρ̄m;0

M

�

2=3 1

1þ zta

λ0

1− μðδÞ

�

;

ð24Þ

where ΩΛ ¼ Λ

3H2

0

¼ 1 −Ωm;0. In Eq. (24), we integrated the

term containing the dynamical friction; λ0 and μðδÞ are

given in Ref. [109].

The value of reff , as shown in Refs. [85,96], is given by

the solution of the cubic equation:

1 − νþ ðξψÞ3ðνþ 2Þζ − ψð2þ ζξ3Þ

−
27

32

ξ9ψ

ρ3taπ
3Gr8ta

�

ν

Z

reff

0

L2

r3
drþ

Z

rta

0

L2

r3
dr

−
16π2

9
ð2þ νÞρ2tar6ta

×

�
Z

reff

0

η
dr

dt
dr −

1

2þ ν

Z

rta

0

η
dr

dt
dr

��

¼ 0; ð25Þ

where

ζ ¼ Λ

4πGρta
¼ Λr3ta

3GM
¼ 2ΩΛ;0

Ωm;0

ρ̄m;ta

ρta
ð1þ ztaÞ−3: ð26Þ

The parameter ν, as shown by Ref. [90] [Eq. (47)], depends

on the concentration parameter and the density profile. We

fixed it as νþ1

ν−1
≃ 2 [89,90], for a typical value of the cluster

concentration parameter, c ≃ 5.

B. Revisiting the continuous formation model

The approximation in which we found the MTR is

known as the late-formation approximation and assumes
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that perturbation clusters form from having a top-hat

density profile and that the redshift of observation, zobs,
is equal to that of formation, zf . The quoted approximation

is good in the caseΩm;0 ≃ 1, where cluster formation is fast,

and at all redshifts zobs ≃ zf . For the actual value of Ωm;0,

one needs to take into account the difference between zobs
and zf . Moreover, as shown by Ref. [89], continuous

accretion is needed to get the correct normalization of

the MTR and its time evolution.

In order to improve the THM, one can take into account

the formation redshift [110,111] or the THM can be

replaced by a model in which clusters form from spheri-

cally symmetric perturbations [88,89], combined with the

merging-halo formalism of Ref. [93]. In this way, one

moves from a model in which clusters form instantaneously

to one in which they form gradually.

Integrating Eq. (15), one gets

t ¼
Z

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½ϵþ GM
r
þ
R

r
ri

L2

M2r3
drþ Λ

6
r2� −

R

η dr
dt
dr

q : ð27Þ

Following Ref. [89], we may write the specific energy of

infalling matter as

ϵl ¼ −
1

2

�

2πGM

tΩ

�

2=3
��

M0

M

�

5=ð3mÞ
− 1

�

gðMÞ; ð28Þ

where tΩ ¼ πΩm;0=½H0ð1 − Ωm;0Þ3=2�, M0 is a fiducial

mass, m is a constant specifying how the mass variance

evolves as a function of M, and the function gðMÞ reads

gðMÞ ¼ 1þ F

x − 1
þ λ0

1 − μðδÞ þ
Λ

3H2

0
Ωm;0

ξ3; ð29Þ

where x ¼ 1þ ðtΩ=tÞ2=3 is connected to the mass by

M ¼ M0x
−3m=5, M0 is given in Ref. [89], and

F ¼
27=3π2=3ρ̄

2=3
m;0

32=3H2

0
Ωm;0M

8=3

Z

rrta

ri

L2

r3
dr: ð30Þ

In order to calculate the kinetic energy E, we integrate ϵl
with respect to the mass [89] to get −

R

ϵldM ¼ E=M.

