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ABSTRACT
Three periodically variable stars have recently been discovered (V407 Vul, P = 9.5 min;
ES Cet, P = 10.3 min; RX J0806.3+1527, P = 5.3 min) with properties that suggest that
their photometric periods are also their orbital periods, making them the most compact binary
stars known. If true, this might indicate that close, detached, double white dwarfs are able
to survive the onset of mass transfer caused by gravitational wave radiation and emerge as
the semi-detached, hydrogen-deficient stars known as the AM CVn stars. The accreting white
dwarfs in such systems are large compared to the orbital separations. This has two effects.
First, it makes it likely that the mass-transfer stream can hit the accretor directly. Secondly,
it causes a loss of angular momentum from the orbit which can destabilize the mass transfer
unless the angular momentum lost to the accretor can be transferred back to the orbit. The
effect of the destabilization is to reduce the number of systems which survive mass transfer by
as much as one hundredfold. In this paper we analyse this destabilization and the stabilizing
effect of a dissipative torque between the accretor and the binary orbit. We obtain analytical
criteria for the stability of both disc-fed and direct impact accretion, and we carry out numerical
integrations to assess the importance of secondary effects, the chief one being that otherwise
stable systems can exceed the Eddington accretion rate. We show that to have any effect upon
survival rates, the synchronizing torque must act on a time-scale of the order of 1000 yr or
less. If synchronization torques are this strong, then they will play a significant role in the spin
rates of white dwarfs in cataclysmic variable stars as well.

Key words: accretion, accretion discs – gravitational waves – binaries: close – novae, cata-
clysmic variables – white dwarfs.

1 I N T RO D U C T I O N

In recent years there have been discoveries of close detached double
white dwarfs at a rate that suggests that there may be of the order
of 200 million such systems in our Galaxy, making them the largest
population of close binary stars (e.g. Marsh, Dhillon & Duck 1995;
Napiwotzki et al. 2003). These systems were predicted theoretically
long ago (Webbink 1979, 1984; Iben & Tutukov 1984), and were
proposed as potential Type Ia supernova progenitors, the explosion
being triggered by the action of gravitational wave losses which
cause them to merge. Only those systems with total mass in excess
of 1.4 M� have the potential to become Type Ia supernovae. These
represent only a few per cent of merging systems (Iben, Tutukov &
Yungelson 1997), which raises the question as to the fate of the less
massive systems. Possible outcomes which have been suggested are
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sdB stars and R CrB stars (Webbink 1984; Iben 1990; Saio & Jeffery
2002). Another possibility is that the stars survive as binary systems
to become the semi-detached accreting binary stars known as the
AM CVn stars (Nather, Robinson & Stover 1981; Tutukov & Yun-
gelson 1996; Nelemans et al. 2001). These remarkable systems have
extremely short orbital periods (17–65 min) made possible because
of the high densities of their degenerate donor stars. Moreover, they
feature accretion discs composed largely of helium which offer the
opportunity to see the effect of abundance upon disc physics.

In their study of the evolution of AM CVn systems, Nelemans
et al. (2001) considered the evolution of detached double white
dwarfs into the semi-detached phase, which requires the systems to
pass through an ultracompact phase when orbital periods as low as
2 or 3 min are possible. The stability of the mass transfer during this
stage is crucial as to whether the systems survive intact or merge. An
additional complication is that even in stable systems the equilib-
rium mass-transfer rate can be (highly) super-Eddington, resulting
in mass and angular momentum loss and probably merging of the
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system (Han & Webbink 1999; Nelemans et al. 2001). Mass transfer
between two white dwarfs has generally been taken to be stable if
the mass ratio q = M 2/M 1, where M 1 is the mass of the accretor,
is smaller than about 2/3. However, Nelemans et al. identified the
interesting possibility of the mass-transfer stream hitting the accret-
ing white dwarf directly during this phase. They realized that mass
transfer without an accretion disc may destabilize the mass-transfer
process for lower mass ratios still because the normal transfer of
angular momentum from disc to orbit would be absent.

Assuming that unstable systems do not survive, Nelemans et al.
(2001) found that the destabilization by direct impact accretion
could have a dramatic effect upon the number of systems able to
survive the onset of mass transfer. If close white dwarfs typically
do not survive this phase, then it may mean that either evolution
from helium stars (Iben & Tutukov 1991; Nelemans et al. 2001) or
from immediate post-main-sequence donors (Podsiadlowski, Han
& Rappaport 2003) are more important channels for the formation
of AM CVn stars than the double white dwarf route.

There is now some observational evidence that the very short
orbital periods suggested by the white dwarf merger model are pos-
sible. The three stars V407 Vul (Cropper et al. 1998), ES Cet (Warner
& Woudt 2002) and RX J0806.3+1527 (Israel et al. 2002; Ramsay,
Hakala & Cropper 2002a) show periodic variations on periods of
9.5, 10.3 and 5.3 min, respectively, and in each case no other period
is seen. In addition, there is evidence that each of these stars ap-
pears hydrogen deficient (strongest for ES Cet), as expected if these
periods are truly their orbital periods. Finally, V407 Vul and RX
J0806.3+1527 show several observational characteristics compati-
ble with their still being in a phase of direct impact accretion (Israel
et al. 2002; Marsh & Steeghs 2002; Ramsay et al. 2002b), or alter-
natively that they are still detached but approaching mass transfer
(Strohmayer 2002, 2003; Wu et al. 2002; Hakala et al. 2003). What
is still lacking is spectroscopic proof of the ultrashort periods of
these stars, nevertheless it is likely that to understand these systems
we will need to understand mass transfer between white dwarfs.

In this paper we study the stability of mass transfer in double
white dwarf binary stars. In particular, we study whether, and under
what circumstances, dissipative coupling of the accretor to the orbit,
through either a magnetic field or tidal forces, can stabilize the mass
transfer. We find that the finite size of the accretor not only leads to
direct impact accretion, but also destabilizes the accretion whether
it occurs by direct impact or through a disc. The destabilization has a
significant effect upon the survival of double white dwarfs as binary
stars.

We start in Section 2 by setting up the equations describing the
onset of mass transfer. Then, in Sections 3 and 4 we present ana-
lytical and numerical solutions of these equations. In Section 5 we
show the possible impact of our findings for the population of AM
CVn systems while in Section 6 we discuss the uncertainties and
open questions.

2 E QUAT I O N S G OV E R N I N G T H E E VO L U T I O N
O F M A S S T R A N S F E R A N D W H I T E
DWA R F S P I N

To consider the stability of mass transfer, we need a model that in-
cludes a description for the variation of mass-transfer rate with the
degree of overfilling of the Roche lobe by the donor star. We discuss
this in Section 2.2. We also need to consider the question of feedback
of angular momentum from the accreting white dwarf to the orbit
(similar to Priedhorsky & Verbunt 1988, who considered feedback
from a disc). Before mass transfer starts, the two white dwarfs will

typically have been orbiting one another in ever decreasing circles
for many millions of years. Tidal or magnetic coupling will be act-
ing to synchronize their spins with their orbit. We assume that the
donor is always synchronized. Once mass transfer starts, the accretor
will start to be spun up by the addition of high angular momentum
material. What matters for stability is whether it is able to couple
strongly enough to the orbit for the added angular momentum to be
fed back into the orbit. This will be the new element that we add to
the formalism of Priedhorsky & Verbunt (1988), along with a proper
account of the angular momentum of material in the inner disc in
the disc-fed case.

To understand how the mass-transfer rate changes with time, we
first need to know how the orbital separation changes. This evolves
because of orbital angular momentum loss, and thus we start by
considering the evolution of angular momentum.

2.1 Angular momentum loss

The orbital angular momentum changes because of the action of
gravitational radiation, the loss of mass during mass transfer and
the coupling between the accretor’s spin and the orbit. These can be
written as

J̇ orb = J̇ GR +
√

G M1 Rh Ṁ2 + k M1 R2
1

τS
ω. (1)

The first term on the right-hand side represents the change from
gravitational wave radiation. It is given by

J̇ GR = −32

5

G3

c5

M1 M2 M

a4
Jorb, (2)

where M 1 and M 2 are the masses of the two stars, a is the orbital
separation and M = M 1 + M 2 is the total mass of the two stars (Lan-
dau & Lifshitz 1975). The second term on the right of equation (1)
represents the loss of angular momentum from the orbit upon mass
loss at a rate of Ṁ2. We adopt the description of Verbunt & Rappa-
port (1988) of the angular momentum of the transferred matter in
terms of the radius Rh of the orbit around the accretor, which has
the same specific angular momentum as the transferred mass. We
use equation (13) of Verbunt & Rappaport (1988) to calculate Rh,
accounting for their inverted definition of mass ratio compared to
ours.

The third term of equation (1) is a torque from dissipative cou-
pling, tidal or magnetic, which we parametrize in terms of the syn-
chronization time-scale τ S of the accretor, with the torque linearly
proportional to the difference between the accretor’s spin and the
orbital angular frequencies, ω = �s − �o. The term kM1 R2

1 is the
moment of inertia of the accretor, where k ≈ 0.2 (Motz 1952); a
more accurate approximation will be derived later. We ignore the
spin angular momentum of the synchronized donor.

The orbital angular momentum is given by

Jorb =
(

Ga

M

)1/2

M1 M2, (3)

from which it follows that

J̇ orb

Jorb
= (1 − q)

Ṁ2

M2
+ 1

2

ȧ

a
, (4)

for conservative mass transfer (Ṁ = 0) which we assume to be the
case throughout this paper.

