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Abstract

Background: Mass spectrometry is one of the most important techniques in the field of proteomics. MALDI-TOF
mass spectrometry has become popular during the last decade due to its high speed and sensitivity for detecting
proteins and peptides. MALDI-TOF-MS can be also used in combination with Machine Learning techniques and
statistical methods for knowledge discovery. Although there are many software libraries and tools that can be
combined for these kind of analysis, there is still a need for all-in-one solutions with graphical user-friendly
interfaces and avoiding the need of programming skills.

Results: Mass-Up, an open software multiplatform application for MALDI-TOF-MS knowledge discovery is herein
presented. Mass-Up software allows data preprocessing, as well as subsequent analysis including (i) biomarker discovery,
(ii) clustering, (iii) biclustering, (iv) three-dimensional PCA visualization and (v) classification of large sets of spectra data.

Conclusions: Mass-Up brings knowledge discovery within reach of MALDI-TOF-MS researchers. Mass-Up is distributed
under license GPLv3 and it is open and free to all users at http://sing.ei.uvigo.es/mass-up.
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Background
Mass spectrometry using matrix assisted laser desorp-

tion ionization coupled to time of flight analysers,

MALDI-TOF-MS, referred to herein as MALDI, has be-

come popular during the last decade due to its high

speed and sensitivity for detecting proteins and peptides.

Large sets of samples are analysed quickly in one single

batch. The aforementioned reasons have led to the use

MALDI for the classification of large sets of samples

from different sources and/or characteristics [1]. In this

sense, computational tools play a key role in MALDI

experiments, as they are able to preprocess raw data

registered in different formats, compare them, and apply

complex algorithms in order to finally extract new

knowledge and useful conclusions.

Raw data generated by MALDI is usually composed

of large spectra sets. Each single spectrum contains

thousands of measurements entailing mass-to-charge ratio

(m/z) signals and intensity (i.e. {m/z, intensity} pairs).

These spectra are usually stored using open xml-based

formats such as mzXML [2], mzML [3] and PeakML [4].

In addition, several open-source libraries to handle these

data formats have been developed in the last years, among

which the following are noteworthy: mzMatch [4],

jmzML [5], jmzReader [6], the ProteomeCommons.org

IO Framework [7] and different R packages [8, 9].

The spectra generated by MALDI apparatus usually

contain a high level of noisy signals, making data prepro-

cessing a crucial task that must be carried out before sub-

sequent analysis [10]. This preprocessing is an extensive

low-level procedure able to clean raw data and identify

true signals in the noisy spectra [11]. Preprocessing com-

prises several tasks, such as baseline correction, smooth-

ing, normalization, peak detection and peak matching.

The use of inadequate or incorrect preprocessing methods

can result in a biased dataset, hindering the achievement

of meaningful biological conclusions [12]. Therefore, pre-

processing is a critical stage in rigorous MALDI data ana-

lysis. To accomplish the aforementioned tasks, different
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algorithms and tools have been developed. Most of them

are publicly available as R packages [8, 13, 14], Matlab

packages [15], Java libraries [16, 17] or standalone applica-

tions [18–20].

Although MALDI is commonly used to identify and

characterize molecules, such as peptides or proteins, it

can be also used in combination with Machine Learning

(ML) techniques and statistical methods [1] to perform

biomarker discovery [21, 22], automatic sample classifi-

cation [23–26], and sample clustering [27, 28]. However,

there are no tools devoted to performing these analyses,

thus forcing researchers to use more general tools such

as R, SPSS, Weka [29] or RapidMiner [30] to carry out

them. This makes it necessary to include an intermediate

adaptation step to convert the preprocessed MALDI

data into the input format required by each tool.

In order to make the development of mass spectrom-

etry (MS) proteomics applications easier, some frame-

works such as OpenMS [31] and ProteoWizard [32], in

C++, and MsInspect [16] in Java have been published.

An example of a tool developed using such frameworks

is TOPP (The OpenMS Proteomics Pipeline) [33], which

is based on the OpenMS framework.

