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        Abstract

         Hulthen plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the 

thermodynamic properties and the mass spectra of heavy mesons. The potential was made to be temperature 

dependent by replacing the screening parameter with Debye mass. We solved the radial Schrödinger equation 

analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave function in 

terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy 

mesons such as charmonium and bottomonium , and thermodynamic properties such as the mean energy, cc bb

the specific heat, the free energy, and the entropy. Four special cases were considered when some of the 

potential parameters were set to zero, resulting in Hellmann potential, Yukawa potential, Coulomb potential, 

and Hulthen potential, respectively. The present potential provides satisfying results in comparison with 

experimental data and the work of other researchers.

Keywords: Hulthen potential; Hellmann potential; Thermodynamic properties; Schrödinger equation; 

      Nikiforov-Uvarov method ; heavy mesons

1.0 Introduction

          Thermodynamics is the branch of physics that is concerned with temperature and its relation to energy. 

This area of physics plays an essential role in high energy physics [1]. The study of thermodynamic properties 

is significant in various areas of physical and chemical sciences. This is made possible using the solutions of the 

quantum mechanical problems, which contain all the necessary information to describe the quantum system 

under study [2-4]. Thermodynamic properties play an essential role in describing quark-gluon plasma.  Its 

properties also play an essential role in calculating heavy quarks in comparison to the strange quark matter [5]. 

The quarkonia with heavy quark and antiquark and their interaction are well described by the Schrödinger 

equation (SE). The solution of the spectral problem for the SE with spherically symmetric potentials is of 

significant concern in describing the spectra of quarkonia. Potential models offer a rather good description of 

the mass spectra of systems such as bottomonium , charmonium , etc [6]. In simulating the interaction  bb  cc

potentials for these systems, confining-type potentials are generally used. The holding potential is the so-called 
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Cornell potential or Killingbeck potential with two terms, one of which is responsible for the Coulomb 

interaction of the quarks, and the other corresponds to a confining term [7]. 

The Hulthen potential takes the form [8]

                                                                                                                                             
(1)0( ) ,

1

r

r

A e
V r

e







 


(a1)

where  is the screening parameter, and is the potential strength constant which is sometimes identified with  0A

the atomic number when the potential is used  for atomic phenomena [9]. It is a short-range potential that 

behaves like a Coulomb potential for small values and decreases exponentially for large values. It has been used 

in many branches of physics, such as nuclear and particle physics, atomic physics, solid-state physics, and 

chemical physics [10,11]. The Hellmann potential which is a superposition of an attraction Coulomb potential 

and a Yukawa potential can be expressed as [12] 

                                                                                                                                   
(2)                                                                                        1 2( ) ,

rA A e
V r

r r



  

where the parameters  and denote the strength of Coulomb and Yukawa potentials respectively,  denotes 1A 2A 

the screening parameter, and  is the distance between two particles. Over the past years, the potential model r

has received much concern from many authors [13-16]. Many authors have provided both exact and 

approximate solutions to SE using different methods with Cornell potential.

Abu-Shady et al. [17] studied the thermodynamic properties of heavy mesons in the non- relativistic quark 

model using the Nikiforov-Uvarov method. Okorie et al.[18] obtained the eigenvalues and eigenfunction, 

vibrational partition function, and other relevant thermodynamic properties of the SE with modified Mobius 

squared potential using a modified factorization method. Prasanth et al.[19] used the equation of state (EoS) of 

Quark-Gluon Plasma(QGP) with Mayer’s theory of plasma to derived a semi-classical EoS of QGP including 

the contribution of quantum effects near the transition temperature. 

 Carrington et al.[20] studied the transport of heavy quarks across a system, which is called plasma, using a 

Fokker-Plank equation where the quarks interact with long-wavelength chromodynamic fields. Abu-Shady and 

Ikot [21] solved N-radial SE analytically using the supersymmetric quantum mechanics method (SUSYQM), in 

which the heavy quarkonia potential is introduced at finite temperature and baryon chemical potential. 