Combining equations (1), (2) and (3) we obtain

J̇ orb

Jorb
= J̇ GR

Jorb
+

√
(1 + q)rh

Ṁ2

M2
+ k M1 R2

1

τS Jorb
ω, (5)
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where r h = Rh/a. Then, equations (4) and (5) can be combined to
obtain an expression for the rate of change of the orbital separation:

ȧ

2a
= J̇ GR

Jorb
+ k M1 R2

1

τS Jorb
ω −

[
1 − q −

√
(1 + q)rh

] Ṁ2

M2
. (6)

This equation shows that the orbital separation decreases due to
gravitational wave losses, increases due to the dissipative torque if
the accretor is spinning faster than the binary, and may decrease
or increase as a result of mass transfer, depending upon the mass
ratio. The last term is the reason why mass transfer can be unstable
because it can lead to a runaway where mass transfer causes the
separation to decrease, which in turn causes the mass-transfer rate
to increase. To see this in detail, we now specify how the mass-
transfer rate depends upon the degree to which the Roche lobe is
overfilled, and how the degree of overfill evolves with time.

2.2 Mass-transfer rate and the evolution of the overfill factor

We define the overfill of the Roche lobe to be

	 = R2 − RL, (7)

where R2 is the radius of the donor and RL is the radius of its Roche
lobe. The mass-loss rate from the donor monotonically increases
with 	. How it does so has been investigated by many authors
(Paczyński & Sienkiewicz 1972; Webbink 1977; Savonije 1978;
Meyer & Meyer-Hofmeister 1983; Priedhorsky & Verbunt 1988;
Ritter 1988). These investigations divide into two classes which we
will term ‘adiabatic’ and ‘isothermal’. At low mass-transfer rates,
the inner Lagrangian point lies close to the photosphere of the donor,
and we may adopt the formalism of Ritter (1988) to give

Ṁ2 = −Ṁ0e	/H . (8)

Here, Ṁ0 depends upon the density in the photosphere, H, the scale-
height, is given by H = k BT 2/µg2, where k B is the Boltzmann
constant, and T 2 and g2 are the surface temperature and gravity
of the donor, respectively. We term this the ‘isothermal’ model. It
is appropriate to cataclysmic variable stars (CVs) and to AM CVn
stars at long orbital periods. At high mass-transfer rates, the inner
Lagrangian point will move below the photosphere, and the expo-
nential relation of the isothermal case will break down. The correct
way to treat this is to compute the stellar structure (Savonije 1978).
However, with all calculations overshadowed by the uncertainty in
the synchronization torque, we prefer to move to the opposite ex-
treme of the isothermal case, which is the adiabatic response, which
for a white dwarf donor gives a mass-transfer rate of

Ṁ2 = − f (M1, M2, a, R2)	3, (9)

for 	 > 0, and zero for 	 < 0 Webbink (1984). Combining results
from Webbink (1984), Chandrasekhar (1967) and Webbink (1977),
the function f is given by

f (M1, M2, a, R2) = 8π3

9

(
5Gme

h2

)3/2 (
µ′

emn

)5/2

× 1

P

(
3µM2

5rL R2

)3/2

[a2(a2 − 1)]−1/2 . (10)

Here, m e is the mass of an electron, m n is the mass of a nucleon, µ′
e is

the mean number of nucleons per free electron in the outer layers of
the donor (which we will assume to be two), P is the orbital period,
r L = RL/a and µ and a2 are parameters associated with the Roche
potential (Webbink 1977)

µ = M2

M1 + M2
, (11)

a2 = µ

x3
L1

+ (1 − µ)

(1 − xL1)3
. (12)

Here, x L1 is the distance of the inner Lagrangian point from the
centre of the donor in units of a, and we have swapped the order of
the two masses relative to that of Webbink (1977) because in our
case the secondary star is the donor.

The key difference between equations (8) and (9) is their sen-
sitivity to changes in 	 which has an effect upon when and how
mass transfer is unstable, but not the rate at which mass transfer
proceeds when it is stable. Which approximation applies depends
upon the mass-transfer rate, with the dividing line given by the mass-
transfer rate sustainable under the isothermal model when the inner
Lagrangian point is located at the photosphere. If the mass-transfer
rates during merging are much higher than this, then the adiabatic
rate is the more suitable. Following Ritter (1988), the isothermal
mass-transfer rate scales as

−Ṁ2 ∝ R3
2 M−1

2

(
T2

µ

)3/2

ρph, (13)

where we have left out a weak function of mass ratio. Here R2,
M 2 and T 2 are the radius, mass and photospheric temperature of
the donor star, respectively, while ρph is the photospheric density
and µ is the mean molecular mass. For a main-sequence star of
M 2 = 0.5 M�, Ritter (1988) quotes R2 = 0.52 R�, T 2 = 3520 K,
ρph = 1.6 × 10−5 g cm−3, µ = 1.33 and −Ṁ2 = 0.9 × 10−8M�
yr−1. We scale from this to a white dwarf of M 2 = 0.5 M� for
which R2 = 0.013 R�. Taking the Koester (1980) Teff = 20000 K,
log g = 8 model of a DB (helium-dominated) atmosphere, we find
that at the photosphere µ = 3.5 and ρph = 2.8 × 10−5 g cm−3.
From these figures we obtain −Ṁ2 = 0.8 × 10−12 M� yr−1. This
rate is very much lower than typical equilibrium accretion rates at
contact which are typically of the order of 10−5 M� yr, except in the
case of implausibly low component masses. Therefore, the adiabatic
approximation is the more appropriate. Hence for the remainder of
this paper, unless stated otherwise, we consider the adiabatic model
of mass transfer.

The mass-transfer rate contributes towards the evolution of the
overfill factor which changes at a rate given by

d	

dt
= (

R2ζ2 − RLζrL

) Ṁ2

M2
− RL

ȧ

a
, (14)

= R2

[(
ζ2 − ζrL

) Ṁ2

M2
− ȧ

a

]
+ 	

(
ζrL

Ṁ2

M2
+ ȧ

a

)
, (15)

where

ζ2 = d log R2

d log M2
, (16)

ζrL = d log(RL/a)

d log M2
. (17)

The factor ζrL = 1/3 for Paczyński’s (1971) small q approximation
for the Roche lobe radius, while for the approximation of Eggleton
(1983) it is given by

ζrL = (1 + q)

3

2 ln(1 + q1/3) − q1/3/(1 + q1/3)

0.6q2/3 + ln(1 + q1/3)
≈ 1

3
, (18)

for conservative mass transfer, Ṁ = 0. White dwarfs typically be-
come larger as their mass decreases, and so ζ 2 is negative, with
typical values of −0.6 < ζ 2 < −0.3.
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Neglecting the second term of equation (15) because |	| � R2,
and substituting for ȧ/a from equation (6) gives

1

2R2

d	

dt
= − J̇ GR

Jorb
− k M1 R2

1

τS Jorb
ω

+
[

1 + ζ2 − ζrL

2
− q −

√
(1 + q)rh

]
Ṁ2

M2
.

(19)

This equation, which is essentially identical to equation (20) of
Priedhorsky & Verbunt (1988), shows that the overfill grows due to
gravitational wave losses and shrinks from dissipative coupling, if
the accretor is spinning faster than the binary. It is the last term that
can lead to instability, for if the bracketed part is negative then one
has a situation where mass transfer (Ṁ2 < 0) causes 	 to grow,
which increases the mass-transfer rate, until the whole process runs
away. The destabilization caused by direct impact is contained in the
term

√
(1 + q)rh representing the loss of angular momentum from

the orbit. In circumstances that we will elucidate, this instability
can be counteracted by transferring angular momentum back to the
orbit via the term in ω.

In the case of disc accretion, it is usual to assume that all the
angular momentum contained in the mass gained from the donor
is fed back to the orbit, which means that the terms involving ω

and
√

(1 + q)rh do not appear. In this case, mass transfer is stable
provided that

q < 1 + ζ2 − ζrL

2
, (20)

because as the mass-transfer rate increases and Ṁ2 becomes more
negative, the last term in equation (19) balances the first so that
	̇ = 0 and M̈2 = 0. For a white dwarf donor with ζ 2 ≈ − 1/3 and
for ζrL ≈ 1/3, this translates to the widely-used ‘q < 2/3’ for sta-
bility. Relative to this limit, the

√
(1 + q)rh term causes instability.

However, even with a disc, the material at the inner edge of the disc
still has some angular momentum. In the very tight binary stars we
consider here, this turns out to be very significant, as we will see in
Section 2.4. Therefore, whether or not accretion is through a disc,
we need to include the ω term, and therefore to understand how the
accretor’s spin rate evolves with time.