Finally, we have

kBT ¼ 4

3
ã
μmp

2β

E

M
; ð31Þ

where ã ¼ ρ̄m;vir

2ρðrvirÞ−ρ̄m;vir
is the ratio between kinetic and total

energy [89] and ρ̄m;vir the mean density within the virial

radius. Calculating E=M, we obtain

kBT

keV
¼ 2

5
ã
μmp

2β

m

m − 1

�

2πG

tΩ

�

2=3

M2=3

×

�

1

m
þ
�

tΩ

t

�

2=3

þ Kðm; xÞ
ðM=M0Þ8=3

þ λ0

1 − μðδÞ þ
Λξ3

3H2

0
Ωm;0

�

; ð32Þ

where

Kðm; xÞ ¼ ðm − 1ÞFxLerchPhiðx; 1; 3m=5þ 1Þ
− ðm − 1ÞFLerchPhiðx; 1; 3m=5Þ; ð33Þ

and LerchPhi is a function defined as follows
3
:

LerchPhiðz; a; vÞ ¼
X

∞

n¼0

zn

ðvþ nÞa : ð34Þ

Following Ref. [89] to get the normalization, Eq. (32)

can be written as [92]

kBT ≃ 8 keV

�

M

1015 h−1M⊙

�

2=3mðMÞ
nðMÞ : ð35Þ

The functions mðMÞ and nðMÞ are defined as

mðMÞ¼ 1

m
þ
�

tΩ

t

�

2=3

þ Kðm;xÞ
ðM=M0Þ8=3

þ λ0

1−μðδÞþ
Λξ3

3H2

0
Ωm;0

;

ð36Þ

nðMÞ ¼ 1

m
þ
�

tΩ

t0

�

2=3

þ K0ðm; xÞ; ð37Þ

where K0ðm; xÞ indicates that Kðm; xÞ must be calculated

assuming t ¼ t0.
When compared to Eq. (17) of Ref. [89], Eq. (35) shows

an additional mass-dependent term. This means that, as in

the case of the top-hat model, the MTR is no longer self-

similar, showing a break at the low-mass end (see the next

section).

Besides Refs. [88,89], Ref. [90] found a MTR and its

scatter. Their result concerning the MTR and the scatter is

in agreement with the result we found here. In this case,

kBT ¼ 6.62 keVQ

�

M

1015 h−1 M⊙

�

2=3

; ð38Þ

where

3
This definition is valid for jzj < 1. By analytic continuation, it

is extended to the whole complex z plane for each value of a.
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Q ¼ 1þ ν

1 − ν

B

AðHtÞ2=3 ð39Þ

and where B=A is a constant [see the discussion after

Eq. (25) in Ref. [90]] and ν was defined in Eq. (18).

IV. RESULTS AND DISCUSSION

In Fig. 1, we show the results of the comparison

between our continuous formation model [Eq. (35)] and

the model by Ref. [90] with that of Ref. [74] for fðRÞ and
symmetron models. For fðRÞ models, we consider n ¼ 1

and jfR0j ¼ 10−4; 10−5; 10−6, while for the symmetron

model ðβ; aSSB; λ0Þ ¼ ð1.0; 0.5; 1.0Þ for Sym A, (1.0,

0.33, 1.0) for Sym B, (2.0, 0.5, 1.0) for Sym C, and

(1.0, 0.25, 1.0) for Sym D.

In all the panels, the black straight dashed line represents

the classical MTR self-similar behavior and the black solid

line the ΛCDM model obtained in the simulations of

Ref. [74], and for the specific modified gravity models

we refer to the caption of Fig. 1. Observational data are

represented by points. Red circles come from Ref. [112],

while blue points are from Ref. [113]. Stars are from

Ref. [113] and represent data using spatially resolved

observations.

Figure 1(a) (top left panel) compares the result of

our continuous formation model for the fðRÞ models

presented in Ref. [74] (HM). The cyan band represents

the 68% confidence level region, obtained using

the continuous formation model [Eq. (35)] and cal-

culated similarly to Ref. [90] (Sec. 3.7). The white

dashed line is the average value. As expected, devia-

tions from the ΛCDM model are larger for the model

with fR0 ¼ −10−4, as it represents the model with the

strongest modifications to gravity. For smaller values of

fR0, at temperatures T < 1 keV, data are in partial

agreement with both the fðRÞ cosmology and the

model presented in this work.

