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In this paper, we shall investigate some properties of a class of higher order
cohomology operations of several variables. These operations, the higher products,
were defined by Massey as a generalization of his triple product. There is a cor-
respondence between the higher products and iterated Whitehead products in
homotopy groups [5], [11].

It has been noted that the differentials in certain spectral sequences involving
the Ext and Tor functors are related to Massey higher products [6], [9]. In par-
ticular, the differentials in a spectral sequence relating the cohomology of a space
with that of its space of loops are generalized higher products.

In the first part we establish a number of properties of these higher products.
These properties indicate the similarities between the higher products and the cup
product. In the final section, the higher products are specialized to an operation
of one variable. In certain cases, this operation may be evaluated in terms of
primary Steenrod operations (Theorems 14, 19). These results are useful in the
computation of the higher product structure of a space with coefficients in a
field.

1. Definitions. Throughout this paper let (X,A) be a pair of topological spaces
and let R be a commutative ring with identity. Also let uu—,uk be positive di-
mensional cohomology classes, of dimensions Py,---,pk respectively, in the singular
cohomology ring H*(X,A;R). Finally, let p(i,j)= 2ZJr = i(pr— 1).

Under certain conditions, we will be able to define the Massey fc-fold product
<[uy,---,uky as a subset of Hpll'k) + 2(X,A;R). We shall first describe a "higher
operation" from a subset of the singular cochains to a subset of a cohomology
group.

Let C*(X, A ; R) be the singular cochain complex with the usual associative cup
product pairing. Let ax,---,ak be cocycle representatives of ut, ■•■,uk respectively.
If a e CP(X, A ; R), then the symbol à will denote ( - l)"a.

Definition 1. A collection of cochains, A = (a(i,j)), for  1 ^ i g j ^ fc and
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(i,/)#(l,fc) is said to be a defining system for the(cochain) product (ay, ■•-,aky if

(1.1) a(i,í) — a¡   for    i = 1, ••-,&,

(1.2) aii,j) e CiiJ)+1 iX,A;R)

and

(1.3) Saii,j)=   E dii,r)air+l,j).
r =i

The p(l,/c) + 2 dimensional cocycle, c(^4), defined by
k-l

(1.4) c(A)    =   E fl(l,r)fl(r+l,lk),
r=l

is called the related cocycle of the defining system A.
Definition 2. The (cochain) fe-fold product (ay,---,af) is said to be defined

if there is a defining system for it. If it is defined, then (ay, ---^f) consists of all
classes weHp(1,i:)+2(X,,4;.R) for which there exists a defining system A such that
ciA) represents w.

The above definition of the higher products differs from that given in [4] by the
sign ( — 1)* where h= 1Zkfl1ipk-¡ +ik— 2)ik —l)/2. This convention reduces
the work of checking signs.

Theorem 3. The operation (ay,---,af) depends only on the cohomology
classes of the cocycles ay,---,ak.

Proof. We need only show that (a¡,---,a„---,aky = (ay,---,at + Sb,---,aky
for t = l,---,k and any beCPt~1iX,A;R). Given a defining system A for the
former, we shall construct a defining system A' for the latter such that ciA) is
cohomologous to ciA'). This will imply that

<ax,— ,a„— ,at> c (a¡,---,a, + ôb,---,aky.

Thee reverse inclusion will follow by symmetry.
Define a set of cochains (a'(*>/)) as follows:

(1.5) a(i,0 = at + ôb,

(1.6) a'ii, t) = aii, t) + aii, t - l)b   for i < t,

(1.7) a'itj) = ait,j) - bait + IJ)   for j > t,

(1.8) a'ii,f) - aii,f)   if¿#í   and   j#i.

By a straightforward calculation, it is seen that A' is a defining system for
<a,, ---,at + 6b,--,ak)>. If 1 < i < k, then cL4)= ciA'). If i=l, then they differ by
- ôbaCl, k). lft = k, they differ by Sa(l, k - l)b.   Q.E.D.
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The preceding theorem enables us to make the following definition.
Definition 4. A set of cocycles is said to be a defining system for the Massey

fc-fold product <«!,•••,«*> if it is one for <a1,---,at>. The Massey fc-fold product
<«!, •••, uk} is said to be defined if <al5 •■•, aky is defined, in which case
<[uy,-,uky = <[ay,-,aky as subsets of Hp(l'k) + 2(X,A;R).

The 2-fold product <«i,«2> is the subset consisting of the singular cup product
(— l)"'uyU2. The 3-fold product <«1;u2,u3> is defined if and only if the cup
products UyU2 = 0 and u2u3 = 0. This is a secondary operation which differs from
the Massey triple product by the sign ( — 1)P2 + 1 [11].

The fc-fold product is a (fc — 1) order cohomology operation of fc variables.
In order for <[u¡, •••,ut> to be defined, it is necessary that the (fc — 2) order op-
erations <«!, ••-,ufc_!> and (u2,---,uk)> be defined and contain the zero element.
In general, this condition is not sufficient. There must exist defining systems A'
and A" for <[ux,---,uk_y} and <u2, ■■■,uk) respectively, for which not only do the
related cocycles of each cobound but also a'(i,j) = a"(i,j) for 1 < i-—j < k.
In this case, we say that the (fc — l)-fold products <[u1,---,uk_iy and (u2,---,uky
vanish simultaneously.