2.3 Evolution of the accretor’s spin rate

The accretor will spin up as a result of the addition of mass, and spin
down because of the dissipative torque, if the accretor spins faster
than the binary. Conserving angular momentum we obtain

d�s

dt
= d�o

dt
+ dω

dt

=
(

λ�s −
√

G M1 Rh

k R2
1

)
Ṁ2

M1
− ω

τs

, (21)

where

λ = 1 + 2
d log R1

d log M1
+ d log k

d log M1
, (22)

a factor which arises from the change in kM1 R2
1 with the addition

of mass.
We mentioned earlier that the moment of inertia factor k is ap-

proximately 0.2, but more accurately it is a function of mass, and
decreases at high masses. To allow for this we computed values
of k as a function of mass from Chandrasekhar’s equation of state
for zero-temperature degenerate matter (Chandrasekhar 1967). We
fitted these with the function

k = 0.1939(1.44885 − M1)0.1917, (23)

which fits to better than 2 per cent over the allowable mass range.
It should be noted however that, although this function is superior
to a constant, we are not entirely self-consistent because we em-
ploy Eggleton’s zero-temperature mass–radius relation, quoted by
Verbunt & Rappaport (1988)

R

R�
= 0.0114

[(
M

MCh

)−2/3

−
(

M

MCh

)2/3
]1/2

×
[

1 + 3.5

(
M

Mp

)−2/3

+
(

M

Mp

)−1
]−2/3

,
(24)

where MCh = 1.44M� and M p = 0.00057 M�. The advantage
of this relation is that it provides us with a single relation that
matches Nauenberg’s (1972) high-mass relation but also allows
for the change to a constant density configuration at low masses
(Zapolsky & Salpeter 1969). Eggleton’s relation applies for the
whole range 0 < M < MCh which means that we can use a single
relation for both white dwarfs, without discontinuities. Our rela-
tion for k does not account for the effects included by Zapolsky &
Salpeter (1969), and therefore it is probably an underestimate of k
at low masses (because k = 0.4 for constant density spheres). The
denominator in equation (24) makes at least a 10 per cent difference
to the radius for M < 0.07 M�. However, the lowest mass stars that
can evolve off the main sequence within a Hubble time have helium
core masses of ∼0.1 M�, and so it is hard to see how white dwarfs
of lower mass can be formed. Therefore, we do not think that the
extent of our approximation for k will be a problem.

Equations (19) and (21) describe the evolution of the overfill and
the spin rate of the accretor, but need modification when accre-
tion switches from direct impact to disc mode and when the donor
reaches its breakup rate. We have already mentioned that it is usual
to assume that all the angular momentum is fed back into the orbit
when a disc forms (Priedhorsky & Verbunt 1988). However, because
in our case the accretor is relatively large compared to the binary, in
the next section we show how to account for the significant angular
momentum lost at the inner edge of the disc.

2.4 Disc formation

As mass transfer proceeds between two white dwarfs, the mass
ratio become smaller and the orbital separation increases. Both of
these changes mean that there will come a point when the stream
no longer hits the accretor directly and an accretion disc will form.
This occurs when the minimum radius reached by the stream, Rmin,
exceeds the radius of the primary star, R1. To calculate when this
occurs we use equation (6) of Nelemans et al. (2001). On formation
of a disc, most of the angular momentum of the accreted material
will be transferred back to the orbit by tidal forces at the outer edge
of the disc (Priedhorsky & Verbunt 1988). However, material at
the inner edge of the disc still has angular momentum (e.g. disc
accretion acts to spin up the accretor). This can be accommodated
within equations (19) and (21) simply by replacing Rh by R1 and
r h = Rh/a by r 1 = R1/a whenever R1 < Rmin. This is because
Rh was defined as the radius of a Keplerian orbit having the same
angular momentum as the stream, whereas the inner disc has the
angular momentum of a Keplerian orbit of radius R1.

Because it is always the case that Rh > Rmin, when a disc starts to
form we must have Rh > R1, so the switch corresponds to a decrease
in the angular momentum lost from the orbit as a consequence of
mass transfer, which therefore causes the mass-transfer rate to drop.
It is important to realize however that R1 is not that much smaller
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than Rh, and so the destabilization that affects direct impact accre-
tion affects disc accretion to a very large extent as well. Moreover,
the square root dependence upon r 1 suggests that this effect may
not be negligible in wider binary systems, a point we return to in
Section 4.5.

The change from Rh to R1 is the only one we make once a disc has
formed; we assume that the spin–orbit coupling expressed through
the synchronization time-scale remains unchanged.

2.5 Maximum spin rate of the accretor

For low synchronization torques, the accretor may be spun up to
its breakup rate at which point spin–orbit coupling will presum-
ably strengthen markedly through bar-mode type instabilities or the
shedding of mass. We model this as follows. During evolution if
�s = �k, where

�k =
√

G M1

R3
1

(25)

is the Keplerian orbital angular frequency at the surface of the ac-
cretor, and �̇s > �̇k, where

�̇k = −�k

2
(1 − 3ζ1)

Ṁ2

M1
, (26)

and

ζ1 = d log R1

d log M1
, (27)

then we force �̇s = �̇k by alteration of the synchronization time-
scale to a new value τ ′

s given by

ω

τ ′
s

=
(

λ�k −
√

G M1 Rh

k R2
1

)
Ṁ2

M1
− �̇k. (28)

This revised value is then used in place of ω/τ s in equation (19) for
the evolution of the overfill factor to give

1

2R2

d	

dt
= − J̇ GR

Jorb
+

[
1 + ζ2 − ζrL

2
− q − kλ

√
(1 + q)r1

]

× Ṁ2

M2
+ k M1 R2

1�̇k

Jorb
,

(29)

where r 1 = R1/a. This modification clamps the spin rate of the
accretor to the Keplerian spin rate at its surface and increases the
rate at which angular momentum is injected back into the orbit.

Equations (19) and (21) together with the above modifications
for disc formation and the maximum spin of the accretor can be
integrated to find how the mass-transfer rate and the spin frequency
of the accretor evolve with time. Before looking at examples of this,
we first look at quasi-static solutions of the equations, with our main
objective being to uncover the conditions under which dissipative
coupling can stabilize direct impact accretion.

3 A NA LY T I C A L R E S U LT S

The strong dependence of Ṁ2 upon the overfill factor means that
the time-scale of variations in mass transfer is much shorter than
the mass-transfer (≡GR) time-scale. Therefore, quasi-steady-state
solutions, in which the evolution of binary parameters is neglected,
provide a very useful way to understand what happens during mass
transfer. To do so, we assume that the coefficients multiplying ω and
Ṁ2 in equations (19) and (21) do not change with time and also that
�̇o = �̇k = 0. In Section 4 we will describe the results of numerical
integrations where we do not make these assumptions.

The details of the analysis of quasi-static solutions are contained
in Appendix A. We now describe the qualitative outcomes of this
work, starting with the circumstances under which dynamical in-
stability is or is not guaranteed to occur, and then moving on to
the main focus of this paper, the stabilizing effect of dissipative
spin–orbit coupling.

3.1 Dynamically stable and unstable solutions

Depending upon the binary parameters, there are three possible out-
comes: (i) guaranteed dynamical instability, (ii) guaranteed stability,
and (iii) the intermediate case of either stability or instability, de-
pending upon the degree of spin–orbit coupling. It is the third case
that is of most interest in this paper; we leave this to the next sub-
section. Here we summarize the first two cases.

Mass transfer is dynamically unstable and will lead to a merger,
regardless of synchronization torques, if

q > 1 + ζ2 − ζrL

2
− kr 2

1 (1 + q)λ, (30)

(equation A16). This is nothing more than the usual ‘q > 2/3’
condition for dynamical instability, very slightly modified by the
last term which accounts for the moment of inertia of the accretor.
No amount of spin–orbit coupling can stabilize the mass transfer in
this case. This is the case studied by Saio & Jeffery (2002) amongst
others; it is also probably the most common outcome of a merger
as observed double white dwarfs have fairly equal masses (Maxted,
Marsh & Moran 2002).

In the case of direct impact accretion, stable mass transfer is
guaranteed, regardless of spin–orbit coupling, if

q < 1 + ζ2 − ζrL

2
−

√
(1 + q)rh, (31)

(equation A17). The same equation with r h replaced by r 1 gives the
limit in the case of disc-fed accretion. Equation (31) is exactly that
derived by Nelemans et al. (2001) for the case of no feedback of the
angular momentum of the accreted material to the orbit. The third
term on the right-hand side of this equation is significantly larger
in magnitude than its counterpart in equation (30) as can be seen
in Fig. 1, which shows parameter constraints for two stars obeying
Eggleton’s (zero-temperature) mass–radius relation, equation (24).
In this figure, the upper dashed line shows the limit, equation (30),
for guaranteed instability, while the lower dashed line shows the
limit, equation (31), below which mass transfer is stable, accounting
for whether the accretion is through a disc or by direct impact. In
between these two lines is a zone in which mass transfer is stable or
unstable according to the strength of spin–orbit coupling. This zone
is very significant, both in the fraction of parameter space it occupies,
and even more so when one accounts for typical parameters at birth
(Section 5). We therefore devote a separate section to it, with details
once again left to Appendix A.

3.2 Stability of equilibrium

The boundaries of guaranteed stability and instability are defined by
the existence (or not) of quasi-static solutions of equations (19) and
(21). The intermediate region of parameter space adds the new pos-
sibility of unstable quasi-static solutions. A linear stability analysis
leads to the following condition (equation A34) for these solutions
to be stable:

1

τS
>

{
β

[
1 + ζ2 − ζrL

2
− q −

√
(1 + q)rh

]
+ λq

}
Ṁ2e

M2
. (32)
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118 T. R. Marsh, G. Nelemans and D. Steeghs

Figure 1. The upper dashed line shows the dynamical stability limit (equa-
tion 30), while the lower dashed line shows the stricter criterion of Nelemans
et al. (2001) (equation 31), accounting for the switch between direct impact
and disc accretion at M 1 ≈ 1 M�. The solid line shows the transition be-
tween disc and direct impact accretion. The three dotted lines show how the
strict stability limit of Nelemans et al. (2001) is relaxed when dissipative
torques feed angular momentum from the accretor back to the orbit (equa-
tion 32), once again accounting for both the direct impact and disc accretion
cases. The three lines are labelled by the synchronization time-scale in yr.
The line for τ S = 1000 yr coincides with the lower dashed line for M 1 >

1.2 M� giving the dash–dotted line.

Here, −Ṁ2e is the equilibrium mass-transfer rate and β = 6R2/	e

where 	e is the equilibrium value of the overfill factor correspond-
ing to Ṁ2e (see Appendix A for details). β is a dimensionless factor,
typically of the order of 103–104, which measures the sensitivity
of the mass-transfer rate to changes in the overfill factor. This is
where the dependence of the mass-transfer rate upon 	 matters; the
more sensitive it is, the larger β is. Also, because both the terms
in brackets multiplying β and Ṁ2e are negative, the stronger the
synchronization torque has to be to ensure stability.