In spite of the existence of such a great variety of tools

and techniques for both the preprocessing and data ana-

lysis of MALDI based proteomic datasets, there is still a

lack of specific tools that cover the whole process of

MALDI data analysis, allowing the users to manage raw

datasets, preprocess them and perform several analyses

in a row, and allow the user to apply different ML and

statistical techniques to analyze MALDI data. Moreover,

most of the tools are intended to be used by a user with

a bioinformatic profile, requiring programming skills.

This paper presents Mass-Up, an extensible open-source

platform for MALDI data processing and analysis with ML

and statistical techniques that has arisen from our previous

experience working with MALDI data [34–36]. Mass-Up is

an AIBench [35] based desktop application specifically cre-

ated to perform complete analyses of MALDI data, allow-

ing the users to: (i) import raw data from different formats

(mzML, mzXML, csv); (ii) preprocess raw data; and (iii)

perform different type of analyses, including supervised

(e.g. biomarker discovery, predictor building, etc.) as well as

unsupervised (e.g. clustering, biclustering, etc.) techniques.

The Mass-Up design is focused on two main objec-

tives: coverage of the whole process of data analysis

and simplicity of use. The first objective is accom-

plished in the way Mass-Up covers the whole process

of MALDI data analysis, from data preprocessing to

different types of analysis. The second is achieved

through a design that allows Mass-Up to be used in a

straightforward manner by non-informatician users. In

addition, Mass-Up is multiplatform, open source and

designed using a pluggable architecture which makes it

easier for programmers to develop and include new al-

gorithms and analysis tools.

Implementation
Mass-Up is a computer application for managing, pre-

processing and analyzing MALDI data. Mass-Up is im-

plemented in Java and it was constructed using the

AIBench framework, which has been demonstrated to

be suitable for developing proteomics applications [36],

as it is the base framework of previously developed MS

applications [37, 38]. Currently, Mass-Up has distribu-

tions for Windows and Linux operative systems.

This section briefly describes the Mass-Up workflow and

the main algorithms and third-party libraries employed in

each Mass-Up task.

Mass-Up workflow

Mass-Up includes a serie of operations that can be clas-

sified into (i) input/output operations, (ii) preprocessing

operations, and (iii) analysis operations. Figure 1 depicts

the Mass-Up main workflow, where the most important

operations are represented, along with the input files

and data types managed by the application.

Third-party libraries

With the main goal of covering the whole process of

MALDI data analysis, Mass-Up integrates several open

source third-party libraries in order to accomplish differ-

ent tasks, such as reading different MS data formats,

preprocessing spectra, applying ML techniques, or visu-

alizing data, among others. Additional file 1: Table S1

shows a general overview of the Mass-Up, including the

algorithms and libraries used by each operation. All of

these libraries has been transparently integrated into

Mass-Up so that final users does not have to install

them manually, since they are built-in in each Mass-Up

distribution.

Mass-Up uses jmzReader 1.2.0 [6] in order to read the

mzXML and mzML MS data formats. To visualize MS

spectra and to display quality control charts, Mass-Up

uses JFreeChart 1.0.13, an open source Java library.

Mass-Up integrates two R packages for raw MALDI data

preprocessing: MALDIquant [8] and MassSpecWavelet

[13]. In addition, custom implementation of a fast peak

matching algorithm based on a forward sliding window,

named Forward, is also incorporated. Similarly to the

alignment algorithm proposed by Kazmi et al. [39], this al-

gorithm iterates the peaks from minimum to maximum

m/z, adding them to the last cluster created if their m/z is

within a distance from the average m/z of the cluster or

creating a new cluster if not. This clustering algorithm

does not allows clusters with two peaks from the same

spectrum. In such case, only the peak that minimizes the

average m/z of the cluster is kept.
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Mass-Up makes use of Weka [29], a collection of ML

algorithms for data mining tasks implemented in Java.

These algorithms are used for classification and for prin-

cipal component analysis (PCA). Three-dimensional

PCAs are rendered by using Jzy3d [40], an open source

Java library which can easily draw three dimensional sci-

entific data. Clustering is executed using a custom im-

plementation of an agglomerative hierarchical clustering

algorithm and is rendered using an adapted version of

JTreeView [41].