The domain of the higher products may be extended somewhat. Let X be a
topological space and let (^¡,,4;) be pairs of subspaces of X, for ¿ = 1, ■•-, fc, such
that Uí=i Arcz f |* = 1Zr. Assume that the triads (X,A¡,Aj) ate proper in the
singular cohomology theory for 1 ̂  i,j ^ fc. This condition will be satisfied if each
of the spaces X¡ and A¡ are open in X or if X is a CW complex and each X¿ and A¡
ate subcomplexes.

Let Uy,---,uk be classes in the cohomology groups Hp'(X¡,Ay ;R),-■ ■ ,HPk(Xk,Ak;R)
respectively. As before, under certain conditions it is possible to define the fc-fold
product <«i,",Mi>, this time as a subset of Hp(lk) + 2 (C\^=yXr,[Jk=1Ar;R).

2. Properties. The Massey higher products can be viewed as higher order
analogues of the cup product. The properties we shall establish below are gene-
ralizations of well-known relations satisfied by the cup product.

The first several properties we shall list are functorial in nature. The proofs
of these will be immediate from the definitions of the first section.

(2.1) Naturality. Let (Y,B) be a pair of spaces and R' a commutative ring with
identity. Let /: ( Y, B) -> (X, A) be a map of pairs and g:R -* R' be a map of rings.
If <u1,--,wt> is defined, then so is <f*g#Uy,---,f*g#uky and f*g#(u¡,---,uky
c(f*g#ui>'",f*g#uky. Furthermore if /* and g# are isomorphisms, then
equality holds between the two operations.

(2.2) Other Chain Complexes. The higher products may be defined in an
analogous way with the use of any other chain complex, C*(X, A ; R), which has an
associative product. For example, for certain pairs of spaces, we could have used
the simplicial theory, the Cech theory, or the Alexander-Spanier theory instead
of the singular theory.
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Assume that there is a chain equivalence between C*(X,A;R) and the singular
complex C*(X, A ; R) such that the map from one complex to the other commutes
with the cup product. Then the isomorphism induced by the chain equivalence
preserves the higher products.

(2.3) Scalar Multiplication. Assume that the fc-fold product <«i, •■■,«..> is
defined. Then, for any xe.R and i —l,»»»,fc, the product <[uu---,xu„---,uky is
defined and xfuy,---,uf) ezz (ux,■•-,xut,---,uky.

(2.4) Loop Suspension. Let n:PX^X be the path-loop fibration over X.
Then EA = n~1 iA) is the space of paths in X starting from the base point and
ending in A. The relative loop suspension er:H"(X,A;R)-> H"~X(EA;R) is defined
as the composite homomorphism

HniX,A;R)7^HniPX,EA;R)ÍH-xiEÁ;R).

Theorem 5. Assume that (uy,---,uky is defined as a subset of HPil,k) + 2iX,A;R).
Thenere[uy,---,uky is the subset o/-Hp(1't)+1 iEA;R) consisting solely of the zero
element.

Proof. Since <5 is an isomorphism and 7t*<M,, ••», ufy ezz (n*Uy, ■■-, n*uf),
it suffices to show that the latter higher product consists solely of the zero element.
Let A' be a defining system for (n*Uy, •■-,n*uky, and let j*: C*iPX, EA; R)
-* C*iPX;R) be the canonical injection. Since7#a'(Ll) is a cocycle in the acyclic
complex C*iPX;R), there is a cochain by of dimension Pi — 1 such that
ôby=j*ail,ï). By induction on j, there are cochains bjeCH1J)iPX;R), for
j = l,---,k — 1, such that

Ôbj =j*a'il,j) + E brj *a'ir + l,j),
r = l

since the right hand side can be seen to be a cocycle. A straightforward calculation
yields

k-l k-l
- 5  E bra\r + 1,/c) =   E (j*ä'(l,r))a'(r + l,k) = c(A)'.

r=l r=l

Q.E.D.

The final properties which we shall establish are more algebraic. Their proofs
would be straightforward if the cup product were commutative on the cochain
level. In general it is not even true that ab ~ ba for singular cochains a and b.
However there is a pairing of singular cochain groups, the ut product of
Steenrod [10], from Cp ® Cq to Cp+q~1 such that
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(2.5) S{aUyb)  =   -a~b + (- l)pqba~ + ôa Vyb + âUyôb,

where aeC and beC. Furthermore if ceC then there is a formula of G.
Hirsch [3] which states

(2.6) (flf.)|U, c = fl(6u,f) + (- l)*"1^« u i c)b.

Theorem 6. Assume <[uy,---,uky is defined in Hp0,k) + 2(X, A; R) and let
veH"(X,A;R). Then the k-fold product <«1,•••,«,»,•••,«»} is defined, for
f = l,--.,fc, as a subset of Hq+Pil,k) + 2(X,A;R). Furthermore the following
relations are satisfied.

(2.7) <«i,—,«t>» «= <Uy,--,ukvy,

(2.8) vc[uy,--,uky cz (-l)q<vuy,---,uky,

(2.9) <"i, ••,«,»,—»«*> O (-l),<u1,-.-,t)ut+1,-",Mt>#0.