The condition of equation (32) is a generalization of the strict
condition for stability of Nelemans et al. (2001) (equation 31) and
is the key result of this paper. Once more, this condition applies for
direct impact accretion, while for disc-fed accretion the r h must be
replaced by r 1 = R1/a. This condition quantifies the expectation
that spin–orbit coupling will stabilize mass transfer, and essentially
says that the synchronization time-scale must be less than the time-
scale upon which the mass-transfer rate can vary significantly. This
is what is expected: the spin of the white dwarf must be able to
respond to variations of the mass-transfer rate to ensure stability.

An example of marginally unstable mass transfer is shown in
Fig. 2 in which we also compare a numerical integration (starting
from a slight perturbation of the equilibrium mass-transfer rate) with
the predictions of the linear stability analysis. The oscillations result
as first the white dwarf is spun up, leading to injection of angular mo-
mentum back into the orbit which reduces the transfer rate causing
the white dwarf to spin down, and so on. When the synchronization
torque is too weak, the white dwarf does not respond fast enough
to alterations of the accretion rate to damp out perturbations, and
their amplitude grows. In this particular case the amplitude satu-
rates, but this is not of great significance because it is only for rather
finely-tuned cases that one does not have either stability or such
a violent instability that merger is inevitable. Moreover, long-term
oscillations will not occur in practice because of the evolution of

Figure 2. The evolution of mass-transfer rate is shown (solid line) for a
marginally unstable case of M 1 = 0.5 M� and M 2 = 0.21 M� and a syn-
chronization time-scale of 30 yr. The model was started close to equilibrium
and evolved with the masses and orbital separation held fixed. The short
vertical lines mark the oscillation period predicted from a linear stability
analysis while the dashed curves represent the predicted amplitude.

the component masses and orbital separation which is not included
in Fig. 2.

To apply the stability criterion, equation (32), we must first calcu-
late Ṁ2e, which also gives 	e (through equation 9); this calculation
is detailed in Appendix A. Lines of stability for various synchro-
nization time-scales are plotted in Fig. 1. These show how the action
of dissipative torques expands the region of stable mass transfer in
the case of direct impact. The lower dashed line, marking the onset
of instability in the absence of any synchronizing torque, is raised
to become one of the dotted lines (labelled by the synchronization
time-scale at the start of mass transfer). Clearly, the synchronization
time-scale must be short to have much effect, except for very low
mass systems. The criterion of Nelemans et al. (2001) (equation
31) is the limiting case for τ S → ∞, while the standard dynamical
stability limit (equation 30) is the limit as τ S → 0.

For large accretor masses, direct impact can be avoided for a wide
range of donor masses as the accretor becomes very small. The
switch from r h to r 1 stabilizes the mass transfer, and for a while
stability becomes a case of whether the accretion occurs through
direct impact or not, with the dotted stability lines following the disc
accretion limit (solid line) in Fig. 1. However, at very high accretor
masses (M 1 > 1.2 M�), even the switch to r 1 is insufficient, and the
lines of stability drop below the solid line marking the disc/direct
transition. Thus, there are even regimes of disc accretion which are
destabilized by the loss of angular momentum from the inner disc.

Fig. 3 shows the equilibrium angular velocity of the accretor rel-
ative to the Keplerian angular velocity at its surface in the case of
systems just at the stability limit, the fastest case. This figure shows
that, for synchronization time-scales of interest for evolution, the
accretor does not approach breakup. This figure may appear coun-
terintuitive in that weaker synchronization causes slower rotation in
some cases. This results from the higher donor masses made possi-
ble by stronger synchronization which lead to much smaller orbits
and orbital periods. For much of Fig. 3 the accretor is almost syn-
chronous with the orbit as can be seen from the small values of the
differential spin rate, ω = �s − �o (dashed lines). Really we are
just seeing that the accretor can be close to filling its Roche lobe
when it is of low mass, and therefore by definition it rotates at a rate
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Mass transfer between double white dwarfs 119

Figure 3. The equilibrium spin rate of the accretor �s relative to the Kep-
lerian angular velocity at its surface �k is plotted (solid curves) for marginal
mass-transfer stability for three different synchronization time-scales (in yr).
The dashed curves show the differential spin rate ω = �s − �o relative to
�k.

of the same order of magnitude as the breakup rate. Discontinuities
at high masses are caused by the transition to disc accretion.

3.3 Super-Eddington accretion

Equations (A19) and (A21) of Appendix A give the equilibrium
mass-transfer rates for dynamically stable systems. Each of these is
of the form

−Ṁ2e

M2
= f (q)

− J̇ GR

Jorb
, (33)

where f (q) → ∞ as q increases towards the instability limit. Given
this, and the fact that for massive systems the GR time-scale can be
short, there are almost inevitably ranges of parameter space which,
although stable, lead to super-Eddington accretion. Han & Webbink
(1999) discuss this case extensively, focusing upon the fraction of
mass that can be ejected. Although ejection of mass is needed for
a system to survive super-Eddington accretion, Han & Webbink
(1999) argue that it is likely that the ejected mass will form a com-
mon envelope around the binary system, which will lead to the
merger of the two white dwarfs. Thus we assume, as do Nelemans
et al. (2001), that the ultimate consequence of super-Eddington ac-
cretion is merging and the loss of the system as a potential AM
CVn progenitor. We are, in effect, assuming that dynamical insta-
bility and super-Eddington accretion lead to the same end result:
merging.

In order to calculate the Eddington accretion rate, we follow Han
& Webbink (1999) and use the difference in the Roche potential at
the inner Lagrangian point and the accretor, φL1 − φ a, to give the
energy released per unit mass. The Eddington accretion rate ṀEdd

is then given by

ṀEdd = 8πGmpcM1

σT (φL1 − φa)
, (34)

where σ T is the Thomson cross-section of the electron and m p is
the mass of a proton. This expression comes from taking two proton
masses per free electron, as appropriate for fully-ionized helium
or carbon. This value is increased over the usual solar-composition
limit because of the higher mass per free electron, but also because of
the relatively deep potential at the inner Lagrangian point in a double

white dwarf system. We consider a refinement of this expression in
Section 4.1.

4 N U M E R I C A L I N T E G R AT I O N S

The analytical results above take no account of how the system
reaches equilibrium or of the evolution of system parameters that
occurs during this process. For instance, they take no account of
the expected lengthening of the synchronization time-scale as the
binary separation increases, which may destabilize the mass trans-
fer. Similarly, the analytical results do not include the possibility
of the accretor reaching its breakup spin rate, which increases cou-
pling, and may stabilize mass transfer. Finally, even though equi-
librium mass-transfer rates can be calculated, it is the maximum
mass-transfer rate that is of more interest from the point of view of
surviving contact. The significance of these possibilities can only
be answered through numerical integration.

4.1 Method

We carried out fifth-order Runge–Kutta integrations, adapting the
time-step as the integrations proceeded. The integrations were
started just before contact. To simulate the effect of a long inter-
val prior to contact, we started the accretor with a differential spin
rate of

ω = −τs
d�o

dt
. (35)

This ensures, through equation (21), that dω/dt ≈ 0 in the case of
strong coupling, as expected, with the primary star lagging slightly
behind the increasing orbital frequency. For large τ s, this can give
�s < 0, in which case we fixed its initial value at zero.

One of the purposes of the numerical integrations was to see if
systems could be stable and yet exceed the Eddington luminosity.
As described above, Han & Webbink (1999) have already detailed
the computation of the Eddington rate in double white dwarf binary
stars. However, they implicitly assume that the accretor corotates
with the binary orbit. Because we are explicitly allowing this not to
be the case, we need to correct the expression φL1 − φ a of Han &
Webbink (1999). Instead we use the following formula

φL1 − φa − 1

2
v2

i + 1

2
(vi − vω)2, (36)

where vi is the impact velocity and vω is the velocity of the accretor
at the point of impact, both measured in the rotating frame. This ex-
pression comes from first subtracting the contribution of the impact
assuming that the accretor is corotating, and then adding back in the
true amount accounting for ω �= 0. If ω = 0, then vω = 0 and the
expression of Han & Webbink (1999) is returned as expected. The
modified formula works equally for direct impact and disc accretion.
We implemented it by pre-computing a set of impact velocities and
locations which we interpolated during the integrations. In a similar
manner we also calculated the luminosity of any stream/disc impact
in the case of disc accretion. We found that, once the accretor was
spinning at its breakup limit, the accretion luminosity was roughly
cut in half relative to the value of Han & Webbink (1999), which es-
sentially is the result of the virial theorem. However, we also found
that immediately after mass transfer starts, with the accretor rotating
slowly, the value of Han & Webbink (1999) is a good approximation,
and it is only this early phase that matters as far as super-Eddington
accretion is concerned.