Biclustering is performed with Bimax [42], a powerful

algorithm capable of generating all optimal biclusters,

and BiBit [43], a novel approach for the extraction of

biclusters from binary datasets that can obtain similar

results to Bimax by using significantly less computation

time and reducing the total number of generated biclus-

ters. The aforementioned software, as well as a biclusters

viewer, is integrated through the adaptation available in

BiMS [44].

Results and discussion
Mass-Up is a flexible tool that includes several opera-

tions whose application depends on the analysis objec-

tives. Therefore, there is no single way to use Mass-Up,

and researchers must determine which analyses apply in

their studies. In this section, several practical applica-

tions of the Mass-Up operations are presented, in order

to demonstrate its usefulness and applicability.

Sample datasets

Two datasets from previous studies were selected to il-

lustrate the Mass-Up functionality. A brief description of

the main characteristics of both datasets is given in this

section.

Cancer dataset

R. López-Cortés et al. [45] propose the use of gold-

nanoparticles to separate the proteins and peptides in

human serum as a way to improve MALDI-based sam-

ple profiling. The protocol described in this work divides

each sample into two sub-samples: pellet and super-

natant. The MALDI spectra of both sub-samples are

grouped by their corresponding conditions using three-

dimensional PCA. The dataset is composed of sera from

5 patients with lymphoma, sera from 5 patients with

myeloma, and sera from 2 healthy donors. As the clasifi-

cations using pellet or supernatant are similar, only the

latter sub-samples are used in the present work.

Wine dataset

Nunes et al. [46] propose a fast MALDI-based method-

ology to identify different types of wines. The authors

carry out a preliminary study with 5 wines of different

denominations of origin, in order to identify the most

appropriate MALDI matrix. The study of the matrices

found that CHCA is the most suitable for the purpose of

classification. Each wine was spotted five times (i.e. 25

samples in total). Those 25 samples corresponding to

the use of CHCA matrix are used as proof of concept.

Preprocessing

As previously stated, the preprocessing of MS data is a

critical stage that converts raw data into a suitable input

for further analysis. Inadequate or incorrect preprocessing

Fig. 1 Mass-Up main workflow. Mass-Up main workflow operations and datatypes. Different colors have been used to identify input/output operations
(green), preprocessing operations (orange), analysis operations (blue), and datatypes (red)
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methods can result in biased datasets, hindering the

achievement of meaningful biological conclusions [12].

Preprocessing is essential since raw data contains both m/z

values belonging to analytes, as well as m/z values derived

from several forms of noise (e.g. chemical, electronic fac-

tors, etc.). The main objectives of preprocessing are [47]

to remove noise without discarding any of the m/z values

of interest, and to determine the m/z and intensity

values with the best accuracy. The most common pre-

processing tasks (shown in orange in Fig. 1) are

smoothing, baseline correction, normalization, peak de-

tection, and peak matching.

Usually, spectra are jagged, making it difficult to detect

the m/z values of interest from the noise [47]. Thus,

smoothing algorithms are usually applied to soften the

spectra. The simplest techniques are based on the use of

a sliding window, where the intensity of each m/z value

is adjusted based on the intensity of the neighbor m/z

values. Commonly used filters are moving average,

Savitzky-Golay, Gaussian and the Kaiser window. Mass-

Up provides two smoothing methods: moving average

window and Savitzky-Golay, both from the MALDIquant

library [8].

Baseline is a specific form of noise mainly driven by

chemical perturbations, defined as an offset of the inten-

sities of peaks that often show a dependency on the m/z

value such that it is highest at low m/z values, presenting

an exponential decay towards higher masses [47]. The

most common baseline correction methods are monotone

minimum, linear interpolation, LOESS, moving average of

minima and continuous wavelet transform, all of which

are available as free software in different packages such as

Cromwell [15] (Matlab), PROcess [14] (R), MALDIquant

[8] (R) or SpecAlign [19] (Java). Mass-Up allows the user

to make use of all the baseline correction methods pro-

vided by MALDIquant (i.e. Top Hat, SNIP, Convex Hull,

and Median).