Vega and Flores [22] solved approximately, the Schrödinger equation with the Cornell potential using the 

variational method and supersymmetric quantum mechanics method (SUSYQM). Furthermore, Ciftci and 

Kisoglu [23] solved non-relativistic arbitrary -states of quarkonium through the asymptotic iteration method l

(AIM). The energy eigenvalues with any  ≠ 0 states and mass of the heavy quark-antiquark system l

(quarkonium) were obtained, in which the quarks are considered as spinless for easiness and are bounded by 

Cornell potential. An analytic solution of the N-dimensional radial Schrödinger equation with the mixture of 

vector and scalar potentials via the Laplace transformation method (LTM) was studied by [24]. The results were 

employed to study the different properties of the heavy-light mesons. Al-Jamel and Widyan [25] studied the 
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spin- averaged mass spectra of heavy quarkonia in a Coulomb plus quadratic potential within the framework of 

the non-relativistic Schrödinger equation using the Nikiforov-Uvarov method. Al-Oun et al. [26] examined 

heavy quarkonia (  and )  characteristics properties in the general framework of non-relativistic potential 𝑐𝑐 𝑏𝑏

models consisting of a Coulomb plus quadratic potential. Kumar and Chand [27] carried out an asymptotic 

study to the N-dimensional radial Schrödinger equation for the quark-antiquark interaction potential employing 

the asymptotic iteration method (AIM). The complete energy spectra of the consigned system are obtained by 

computing and adding energy eigenvalues for the ground state of large  and small . Mansour and Gamal [28] r r
also studied the bound state of heavy quarks using a general polynomial potential with the NU method.  Abu-

Shady et al. [29] studied the N-dimensional radial Schrödinger equation using the analytical exact iteration 

method (AEIM). The Cornell potential is generalized to chemical potential and finite temperature. Ibekwe et 

al.[30] solved the radial SE with an exponential, generalized, harmonic Cornell potential using the series 

expansion method. They applied the bound state eigenvalues to study the energy spectra for CO, NO, CH, and 

N2 diatomic molecules and the mass spectra of heavy quarkonium systems. Inyang et al.[31] obtained the Klein-

Gordon equation solutions for the Yukawa potential using the Nikiforov-Uvarov method. The energy 

eigenvalues were obtained both in a relativistic and non-relativistic regime.  They applied the results to 

calculate heavy-meson masses of charmonium  and bottomonium . cc bb

Recently, an effort has been made with great interest in a combination of two or more potentials in both 

the relativistic and non-relativistic approach. The essence of combining two or more physical potential models 

is to have a wider range of applications. For example, Edet et al. [32]  obtained an approximate solution of the 

SE for the modified Kratzer potential plus screened Coulomb potential model using the  Nikiforov–Uvarov 

method. Also,William et al.[33] obtained bound state solutions of the radial Schrödinger equation by the 

combination of Hulthén and Hellmann potential within the framework of Nikiforov-Uvarov (NU) method. With 

the above studies in mind, we seek to study the SE by adopting a potential obtained from the combination of 

Hulthen potential [Eq.(1)] and Hellmann potential [ Eq.(2)] analytically by using the NU method and the results 

applied to calculate the properties of quarkonium particles such as masses and thermodynamic properties that 

have not been considered before using this potential to the best of our knowledge. The potential takes the form:                                                                                      

                                                                                                                   
(3)0 1 2( ) ,
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where and  are potential strength parameters and  is the screening parameter. In order to make Eq.(3) 0 1,A A 2A 𝛼

temperature-dependent, the screening parameter is replaced with Debye mass which is temperature- ( )Dm T

dependent and vanishes at  , this gives0T 
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We carry out Taylor series expansion of the exponential terms in Eq.(4) up to order three, in order to make the 

potential to interact in the quark-antiquark system and this yields,

                                                                                            
(5)
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We substitute Eqs.(5) and (6) into Eq.(4) and obtain

                                                                                                                    
(7)20

1 2 3( , ) ,V r T r r
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where

                               (8)                                                                                                                     
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The paper is structured as follows:  The NU method solution of the SE for the Hulthen plus Hellmann potentials 

is composed in section 2. In section 3, the thermodynamic properties of the Schrödinger equation with Hulthen 

plus Hellmann potentials are obtained. In Section 4, the results of heavy quarkonia, such as charmonium and 

bottomonium, are presented. Finally, the concluding remarks are presented in section 5.