C© 2004 RAS, MNRAS 350, 113–128

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/350/1/113/986306 by guest on 20 August 2022



120 T. R. Marsh, G. Nelemans and D. Steeghs

4.2 Scaling of the synchronization time-scale

In the analytical calculations, we have assumed that the synchro-
nization time-scale is fixed, whereas it is expected to increase as the
separation of the binary increases. For instance, Campbell (1983)
calculates the synchronization due to dissipation of induced elec-
trical currents within the donor when the accretor is magnetic. The
synchronization time-scale in this case varies with the degree of
asynchronism ω, but in the small ω limit Campbell (1983) finds

τS ∼ 2 × 106 M1 R−4
1 R−5

2 a6 B−2 yr, (37)

where B is the surface field of the accretor in gauss and the other
quantities are in solar units. Putting M 1 = 0.6 M�, R1 = 0.012
R�, R2 = 0.02 R�, a = 0.06 R� and B = 107 G gives τ S ≈ 10 yr.
However, this ignores the high conductivity of degenerate gas which
reduces the dissipation and lengthens the time-scale considerably
for a fixed field strength. For example, Webbink & Iben (1987)
estimate that the field strength would need to be of the order of 1010

G to reduce the synchronization time-scale to the order of decades.
One point worth making about Campbell’s expression is that the
a6 dependence is largely compensated by the R−5

2 terms because
R2 will expand with a, apart from the relatively small effect of
the changing mass ratio. If this still applies to white dwarfs, then
it means that if magnetic torques stabilize the mass transfer, the
systems will remain almost synchronized at long orbital periods too.
These systems will appear as ‘polars’ with magnetically controlled
accretion.

Tides provide another synchronization mechanism. In the stan-
dard formalism for tidal synchronization, tidal deformation in an
asynchronous system is damped by some form of viscosity or radia-
tive damping (Alexander 1973; Zahn 1977; Campbell 1984; Eggle-
ton, Kiseleva & Hut 1998). Radiative damping is more effective

Figure 4. The mass-transfer rate and accretor’s spin rate (relative to the breakup rate) shortly after the start of mass transfer between white dwarfs of masses 0.5
and 0.11 M� with very weak spin–orbit coupling (τ S = 1015 yr). In the left-hand panels the masses were held fixed for comparison with analytical predictions
(dashed lines). The right-hand panels show that evolution is strong enough in this case to avoid the breakup limit, and also to induce a transition to disc-fed
accretion after 80 000 yr.

than the viscosity of degenerate matter. Campbell (1984) derives
the expression

τS = 1.3 × 107

(
M1

M2

)2 ( a

R1

)6
(

M1/M�
L1/L�

)5/7

yr, (38)

(modified to reflect synchronization of the accretor rather than the
donor). Others differ in detail, but retain the scaling with mass ratio
and orbital separation. In contrast to the magnetic case, the size of
the donor does not enter this expression and thus the tidal torque
drops off rapidly with increasing separation. Unfortunately, as we
discuss later, the overall magnitude of the time-scale seems ex-
tremely uncertain. We therefore take it as a free parameter defined
by the time-scale at the moment of first contact but we retain the
scaling with mass ratio, the radius of the accretor and the orbital
separation of the above expression, i.e. we assume that

τS ∝
(

M1

M2

)2 ( a

R1

)6

. (39)

We now look at the results of long-term computations of the evolu-
tion for a wide range of initial masses of each component.

4.3 No evolution versus evolution of parameters

Before presenting the full results of the numerical integrations, we
pause to compare a numerical calculation with and without evolution
(Fig. 4) as a test of both the analytical predictions (details of which
can be found in Appendix A) and the code.

This figure shows the switch-on of mass transfer between two
white dwarfs, for a stable case satisfying equation (A17), with neg-
ligible spin–orbit coupling. Initially, the mass-transfer rate rises
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Mass transfer between double white dwarfs 121

sharply, but once the mass-transfer rate is high enough to coun-
terbalance the effect of GR, there follow a few thousand years of
steady mass transfer at a relatively high rate, during which the ac-
cretor spins up. The predicted rate from the analysis of Appendix
A is marked as a dashed line in the upper-left panel of Fig. 4, and
matches the mass transfer used by Nelemans et al. (2001) for such
cases. Once the accretor reaches the breakup rate, then our assumed
stronger coupling sets in, injecting angular momentum back into the
orbit and causing a steep drop in mass-transfer rate.

In this particular case (M 1 = 0.5 M�, M 2 = 0.11 M�), if the
parameters are allowed to evolve (as described in the next section
and plotted in the right-hand panels of Fig. 4), then the breakup
spin is not reached within the period of time shown, but the system
makes a transition from direct impact to disc-fed accretion, which
causes a similar, although less dramatic, drop in accretion rate after
80 000 yr.

4.4 Long-term integrations

With the above scaling of the synchronization torque, we computed
evolution over a grid in M 1, M 2 parameter space to determine the
long-term stability of systems. Each model was followed for 109 yr
after contact, or until it became unstable (defined as |Ṁ2| > 0.01
M� yr−1), or until the accretor exceeded the Chandrasekhar limit
(defined here as 1.438 M� to avoid problems when computing
the radius of the accretor using Eggleton’s formula). We computed
the grid for a number of different synchronization time-scales at
contact. The results for τ S = 1015 and 10 yr are shown in Fig. 5
while Fig. 6 shows the case of very strong coupling with τ S = 0.1
yr. In all cases the points plotted represent the masses of the stars
immediately before the start of mass transfer. In these figures we
plot the analytical stability limits as shown in Fig. 1. Furthermore,
for the τ S = 0.1 and τ S = 1015 yr cases we use equations (A19)
and (A21) respectively to compute the donor mass above which
the accretion rate will be super-Eddington (an iterative calculation,
there is no simple functional form for this limit); these limits are
plotted as dot-dot-dot-dashed lines.

Figure 5. The left-hand panel shows the results of evolution for 109 yr following contact for weak coupling with τ S = 1015 yr. The right-hand panel shows
the case of τ S = 10 yr. In each case, models were computed on a regular grid covering the whole parameter range shown, but only stable models are plotted,
i.e. all the models in the empty upper-left regions are dynamically unstable. Open triangles indicate super-Eddington accretion rate systems; open stars indicate
super-Eddington accretion rate systems with a total mass in excess of the Chandrasekhar limit; filled stars mark systems in which the accretor reaches the
Chandrasekhar limit within 109 yr. We identify the filled circles (stable, sub-Eddington, sub-Chandrasekhar) as AM CVn progenitors. Analytical limits are
plotted as in Fig. 1 with the addition in the left-hand panel of a dot-dot-dot-dashed line dividing sub- from super-Eddington systems, calculated in the weak
coupling limit (equation A21). Note that this line largely overlaps the dashed line marking instability except for around M 1 ≈ 0.85 M� and M 1 > 1 M�.

Figure 6. As for Fig. 5, but for very strong coupling (τ S = 0.1 yr). The
treble dot–dashed line which divides sub- from super-Eddington systems
was computed in the strong coupling limit (equation A19). The dotted line
marking the instability limit for very strong coupling almost coincides with
the upper dashed line marking absolute instability.

The main result of our integrations is that neither spinning up
to breakup nor the weakening of the synchronization torque as the
system evolves have much effect, i.e. the analytical stability limit
equation (32) provides a fair estimate of whether a system will
survive mass transfer or not. This is because instability either sets in
on a very short time-scale, or not at all. Even those systems which
are numerically stable while analytically unstable (i.e. they violate
the analytical stability limit) have little overall effect upon survival
rates because they nearly always exceed the Eddington limit (Fig. 5).
The small effect that the weakening of the synchronizing torques
has can be put down to the concurrent lengthening of the GR time-
scale. We illustrate this in Fig. 7 which shows the evolution over
1010 yr of two weakly coupled systems with the same mass for
the accretor M 1 = 0.5 M�, but with donor masses of 0.150 and
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122 T. R. Marsh, G. Nelemans and D. Steeghs

Figure 7. The long-term evolution of two weakly coupled (τ S = 1015 yr)
systems are shown, with one just below the instability limit (M 1 = 0.5 M�,
M 2 = 0.150 M�, solid line) and the other just above (M 1 = 0.5 M�,
M 2 = 0.151 M�, dashed).

0.151 M�, the first of which is stable in the long term while the
second is not. This figure shows why our analytical criteria are
useful: the important action happens so fast that complicating factors
such as breakup have little effect.

Three major effects distinguish our numerical integrations from
the analytical work. First, the Eddington luminosity is exceeded by
some of the dynamically stable systems. We assume that these will
merge. Super-Eddington systems are marked in Figs 5 and 6 by
open triangles. The second effect, which promotes stability, is the
evolution of the stellar masses towards the region of stability. This
can in some cases save a system by moving it from an analytically
unstable position to a stable one before the instability has had time to
set in. However, as remarked above, many of these ‘saved’ systems
suffer super-Eddington accretion, so there is little overall increase in
survival rates. Thirdly, and most obvious, is that some systems are
able to exceed the Chandrasekhar limit. While it is not clear a priori
how long they will take to do this, it turns out that the mass-transfer
rate is initially so high that the total mass of the binary need only be
a very small amount over the Chandrasekhar limit for this to happen
within 109 yr, relatively short compared to the lifetimes of AM CVn
systems. Therefore, these systems, although of considerable interest
as potential Type Ia supernova progenitors, will be too short-lived
and intrinsically rare (because of the large mass of the primary star
required) to contribute much to the total population of AM CVn
systems (see Fig. 10 for example).