A major constraint of MALDI is that the intensity of the

m/z values is relative and can vary among spots of the

same sample. For this reason, normalization is typically

used, making the intensities of different spectra compar-

able. The most common normalization methods are Total

Ion Current (TIC), Probabilistic Quotient Normalization

(PQN), Z-score, Linear, Mean or Median. Mass-Up allows

the user to perform normalization using TIC, PQN or

Median, all provided by the MALDIquant library [8].

The m/z detection can be defined as the process of

selecting values of interest (i.e. related with target analytes)

from a given spectrum, and it is normally applied after

baseline correction and smoothing. Most of the peak

detection methods are based on setting a threshold

value in order to discard low intensity m/z values. The

threshold can be absolute (e.g. minimum intensity) or rela-

tive (e.g. signal-to-noise ratio, SNR). However, Du et al. [13]

proposed a method that performs m/z detection without

explicit smoothing and baseline correction. This method

is based on the continuous wavelet transform (CWT) and

is publicly available in the MassSpecWavelet package.

Mass-Up includes two m/z selection methods: the CWT-

based method implemented in MassSpecWavelet [13],

and a SNR-based method provided by MALDIquant [8],

which uses a sliding window.

Finally, m/z matching is needed in order to make dif-

ferent spectra comparable. Without this matching pro-

cedure, the same molecule or metabolite (e.g. a certain

peptide) can have different m/z values across replicates

or samples. The objective of m/z matching methods is

to find a common set of m/z locations in several spectra,

so that all spectra will have the same m/z values for the

same biological entities. In Mass-Up there are two fun-

damental types of m/z matching: intra-sample and inter-

sample. The intra-sample matching is applied to the

spectra obtained for the replicates of the same sample,

while the inter-sample matching is applied to match m/z

values across different samples, making them compar-

able and suitable for the subsequent analysis stage. Peak

matching algorithms, are classified into two main

groups: sequential algorithms based on a sliding window

(e.g. the Forward algorithm, available in Mass-Up) and

clustering based approaches (e.g. the MALDIquant algo-

rithm [8], also available in Mass-Up).

The Mass-Up workflow also incorporates an additional

filtering step that is very closely related to the matching

process. This step is performed after the intra-sample

matching and before the inter-sample matching, and al-

lows the creation of a consensus spectrum for a sample,

which summarizes the replicates of a sample in one sin-

gle spectrum. In this step, the Percentage of Presence

(POP) parameter allows the user to set the number of

replicates where an m/z value must be present in order

to be considered a valid consensus m/z value.

Finally, it is important to note that, while smoothing,

baseline correction, normalization, and m/z detection

are applied individually to each single spectrum in the

Preprocess data operation, the m/z matching is applied

to several spectra at the same time and is carried out by

using the Match Peaks operation.

The new data generated by the Preprocess data and

Match Peaks operations can be exported as comma-

separated value files, allowing users to load them later

with Mass-Up or to analyse them with other software

packages. Mass-Up documentation includes information

about exporting data and examples describing how it

can be loaded in other languages such as R.

Quality control

When working with MALDI, low quality spectra may

occasionally be generated. For example, spectra showing
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a low number of m/z values in comparison with other

spectra, or containing many unique m/z values not

present in their sibling replicates. These spectra may

lead to failure when carrying out an analysis, or to incor-

rect conclusions. To prevent such a scenario, a quality

control (QC) step was included, which may be per-

formed between the preprocessing and the analysis

tasks. The QC can be done at two levels: replicates, a

low level QC analysis focused on the replicates of each

sample; and samples, a high level QC analysis with add-

itional information from the intra-sample m/z matching

process.

At the replicates level, the user can check basic infor-

mation about each individual spectrum (i.e. peak count,

m/z range, intensity ranges, etc.) and compare all spectra

in the dataset. Figure 2a shows a replicate QC analysis

applied to the samples from conditions A, B, C, D, and

E of the Wine dataset previously described. As can be

noted from the boxplot, there are two outliers (red

circles) and one extreme outlier (red triangle) in the

Masses count chart. Specifically, the QC analysis has

marked the E-CHCA.3-4, A-CHCA.1-4 and E-CHCA.2-

2 samples as outliers due to the number of m/z values of

their spectra. Therefore, before continuing with further

analysis, it is recommended to carefully revise these

samples and even to repeat their analysis.