2.  Approximate solutions of the Schrödinger equation with Hulthen plus Hellmann potentials 

           The Schrödinger equation (SE) for two particles interacting via potential  is given by [34]𝑉(𝑟)

                                                                                             (9)                                                                                 
   2

2 2 2

1( ) 2 ( ) ( ) 0,nl

l ld R r E V r R r
dr r

  
    

 h

where and are the angular momentum quantum number, the reduced mass for the quarkonium particle, , ,l r h

inter-particle distance and reduced plank constant, respectively.

We substitute Eq.(7) into Eq.(9) and obtain

                                                         
(10)
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 Substituting Eq.(11) into Eq.(10), we have

                                                                                           
(12)

2
20

1 22 2

( ) ( ) 0d R r r r R r
rdr r

           

We transform the coordinate of Eq.(12) from to by settingr x
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(13)1x
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Upon differentiating Eq.(13) and simplifying we have

                                                                                                                          
(14)
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2 3 4 2

2 1d R dR d R
dxdr r r dx
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Substituting Eqs.(13) and (14) into Eq.(12) we have
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Next, we suggest the subsequent approximation scheme on  and terms. 1

x
 2

2x


Suppose that there is a distinguishing radius  of the meson. Then the system is based on the expansion of  𝑟0
1

x


and   in a power series about ; i.e. , in the  -space up to the second order. This is analogous to 2
2x


0r

0

1
r

  x

Pekeris approximation, which helps to distort the centrifugal term such that the modified potential can be solved 

by NU method [35].

Setting and around  it can be expanded into a series of powers as;y x   0y 
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Similarly,
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By substituting Eqs.(17) and (18) into Eq.(15) ,  we obtain
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                                                                        (20)
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Comparing Eq.(19) and Eq.(A1), we obtain
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                                                                                                                     (21)                                                                                                                         
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We substitute Eq.(21) into Eq.(A9) and obtain

                                                                                                                  
(22)  2( )x x k x       

To determine , we take the discriminant of the function under the square root, which yields 𝑘

                                                                                                                                          (23)
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We substitute Eq.(23) into Eq.(22) and have
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Differentiating the negative part of Eq.(24)  yields
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Substituting Eqs. (21) and (25) into Eq.(A7) we have
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Differentiating Eq. (26) we have
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By using Eq.(A10), we obtain

                                                                                                                               
(28)

2 4
4 2

  
 


 

And using Eq.(A11), we obtain
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Equating Eqs.(28) and (29) , the energy eigenvalues of Eq.(10)  is as given 
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Special cases

1. When we set  , we obtain the energy eigenvalues for Yukawa potential0 1 0A A 
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2. When we set   , we obtain the energy eigenvalues for Hulthen  potential1 2 0A A 
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3. When we set   we obtain the energy eigenvalues for Hellmann  potential 0 0A 
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4.  When we set  , we obtain the energy eigenvalues for the Coulomb potential2 3 ( ) 0DA A m T  

                                                                                                                                      (34)
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The result of Eq.(34) is very consistent with the result obtained in Eq.(36) of  Ref.[32].

To determine the wavefunction, we substitute Eqs. (21) and (24) into Eq.(A4) and obtain
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x x
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Integrating Eq.(35) ,we obtain
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By substituting Eqs.(21) and (24) into Eq.(A6) and integrating, thereafter simplify we obtain
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Substituting Eqs.(21) and(37) into Eq.(A5) we have
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The Rodrigues’ formula of the associated Laguerre polynomials is

                                                                                               
(39)

2 2 22 1
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n n
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n n

dL e x e x
n dxx
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Substituting Eqs.(36) and (41) into Eq.(A2) we obtain the wavefunction of Eq.(10) in terms of Laguerre 

polynomial as
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where is normalization constant, which can be obtained fromnlN

                                                                                                                                     
(43)2

0

| ( ) | 1nlN r dr

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3.   Thermodynamic properties of the Schrödinger equation with Hulthen plus Hellmann potential 

Thermodynamic properties of Hulthen plus Hellmann potential can be obtained from the partition 

function by setting Temperature , which vanishes Debye mass and reduces Eq.(30)  to0T 

                                                                                                                         
(44)

 

2
2

2
1 ,

8nl
P

E P
n 

 
    

h

where,
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(47) 2 1 22

2P A A
 

h

3.1 Partition function ( )Z 

The partition function takes the form,

                                                                                                                                     
(48)

0
( ) nlE

n
Z e


 



 

where,
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(49)1

KT
 

  is the Boltzman constant,  is the absolute temperature,  is the principal quantum number,K T n 0,1,2,3...n 

and  is the maximum or upper bound quantum number.

