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Abstract

Background: Breast cancer is the leading cause of both incidence and mortality in

women population. For this reason, much research effort has been devoted to

develop Computer-Aided Detection (CAD) systems for early detection of the breast

cancers on mammograms. In this paper, we propose a new and novel dictionary

configuration underpinning sparse representation based classification (SRC). The key

idea of the proposed algorithm is to improve the sparsity in terms of mass margins

for the purpose of improving classification performance in CAD systems.

Methods: The aim of the proposed SRC framework is to construct separate

dictionaries according to the types of mass margins. The underlying idea behind our

method is that the separated dictionaries can enhance the sparsity of mass class

(true-positive), leading to an improved performance for differentiating

mammographic masses from normal tissues (false-positive). When a mass sample is

given for classification, the sparse solutions based on corresponding dictionaries are

separately solved and combined at score level. Experiments have been performed on

both database (DB) named as Digital Database for Screening Mammography (DDSM)

and clinical Full Field Digital Mammogram (FFDM) DBs. In our experiments, sparsity

concentration in the true class (SCTC) and area under the Receiver operating

characteristic (ROC) curve (AUC) were measured for the comparison between the

proposed method and a conventional single dictionary based approach. In addition,

a support vector machine (SVM) was used for comparing our method with state-of-

the-arts classifier extensively used for mass classification.

Results: Comparing with the conventional single dictionary configuration, the

proposed approach is able to improve SCTC of up to 13.9% and 23.6% on DDSM

and FFDM DBs, respectively. Moreover, the proposed method is able to improve AUC

with 8.2% and 22.1% on DDSM and FFDM DBs, respectively. Comparing to SVM

classifier, the proposed method improves AUC with 2.9% and 11.6% on DDSM and

FFDM DBs, respectively.

Conclusions: The proposed dictionary configuration is found to well improve the

sparsity of dictionaries, resulting in an enhanced classification performance. Moreover,

the results show that the proposed method is better than conventional SVM classifier

for classifying breast masses subject to various margins from normal tissues.
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Background

According to the World Health Organization, breast cancer is the major leading cause

of both incidence and mortality in women [1]. It has been generally believed that

screening mammography is the most cost-effective approach for early detection of

breast cancer [2]. For this reason, considerable research efforts have been devoted to

develop Computer-Aided Detection (CAD) systems, which would be beneficial for

detecting breast lesions.

In practical CAD systems, it is generally difficult to achieve high sensitivity at a low

false positive (FP) detection rate [3]. Due to the variability of mass margins and the

inherent superposition of normal tissues in mammography, mammographic mass

detection can be much more challenging compared to micro-calcification detection [4].

In particular, a high number of FP detections could induce unnecessary breast biopsies

so that patients would get anxious and unnecessary costs expense. Thus, reducing the

number of FP detections is of great importance in practical breast cancer screening

based on mammography.

In recent years, Sparse Representation based Classification (SRC) [5] has been

increasingly important in the field of signal processing. The objective of sparse repre-

sentation is to represent a signal pattern in a compact and sparse way for the purpose

of representing a signal pattern with a few numbers of atoms [5]. Referring to [5], high

degree of sparsity can be desirable to improve classification performance as much as

possible. Generally, a higher sparsity could be achieved if a fewer number of atoms is

able to represent signal patterns. Sparse representation could contain discriminating

and crucial information of a signal pattern. In light of this fact, SRC may be appropri-

ate to capture the unique and apparent patterns present in breast masses. Thus, it is

reasonable to assume that applying SRC to mammographic CAD system can improve

classification performance.

A solid and well-established study on the use of SRC for classification applications

has been well-documented in the research area of face recognition. Wright et al. [6]

demonstrated that SRC was robust to face occlusion and they showed that SRC out-

performed other face recognition algorithms when classifying corrupted face images.

However, only few studies proposed the use of SRC for developing classification algo-

rithms devised for CAD systems. Liu et al. [7] designed a CAD system utilizing SRC

with learned dictionaries in classifying lesions of colon and lung. Herrndsvela [8] made

use of SR as pixel-wise classification to determine whether each pixel is located in

mass regions or not. However, this paper has been limited to only deal with one type

of possible mass margins (i.e., circumscribed mass). In addition, the feature for classify-

ing pixels was limited to image intensities of n by n neighbourhood of each pixel.