These relations may be interpreted as equalities modulo the sum of the indeter-
minacies.

Proof. Let A = (a(i,j)) be a defining system for (uy,---,uky and let b be a
cocycle representative of v. Set

ta(i,j)        if j<k,
fll0J)=    \a(i,k)b       if j = k.

Clearly Ay is a defining system for <«,,-•-,ukvy and c(A)b = c(A¡). This proves
(2.7). To prove (2.8), set

t a(i,j),        i > 1,

a^=   \ba(l,j),      1-1

and note that bc(A) = c(A2).
The proof of relation (2.9) requires the use of the Ut product. Set

fa(i,í)t     ifj = i,

f. .«,      ! a(i,j)       if i> t ot j <t,
a3(hj) = <

( - l)mU) \a(i,j)b + i a(i, r)(ä(r + l,j) U, 5)1 for i = t<j,

where m(j) = qp(t+l,/'). To verify that A3 is a defining system for <u j ,• • • ,u,t;, • • • ,ut>,
we need only compute Sa3(i,j) for i = t <j. Using (2.5) and (2.6)
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rJ-i
Sa3ii,f) = i-iy™ TÊ äii,r)air + l,j)b

Lr = i
j-1    r-1

+   2Z    2Z  äii, s)ais + 1, r) (ä(r -1-1,;) Ut b)
r=i    s=l

+   E ä(»', r)( - <r + Lj)b + ( - 1)«-X'+1"'>+1> bair + l,j))
r = t

-   E        E    a-(i»((a(r + l,s)ö(s + l,í)) U..Í) 1
r=í     s=r+l J

= ( - l)m(j) E äii,s) \a(s + l,j)b+ E  ais + l,r)iäir + l,j) UyB)]
s=i L r=i J

+   E ( - l)m(s)  \äii,s)b -  E ä(i,r)iair + l,s) Uy b)] a(s + l,j)
S=t L !■=' J

=   E ä3(i, r)a3(r 4-1,j).
r = l

Finally set

" a 3(1,7)    if i 9»-1 + 1 and 7 # i,

a 4(7,7) =  ■ aii,t)     if 7 = i,

ba(í 4-1,7)    ifí-í + 1.

Then AA is a defining system for ( - 1)*<«i,---,vu, + .,-••,«t> and c(y43) = cL44).

Q.E.D.
Corollary 7. If (ut,---,uky is defined and Vy,---,vkare arbitrary cohomology

classes, then (uyVy,---,ukvfy is defined. Furthermore if the latter higher product
consists of a single class for any choice of vx, ■■-,vk ithe operation has no ^deter-
minancy), then

(uyVy,---,ukvky= ±<«t,—,«»>»! — »»»

Finally we prove two analogues of the commutativity properties of the cup
product.

Theorem 8. Assume e[uy,---,ufy is defined. Then <[uk,---,ufy is defined and

<uy,---,uky = i- l)\uk,••-,«!>,

where

h=     E     prp+(k-l) I^^^"21.
l<r<s<k r = l z
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Proof. In Lemma 9 at the end of this proof we shall show by means of acyclic
model theory that there exists functorial homomorphisms £„ from the n-fold
tensor product (C*(X, A ; R))n to C*(X,A;R) of homogeneous degree 1 - n,
fot n = 1,2, ■••, such that

(a) Ey is the identity,
(b) ÔEn + (- l)nEnô = G„ with

Gn(by®-®bn)=       I    (-  iyEn_y(by® -  ® bsbs+l®  -  ® K)
(C)

+   I ( - l)m(r)£„_r(A+1 ® - ® bn)Er(by ®-®br)
r = l

where m(r) = (qr+l + ■■■ + qn)(qy + — + qr - r + 1) + n(r + 1) and q¡ = dimb¡.
Let A be a defining system for <m1; ■■■,uky. Define a system of cochains

a '(i,j) = ( - l)HiJ) J i l    I   E„(«y ® ■ ■ ■ ® a„)
n = 1    me /(.•))

where 7(n) is the set of all sequences

a=  {i = my < m2 < ••• <m„+1 =; + 1},

• a(ms,ms+ ! — 1)      if n — s is even,
«. = .

i d(m5, ms+ j — 1)      if n — s is odd,

and

h(ij)= i PsPt+a-i) iPs+ v-w-1-».
i£s<tSj s=i ¿

Clearly a'(i, i) = a¡. We shall verify that

(2.10) ôa'(i,j) = 2 â'(r + 1 ,j)a'(i,r).
r = i

j-i+i
i-i)hi'>»ôa'ii,f) -   E     I    [¿(-l)-*1^«,®...®^®...®«.)

n = 1     as 7(n) Lr = 1

n-1

4-   I (-l)s£„-i(«i®-®«sas+1®-®a„)
s = l

n-1

4-   2 ( - ly^ £B_,(a,+ 1®...®a11)£,(«i®-®a,)] .
( = i J

The first two summations cancel each other. The last can be seen to be the right
hand side of equation (2.10) after checking signs. Thus A' is a defining system for
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Moreover, a similar computation yields
k

<5 E     E £„(a, ® ■•• ®a„) 4- c(A) = ( - 1) hc(A').
n = 2   ote/(n)

This proves that (ult—,«»/> <=( —1)*<«»¡,••»,«!>. The reverse inclusion follows
by symmetry.