At the samples level, the user can check the perform-

ance of the intra-sample peak matching process, by

comparing the percentages of presence (POP) counts

(globally and by conditions) and the POPs of each

Fig. 2 Quality control view. Details of the quality control analysis views for a replicates, and b samples. Box plot charts are used to summarize the
more detailed information presented in the tables
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sample. As previously stated, the data table is more de-

tailed and contains additional information from the

intra-sample peak matching process, specifically: (i)

POPXX columns, where XX is a percentage of the num-

ber of spectra, which show the number of peaks with a

POP value exactly equal to XX; (ii) Align. Masses col-

umn, which shows the number of masses that have been

matched across the spectra in the sample; (iii) Split > =

XX columns, which show the percentage of masses that

have a POP value higher or equal to XX; and (iv)

Count > = XX columns, which show the number of

masses that have a POP value higher or equal to XX

(these are the columns used as categories in the charts).

Figure 2b shows a samples QC applied to the same

samples as in the previous example. In this case, the box

plot corresponds to the global POP count and shows

that there are two outliers for the category “Count > =

60” and one outlier for the category “Count > = 100”.

Again, the outliers are highlighted in bold in the table.

Biomarker discovery

One of the main purposes of the MS analyses is the bio-

marker discovery [21, 22, 48]. A biomarker is a peptide,

protein or other element of a sample that can identify

and differentiate certain conditions such as phenotypes,

strains, diseases or infections.

When identifying new biomarkers, it is necessary to

distinguish between two types of data sets that can be

analyzed: (i) those cases where there are a known and

well defined number of conditions (e.g. healthy vs. dis-

eased, differents stages of a disease, etc.), and (ii) those

cases where there are no conditions or where they are

not clearly defined. In accordance with this differenti-

ation, Mass-Up provides two types of biomarker discov-

ery analysis: (i) the inter-label analysis, for the former

type of data, and (ii) the intra-label analysis, for the

latter.

In the inter-label analysis, the user can perform the

appropriate statistic tests to identify those peaks that can

be potential biomarkers to differentiate the conditions.

Four different tests of independence were included in

Mass-Up following the recommendations given by

McDonald [49], where tests are chosen depending on

the number of samples and conditions of the dataset, as

shown in Table 1. Taking into account that the number

of samples in MALDI experiments is generally below

1000, the Fisher’s exact test and the randomization test

are the tests more commonly applied. As each test is

performed independently for each m/z value, the

Benjamini-Hochberg FDR correction is applied to take

into account the number of m/z values analyzed and re-

duce the number of false positives.

By using the inter-label analysis in the Wine dataset

(shown in Fig. 3a), we can analyze all the samples of

conditions A, B, C, D, and E. In this case, the

randomization test is applied in order to identify statisti-

cally relevant m/z values, as the number of samples is

lower than 1000 (5 samples for each of the 5 wines for a

total of 25 samples) and the number of conditions is

higher than 2 (5 wine denominations). The first three

columns contain the m/z value, the p-value, and the q-

value respectively; while the other columns show in

which samples the m/z values are present. As can be

seen, the peaks with a q-value < 0.05 are clear candidates

to be biomarkers as they differentiate certain conditions

from others.

In the intra-label analysis, the user can identify those

m/z values that are representative of one or more sam-

ples, in a more exploratory fashion. In this scenario, it is

possible to identify the biomarkers of a specific sample

or discover groups of samples with a similar profile that

may, therefore, be related. This analysis is particularly

useful, for example, when working with different strains

of the same bacteria and the user wants to identify those

peaks that are unique for a certain strain.

By using the intra-label analysis in the Cancer dataset

(shown Fig. 3b), we can analyze the samples of the condi-

tion Myeloma and configure the analysis to identify those

peaks present in the “MA” sample (i.e. Myeloma A) and

not present in the rest of the samples. The identification

of these peaks may be useful, for example, to explain the

abnormal behaviour of a sample when compared to other

samples from the same condition. Specifically, the Intra-

label Biomarker Discovery view shows how we are looking

for specific peaks of the sample MA (i.e. Myeloma A), that

is, peaks that are in this sample but not in the others.