However, image level information is likely to be more affected by breast densities or

surrounding tissues structures, mainly due to the direct use of pixel values.

The margin of a mass (i.e., the border of a mass) should be carefully examined

because it is one of the most important criteria in determining whether the mass is

benign or malignant [4]. Radiologists classify the mass margins into the following five

types [4]: circumscribed, obscured, micro-lobulated, ill-defined, and spiculated margins.

In most studies on SRC-CAD, breast masses are treated as a single class. However, this

approach causes the increased diversity in positive class and subsequently degrades

sparsity in sparse representation.
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To cope with above-mentioned problem, we propose a dictionary configuration

framework designed for improving the sparsity in terms of mass margins. The pro-

posed dictionary configuration is incorporated into the sparse representation based

classification (SRC) for mammographic mass classification in CAD systems. To this

end, we adopt divide and conquer strategy [9] on the mass classification with various

margins. In the proposed dictionary configuration, we construct individual and sepa-

rate dictionaries each corresponding to a particular type of mass margins commonly

encountered in clinical screening process. Thus, the number of dictionaries is equal to

the number of types of mass margins predefined. The sparse solutions- each of which

is solved using a corresponding dictionary component- are effectively combined using

a score level fusion to make the final decision. In addition, our proposed method has

been designed by adopting a dictionary learning in order to overcome insufficient sam-

ple problem. Further, the classification is performed at feature level rather than at

image level in order to effectively make use of relevant information of mass margins in

a better way and to reduce data dimension and computational cost [6].

Experiments had been conducted using the public DDSM database [10] and the clin-

ical mammography dataset provided from a hospital in order to test the effectiveness

of the proposed framework on mammograms. Experimental results show that the pro-

posed method is able to achieve high sensitivity at a low FP rate compared with a

well-established and generally used support vector machine (SVM) classifier in mam-

mographic CAD systems.

The rest of this paper is organized as follows. In Section “Methods“, we briefly intro-

duce the region-of-interest (ROI) segmentation and feature extraction method used in

this paper. In sequence, the proposed dictionary configuration and the sparse represen-

tation based classification (SRC) are described in detail. In Section “Results and discus-

sion”, experimental results and discussion are presented. The conclusion is drawn in

Section “Conclusion”.

Methods

ROI segmentation and feature extraction

Referring to [11], mammographic CAD systems generally consist of the following four

stages: image preprocessing (enhancement), ROI segmentation, feature extraction, and

classification as described in Figure 1. The focus of this paper is to develop the effec-

tive classification method so as to increase the mass classification performance. Since

ROI segmentation and feature extraction are prerequisite steps prior to performing

classification of ROIs, we briefly describe the segmentation and feature extraction tech-

nique used in this paper.

For image preprocessing, the mass enhancement technique [12] (developed by our

group) is applied to original mammogram images for the purpose of increasing mass

detection sensitivity. In addition, the multi-level thresholding based mass segmentation

algorithm proposed in [13] is used to detect and segment mass candidates (ROIs) from

the enhanced mammogram. Figure 2 shows an example of an enhanced mammogram

with segmented ROIs generated by the preprocessing and ROI segmentation. As

shown in the Figure 2, the preprocessing effectively increases the contrast of mammo-

gram and ROI segmentation well detects and segments mass ROIs. The segmented

ROIs were used as input for feature extraction. Herein, we used four different feature
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subspaces: texture, shape, intensity, and spiculation features. The features used in our

study are summarized in Table 1. The features listed in Table 1 were used as a particu-

lar feature representation during the generation of dictionaries in the proposed SRC

framework.

Classification of breast masses using the proposed method

1. Sparse representation based classification

In this section, we first briefly review a SRC algorithm and describe the way of apply-

ing SRC algorithm for classification of segmented ROIs. Note that all of the features

described in Table 1 are used to find the corresponding sparse representations of seg-

mented ROIs and to perform the classification task.