To complete the proof, we need the following lemma. Let C* be the singular
cochain complex of some pair of spaces. Let D : (C*)2 -* C* represent a cup
product pairing (induced by some diagonal approximation A : C* —> (C*)2) and
let T:(C*)2-KC*)2 be the cochain automorphism defined by T(a®b) = (- l)p,b®a,
where dim a = p and dim b = q.

Lemma 9. For each n = l,2,—, there is a functorial homomorphism
£„: (C*)" -» C* o/ homogeneous degree I — n, satisfying the conditions

(a) £, : C* -» C* is the identity,
(b) <5£2 + E25 = D(l - T) = G2,
(c) <5£„ + ( - 1)"£„(5 = G„ for n > 2,

where, for n > 2, G„ is any functorial homomorphism of homogeneous degree
2 — n with the following properties: G„ is defined whenever El,--,E„_l are;
ÔG„ = i- l)"Gnô; and if Ek maps (fc - l)-cochains of (C*)* to 0 in C° for all
k = 2, ••-,« — 1, then Gn maps in — 2)-cochains ofiC*)" to 0 in C°.

Proof. We shall prove the result by constructing chain maps £" : C* -» (C*)"
which will be dual to £„. Let A: C* -> iCf)2 be the diagonal approximation which
induces D and let T' be the dual to T. Then A — T'A is a functorial chain map
from C* to (C*)2 which sends 0-chains to 0. The zero homomorphism from C*
to iCf)2 is a functorial chain map which agrees with A — T'A on the zero chains.
By the acyclic model theorem [7, Chapter 4], the two maps are functorially chain
homotopic. Thus there is a map £2: C*-> (CJ2 such that dE2 + E2d = A- TA.
We may choose £2 so that it sends 0-chains to 0.

Now assume that Ek : C„ -* (C*)* is defined, of homogeneous degree k — 1
for all k<n, such that

(a') £* is functorial,
(b') Ek sends 0-chains to 0, and
(c') ( - l)kdEk + Ekd = Gk, where Gk is the dual of Gk.
By hypothesis, G" is defined, functorial and sends zero dimensional chains

to 0 in the (n — 2)-chain group of (C*)". The map G" is either a chain map (if n is
even), or can be made into one by a sign trick. By the acyclic model theorem,
G" is chain homotopic to the zero map. That is, there is a functorial map £" which
satisfies (a'), (b'), and (c'). The dual map to E" clearly satisfies (a), (b), and (c).

Q.E.D.
Theorem 10. Assume that the k-fold products <«„•■»,Mlk,u1,•■•,«._!>, for
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t.= l,---,k, are simultaneously defined. Then there are classes xte(ut,---,ut_yy,
for t = l,---,k, such that

k
£   ( - l)"(0x, = 0 where

(2.11) ' = 1      k
n(l) =   2  (fc - r)pr 4- (fc - 1)

r = l

and
k

n(t) = (Pl + ••■ + p,_y + k)(p, + -- + pk)+   2 (í - 1 - r)pr -Y t(k - 1)
r=l

for t > 1.

Proof. The condition that the higher products be defined simultaneously implies
that there exists cochains (a(i,j)) for 1 = i, j = fc, (i,j) # (1, fc) and (i,j) # (í, í — 1)
suchthat a(i,i) is a cocycle representative of ut and

Sa(i,f) = £â(i, r)a(r + l,j)

where, if i <j, then the summation is taken over all r with / ^ r <j, and if i >j,
then the summation is taken over all r with i ^ r or r <j and a(k + l,j) is inter-
preted as a(l,j). If A, is the subset of these cochains which is a defining system for
<«„••-,k,_i> then c(At) = Er5t,_i â(t,r)a(r + l,f - 1).

By Lemma 9, there is a set of functorial "permuting" homomorphisms
E'„: (C*)n-* C* of homogeneous degree 1 - n satisfying the following conditions:

(a) Ey is the identity,
(b) ÔE'n + ( - l)"E'nö = G'n where

Gn(by ®-®bn) = (- l)mE'n-x(b2 ® - ® b„b,)

4-    2    ( -   l)SE'n.y(by ® ■-  ® bsbs+y  ®  -  ® b„)
S = l

where m = qy(q2+ ■•■ + qn) and ^r = dimfer. Consider the cochain

(2.12) c=  2     2    (-l)"^^®-®^)
n = 2  /J e J(n)

where J(n) is the set of all sequences

ß = {1 = m, < m2 < ■•• < m„ ̂  fc};

faim^mi-l),    Wj > 1,

la(m„,fc), m, = l;
ia(ms, ms+1 — 1) if n — s is even, s <n,

ßs =
l<z(ms, ms+1 — 1)  if n — s is odd, s <n  and 7i(/?) = n(my).
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öc= e   e i-ir(ß) \ii-ir+iE:ißy®-®oßr®--®ß„)
n=2   ßeJ(n) \_r=l

+ (-l)m(ß)E^y(ß2®-®ß„ßy)

+   E (-l)s£^i(j?i®-"®/LA+i®-"®A,)l
s = l J

= 2        i-rf'ß) + miß)Ey(ß2ßy)-(-lf(ß)Ey(ßyß2)
ßeJ(2)

=   -   E       E    (-l)n(,)á(í,rMr+l,í-l)
r = l     r*t-l

k

=   -  E (-l),(,)c(^r). Q.E.D.
< = i

3. The operation <u>\ Let ueHm(X,A;R) be a class such that w2 = 0.
Let a be a cocycle representative of u. Then the triple product <«, u, «> = <a, a, ay
is defined as a coset of uH2m~\X,A;R) in Fr3m_1(^M;P).