Super-Eddington accretion becomes most significant for strong
coupling, as seen in the left-hand panel of Fig. 6. In this panel, the
analytical limit which divides sub- from super-Eddington accretion
(dot-dot-dot-dashed line, calculated from equation A19) agrees well
with the numerical integrations. However, the analytical limit is
obtained in Appendix A in the limit of rigid coupling between the
accretor and the orbit, so no more parameter space can be gained
for the production of AM CVn systems by reducing τ S any further.
The analytical limit for the case of weak coupling (equation A21)
matches the τ S = 1015 yr case well (left panel of Fig. 5). However,
we were not able to obtain accurate analytical predictions for the
intermediate τ S = 10 yr case (right-hand panel of Fig. 5) because in
this case it is not correct to assume either that the accretor is locked as
for equation (A19) or that it is freely rotating as for equation (A21),
and instead we must compute the spin evolution fully.

We have ignored several effects that may be of significance. First,
our models make no allowance for tidal heating during the approach
to contact (Rieutord & Bonazzola 1987; Webbink & Iben 1987; Iben,
Tutukov & Fedorova 1998). This might increase the range of valid-
ity of the isothermal mass-transfer mode, although it is hard to see
it having a significant effect given that the transition transfer rate
for the isothermal versus adiabatic modes is so low. If Campbell’s
(1984) dependence of tidal synchronization upon luminosity ap-
plies, there could also be a feedback of tidal heating into a stronger
synchronization torque. This could be modelled, but with the de-
tails of synchronization so unclear, we prefer just to note that such
effects might occur. While on this issue, it is worth emphasizing
that we use a zero-temperature mass–radius relation for both white
dwarfs, whereas we can expect larger radii for a given mass from
finite entropy effects, depending upon the time taken to reach con-
tact (Deloye & Bildsten 2003). It is also worth pointing out that
if tidal heating is not significant, then the donor may not even be
synchronized, which would necessitate changing the whole pre-
scription based upon Roche geometry. Another issue that we have
not tackled is the effect of helium ignition on the accreting white
dwarf (because the donors of interest for survival of mergers are
all low mass and therefore of helium rather than carbon–oxygen
composition). It is not clear whether helium ignition, if it takes
place, would increase or decrease the probability of avoiding the
merger.

4.5 Destabilization of disc accretion

It is the finite size of the accretor which leads to the destabiliz-
ing removal of angular momentum from the orbit as mass is trans-
ferred. Direct impact accretion is a secondary, although important,
consequence of this. To illustrate this point, we repeated the weak
coupling calculations shown in the left-hand panel of Fig. 5 while
assuming that all accretion occurs through a disc, regardless of
the whether the minimum stream radius was smaller than the pri-
mary star or not (one could envisage, for instance, initializing these
systems in a state of disc accretion, however unrealistic this is in
practice). The results are shown in Fig. 8. Rather surprisingly per-
haps, we see that the standard ‘q = 2/3’ limit, marked by the up-
per dashed line, is not much better for disc accretion than it is for

Figure 8. This figure again shows very weak coupling (τ S = 1015 yr, cf.
left-hand panel of Fig. 5), but with the accretion forced to be through a disc.
The lower dashed line shows the guaranteed stability limit for disc accretion,
while the thin solid line shows the usual limit when direct impact is included.
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Mass transfer between double white dwarfs 123

Figure 9. The regions of stability for CVs with negligible spin–orbit cou-
pling (τ S = 1015 yr). Systems below the dotted line (equation 40) are stable,
whereas under the usual assumption that angular momentum is entirely fed
back, the upper dashed line would be the relevant limit. The lines on this
figure are the CV equivalents of those plotted in Fig. 8.

direct impact accretion. This is also clear from the relatively small
change between the thin solid line (direct impact included) and the
lower dashed line (disc accretion only). As we said earlier, this
is because the primary star’s radius R1 is not that much smaller
than the circularization radius Rh in these systems. For disc accre-
tion, the zero spin–orbit coupling stability limit of equation (31)
becomes

q < 1 + ζ2 − ζrL

2
−

√
(1 + q)

R1

a
, (40)

which is plotted as the lower dashed line in Fig. 8.
This raises the question of whether sinking angular momentum

into the accretor also has a significant effect in CVs. To evaluate
this, we computed the analytical stability limit with a revised mass–
radius relation for the donor. We assumed that R2 = M 2 (solar units)
and that ζ 2 = − 1/3 (measuring the adiabatic response), approxi-
mately correct for low-mass donors. The result is shown in Fig. 9.
As expected, given the larger orbits of CVs, the destabilization is
nothing like as severe as it is for double white dwarfs, but neither is
it entirely negligible. The impact of this upon the formation of CVs
depends upon the distribution of pre-CVs in the (M 1, M 2) plane, but
has some potential to favour magnetic over non-magnetic systems
and to reduce overall formation rates.

5 S U RV I VA L A S A F U N C T I O N O F
S Y N C H RO N I Z AT I O N

We are unlikely to catch a system in the short-lived phase after the
start of mass transfer, and so the most important consequence of the
destabilizing effect of finite accretor size is its impact upon the sur-
vival of double white dwarfs as AM CVn systems. To gain an idea of
how significant this could be, we applied our stability criterion to the
models of Nelemans et al. (2001) to obtain the predicted birth rate of
AM CVn stars as a function of the synchronization time-scale at the
start of mass transfer. Fig. 10 shows a grey-scale representation of the
stellar masses at birth from the models. The grey-scale only shows
systems that can become AM CVn binaries. They concentrate to-

Figure 10. The masses of double white dwarfs at birth from the binary
population models of Nelemans et al. (2001) that survive in the case of strong
coupling (τ S = 0). The surviving models do not reach the limit of guaranteed
stability in this case (upper dashed curve) because super-Eddington accretion
becomes the more stringent constraint (as marked by the dot–dashed line).
Dotted lines are as plotted in Fig. 1.

Figure 11. The birth rate of AM CVn systems descended from double white
dwarfs as a function of the synchronization time-scale at the start of mass
transfer. We show also the case for isothermal mass transfer (dotted line)
to show that the mass-transfer mode has a relatively slight overall effect.
The plot was derived from our analytical approximations for speed, but
limited comparisons with numerical integrations produced nearly-identical
results.

wards the line dividing sub- from super-Eddington systems because
they are outliers from the majority of systems which have near-equal
mass ratios. This depends upon the physics of the common envelope
amongst other things; Nelemans et al. (2001) developed their model
partly in response to the observations of equal mass ratios of double
white dwarfs. Others have found more unequal distributions (Iben
et al. 1997; Han 1998), nevertheless all models so far peak with q
> 0.4 and thus all predict that most systems are unstable and will
merge. The high density near the stability limit of the distribution of
Nelemans et al. (2001) means that the birth rate of AM CVn systems
from the double white dwarf path is very sensitive to the strength
of synchronization torque. This can be seen in Fig. 11 in which we
plot the birth rate (from the double white dwarf merger route) as a
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function of the synchronization time-scale.1 This figure shows that
as spin–orbit coupling weakens, the birth rate of AM CVn stars from
double white dwarfs (which we assume to be equivalent to survival
of mass transfer as a binary) drops by about one hundredfold. A syn-
chronization time-scale τ S < 1000 yr is enough to increase the birth
rate from its lowest value by more than a factor of 2. While sensitive
to the mass ratio distribution of the detached double white dwarfs,
this calculation illustrates the potential significance of dissipative
synchronization torques for the population of AM CVn systems. In
this figure we also show the results for isothermal mass transfer,
which shows that variations between the two extremes are not that
large.

We could hope that an observational estimate of the birth rate of
AM CVn stars might decide whether we are in the strong or weak
coupling part of Fig. 11. Unfortunately in our opinion, uncertainties
and selection effects are too large to allow this to be done. First,
there are only two directly-measured distances: GP Com, 68 ± 7 pc
(Thorstensen 2003); AM CVn, 235 pc (Dahn, private communica-
tion2). The AM CVn distance is a factor of 3 further than Warner
(1995) assumed in estimating the space density, which if it applied
to all systems would imply an overestimate by a factor of 27; this
serves to show how uncertain observational estimates are. To add to
this, Nelemans et al. (2001) estimate that while 99 per cent of AM
CVns have periods P > 2000 s, they will only form ∼10 per cent
of the observed sample, an estimate that itself depends upon highly
uncertain assumptions about selection. Finally, the models that lead
to Fig. 11 have uncertain normalization – a factor of 5–10 seems
quite possible. There is clearly considerable scope for work in this
area.

6 D I S C U S S I O N

The requirement that the initial synchronization time-scale is be-
low 1000 yr in order to raise survival rates of double white dwarfs
as binary systems is the most important result of this paper. There
are few calculations of synchronization of white dwarfs in binaries,
but those that exist come nowhere near this strength of synchroniza-
tion. For instance, Campbell’s (1984) estimate for radiative damping
(equation 38) applied to a pair of white dwarfs with masses of M 1 =
0.5 M� and M 2 = 0.2 M� gives τ S ∼ 1012 yr. Even longer times
(1015 yr; Webbink & Iben 1987) emerge from calculations based
upon the viscosity of degenerate matter. Indeed, the estimates of
synchronization time-scales are so long that even the mass donor
would not have achieved synchronism prior to mass transfer, let
alone the accretor (Mochkovitch & Livio 1989). If these estimates
are reliable, then the lowest birth rate estimates of Nelemans et al.
(2001) are to be preferred. However, it is widely recognized by the
authors of the papers on synchronization of white dwarfs that the
problem is essentially unsolved; the possibilities of turbulent vis-
cosity (Horedt 1975) and the excitation of non-radial modes (Camp-
bell 1984) can dramatically shorten the synchronization time. For
instance, Mochkovitch & Livio (1989) argue that turbulent viscos-
ity can give synchronization time-scales �500 yr, exactly what is
needed to raise the birth rates significantly. The uncertainty over

1 The extreme values in Fig. 11 differ from those of models I and II in
Nelemans et al. (2001) because we use a different mass–radius relation in
the calculation of the Eddington rate.
2 On behalf of the United States Naval Observatory (USNO) CCD parallax
team.

the dissipation mechanisms within white dwarfs is thus a major
unsolved problem for AM CVn evolution.