(a) (b)

(d)(c)

FIG. 1. The MTR for fðRÞ (top panels) and symmetron models (bottom panels). In all the panels, the black line shows the ΛCDM

model, and the dashed black line shows the MTR ∝ T3=2 as obtained from scaling relations, while the stacked galaxy clusters are

depicted with red and blue circles, blue squares, and black stars. In (a) (top left) and in (b) (top right), the cyan region shows the

68% confidence level region, obtained using the continuous formation model [Eq. (35)] and the model by Ref. [90] [Eq. (39)],

respectively. The white dashed line is the average value. The red, blue, and green lines represent the fðRÞ model with three different

normalizations. (c) (bottom left) and (d) (bottom right) are the equivalent of (a) and (b) for the symmetron models.
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Data points have a large dispersion and circumscribe the

theoretical models at high mass, while at the lowest masses

data have a value larger than the simulated HM models and

the result of our model. Stars show lower masses than the

models considered. At high mass, all models are indis-

tinguishable, while at small masses differences become

visible.

This is because effects of modified gravity depend on the

environment and, hence, on the density. In high-density

regions, screening takes place and deviations from ΛCDM

are smaller. Therefore, in high-density regions the ΛCDM

MTR has a similar behavior to that of modified gravity

models.

Our model shows a non-self-similar behavior and

presents a break at T ≃ 3 keV. At small masses, the slope

of the central (average) curve, in the range 0.5–3 keV, is

≃2.3, and the cyan region has an inner and outer slope of

1.8 and 3, respectively. The quoted bend has been observed

in the literature by several authors (see, e.g., [114]), who,

assuming the cluster temperature to be constant after

the formation time, explained the break as due to the

formation redshift. Another possibility is that the cluster

medium is preheated in the early phase of formation [115].

Reference [90], instead, justified the break with the scatter

in the density field. The result of the model of Ref. [90] is

shown in Fig. 1(b) (top right panel), where once again the

cyan region represents the 68% confidence level region (see

Ref. [90], Sec. 3.7).

This model is not able to distinguish between the effect

of formation redshift from scatter in the initial energy of the

cluster or its initial nonsphericity. However, the presence of

nonsphericity gives rise to a mass-dependent asymmetric

scatter in the MTR. This scatter is larger than that of the

density field and at small temperatures covers all clusters

except one, while the bend in the curve of Ref. [90] takes

place almost at the same temperature, TX ≃ 3 keV, in

our model.

In our model, the bend is due to tidal interactions with

neighboring clusters, arising from the asphericity of clus-

ters (see [92] for a discussion on the relation between

angular momentum acquisition, asphericity, and structure

formation), and to the effect of dynamical friction.

Asphericity gives rise to a mass-dependent asymmetric

bend in the MTR. The lower the mass, the larger the

difference from the classical self-similar solution. The

origin of the bend is due to a few reasons. Our MTR,

differently from others (e.g., [89,90]), contains a mass-

dependent angular momentum, L, originating from the

quadrupole moment of the protocluster with the tidal field

of the neighboring objects. The presence of this additive

mass-dependent term breaks the self-similarity of the MTR.

To be more precise, the collapse in our model is different

from the THM: The turnaround epoch and collapse time

change, as well as the collapse threshold δc, which is now

mass dependent and a monotonic decreasing function of the

mass (see Fig. 1 in Ref. [116]). It is larger than the standard

value at galactic masses and tends to the standard value

when we move to the largest clusters. The temperature is

T ∝ ϵ ∝ δc (see [89]), and then less massive clusters are

hotter than more massive ones, which are characterized by

a standard MTR.