We may, however, restrict the notion of a defining system for this particular
case by requiring that a(l,2) = a(2,3). In other words, choose a cochain a(2)
so that 8a(2) = äa. Then ä(2)a + äa(2) is a cocycle representative of (a, a, ay.
Any other choice of a(2) would differ by a cocycle beC2m-1LY,4;P). Thus
(â(2) -I- b)a 4- ä(a(2) + b) also represents (a, a, ay in this restricted sense. Since b
is an odd dimensional cocycle, the two representatives of (a,a,ay differ by the
coboundary — ba + ab. Thus, with this restricted definition, the triple product
has no indeterminacy. We shall call this restricted operation <a>3. Clearly
<a>3 c (a,a, ay.

Definition 11. A system of cochains A* = (a(n)), n = 1, ••», k — 1, satisfying

(3.1) a(n)e  c"(m_1)+1 (X,A;R),

(3.2) a(l) = a is a cocycle,

»-i
(3.3) (5a(n) =   E ä(r)a(n - r),

r = l

is called a defining system for <a>*. The cocycle

jt—i
(3.4) c(A*) =   E ä(r)a(k - r)

is called its related cocycle. Then <a>* is said to be defined if there is a defining
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system for it, in which case <a>* consists of all classes w e Hk(m~1)+2(X, A;R) for
which there is a defining system A* such that c(A*) represents w.

Theorem 12. The operation <[ayk depends only on the cohomology class of a.

Proof. Let A* be a defining system for <a>k and let b be an (m — l)-cochain.
We shall construct a defining system A'* for <a + ôbyk such that the related
cocycle of A* is cohomologous to that of A'*. Define a'(n) inductively by

a'{\) = a + ob,

a'(n) = a(n) - ba'(n - 1) 4- a(n - l)b, n = 2.

Clearly A'* satisfies (3.1) and (3.2). By induction on n we shall show that A'*
satisfies (3.3). This is immediate if n = 2. Assume true for n — 1. Then, on the
one hand

n-1

Sa'in) =   2 ä(r)a(n-r)-(ob)a'(n-T)
r = l

n-1 n-1

- 2 bä'(r - T)a'(n - r) +   2 ä(r - T)a(n - r)b + ä(n - l)öb.
r=l r=2

On the other hand
n-1 n-1
2 ä'(r)a'(n - r) = 2 â(r)a(n - r) + Sba'(n - 1)

r=l r=l

n-1
+ 2 [- bà'(r -1) + à(r-T)b]a'(n-r)

r = 2

n-2
4- 2 ä(r)[ - ba'(n - r - 1) + a(n - 1 - r)b] + ä(n - l)ôb.

r=l

By reindexing where necessary, the two equations are seen to be equal. A similar
calculation shows

*-i fc-i
2 ä'(r)a'(k - r)   = 2 ä(r)a(k - r) + ô[ - ba'(k - 1) + a(k - l)b] ,

r=l r=l

and so the related cocycles are cohomologous.   Q.E.D.
Definition 13. Let a be a cocycle representative of u. A set of cocycles is said

to be a defining system for <u>* if it is one for (ayk. If <a> * is defined, then so is
<«>* and <u>* = <a>* as subsets of Hk(m-1)+2(X,A;R).

We establish some results concerning these operations <«>*. Let p be an odd
prime and let ß be the Bockstein operator associated with the exact coefficient
sequence 0 -> Zp -*• Zp2 -> Zp -» 0. Furthermore, let P m be the Steenrod pth power
P"1: Hq(X;Zp)^Hq+2mlp~1) (X;Zp).
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Theorem 14. If ueH2m+1(X;Zp), then <«>p is defined as a single class in
H2mp+2(X;ZP) and <«>"= - ßPmu.

We first prove some theorems leading up to this result. Note that if <«>* is
defined, then the fc-fold product <«,-••,«> is defined and <«>* c <«,-••,«>.
Also <u> * is defined if and only if <«>*"l is defined and contains the zero element.

Theorem 15. Let Q be the rationals. Then, if ueH2m+1(X;Q),(uyk is defined,
and vanishes in H2mk+2(X;Q) for each k = 2,3, •••. Let p be an odd prime. Then
if ueH2m+1(X;Zp), <w>k is defined and vanishes in H2mk+2(X;Zp) for each
k = 2,3,---, p — 1, and therefore   <«>p/s defined.

Proof. Let a be a cocycle representative of u in C2m+1(X ; R), where R is ß or Zp.
By means of the Steenrod u .-product (2.5) we shall explicitly construct a de-
fining system (a(n)) for <«>k.