If the synchronization torques are not strong, then either the ultra-
short period systems (if they are such) are descended from systems
that have always had extreme enough mass ratios to be stable, or
the double white dwarf route may not be the main channel for these
systems. The former alternative is possible, despite the absence of
a single system of extreme mass ratio amongst the observed close
double white dwarf population (Maxted et al. 2002), because they
are expected to be rare, as shown by Fig. 10. This would mean that
AM CVn birth rates through the double white dwarf route are de-
pendent upon on a, so far untested, part of the mass ratio distribution
of double white dwarfs. The main objection to formation other than
from two white dwarfs is the relative difficulty of reaching ultra-
short orbital periods by other routes; it is important from this point
of view that the photometric periods of the order of 10 min or less
are confirmed (or not) as orbital periods.

One way to test our ideas would be to establish that there are
systems in existence that are stabilized by synchronization torques.
Although such systems are likely to be in a phase of direct impact
accretion, it is important to realize that direct impact on its own
does not equal instability. There is a region of parameter space of
stable, direct impact accretion even in the absence of synchroniza-
tion torques (the slim lenticular region in Fig. 1 containing the word
‘Direct’). For instance, V407 Vul, if it is a direct impact accre-
tor, could be in this region (Marsh & Steeghs 2002); so too could
RXJ J0806.3+1527. Thus, even if direct impact accretion were to
be established in a double white binary, it would not mean that
significant synchronizing torques were acting. We would need in
addition to establish that the system parameters implied instability
in the absence of such torques. Short-period systems are of par-
ticular interest in this respect because short periods require high
donor masses, and correspondingly high accretor masses if they are
to remain in the lenticular region. This is an excellent reason for
attempting to find further examples of such systems. X-ray surveys
would seem the most promising method, because both V407 Vul
and RX J0806.3+1527 were found in this manner, although in the
future perhaps space-based gravitational wave detectors will prove
even more useful (Nelemans, Yungelson & Portegies Zwart 2004).

Similar remarks apply to CVs, except for these stars the unstable
region of Fig. 9 is small enough that it seems unlikely that the stellar
masses can be measured with enough accuracy to be certain that a
given system is located within it.

6.1 Measuring synchronization torques from other
binary stars

The strength of synchronization torques on white dwarfs might be
testable in other systems. If any short-period systems with rapidly
rotating white dwarfs can be identified, it might be possible to place
a lower limit upon the synchronization torque acting. For instance,
rotation velocities have been measured for several white dwarfs in
CVs (Sion 1999). The strongest constraints come from high spin
rate, low accretion rate, short-period systems. Perhaps the best ex-
ample is the CV, WZ Sge, which has an orbital period of 81.6 min
and an accretor which shows signs of having a spin period of ≈28
s (Patterson et al. 1998). WZ Sge is an old, low accretion rate sys-
tem, accreting via a disc. Assuming that its spin period represents
the equilibrium between accretion and tidal dissipation torques, and
because �s � �o, we have
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τS = k M1 R2
1�s

|Ṁ2|
√

G M1 Ra
, (41)

where R a is the radius equivalent to the specific angular momentum
of the accreted material. We expect R a to lie in the range R1 < R a

< Rh (allowing R a �= R1 because the accretor may be magnetized
given the presence of a spin signal). We take for the mass-transfer
rate |Ṁ2| = 3 × 10−11M� yr−1, estimated from fig. 1 of Kolb &
Baraffe (1999) as we are interested in the long-term average value
because the time-scale turns out to be long. Thus, assuming for WZ
Sge that M 1 = 1 M� and M 2 = 0.08 M� (Steeghs et al. 2001), we
find

3 × 108 < τS < 1.4 × 109yr. (42)

Armed with the constraint on τ S from WZ Sge, we can scale to a
double white dwarf with M 1 = 1 M� and M 2 = 0.26 M�. The
separation of such a system is 9.5 times smaller than WZ Sge, while
the donor is 3.25 times more massive. Scaling according to τ S ∝ a6

M−2
2 (M 1 and R1 being the same), the equivalent range of τ S for

the double white dwarf is

40 < τS < 180 yr, (43)

very much the sort of values that can have an impact upon AM CVn
evolution.

Unfortunately, there are significant problems with the above anal-
ysis. If the pulsation in WZ Sge really does mean that the accretor
is magnetic (and truly represents the white dwarf’s spin period),
then it may be magnetic coupling to the outer accretion disc which
keeps it rotating slowly. In addition, there are complications of nova
outbursts in CVs which probably make them unsuitable for mea-
surement of τ S under any circumstances (Livio & Pringle 1998).
Detached systems avoid these problems, and perhaps might make it
possible to measure a spin-down rate if a weakly-magnetic example
could be found (but strong enough to give a spin pulse) and it could
be shown that magnetic and accretion torques were negligible. In-
terestingly there is apparently a detached system which contains a
fairly rapid rotator (EC13471−1258; O’Donoghue et al. 2003), but
in this case it is suggested that this was caused by a recent episode
of accretion, and so it is not an indication of weak synchronization.
We are left with no clear answer as to the strength of synchronizing
torques from the known types of white dwarf binary stars. Neverthe-
less, it is clear from the estimate above that if tidal synchronization
is significant for the evolution of AM CVn systems, then it should
also be important in fixing the spin rates of white dwarfs in CVs
and similar systems, and this could be a possible explanation for the
generally low rotational velocities detected so far in CVs, none of
which is near the breakup rate (Sion 1999).

6.2 Magnetic versus tidal synchronization

If magnetic rather than tidal torques were dominant, an interesting
filtering effect could occur in which systems with strongly mag-
netic accretors survive mass transfer while non-magnetic systems
mostly merge. One would then expect magnetic accretors to be over-
represented amongst the AM CVn systems. This is not obviously
the case, e.g. GP Com has no detectable circular polarization (Crop-
per 1986) and along with V396 Hya shows the clear signature of
emission from a disc, while other systems in the class show shallow
absorption-line spectra similar to those of high-state non-magnetic
CVs rather than the magnetic AM Her class. This suggests that the
fraction of merging double white dwarfs which are magnetic is so
low that even the pruning of 99 per cent of the non-magnetic sys-
tems fails to reveal them, or that tidal synchronization is effective in

Table 1. The ratio of the period derivative in a semi-detached state to its
value when (just) detached is given for different stellar masses.

M 1 M 2 ṖSD/ṖD M 1 M 2 ṖSD/ṖD

(M�) (M�) (M�) (M�)

0.3 0.06 −0.61 0.7 0.08 −0.53
0.5 0.06 −0.52 0.7 0.10 −0.58
0.5 0.08 −0.58 0.7 0.12 −0.64
0.5 0.10 −0.66 0.7 0.14 −0.70
0.7 0.06 −0.48

stabilizing both non-magnetic and magnetic systems, or that neither
magnetic nor tidal synchronization has much effect or, finally, that
AM CVn stars do not form through the double white dwarf route.

6.3 Period changes

As several investigators have realized, measurements of period
changes have some potential to discriminate between models of the
ultracompact binary stars. Once a system has settled on to its long-
term evolution towards the AM CVn phase and spin equilibrium has
been reached, it is straightforward to show that the period derivative
in a semi-detached state, ṖSD, relative to its pure GR-driven value
when detached, ṖD, is given by

ṖSD

ṖD
= (ζ2 − ζrL )/2

1 + (ζ2 − ζrL )/2 − q
. (44)

Because ζrL ≈ 1/3 and ζ 2 ≈ − 1/3, and because the denominator of
the above expression must be positive for stability, this ratio is neg-
ative; see Table 1 for some explicit values for systems which are sta-
ble even when there are no synchronization torques. To date, period
changes have been reported for V407 Vul (Strohmayer 2002) and RX
J0806.3+1527 (Hakala et al. 2003; Strohmayer 2003), and in each
case the period was found to be decreasing. These results favour
a detached rather than semi-detached configuration for these two
systems (ES Cet on the other hand is clearly accreting). This would
weaken the case for V407 Vul and RX J0806.3+1527 having passed
through the state discussed in this paper, although period changes
in other close binary stars such as the CVs have proved unreliable
as a means of measuring long-term angular momentum changes
(Applegate 1992; Baptista et al. 2003). The periods of the ultra-
compact systems should continue to be monitored to see whether
similar problems affect these stars, although one might hope that
at such short periods gravitational wave angular momentum losses
will dominate over any secondary effects.

7 C O N C L U S I O N S

We have studied the onset of mass transfer between two white
dwarfs, in particular its stability during the phase when the accre-
tion stream hits the accretor directly. We find that this phase can be
stabilized by coupling of the spin of the accretor to the binary orbit,
through dissipative processes such as tidal stressing and magnetic
induction. However, the coupling needs to be strong and must act
on a time-scale <1000 yr when mass transfer first starts to have
much effect upon the survival rates of the systems. Standard esti-
mates of the synchronization time-scales in white dwarfs are orders
of magnitude longer than this, but may wildly underestimate the
synchronization torques. We have also found that, during disc ac-
cretion, the angular momentum lost to the accretor at the inner edge
of disc also destabilizes mass transfer, and is almost as significant as
the direct impact case, essentially because the radius of the accretor
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is comparable to the circularization radius in these systems. The
same effect plays a lesser but non-negligible role in non-magnetic
CVs. Further discoveries of ultracompact double white dwarfs have
the potential to tell us whether synchronization torques are indeed
important for surviving this exciting phase of evolution.
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A P P E N D I X A : QUA S I - S TAT I C S O L U T I O N S

In this appendix we are interested in quasi-static solutions of equa-
tions (19) and (21), ‘static’ on time-scales short compared to the
secular evolution of the system parameters and their stability. As
outlined in Section 3.1, we assume therefore that the coefficients
involving binary masses and separation are constant.