Principal component analysis

PCA is a mathematical procedure that uses orthog-

onal transformation to convert a set of observations

(i.e. samples) of possibly correlated variables (i.e. m/z

values) into a set of values of linearly uncorrelated vari-

ables called principal components (PC), whose dimension-

ality is expected to be lower than the dimensionality of the

original data set.

Once the PC are calculated, they can be used to repre-

sent the samples in a 3-dimensional space. By assigning a

different color to each condition’s samples, users can visu-

ally identify if there is a separation between conditions. If

such were the case, then the conditions would be dis-

tinguishable. The PCA view also includes additional

Table 1 Tests of independence applied depending on the
number of samples and conditions

<= 1000 samples >1000 samples

2 conditions Fisher’s exact test Yates’ chi-square test

>2 conditions Randomization test Chi-square test
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information about the PCA, such as the eigenvectors and

their corresponding eigenvalues and retained variances,

for a better results interpretation.

As previously stated, López-Cortés et al. [45] demon-

strate that the spectra of supernatant sub-samples of the

Cancer dataset can be grouped by their corresponding

conditions using PCA. Figure 4a shows the result of ap-

plying PCA to this set of samples in Mass-Up. As it can

be clearly seen, the three conditions are separable in the

3-dimensional space.

Cluster analysis

Cluster analysis allows finding groups of similar spectra

among all the samples being studied. In the case of un-

labeled data, it allows discovering hidden or previously

unknown subgroups of samples. In the case of labeled

data, it allows the user to check if the different condi-

tions present in a dataset are separable by means of the

m/z values of each sample.

Mass-Up incorporates a hierarchical clustering algo-

rithm for the construction of a hierarchy of sample

groups (named clusters). The algorithm included is ag-

glomerative and follows a bottom-up approach, meaning

that it is constructed iteratively, starting with each sam-

ple in its own cluster, and merging the closest pair of

clusters on each step. In order to decide which clusters

should be merged, a measure of dissimilarity between

clusters is required. In our case, this is achieved by using

a distance metric, which measures the distance between

two samples, and a linkage criterion, which specifies the

dissimilarity of clusters. Mass-Up includes the Euclidean

and Hamming distances as distance metrics, and the

Fig. 3 Inter-label and intra-label biomarker discovery analysis views. a Inter-label biomarker discovery view. Depending on the number of samples
and conditions, Mass-Up automatically selects the appropriate statistical test to apply. b Intra-label biomarker discovery view. Filters are configured
to select only the m/z values present in the MA samples and absent in the other samples
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complete, single and average functions as linkage cri-

teria. The results of a hierarchical clustering are usually

presented in a dendrogram.

An important aspect when performing a cluster ana-

lysis in Mass-Up is that the user can decide whether to

use intensities (i.e. a m/z value is represented by the

value of its peak intensity) or not (i.e. a m/z value is rep-

resented by its peak presence or absence). The Euclidean

distance is the most suitable when using intensities while

the Hamming distance is the most appropriate when

using presence/absence of peaks.

In each cluster analysis, two hierarchical clusterings are

constructed: one for the samples and one for the m/z

values. For the visualization of the results, Mass-Up incor-

porates an adapted version of JTreeView, a software for

the visualization and analysis of gene expression data. We

have adapted it to MS, so that in our specific case the rows

represent peaks instead of genes, while columns still rep-

resent samples. This representation also includes a heat

map, which is combined with two dendrograms that rep-

resent the aforementioned hierarchical clusterings. The in-

dividual values contained in the heat map matrix are

displayed as colors and they can represent (i) the intensity

level of the corresponding peak (red if the peak has an in-

tensity value of 1; green if the peak has an intensity of 0;

and intermediate colors for intensities between 0 and 1),

or (ii) the presence or absence of the peak (red if the peak

is present and green if the peak is not present). It is im-

portant to note that to achieve a correct representation

using intensities, the m/z values must be scaled between 0

and 1 during the raw data preprocessing.

Figure 4b shows the results of applying hierarchical

clustering to the Cancer dataset used as proof-of-concept.