If R — ß and n is arbitrary, or if R = Zp and n < p, define by induction on n,
a(l) = a, and a(n) = (l/n)[a(n — 1) U, a]. It suffices to verify that ôa(n)
= T,"~y — a(r)a(n — r). Note dim a(r) is odd for all r.

By induction on n,

Sa(n) = (l/n)ô(a(n-l)\Jya)

= (l/n) \-a(n- l)aa(n - 1) - E iair)ain - 1 - r)) \jia\ .

By the formula of G. Hirsch (2.6),
8-2
E iair)a{n- l-r))tJya

r = l

n-2

=   E [air)iain - 1 - r) U, a) + iair) Uj a)a(w - I - r)]
r=l

n-2

=   E [air)in - r)ain -r) + (c+ l)a(r + l)a(n - 1 - r)]
r = l

n-2

=   E [nfl(r)fl(n - r)] -1- [(n - l)(a(n - l)a(l) + a(l)a(n - 1))].
r = 2

Substituting this result into the above, we see that (a(n)) is a defining system for
<«>*.     Q.E.D.

We now show that <«>p is defined without indeterminacy.

Lemma 16. Let ueH2m+1iX;Zp) and assume <«>* is defined. Let A* be a
defining system for it. If b is a cocycle of dimension 2ms + 1, where ps > k, then
there exists a defining system A'* for <«>* such that a'in) = ain) if n < s,
a'is) = ais) + b, and ciA*) ~ ciA'*).
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Proof. For each pair of integers (f, q), t < fc, define odd dimensional cochains
c,   by induction on q as follows:

ctq   = 0 if t < 0 or q < 0, or t = q = 0,

cf,o   = a(t)   iff èl,

c0,i = b,

ct,q   = (ct,q-i Vyb)   otherwise.

Now we may define cochains

[n/sl       j
a'(n)=   2    —-.ctt-qs,q   for   n-1,— ,fc-l,

« = o   1 •

since [n/s] < p. If n < s, then a'(n) = a(n). Also, a'(s) = a(s) -Y b. To verify (3.3)
we need the following formula

(3-5) K*=~   i    2   (q)cJirc,_j,q_r,
r = o y = o \ r /

which we establish by induction on q. For q = 0, the formula reduces to

áfl(0=-2 aUW-J).
; = i

Assume now the formula holds for q, then

<5cM+i = °(c,,qVyb)

=   -ctAb-bctA- 2    2   I'M (c;/:,^ ,,_,.) Uj ft
r = 0   j=0   \ '   /

=  - c,,qb - bctA - 2    2   (M[ci,r(c,_J>4-rU16)+(cyi,U16)c,.^_r].
r = 0   / = 0   \ r /

(If (;,r) * (0,0), then cjVUi ft = cj¡r+l and c0,0 = 0)

=   —   2       2(1   [Cj,rC,-j¡q-r+y + Cjj+yCt-j,,-,']
r = 0 J = 0  \ r I

This completes the induction step for the formula.
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Now for all n, 1 S n S k,

n-l n-l   [>/s]      j [(n-O/s]     J
Ifl'(0fl'(n-i)=   E     E   -rcf-rs,,     E      — c„_(_ps-p

¡=1 ¡=lr=0r! p=0 P!

n-l   U/s-\    [(n-O/s]        j

=     **       E ^ —rrj"ci-rs,rCn-i-/«,p.
¡=1    r=0       p=0        ^!p!

(Reverse the order of the outer two sums)

[■/»]     n-l     [(n-O/s]        J
=   E     E       E     -J-J- c,._„iPcn_j_ps>p.

r = 0    i=rs       p=0       r!P!

(Reverse the inner two sums and set j = i — rs)

In/s'i   [n/sj-r   n-(.r + p)s t

=   2Z      ¿1 E     -r-rC//»-«,*,),-^
r = o    p = o       j = o       ripi

(Set q = r + p and sum over q)

[tits']      q      n-qs y

=    2f    2f      ¿J       .. y. cy>rcn_ÎS_;,_r.
, = 0   r = 0    j=0    ' A".        ')-

(Since (     I =   —-—'-——, and by formula 3.5)\ W r\iq-r)\ )

Ms]    i

j=i j-i «!
- E a(7>(n -j) - E   —j<5c„_ÎSi4.

If n < fc, then the last line is equal to ôa 'in). This proves simultaneously that
A'* is a defining system for <«>* and that the related cocycles of A* and .4'* are
cohomologous. Q.E.D.

Theorem 17. For an odd prime p, let ueH2m+1CX;Zp). Then <u>p is defined
as a single class of H2mp+2iX;Zp).

Proof. Let A* and A'* be two defining systems for <a>p, where a is a cocycle
representative of «. We shall show that their related cocycles are cohomologous.

For this, it suffices to construct a set of defining systems A* of <a>p, for
q = I,---, p — 1, so that

(i)  ai(n) = a(n),
(ii)   aqin) = a'in) for n S q, and thus ap_i(n) = a'in) for n = 1, ---,p — 1,
(iii) the related cocycles of A* and A*+ y are cohomologous.
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Assume inductively on q that (aq(n)) is defined. Then ôaq(q + 1) = 8a'(q + 1)
so the two differ by a cocycle. Thus, by Lemma 16, there is a defining system Aq+l
satisfying (i), (ii), (iii).    Q.E.D.