We define the following dimensionless variables

t → t/τS, (A1)

x = −τS
Ṁ2

M2
, (A2)

y = ω

�o
, (A3)

z = 	

2R2
, (A4)

the first being a rescaling of the time-scale. With these new variables,
equations (19) and (21) can be written as

dz

dt
= a1 − a2 y − a3x (A5)

dy

dt
= −a4xy − y + a5x, (A6)

where the dimensionless coefficients a1–a5 are given by
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a1 = τS

τG
, (A7)

a2 = kr 2
1 (1 + q)

q
, (A8)

a3 = 1 + ζ2 − ζrL

2
− q −

√
(1 + q)rh, (A9)

a4 = λq, (A10)

a5 = q
√

(1 + q)rh

kr 2
1 (1 + q)

− λq, (A11)

and where τG = −Jorb/ J̇ GR and r 1 = R1/a as before. The coef-
ficients a1, a2 and a5 are positive, while a3 and a4 can be either
positive or negative. For Eggleton’s mass–radius relation, equation
(24), for instance, a4 < 0 for M 1 > 0.40 M�.

For the solutions of interest, ẏ = ż = 0, and we are left with two
simultaneous equations

a3xe + a2 ye = a1, (A12)

a5xe − ye = a4xe ye. (A13)

These lead to a quadratic equation with solutions

xe = −b ± √
b2 + 4a1a3a4

2a3a4
, (A14)

where

b = a3 + a2a5 − a1a4. (A15)

Solutions of physical interest must have real, positive x e, and, for
reasons of stability, if there are two such solutions, the smaller of
the two is favoured.

This divides parameter space into two parts according to whether
there are or are not any solutions. The region where there are solu-
tions is further subdivided according to whether or not the solutions
are stable.

A1 Dynamically unstable case

We know that a1 > 0. Hence, if a4 > 0 and a3 + a2 a5 < 0 (which
because a2 and a5 are both positive implies a3 < 0), then b < 0
and |b2 + 4a1 a3 a4 | < |b|, and so there are no real and positive
solutions for x e. The condition a3 + a2 a5 < 0 is equivalent to

q > 1 + ζ2 − ζrL

2
− kr 2

1 (1 + q)λ, (A16)

which was quoted in the main text as equation (30).
If a4 < 0, as is possible, there is formally a positive solution of

equation (A14), but only at such high spin rates that we run into
the breakup limit of the accretor. The consequence is that equation
(A16) remains a good condition for instability.

A2 Dynamically stable case

The reverse of the unstable case is when a3 > 0, when one can show
that there is always a solution for real, positive x e, for any τ S and
a4. The condition a3 > 0 means that

q < 1 + ζ2 − ζrL

2
−

√
(1 + q)rh, (A17)

as derived by Nelemans et al. (2001). As noted in the main text, this
can be adapted for disc-fed accretion by replacing r h by r 1 = R1/a.

Systems evolve towards this solution with time because their mass
ratios continuously decrease. We will prove below that the equilib-
rium is stable in this case. Before doing so, we look at the equilibrium
mass-transfer rate in this stable case. The equations derived here are
those used in the comparison of analytical and numerical results
shown in Fig. 4.

There are two extreme cases as τ S → 0 or τ S → ∞. As τ S → 0,
a1 → 0 and

xe → a1

a3 + a2a5
. (A18)

Dividing out the τ S in the definitions of x and a1, then we have

−Ṁ2e

M2
−→ − J̇ GR/Jorb

1 + (ζ2 − ζrL )/2 − q − kr 2
1 λ(1 + q)

. (A19)

This is, as expected, the usual expression for stable mass transfer,
albeit slightly modified by the term including kr 2

1 as a result of the
angular momentum removed from the orbit by the accreting white
dwarf owing to its increasing mass. This term contributes at most
∼0.01, and can safely be ignored.

When τ S → ∞, we run into breakup of the accretor once more. It
is then clear from equation (29) that the equilibrium mass-transfer
rate is given by

−Ṁ2e

M2
= − J̇ GR/Jorb

1 + (ζ2 − ζrL )/2 − q − kλ
√

(1 + q)r1
. (A20)

The final factor in the denominator is again fairly small, and so
this mass-transfer rate is very similar to that of equation (A19).
Thus, we conclude that systems undergoing direct impact accretion,
which satisfy the strict stability condition of Nelemans et al. (2001)
(equation 31), always have equilibria with mass-transfer rates close
to that of equation (A19).

Nelemans et al. (2001) use a different equation to compute the
Eddington-limited mass-transfer rate in the stable direct impact case.
In their fig. 1 they plot a dashed line obtained from the relation

−Ṁ2e

M2
= − J̇ GR/Jorb

1 + (ζ2 − ζrL )/2 − q − √
(1 + q)rh

, (A21)

which gives substantially higher mass-transfer rates than either of
equations (A19) and (A20). Although this is not the equilibrium
rate, Nelemans et al. were in fact correct to use this, at least in the
weak coupling case, as can be seen by considering the situation
that applies as τ S → ∞ while ω remains finite. Equation (19) then
becomes

1

2R2

d	

dt
= − J̇ GR

Jorb
+

[
1 + ζ2 − ζrL

2
− q −

√
(1 + q)rh

]
Ṁ2

M2
,

(A22)

and the equilibrium solution, 	̇ = 0, gives equation (A21). Al-
though this is a temporary state that will stop once the white dwarf
has spun up to breakup, it is still long-lasting (see Fig. 4). The spin-
up phase will last a time τ B given by

τB

τG
≈ k

√
r1/rh

[
1 + (ζ2 − ζrL )/2 − q −

√
(1 + q)rh

]
, (A23)

which can be long enough for the system to switch to disc accretion,
although once breakup is reached, the mass-transfer rate is still given
by equation (A20). These results are those illustrated graphically
in Fig. 4. As spin–orbit coupling increases, we expect a peak rate
intermediate between that given by equation (A20) and that given
by equation (A21).
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A3 Stability of equilibrium

The case of most interest to us is when the mass ratio lies in between
the unstable and stable limits of equations (A16) and (A17) when
− a2 a5 < a3 < 0. In this case synchronization can bring about
an equilibrium solution which disappears as τ S → ∞. This then
sets an upper limit on τ S required for the existence of an equilib-
rium solution. However, it turns out that an even stricter constraint
comes from the requirement that the equilibrium solution be stable.
This is a new feature; so far, either there have been or there have
not been equilibrium solutions, and if they existed we have implic-
itly assumed that they were stable equilibria. We now come across
equilibrium solutions that can be stable or unstable.

Consider the following small perturbations from equilibrium

y = ye + y′, (A24)

z = ze + z′, (A25)

x = xe + βxez′, (A26)

where in the last equation we recognize that x varies with z alone
because the mass-transfer rate depends explicitly upon 	 but not ω,
and the dimensionless factor β is defined by

β = 2R2
d log(−Ṁ2)

d	
. (A27)

Because the mass-transfer rate increases monotonically with 	, β

is positive. For the two mass-loss models we consider in Section 2.2

βi = 2
R2

H
, (A28)

for the isothermal case of equation (8), and

βa = 6
R2

	e
, (A29)

for the adiabatic case of equation (9), where 	e is the equilibrium
value of the overfill factor; it is the latter expression that we have
employed throughout the paper.

Applying the perturbation to equations (A5) and (A6) while keep-
ing terms to first order in the small dashed quantities gives

ż′ = −βxea3z′ − a2 y′, (A30)

ẏ′ = βxe(a5 − a4 ye)z
′ − (1 + a4xe)y′. (A31)

These are two first-order, coupled equations. Assuming solutions of
the form ept, we obtain an eigenvalue equation for p with values that
are solutions of the following quadratic:

p2 + (1 + a4xe + βxea3)p + β
(

a1 + a3a4x2
e

) = 0, (A32)

after using equations (A12) and (A13) to simplify the third term.
The solutions are stable provided that Re(p) < 0 for both roots. This
is true if the two coefficients of the quadratic are both positive. The
coefficient of the term linear in p is positive if

1

τS
> −[a3β + a4]

−Ṁ2e

M2
, (A33)

or, when written out in full,

1

τS
> −

{[
1 + ζ2 − ζrL

2
− q −

√
(1 + q)rh

]
β + qλ

} −Ṁ2e

M2
,

(A34)

which was quoted in the main text (equation 32). It turns out that the
coefficient of the constant term is also positive when this condition
is satisfied, so no further restriction is necessary. Equation (A34) is a
generalization of the strict condition for stability of Nelemans et al.
(2001) (equation 31) and is the key result of this paper. Equation
(A34), derived from the condition a3β + a4 > 0, does not quite
match the criterion for stability regardless of τ S, equation (A17),
which corresponds to a3 > 0. This is because equation (A34) permits
arbitrarily high rates of spin, whereas in reality the spin rate is limited
by breakup. Both criteria are correct, but under different conditions;
equation (A17) applies in the case of zero synchronization, while
equation (A34) applies when there are synchronizing torques strong
enough to keep the spin rate of the accretor below the breakup rate.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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