As the dendrogram illustrates, the three conditions are

well separated since the samples of each condition can be

grouped together.

Finally, it is worth noting that the cluster analysis can

be used with a list of previously selected peaks. This

Fig. 4 PCA, clustering, and bi-clustering analysis views. a Principal component analysis view presenting three different clusters, one for each condition.
b Detail of the hierarchical clustering visualization using JTreeView. The upper dendrogram automatically colors the tree branches that only include
samples from the same condition, while the side dendrogram groups the more similar m/z values. c Class-biclusters of the Cancer dataset extracted
with the Mass-Up Biclustering Viewer. Purple rectangles denote the existence of biclusters associated with one condition
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way, the cluster analysis will be focused on analyzing

only these peaks. This list can be obtained by exporting

the biomarkers identified in the inter-label analysis. In

such a situation, this feature is useful to qualitatively ver-

ify if a list of potential biomarkers is enough to separate

or differentiate between the conditions of study.

Bicluster analysis

Although biclustering techniques have been successfully

used with gene expression data for over a decade, it is only

very recently that those techniques have been applied to

MS data [50]. Biclustering is a data mining technique that

allows simultaneous clustering of the rows and columns

of a matrix. It has been successfully applied to analyze

microarray data due to their ability to discover co-

expressed genes under certain samples [51]. In contrast to

traditional clustering techniques, where each gene in a

given cluster is defined under all the samples, biclustering

algorithms propose groups of genes that show similar ac-

tivity patterns under a subset of the experimental samples.

In previous studies, we have proposed a novel work-

flow for the application of biclustering to MALDI data.

In addition, the adequacy of applying biclustering to

analyze such data by comparing biclustering and hier-

archical clustering over two real datasets has also been

evaluated [44]. Biclustering has shown the ability to dis-

cover groups of samples that are similar but only in a

subset of m/z values, which represent a new kind of hid-

den hypothesis that are difficult to be discovered by clas-

sic clustering algorithms, such as hierarchical clustering,

which are based on a global comparison of samples in-

cluding all m/z values.

The biclustering algorithms selected in the study and

included in Mass-Up (i.e. Bimax and BiBit) use a binary

dataset as input where 1 represents a peak presence, and

0 represents a peak absence. These algorithms will look

for groups (i.e. biclusters) of 1’s, that we call presence

patterns. Nevertheless, in certain cases, it can be desirable

to extract other type of patterns, such as absence patterns

(i.e. biclusters of 0’s) or simple presence/absence pat-

terns (i.e. biclusters of 1’s and 0’s in one direction).

López-Fernández et al. [44] further discuss how to

prepare an input MALDI dataset into a suitable form

to look for these three types of patterns.

Mass-Up provides an operation to apply this technique

to both labeled and unlabeled samples. The user has to

select the biclustering algorithm to use, the type of pat-

tern and the biclustering mode (i.e. whether rows of the

biclustering binary matrix are peaks or samples). In

addition, the user can also establish the minimum di-

mensions of the output biclusters. If the input data is la-

beled, the user can also indicate whether the output of

the biclustering must be filtered in order to only retrieve

those biclusters where most of the samples belong to the

same condition or label, known as class-bliclusters. After

performing a biclustering analysis, results can be

inspected in the biclustering viewer, an intuitive view

that shows a list of the generated biclusters as well as a

heat map. If a bicluster is selected, it will be highlighted

in the heat map, which is automatically rearranged in

order to show the bicluster in the upper left corner.

In order to demonstrate the usefulness of this module,

we considered the Cancer dataset used in previous sections,

and applied biclustering by means of the BiBit algorithm in

the hope of finding presence class-biclusters. Figure 4c

shows one presence class-bicluster for each class, where

each column represents one m/z value and each row repre-

sents a sample. As shown, each class bicluster includes a

group of m/z values with the same pattern of presence in

the samples of one condition, and a variable pattern of

presence in the rest of the samples. When using a presence

class-bicluster, only presence is taken into account to create

the class-bicluster, whereas when using a presence/absence

class-bicluster, the absence is also taken into account.