Substituting Eq.(44) into Eq.(48) we obtain

                                                                                                                             
(50)

 

22
2

1 8

0
( )

P
P

n

n
Z e

  


          



 
h

In the classical limit, at high temperature , the sum is replaced by an integral,T

                                                
(51)

1 2

0

( )
NM

Z e d
 

 


 

where,

                                                                       (52)n   

                                                                                                                                                       (53)1 1M P 

                                                                                                                                                     
(54)

2 2
2

8
P

N



h

Integrating Eq.(51) we obtain the partition function as,

                                                            

(55)

2

1

2 2
1( ) 2
2

N

M

N
e N erfi

Z e N
N







  


  



  
       

 
 
 

and the imaginary error function  is defined as follows [16],( )erfi x

                                                  
(56)

2

0

( ) 2( ) .
x

terf ixerfi x e dt
i 

  

3.2 Mean energy ( )U 

                                                                                                                               
(57)( ) ( ),U InZ 




 


Substituting Eq.(65) into Eq.(67) we obtain,

                                                                         (58)

1

1 1

1

1

1 1 2

1

1
14
2

( )

M

M M

M

e N
M e N e N

N

U
e N



 



 





  
    

 
  



where,
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(59)

2

1

2 2

2

N N
e N erfi

N


 

  





 
   

   

                                                                 (60)
   

2

3
2

2 3 32
2 2

N
N N

N erfi N erfi
e N

NN N




 
  

 

 

   
      
       

3.3 Free energy F( )

                                                                                                                               (61)( ) ln ( )F KT Z  

We substitute Eqs.(49) and ( 55) into Eq.(61) and obtain

                                                     

(62)

2

1

2 2
1 1( ) ln 2

2

N

M

N
e N erfi

F e N
N







  


  

 

   
           
  
  

  

3.4 Entropy S( )

                                                                                                           
(63)( ) ln ( ) ln ( )S K Z K Z   




 


We substitute Eqs.(55) and ( 58) into Eq.(63) and obtain

                                                        

 (64)

2

1

1

1 1

1

1

1 1 2

1

2 2
1( ) ln 2
2

1
14
2

N

M

M

M M

M

N
e N erfi

S K e N
N

e N
M e N e N

N

K
e N








 




  


  



 





   
          
  
  

  
  

    
  
 



3.5 Specific heat C( )

                                                                                                                          
(65)2( ) U UC K

T
 


 

  
 

Substituting Eqs.(59) and (60) into Eq.(58) and then substitute into Eq.(65) we obtain
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(66)

 

 

2

1

21

2

1

2 21 1

1

2 1
1 1

1
2

3 2
2

2
1 1

1

2 2 2
2

1

2 2 2
1 1
4 2 3

1( )

N

M
N

M

N

M
N N

M M

NeM e erfi N
N

M e e
M

N

Nee erfi N
N

e e e Ne

N

C K M







 





 

  

  







   





  


  
        

      
 
 

                 
  

   

 

21

2 1
1

21
2

2

2
1

3

2
1 1

2

1 2 12 2
2 4 2

1

2

N
M

N
M

M

N
NM

e e

Ne eM e N erfi N
N

e eM e


 







 



 


   
 


  



 
 
 
 
 
 









 
    
   
                                           































where

                                                                                 

(67)
2

1
1

2 2 2

N

M Nee N erfi
N




    


 
       

  
 

                                                                                     (68)

2

1

2

2 2 2

N

M Nee erfi N
N

N




   





 
      

  
 

                                                                                 

(69)                                                                           
2

1

2

2
3

2 2 2

N

M Nee N erfi
N




    


 
       

  
 

4. Results

Using the relation in Refs. [36, 37], we calculate the mass spectra of the heavy quarkonia such as charmonium 

and bottomonium. 