Besides the effect of angular momentum in changing the

shape of the MTR, we must recall that another factor

contributing is the modification of the partition of energy in

virial equilibrium, which influences the shape of the MT

relation. At the same time, an important role is played by

the cosmological constant and dynamical friction. Both

effects, similarly to that of angular momentum, delay the

collapse of the perturbation. A comparison of the three

effects, the three terms in Eq. (11), are shown in Fig. 1 of

Ref. [116] and in Fig. 11 of Ref. [35]. They are all of the

same order of magnitude with differences of a few percent.

The effect of dynamical friction (DF) was calculated as

shown in Refs. [35,117,118].

The first calculations of the role of DF in clusters

formation is due to Refs. [119–122], who considered the

DF generated by the galactic population on the motion of

galaxies themselves. Reference [117] took into account

also the effects of substructure and showed DF produces a

collapse delay in the collapse of low-ν peaks, with several

consequences, like the mass accumulated by the peak, and

similarly to tidal torques.

As a consequence of dynamical friction and tidal

torques, one expects changes in the threshold of collapse,

the temperature at a given mass (since T ∝ δc), the mass

function, and the correlation function. DF and angular

momentum have similar effects on structure formation:

They delay the collapse and have similar consequences on

the collapse threshold.

An important result of the previous calculation is that the

MTR in modified gravity cannot be distinguished from that

predicted by the ΛCDM model. In HM, the MTR in

modified gravity was very different from that of ΛCDM

prediction for colder clusters and indistinguishable for hotter

ones. Our plots show that theMTR bends in a similar way as

done by the MTR in the fðRÞ models and symmetron

models (see the following). The bending was explained

previously and is related to the effect of several factors as the

acquisition of angular momentum through tidal torques, by

dynamical friction, and by the cosmological constant.

Our model and the fðRÞ and symmetron models (see the

following) of Ref. [74] are in agreement with data till

≃1 keV; at lower temperatures, a discrepancy is observed

with the few clusters present. A similar result is found

comparing the fðRÞmodels with the model by Ref. [90], in

Fig. 1(b). In this case, while fðRÞ models are in disagree-

ment with the data at small masses, this is no longer true for

the model by Ref. [90] and ΛCDM. However, there is a

slight disagreement between the model with fR0 ¼ −10−4

and Ref. [90].
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In particular, in the case of the fðRÞ models, Figs. 1(a)

and 1(b) show that our model is in agreement with all fðRÞ
models considered. In Fig. 1(b), the slope of the average

value, in the range 0.5–3 keV, is ≃2.3, while that of the

inner cyan region ≃1.8 and that of the outer cyan region>3

for temperatures < 1 keV.

Figure 1(c) shows the same quantities plotted in

Figs. 1(a) and 1(b) but for the symmetron case. The plot

shows that model Sym D is the one which deviates the most

from the ΛCDM, followed by Sym C, Sym B, and Sym A.

Again, at high mass, till ≃4 keV, our model, the symme-

tron models, and the data are indistinguishable, but Sym D,

even if in agreement with the data till ≃3 keV, slightly

differs from our model, namely, with the ΛCDM predic-

tions. The discrepancy goes on till ≃2 keV and then

disappears. All the other symmetron models are in agree-

ment with our model. As in Fig. 1(a), for T ≤ 1 keV, the

models are in disagreement with a few clusters. Notice that

in Figs. 1(a) and 1(c), we compare the continuous for-

mation model with the fðRÞ and symmetron model,

respectively, and then the only change between the two

plots is due to the fðRÞ and symmetron curves. The slopes

are then the same as in Fig. 1(a).

Finally, in Fig. 1(d), we show the same results as in

Fig. 1(c) but for the model by Ref. [90]. The result is similar

to Fig. 1(b). In this case, in the range 1 ≤ T=keV ≤ 4, the

model by Ref. [90] differs from Sym B and D.