To formulate the classification problem based on sparse representation, mammographic

mass features are used as atoms of dictionaries. ni training feature vectors from the ith

class are put together into a dictionary of the ith class as Ai = [vi,1, vi,2, · · · , vi,ni
] ∈ R

d×ni,

where d is the feature dimension and ni is the number of samples in the ith class. Note

that, in the present work, we are performing a binary classification task; thus, i = mass and

normal, representing breast masses (positive class) and normal tissues (negative class). By

concatenating feature vectors from the mass and normal tissue training samples, a

Figure 1 Generic framework of mammographic Computer-Aided Detection (CAD) algorithms.
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dictionary is generated as A = [Amass, Anormal]. When classifying a test sample, the test fea-

ture vector y ∈ Rd can be approximated as a linear combination of the training feature

vectors from corresponding class i. Since the membership to the ith class of the test feature

vector is initially unknown, the linear combination of y can be rewritten as follows using

the dictionary A:

y = Ax0, (1)

where x0 = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni
, 0, · · · , 0]T ∈ Rn is a coefficient vector whose

entries are zero except those belonging to the corresponding the ith class.

Since a valid test sample y is likely to be sufficiently represented using only the train-

ing samples from the same class, it is possible to find a sparse solution of Eq. (1) by

solving the following ℓ
0-minimization problem [6]:

x̂ = arg min ||x||0 subject to Ax = y, (2)

where || · ||0 denotes the ℓ
0-norm, which counts the number of nonzero entries in a

input vector.

Figure 2 An example of the enhanced mammogram and segmented ROIs. (a) A mammogram from

DDSM DB. (b) An enhanced mammogram with segmented ROIs, while the white colored arrow indicates a

true mass.
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However, the ℓ
0-minimization problem is NP-hard (Non-deterministic Polynomial-

time hard). Donoho [14] proved that the solution of the ℓ
0-minimization can be

approximated to that of ℓ
1-minimization. Therefore, Eq. (2) can be rewritten as [6]

x̂ = arg min
x

||x||1 subject to ||Ax − y||2 ≤ ε. (3)

Then, we compute residuals for each class as follows:

ri(y) = ||y − Aδi(x̂)||2, for i = mass and normal, (4)

where δi is the characteristic function which selects the coefficients associated with

the ith class.

Note that small residual means test feature vector is sufficiently approximated as a

linear combination of the training feature vectors from corresponding class. Therefore,

the test feature vector y can be classified to the class that minimizes the residual:

identity (y) = arg min
i

ri(y). (5)

2. The proposed dictionary configuration

In this section, we explain the proposed dictionary configuration method. For this pur-

pose, we first describe the dictionary learning method adopted in this paper. Generally,

dictionary generation can be categorized into two approaches: the analytic approach

(i.e., wavelets) and the learning-based approach (i.e., K-SVD, FDDL). Advantages of the

learning-based approach are the much finer-tuned (i.e., more sophisticated) dictionaries

Table 1 Description for the features used in the proposed SRC framework

Type Features NF

Texture Local binary pattern (LBP) [23-25]
Uniform LBP histograms are computed from the segmented object; LBP operator with a circularly
symmetric neighbourhood of P members on a circle radius of R is employed; the three-resolution

combination is used by setting LBP parameters (P,R) values of (8,1), (8,2), and (8,3)

354

Spatial gray level dependence (SGLD) [26]
13 features, namely, “correlation”, “energy”, “entropy”, “inertia”, “inverse difference moment”, “sum
average”, “sum variance”, “sum entropy”, “difference energy”, “difference variance”, “difference
entropy”, “information measure of correlation 1”, “information measure of correlation 2” are
extracted from each SGLD matrix at six different inter-pixel distances (d = 1, 2, 4, 6, 8, and 10)
and in four directions (θ = 0◦, 45◦, 90◦,and135◦), are used to calculate 24 SGLD matrices,

yielding 312 SGLD features

312

Run length statistics (RLS) [27]
Five features, namely, “short run emphasis”, “long runs emphasis”, “gray-level nonuniformity”,

“run-length nonuniformity”, and “run percentage” are obtained from the gray level run
length matrices with four directions, θ = {0◦, 45◦, 90◦, 135◦}

20

Gray level difference statistics (GLDS) [28]
Four features “contrast”, “angular second moment”, “entropy”, and “mean” are extracted from
the gray level difference statistics vector; six different inter-pixel distances (d = 1, 2, 4, 6, 8,
and 10) and four directions (θ = 0◦, 45◦, 90◦,and135◦) are used to calculate 24 GLDS

vectors, yielding 96 GLDS features

96

Shape Normalized radial length (NRL) [29]
NRL mean, NRL standard deviation, NRL area ratio, NRL zero crossing count, NRL entropy