                                                                                                                                           (70)2 nlM m E 

where is quarkonium bare mass and is energy eigenvalues.m nlE

By substituting Eq.(30) into Eq.(70) we obtain the mass spectra for Hulthen plus Hellmann potential as,  
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(71)

2
0 2

2
3

0 0 2
2 1 22 2 2 2 32

2 2
02

2 3 2 3

( ) 3 ( )12 ( ) ( ) 1
2 4 2

( ) 8 ( )2 3 ( )
( ) 2 3

8 ( )( ) ( )1 1 1
2 2 6

D D
D D

D D
D

D

DD D

m T m T
M m A A m T m T

A Am T A m T
A A A m T

m T

A m TA m T m T
n l

 

 
 

 
 

           
   

                 
                

h h hh

h h

Table 1

Mass spectra of charmonium in (GeV) for Hulthen plus Hellmann potential ( =1.209 GeV,  = 0.6045 GeV,cm 
 = -1.693 GeV,  = 20.654 GeV, = 0.018 GeV,  = 0.2 GeV,  = 1.52 GeV,  = 1)0A 1A 2A  ( )Dm T h

State Present work [35] [25] Experiment[38,39]

1S 3.096 3.078 3.096 3.097
2S 3.686 4.187 3.686 3.686
1P 3.295 3.415 3.433 3.525
2P 3.802 4.143 3.910 3.773
3S 4.040 5.297 3.984 4.040
4S 4.269 6.407 4.150 4.263
1D 3.583 3.752 3.767 3.770
2D 3.976   -   - 4.159
1F 3.862   -   -    -

Table 2

 Mass spectra of bottomonium in (GeV) for Hulthen plus Hellmann potential ( = 4.823 GeV,  = 2.4115 bm 
GeV, = -1.591 GeV, = 9.649 GeV, = 0.028 GeV,  = 0.25 GeV,  = 1.52 GeV,  = 1)0A 1A 2A  ( )Dm T h
State Present work [35] [25] Experiment[38,39]

1S 9.460 9.510 9.460 9.460
2S 10.023 10.627 10.023 10.023
1P 9.661 9.862 9.840 9.899
2P 10.138 10.944 10.160 10.260
3S 10.355 11.726 10.280 10.355
4S 10.567 12.834 10.420 10.580
1D 9.943 10.214 10.140 10.164
2D 10.306 - - -
1F 10.209 - - -
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Fig. 1: Variation of mass spectra with potential strength  for different quantum numbers0( )A

Fig. 2: Variation of mass spectra with reduced mass for different quantum numbers
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4.1 Thermodynamic properties plots

In this subsection, we present the plots of thermodynamic properties.

Fig.3: Plots of the partition function versus temperature ( ) for different values of maximum quantum ( )Z  

number ( )

Fig. 4: Plots of the mean energy  versus temperature ( ) for different values of maximum quantum ( )U  

number ( )
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Fig. 5: Plots of the specific heat versus temperature ( ) for different values of maximum quantum C( ) 

number ( )

Fig. 6: Plots of the free energy versus temperature ( ) for different values of maximum quantum number F( ) 

( )
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Fig.7: Plots of the entropy versus temperature ( ) for different values of maximum quantum  number(S( )  

4.2 Discussion of results

              We calculate mass spectra of charmonium and bottomonium for states from 1S to 1F, as presented in 

Tables 1 and 2. The free parameters of Eq.(71) were obtained by solving two algebraic equations of mass 2S,2P 

in Eq.(71) in the case of charmonium.

 We followed the same procedure for bottomonium and obtained the free parameters of mass spectra for  1 ,2S S

in Eq.(71). For bottomonium  and charmonium  systems we adopt the numerical values of 4.823bb cc bm 

 and 1.209 [40], and the corresponding reduced mass are 2.4115 and 0.6045GeV cm  GeV b  GeV c  GeV

, respectively. The Debye mass  is 1.52 GeV by fitting with experimental data. We note that the ( )Dm T

calculation of mass spectra of charmonium and bottomonium are in good agreement with experimental data and 

the work of other researchers like; Ref.[35] as shown in Tables 1 and 2 in which the author investigated the N- 

radial SE analytically when the Cornell potential was extended to finite temperature. 