Classification analysis

Sample classification is the ability to predict the label of a

sample given a training set of labelled samples, therefore,

the capacity of producing a diagnosis machine [10, 24, 26].

Through the “Classification Analysis” operation, the user

can determine which classifier performs best for the data

under analysis. This operation provides an interface

adapted from the Weka software that allows the user to

select and to configure a classifier, and to evaluate its per-

formance by means of a cross-validation scheme. The out-

put log of the evaluation process summarizes the

performance of the classifier using different statistical

measurements, such as accuracy, kappa, precision, recall,

etc. In addition, you can make a receiver operating charac-

teristic (ROC) analysis per condition.

Classification analyses are performed in the classifica-

tion view (shown in Fig. 5), which was adapted from the

Weka software. Through this view, the user can select a

classifier and a validation scheme (i.e. cross-validation or

percentage split) to perform an evaluation. As shown,

the results report includes several global and per-class

statistics, as well as the resulting confusion matrix. Using

these operations, users can assess whether the data being

analyzed is suitable for classification, as well as deter-

mine which classification algorithm is best.

Performance notes

Although the performance is very dependent on the

number of samples and the computer being used, some

tests has been carried out in order to provide some per-

formance guidelines. We have created a test dataset of

490 samples based on the Wine dataset, and then, we

have executed the most common workflow of Mass-Up
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under an Intel Core i5 M520 with 8GB of RAM and

Kubuntu 13.10 as OS. It is important to note that the

size of this test dataset clearly exceeds the common size

of a dataset in a MALDI-TOF MS experiment, which

usually are no longer than 200 samples.

It took about 90 s to load 490 raw samples and about

200 s to fully preprocess them. Once the data is prepro-

cessd and prior to perform any analysis, we must apply

the Match Peaks operation, which could be executed in

less than 30 s using the MALDIquant algorithm and in

less than 3 s using the Forward algorithm. Most of the

analyses (quality control, PCA, classification and intra-

label analyses) could be executed in less than 5 s, while

clustering, biclustering and inter-label analysis took more

time. On one hand, clustering analysis took less than 20 s

and the biclustering execution time depends on the algo-

rithm selected (less than 20 s for Bibit and about 15 min

for Bimax). On the other hand, inter-label biomarker dis-

covery based on 10000 randomizations took about 8 min.

Conclusions
In this paper we have presented Mass-Up, a new software

for the analysis of MALDI data. This is an application that

covers the whole process of MALDI data analysis, from

data preprocessing to complex data analyses.

Mass-Up incorporates the most common analyses,

aside from protein identification and focusing in bio-

marker discovery, such as statistical tests-based bio-

marker discovery, clustering, PCA, and classification. In

addition, other less common analyses such as quality

control and biclustering are also included. Therefore,

Mass-Up provides users with a wide range of tools to

analyze and explore their MALDI data.

Unlike other MS tools, Mass-Up provides a friendly

graphical user interface designed to avoid the need for a

bioinformatics expert to use it. The tutorial and exam-

ples included in Mass-Up tool and in the project home-

page will guide users through the different operations

included, making it use suitable for any user.

Finally, Mass-Up is open to further extension, such as

including new operations or improving the available ones.

Availability and requirements
The Mass-Up software is freely available from the pro-

ject homepage on http://sing.ei.uvigo.es/mass-up. Add-

itionally, source code can be downloaded from https://

sourceforge.net/projects/mass-up/.

Project name: Mass-Up.

Project home page: http://sing.ei.uvigo.es/mass-up

Fig. 5 Classification analysis view. Classification analysis view presenting the result of executing a Bayes Net classifier using a 10-fold cross valid-
ation scheme. The resulting confusion matrix is presented along with several statistical measurements. ROC curve corresponding to condition C
of the Wine dataset is also showed
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Operating system: Platform independent, packaged for

Windows and Linux.

Programming language: Java version 7.

Other requirements: Mass-Up has no other requirements

since distrubitions are self-contained.

License: Version 3 of the GNU General Public License

(GPLv3).

Additional file

Additional file 1: Table S1. Detailed list of the source and version of
the algorithms and libraries used in Mass-Up. (DOCX 15 kb)
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