5

Intensity
[11]

Contrast measure, Average gray level, Standard deviation, Skewness, Kurtosis 5

Spiculation Region-based stellate features [30]
Means of pixel-wise stellate features are computed from the three local regions (core, inner,
and outer regions, respectively); standard deviation of means of pixel-wise stellate features
are computed from the three local regions; differences of means of pixel-wise stellate

features are computed from the three local regions

20

NF is abbreviation of number of features.
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they produce compared to the analytic approaches, and their significantly better

performance in applications [15]. It should be pointed out that mammographic mass

classification is generally quite difficult due to the large variability in the appearance of

mass patterns [4] such as its irregular size, obscured borders, and complex mixtures of

margin types. Therefore, the learning-based dictionary generation is more appropriate

for constructing dictionary that aims at maximizing mass classification performance,

thanks to their capability of characterizing a wide variety of mammographic mass pat-

terns in a sophisticated way.

In typical mammographic CAD design, the number of positive training samples may

be often insufficient because the training samples should be divided into small subsets

according to its type of margin. However, it should be noted that to correctly classify-

ing a large variety of mass types found in clinical practices, it would be desirable that

dictionaries should contain a sufficient number of mass samples for each mass type to

achieve better classification performances of SRC [16]. Also note that the goal of using

sparse representation in our method is to express a given mass example as linear com-

bination of a small number of atoms taken from a “dictionary” resource. Hence, large-

sized dictionaries may lead to a better sparse solution than small-sized dictionary

[17,18]. In order to effectively represent mass examples with a given atoms, the Fisher

discrimination dictionary learning (FDDL) [18] has been incorporated into the pro-

posed dictionary configuration method. The FDDL aims to learn a structured diction-

ary whose sub-dictionaries have specific class labels. Each sub-dictionary of the learned

whole dictionary has good representation power to the samples from the correspond-

ing class, but has poor representation power to the samples from other classes [18].

The FDDL iteratively updates the dictionary so that the learned dictionary would have

smaller within-class scatter degree while maintaining larger between-class scatter

degree, resulting in improved SRC performances.

In general mass classification task, suspicious regions are classified as mass or normal

tissues, i.e., binary classification problem. Herein, we assume that true masses are

assigned to positive class while normal tissues for negative class. However, this results

in increasing the diversity in positive class, and degrades sparsity in sparse representa-

tion. To cope with the problem, we propose a dictionary configuration framework that

improves sparsity in terms of mass margins within conventional SRC framework for

CAD systems. Note that as shown in Figure 3, the proposed dictionary configuration is

used at the classification stage. Key property of the proposed dictionary configuration

is to increase the sparsity of each dictionary, because each dictionary contains positive

Figure 3 Proposed dictionary configuration method description. Note that the proposed dictionary

configuration has been performed at the classification stage shown in Figure 1.
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samples that have the similar margin characteristics. In the proposed SRC framework,

T dictionaries are learned separately where T is the number of types of mass margins.

It should be noted that each dictionary contains features from mass samples in a single

type of mass margins and features from normal tissues.

In addition, one major problem of typical CAD systems is the large number of false

positives. Hence, an organized dictionary is likely to be unbalanced due to the differ-

ence in the number between true-positive and false-positive samples. This would make

the sparse solution based on that dictionary to be highly biased toward the class that

contain a large number of samples. Consequently, this biased sparse solution could

cause low true positive rate and high true negative rate within a SRC framework. To

address the aforementioned issue, the proposed SRC framework is designed for per-

forming random sampling on negative samples, aiming to make the balanced

dictionary.

After constructing dictionaries, the FDDL algorithm [18] is separately applied to

individual dictionary; this can improve the sparsity of each dictionary. We now explain

how to obtain the sparse solution for each type of mass margins. Let us denote the

learned dictionary by Dt, where t is an index of mass margin types and t = 1,..., T, and

T is the total number of types of mass margins. When given Dt and a test feature vec-

tor y, sparse solutions of the test feature vector y for each Dt can be solved by using

Eq. (3). Without loss of generality, the sparse solution for each type of mass margins

can be defined as follows:

x̂t = arg min
x

||x||1 subject to ||Dtx − y||2 ≤ εt for t = 1, ..., T. (6)