We plotted mass spectra energy as a function of potential strength  and reduced mass ,  0A  

respectively, as shown in Figs. 1 and 2. In Fig. 1, the mass spectra energy converges at the beginning but spread 

out. Also, there is a monotonic decrease with an increase in potential strength . Figure 2 shows the 0( )A

convergence of the mass spectra energy as the reduced mass  increases for various angular quantum  

numbers. The thermodynamic properties were obtained by first obtaining the partition function. The variation of 

partition function  as a function of temperature is presented in Fig. 3. Here the partition function decreases ( )Z 

exponentially with increase in temperature  for different values of maximum quantum number , then later  

increases with increasing temperature which is the same as reported in Ref.[17].
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The plot of mean energy with different values of and is as presented in Fig 4. The mean ( )U   
energy increases monotonically and then decreases with increasing and . Figure 5 shows the variation of  
specific heat  as a function of temperature.  There is a monotonic increase in specific heat as  increases ( )C  
and then decreases as  and  increases with each plot converging. The convergent of each plot is an  
indication of the range of temperature that charmonium melts to its constituents as charm quark.  The free 
energy  is plotted as a function of temperature as shown in Fig 6. The free energy decreases exponentially ( )F 
as  and  increases and converges at a point close to zero. The plot of entropy   as function of   ( )S 
temperature  and maximum quantum number  is shown in Fig 7. We note that the entropy decreases with  
increasing . This finding is in agreement with Ref.[18] in which the entropy increases with increasing 
temperature for the diatomic molecules.

5.  Conclusion

       In this study, we adopted a combination of Hulthen and Hellmann potentials for quark-antiquark 

interactions. The potential model was made to be temperature-dependent by replacing the screening parameter 

with Debye mass. We obtained the approximate solutions of the Schrödinger equation for energy eigenvalues 

and the corresponding eigenfunction in terms of Laguerre polynomials using the NU method. Four special cases 

were considered which result in Yukawa, Hulthen, Hellmann, and Coulomb potentials. We apply the present 

results to compute heavy-meson masses of charmonium and bottomonium for different quantum states. We also 

obtained thermodynamic properties such as free energy, mean energy, entropy, and specific heat by setting the 

temperature  which vanishes the Debye mass, and their plots were in good agreement with the works of 0T 

Ref.[17] and Ref.[18]. The prediction of heavy mesons could be used to predict the newly identified particle 

made of four quarks of the same flavor. Particles made of four quarks are exotic. These exotic heavy particles 

provide extreme and theoretically fairly simple cases with which to test models that can then be used to explain 

the nature of ordinary matter particles, like protons or neutrons.  
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Appendix A: Review of Nikiforov-Uvarov (NU) method

The NU method according to Nikiforov and Uvarov is used to transform Schrödinger-like equations into a 

second-order differential equation through a coordinate transformation , of the form [41-45]( )x x r

                           (A1)   
     

   2 0
x x

x x x
x x

 
  

 
   

% %

where   are polynomials, at most second degree and  is a first-degree polynomial.  ( ),  and x x % ( )x%

The exact solution of Eq. (A1) can be obtained by using the transformation 

                            (A2)     x x y x 

This transformation reduces Eq.(A1) into a hypergeometric-type equation of the form 

                            (A3)              0x y x x y x y x     

The function   can be defined as the logarithm derivative( )x

                          (A4) 
 

 
 

x x
x x

 
 


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With  being at most a first-degree polynomial. The second part of the wave functions in Eq. (A2) is a ( )x

hypergeometric-type function obtained by Rodrigues relation:  

               (A5)         
n

nnl
n

N dy x y x x x
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 
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where  is the normalization constant and the weight function which satisfies the condition below; nlN  x

                          (A6)        x x x x    

where also 
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                          (A7)     2x x x   %

For bound solutions, it is required that

                           (A8)
 

0
d x

dx




The eigenfunctions and eigenvalues can be obtained using the definition of the following function   and  x

parameter λ, respectively:

                            (A9)             
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and

                          (A10) k x   

The value of  can be obtained by setting the discriminant in the square root in Eq. (A9)  equal to zero. As k

such, the new eigenvalues equation can be given as

                                                                                       (A11)      ' ''( 1) 0, ( 0,1,2,...)
2n

n nn x x n  
   
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