By the preceding results, we may interpret the operation
<    yp: H2m+1(X;Zp)^H2mp + 2(X;Zp)

as a primary operation of type (Zp,2m + 1;ZP,2mp + 2). Also, by obvious
scalar properties, if ge Zp, {guy = gp<w>p = g<u>p.

Now let t be the fundamental class of H2m+1 {Zp,2m -Y l;Zp). It is well known
that H*(Zp, 2m -Y 1; Zp) is the tensor product of polynomial rings and exterior
algebras each generated by P^t) for admissible sequences / [1]. Therefore
<t>p= 2ciPI",1)(i)"-Pí<í,J,)   (t) with j¡ = 1 andc^O for all i.

Let g be a primitive generator for the multiplicative group of Zp. Then

o = <gt>p - ¿KO" = 2c;(gJ'' - g)P'(""(0 - PI("J"(i).

This only happens if the coefficients vanish, i.e. gJi— g = Oin Zp. Since gis prim-
itive, this is true if and only if j, = 1 (mod p — 1) for each i. Since dim ip > 2mp + 2,
no (nontrivial) p-fold product can exist in H2mp+2(Zp,2m -Y l;Zp). Therefore
j, = 1 for all i; i.e. <i>" = 2c¡P/í(t).

Now if a:H*(Zp,2m + l;Zp)-* H*(Zp,2m;Zp) is the loop suspension, then
by Theorem 5, 0 = <r<i>p = 2ciPIi(<u) and thus PJ'(cn) = 0 for each i. The
only Steenrod operation Pl of degree 2mp + 2 — 2m — 1 with this property is
easily seen to be ßPm (see [1]). We sum up these results in the following lemma
for Theorem 14.

Lemma 18.   For some constant ceZp, <u>p' = cßPmu for all ueH2m+l{X;Zp).

The next theorem will completely characterize the operation <i(>pit for fc ̂  1
where u is a one dimensional class mod p.

Theorem 19. Let teH1(Zpk, 1;ZP) fte the modp reduction of the fun-
damental class ik of H1(Zpk, 1 ;Zpk). Then <i>p ¡s defined as the single class
— ßktk e H2(Zpk, 1 ; Zp), where ßk is the Bockstein coboundary operator associated
with the exact sequence of coefficient groups.

0 —► Zp —> Zpk +1 —► Zpk —» u.

Proof. Let C* ( = C*(Zpk ; Zp)) be the cochain complex of the standard reso-
lution of Zpk with coefficients in Zp. Then C* is cochain equivalent to the complex
of singular cochains of a K(Zpk, 1) space [2], We use only the following properties
of this complex :

(a) The cochains aeC ate set maps from the n-fold Cartesian product (Zpk)"
to Zp, with the sole condition that a(x,,---,x„) = 0 whenever x¡ = 0 for some
i = I,---,n.
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(b) If a e C1, then ôaeC2 is the map defined by (ôa)(x,y) = a(x) + a(y) — a(x + v).
(c) If a, be C1, then the product ab e C2 is defined by (ab)(x,y) = a(x)b(y).
We shall now explicitly construct a defining system of 1-cochains (a(n)) for

<i>pk. Let a be the mod p reduction of the "identity" map, i.e.  a(x) is the
mod p reduction of x. Then a represents i.

For each n = l,--,pk— 1, define ain) by a(l) = a and by specifying that

«0)0) = (*) (modp).

This binomial coefficient is to be interpreted as follows: Let x be the integer
0 S x < pk which represents x. Then

(Í)
is an integer, defined to be zero if x < n. a(n)(x) will be the mod-p reduction of this
integer.

To verify the coboundary formula, we use a classical formula about binomial
coefficients:

(Both are the coefficient of t" in (1 + t)i+J= (1 -I- i)'(l + t)j.)
It   suffices   to   verify   (3.3),   i.e.

(;) + (i)-f:/rK?:(;)U)   <-*
Now x+ y = (x 4- y)*~ + ep* where e= e(x,.y) is 0 or 1. So by (3.6), the following
formula holds:

<->   i(î) (j-r)-.irr)co-
Since n < pk, the right hand side of (3.7) is

Thus (a(n)) is defining system for <i>p. Furthermore

dA*)ix,y)=-   Eo(J)   ^f)   =-a(x,,).

To compute /?,.intake a fundamental cocycle a' e C1iZpk;Zpk) and pull it back
to a" e Cl(Zpk;Zpk*,). Then (l/p*)<5a" is a cocycle in C2(Z k;Zp) which represents

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1966] MASSEY HIGHER PRODUCTS 447

ßkik.  We take  a'  to  be defined  by  a'(x) = x and   a"(x) = x in Zpk+i,   i.e.
x(modp*+1). Then

(ôa")(x,y)=x + y- (x + y)~(modpk+1) = E(x,y)pk. Q.E.D.

We need a few technical lemmas in order to complete the proof of Theorem 14.
For a space X, coefficient ring R and integer fc > 2, let Bk denote the following
condition :

Bk — Whenever vt, ■•■,vT, for r < k, ate odd dimensional classes of H*(X;R)
suchthat (vy,---,v,y is defined, then (vy,---,vry consists solely of the zero element.
It is clear that Bk implies Bk_y. Also, if v and w ate odd dimensional classes, then
Bk implies that vw = 0.