The residuals of sparse solutions derived from each dictionary according to the types

of mass margins in Eq. (4) are fused at score level by calculating residual correspond-

ing to mass and normal classes as follows:

Resi =

T
∑

t=1

∥

∥y − Dtδi(x̂t)
∥

∥

2
for i = mass or normal. (7)

Note that in Eq. (7), the fused residual represents reconstruction error with the given

class i. Therefore, the fused residual is utilized as final decision. Smaller residual indi-

cates that the test sample is sufficiently approximated with the training samples from

corresponding class. Thus, the test sample can be classified to the class that achieves

the minimization of the residual. In detail, in case of a normal ROI, residuals of the

normal class should be smaller than that of the mass class for all dictionaries. There-

fore, the fused residual also have a smaller fused residual for the normal class. In case

of a mass ROI, a residual of the mass class should small compared to that of the nor-

mal class in the corresponding margin-type dictionary. Therefore, the fused residual of

mass class should have a smaller values compared to that of normal class.

Experimental setup

The proposed dictionary configuration based classification method was tested on both

public data, so-called Digital Database for Screening Mammography (DDSM) [10], and

the real clinical dataset provided from Samsung Medical Center (SMC). From DDSM

DB, we collected 303 mammograms (each with one mass) containing benign or malig-

nant masses; it will be referred to as the “Dataset 1”. The second dataset consists of a
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total of 165 clinical mammograms (containing benign or malignant masses). We called

this DB as the “Dataset 2”. Figure 4 shows information of Dataset 1 and Dataset 2,

respectively, in terms of mass margin and breast density characteristics. It can be seen

from Figure 4 that the masses with different margins and densities found in clinical

practice were well represented in the used datasets by containing a variety of mass

margins and breast densities commonly encountered in clinical mammographic CAD

systems. In addition, it is known that it is hard to detect and classify masses in high

density breast, because masses are concealed by surrounding Parenchyma [19]. As

shown in the statistics, we tested mass ROIs with dense tissue to cover samples those

are hard to classify.

By using the segmentation method described in “Methods” section, a total of 2,725

ROIs (234 masses and 2,491 normal tissues) and 691 ROIs (151 masses and 540 nor-

mal tissues) were automatically generated by using Dataset 1 and Dataset 2, respec-

tively. The DDSM provides annotations of the true masses presented in each image

[10], while for each clinical mammogram (coming from SMC), the region of interest

containing the mass was annotated by a Mammography Quality Standards Act-

approved radiologist. These annotations were considered as the ground truth in our

experiments. Using ground truth information, a generated ROI was considered as a

true mass only if it met the following two criteria [20]: (1) the centroid of a segmented

region is included in the annotated area, and (2) a segmented region intersects with

the true mass region more than 25%.

Evaluation protocol used in this paper was designed based on 10-fold cross validation

scheme, i.e., a portion of 90% mass and normal tissue ROIs were used for training

samples to construct dictionaries, while the rest of 10% mass and normal tissue ROIs

were used for testing samples. To guarantee stable classification results, 30 indepen-

dent runs of 10-fold cross validation were executed. Thus, all of the results reported

were averaged over 30 runs with 10-fold cross validation.

To objectively quantify the improvement of sparsity compared to the conventional

single dictionary configuration that contains various mass margins into a single diction-

ary, sparsity concentration in true class (SCTC) is defined as follows:

SCTC(x̂) =
||δtrue(x̂)||1

||x̂||1
∈ [0, 1], (8)

Figure 4 Statistical information of the datasets on Dataset 1 and Dataset 2. Distribution of breast

densities (left) and mass margins (right), CIRC: circumscribed, OBS: obscured, SPIC: spiculated, ILL: ill-defined,

M-LOB: micro-lobulated.
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where δtrue is the characteristic function that selects the sparse coefficients associated

with the true class of a test sample y and x̂t represents the sparse solution for each

type of mass margins (see Eq. (6) for definition).

In order to evaluate the classification performance of the proposed SRC framework,

area under the receiver operating characteristic (ROC) curve [21] was used (denoted

by AUC) because AUC is a commonly used performance index for evaluating classifi-

cation algorithms developed for mammographic CAD applications [11]. To evaluate

the ROC curve for the proposed method, the difference between Resmass and Resnormal

is used as a confidence value because if a test sample has higher residual to mass class

compared to normal class, it is reasonable to assume that the sample is much similar

to the mass class. For comparative purpose, a state-of-the-art support vector machine

(SVM) classifier [22] that utilizes a radial basis function kernel was employed.