The larger discrepancy between the model by Ref. [90]

and the symmetronmodels in the temperature range 1–4keV

with respect to the predictions of our model is probably due

to the fact that, as stressed by Ref. [90], the calculation of the

effects of the nonspherical shape of the initial protocluster

are not very rigorous and should be considered as an

estimate of the actual corrections. The previous assertion

is somehow confirmed by the fact that in the given range

there is not a real discrepancy between cluster data and the

other models (except with the model by Ref. [90]).

We want to stress that the quoted discrepancies between

ΛCDM predictions and Sym B and D, however, do not

imply that the symmetron model can be used to claim the

MTR is a probe to distinguish between modified gravity

and ΛCDM, since in the quoted temperature range there are

no visible peculiar differences between the cluster data and

the model.

As before, we stress that Figs. 1(d) and 1(b) differ only

for the curves relative to the fðRÞ and symmetron models,

since we are comparing the last with the same model,

namely, Ref. [90] [Eq. (39)]. The slopes are then the same

as in Fig. 1(b).

Finally in Figs. 2(a) and 2(b), we compare the results

of the improved top-hat model [Eq. (24)] with the fðRÞ
[Fig. 2(a)] and the symmetron models [Fig. 2(b)] of

Ref. [74]. The results are similar to those plotted in

Figs. 1(a) and 1(c), with the difference that the slope

discussed previously is now smaller. The differences

between the model plotted in Figs. 1(a) and 1(c) (revised

top hat) and that in Figs. 2(a) and 2(b) (continuous

formation model) are due to the assumed redshift of

formation in the two models. The slope of the average

curve is ≃2, and those of the outer and inner cyan region

≃1.8 and ≃2.5, respectively.

Before concluding, we want to add a note on the

redshift dependence of the observed cluster data and the

MTR which depends on the redshift. All the quantities

involved in the determination are, formally, time de-

pendent (concentration and temperature). Therefore,

when evaluating the MTR, one has to be cautious

and aware of this, as the time evolution can have a

substantial effect on the final result. Nevertheless, in

our discussion, redshift evolution is not a concern as all

the objects considered in Refs. [112,113] are nearby

(z≲ 0.2), and neglecting it has a very small impact

when compared to the observational error bars on the

mass and temperature.

(a) (b)

FIG. 2. The MTR for fðRÞ (left panel) and symmetron models (right panel). Lines and symbols represent the same quantities as in

Fig. 1, but now the cyan region is the 68% confidence level region, obtained by means of the improved top-hat model [Eq. (24)].
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V. CONCLUSIONS

In the present work, we derived the MTR relationship

using an improved top-hat model and a continuous for-

mation model and compared the results with the prediction

of Ref. [74] using fðRÞ and symmetron models. Our model

takes into account dynamical friction, the angular momen-

tum acquired through tidal-torque interaction between

clusters, and a modified version of the virial theorem

including an external pressure. The continuous formation

model is based on the merging-halo formalism by Ref. [93].

Both models give a MTR different from the classical self-

similar behavior, with a break at 3–4 keV, and a steepening

with a decreasing cluster temperature. The comparison of

the quoted MTR with those obtained by Ref. [74] for fðRÞ
gravity and symmetron models shows that the MTR is not a

good probe to test gravity theories, since the MTR for the

ΛCDM model has the same behavior of that obtained by

Ref. [74] for the two modified gravity theories considered.
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[59] C. Deffayet, O. Pujolàs, I. Sawicki, and A. Vikman,

J. Cosmol. Astropart. Phys. 10 (2010) 026.

[60] I. Debono and G. F. Smoot, Universe 2, 23 (2016).

[61] W.-T. Ni, Astrophys. J. 176, 769 (1972).

[62] C. M. Will, Theory and Experiment in Gravitational

Physics, edited by C. M. Will (Cambridge University

Press, Cambridge, England, 1993), p. 396.

[63] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).

[64] C. M. Will, Living Rev. Relativity 17, 4 (2014).
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