Lemma 20. Assume that condition Bk holds. If ux,---,uk are odd dimensional
classes of H*(X;R) such that <[uy,---,uky is defined, then (uy,---,uky has no
indeterminacy, i.e. it consists of a single class.

Proof. Let ay,---,ak be cocycle representatives of the classes, uy-,uk and let
A = (a(i,j)) and A' = (a'(i,j)) be two defining systems for (ßy,—,a^y. We need
to show that their related cocycles are cohomologous. First, note that dim a(i,j)
is odd for all i,j.

To prove the lemma, it suffices to construct defining systems Aq for q = 1, •••,
fc— 1 of (a¡, •■■,aky so that

(i)    A,=A,
(ii)   aq(i,j) = a'(i,j) for j - i ^ q - 1 and thus Ak„y = A',
(iii)  c(Aq) ~ c(Aq+i) for q = 1,— ,fe- 2.

We define these systems by induction on q. Assume  that Aq is defined. Then
fo5 = a'(s,q + s) — aq(s,q + s) is a cocycle for each s = l,---,k — q.

To construct Aq+U it will suffice to construct defining systems Aqs of
<fl1,--,at> for s = 0, l,---,k-q so that aqß,j) = aq(i,j) ifj-i = q-l,

aq,s(iJ + q)= I
aq(i, i-Y q) if i > s,

aq(i, i -Y q) -Y ft¡     if i = s,

andc(/li;S) ~ c(^9S+1).Thus Aq = Aq0 and we may define Aq+1 to be Aqk_q.
We define these systems by induction on s. Assume Aqs is defined. We will

construct cochains b(i,j) for 1 ^ i = j ^ fc so that we may define

(3.8) aq¡s+ y(i,j) = aq¡s(i,j) 4- b(i,j).

lfi>s-Ylotj<s + q-Yl, then set ft(¡ j) = 0. If i îg s + 1 and j^s + ij + 1,
then we will construct the cochains ft(ij') by induction on j — i = q, -^fc — 1.

First set b(s + l, s + q + 1) = bs+i. Assume now that b(i,j) is defined for all
(i,j) with j — i < t so that
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s J-i
(3.9)        öb(i,j)=-   E  aq,s(i,r)b(r + l,j) -       E      b(i,r)aq,s(r + l,j).

r=l r=s+q+1

Then the b's and the a's form defining systems for higher products with odd
dimensional classes. In fact it is not hard to see that the right hand side of (3.9)
is defined when j = i + t and is a cocycle representative of the higher product
<aí,...,íis,bs+1,íJs+9 + 2,-..,aJ>. By condition Bk, this cocycle must cobound, i.e.
there is a cochain b(i, i + t) which satisfies (3.9).

It follows immediately from (3.8) and (3.9) that
j-i j-i

ôb(i,j)= -   E aqtS+l(i,r)aq>s+1(r+l,j)+ E aq¡s(i,r)aq¡s(r + l,j)
r=i r—i

for all i,j with 1 S » Sj < k. This shows both that Aqs+1 is a defining system
for <[ay,---,aky and that the related cocycles of Aqs and ^49_s+i are cohomologous.
Q.E.D.

Lemma 21. For some space X, ring R and integer k — 2, assume the following
two conditions hold:

(3.10) 7/« and v are odd dimensional classes in H*(X;R), then uv = 0.
(3.11) Ifuy,---,uT,forr S k, are arbitrary odd dimensional classes of H*(X;R),

then (uy,---,ury is defined.
Then for arbitrary odd dimensional classes «., ••»,«,, r S k, <«i, •••»«,> has no

indeterminacy.

Proof. Clearly, we need only show that condition Bs holds for s = 3,4,---,k.
We shall prove this by induction on s. For s = 3, it is trivial. Assume that condition
Bs_y holds. Since all s-fold products are defined, all (s — l)-fold products must
contain the zero elements. By Lemma 20, the (s — l)-fold products consist solely
of the zero element. Thus condition Bs holds. Q.E.D.

Proof of Theorem 14. Let i be the generator of Hx(Zp, l;Zp) and let ßi be the
generator of H2(Zp,l;Zp). Every odd dimensional class of H*(Zp,l;Zp) can be
written in the form lufor some even dimensional class v. Since i2 = 0, (3.10) is
satisfied. If k S P, <i>* is defined, and thus also the fe-fold product <t, ••», i>.
Also if Vy,---,vk, are even dimensional classes, then by Corollary 7 <iul5 •••, iffc>
is defined. Thus (3.11) is satisfied. By Lemma 21 all p-fold products in H*(Zp, I ; Zp)
have no indeterminacy.

Thus, by Corollary 7 and Theorem 19,

<i(/h)m>p=  <i(/h)m,"-,i(/h)m>

= <t,-,t>(/hr
= <i>p(iSir
=  -03i)pm+1.
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By the Cartan formula,

ßPm(v(ßi)m) = ß(t(ßi)pm)

= (ßi)pm+1 .

Since this element is nonzero in H2mp + 2(Zp,l;Zp), the constant c in Lemma 18
is - 1. Q.E.D.
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