Results and discussion

Table 2 shows the value of SCTCs (defined in Eq. (8)) of each mass margin using the

conventional single dictionary configuration and the proposed dictionary configuration.

Note that the SCTC value of each mass margin was computed when the corresponding

mass margin was used as a test sample. Also note that the values of SCTCs in Table 2

have been averaged over 30 runs. The experimental results indicate that the proposed

dictionary configuration is found to work well in terms of improving the sparsity of

dictionary. Especially, the proposed method improved SCTC of up to 13.9% and 23.6%

on Dataset 1 and Dataset 2 respectively. Table 3 shows the values of AUC for both the

single dictionary configuration and the propose dictionary configuration. As shown in

the Table 3, the proposed dictionary configuration attains considerably better AUC

compared to the single dictionary configuration. This result indicates that the

Table 2 Comparisons of SCTC of each mass margin between the single and proposed

dictionary configuration

Mass margins

Dataset Dictionary
configuration

Ill-defined Micro-lobulated Circumscribed Spiculated Obscured

Dataset 1 Single 0.5610 N/A 0.5570 0.5918 0.5478

Proposed 0.5947 N/A 0.5942 0.5938 0.5473

Dataset 2 Single N/A 0.5123 0.5079 0.4966 0.4722

Proposed N/A 0.5818 0.5362 0.5146 0.5839

N/A means the dataset originally does not contains the corresponding mass margin type.

Table 3 Comparisons of AUC obtained using the proposed dictionary configuration

versus the single dictionary configuration

Dataset Classification method Averaged AUC

Dataset 1 SRC framework with
the single dictionary configuration

0.7751

SRC framework with
the proposed dictionary configuration

0.8392

Dataset 2 SRC framework with
the single dictionary configuration

0.6591

SRC framework with
the proposed dictionary configuration

0.8047
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improved sparsity would have a positive influence on the classification performance.

Also, it can be seen that in Table 4, the proposed method considerably outperforms

the SVM classifier, where the proposed method is able to increase classification perfor-

mance with 8.2% and 22.1% (in terms of AUC values) on Dataset 1 and Dataset 2,

respectively, compared to the SVM classifier. These results validates that the proposed

method has high potential for reducing false-positive detections in mammographic

CAD systems.

Figure 5 shows examples of correctly and incorrectly classified mass ROIs. As shown

in the Figure 5, correctly classified mass ROIs have more clear hyper-dense core

regions and differentiable with surrounding tissues compared to incorrectly classified

mass ROIs. The result indicates a weakness of the proposed method that mass ROIs

should have apparent characteristics compared to surrounding tissues. Moreover, it

should be noted that correctly classified mass ROIs have many number of similar sam-

ples. It indicates that to correctly classify the incorrectly classified mass ROIs, training

samples should have more samples those have similar characteristics to the incorrectly

classified mass ROIs.

Conclusions

In this paper, we propose a new sparse representation based classification (SRC) algo-

rithm based on so-called mass type-specific dictionary configuration for mammographic

CAD systems. It has been found that the proposed method is beneficial for improving

Table 4 Comparisons of AUC between the SVM and proposed dictionary configuration

Dataset Classification method Averaged AUC

Dataset 1 SVM 0.8155

SRC framework with
the proposed dictionary configuration

0.8392

Dataset 2 SVM 0.7211

SRC framework with
the proposed dictionary configuration

0.8047

Figure 5 Examples of correctly and incorrectly classified mass ROIs. The correctly and incorrectly

classified ROIs were selected among ROIs those are correctly and incorrectly classified during all of 30 runs,

respectively.
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mass type-dependent sparsity. In addition, experimental result validate that the proposed

dictionary configuration algorithm can improve the sparsity of dictionary, thus leading

to increased classification performance. Furthermore, experimental results show that the

proposed method is considerably better than the conventional SVM classifier (exten-

sively used for classification applications in CAD systems of breast masses on mammo-

graphy) for differentiating mammographic masses (confined to various margins) from

normal tissues.

For further work, information fusion (e.g., a complementary design) from different

levels (i.e., image level and feature level) should be investigated to get the better classi-

fication performances.
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