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1 Introduction

In recent years, a promising new route named AdS/CFT duality [1–4] provided a new

viewpoint to understand gravity and strongly coupled or correlated phenomena in physics.

This duality relates a gravity theory in a weakly curved (d+ 1)-dimensional anti de Sitter

(AdSd+1) spacetime to a strongly coupled d-dimensional field theory living on its boundary.

The AdS/CFT duality maps questions about strongly correlated many-body phenomena to

solvable single- or few-body classical problems in a curved geometry, which opens a new win-

dow to solve the strongly correlated system in condensed matter physics and considerable

progresses have been made since the duality was proposed. For instance, holographic super-

conductor/superfuild [5, 6] (for reviews, see [7–11]), holographic (non-)fermi liquid [12–14],

holographic charge density wave and metal/insulator phase transition [15–17], and some

systems far-from thermal equilibrium [18–22] have been studied intensively.
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So far, most of attentions about the duality application to condensed matter physics

have been focused on the electronic properties of materials. In condensed matter physics,

magnetism also plays an important role in materials including high temperature super-

conductors and heavy fermion metals in many strongly correlated electronic systems. The

gauge/gravity duality provides an approach and perspective to understand these chal-

lenging problems. Though there exist a few works involving magnetism in holographic

superconductor models, magnetism does not pay the central role. Yet the scarcity of

models on magnetism is due to various technical challenges in holographic context. In a

previous work [23], we first proposed a new example of the application of the AdS/CFT

correspondence by realizing the paramagnetism/ferromagnetism phase transition in a dy-

onic Reissner-Nordatröm-AdS black brane. This model also was extended to realize the

paramagnetism/antiferromangnetism phase transition by introducing two real antisymmet-

ric tensor fields with interaction between them and they are coupled to the background

gauge field strength [24]. In ref. [25], by combining the holographic p-wave superconduc-

tor model [26] and the holographic ferromagnetism model, we studied the coexistence and

competition of ferromagnetism and p-wave superconductivity. It is found that the results

depend on the self-interaction of magnetic moment of the complex vector field and on which

phase (superconductivity or ferromagnetism) appears first. We noted that the ferromag-

netic superconductivity has been also discussed in ref. [27] by introducing two SU(2) gauge

fields in the bulk. In that model superconductivity and ferromagnetism happens simulta-

neously and the magnetic susceptibility is finite at the ferromagnetic critical temperature.

Note that, however, the ferromagnetic p-wave superconductor in heavy fermion systems

such as UCoGe, URhGe and UGe2, shows the two critical temperatures are different in

general [28] and magnetic susceptibility diverges at ferromagnetic critical temperature [29].

In the previous works, the reasons of using an antisymmetric tensor field to model

ferromagnetic phase transition in the holographic setup are as follows.

(1) On the viewpoint of symmetry breaking, ferromagnetic phase transition breaks the

time reversal symmetry spontaneously in low temperature (if spatial dimension is

more than 2, it also breaks spatial rotation symmetry), which in general is not asso-

ciated with other symmetry breakings such as U(1), SU(2) and so on. Thus the dual

operator does not carry U(1) or SU(2) charge, which implies that we need to use a

real field dual to such an operator.

(2) From the point of view of covariance, magnetic field is the spatial component of a

SO(1,3) tensor Fµν , so magnetic moment should be also a component of a tensor.

This is very important when we construct a holographic model to describe magnetism

of materials. In condensed matter physics, we usually say magnetic field is a vector,

because the system is of course non-relativistic.1 However, in holographic model, it

more convenient to write down the theoretical model in its relativistic form as the

boundary theory has Lorentz invariance. In this case, we should use electromagnetic

1Strictly speaking, magnetic field and magnetic moment are two pseudo-vector fields rather than vector

fields even in non-relativistic case, which play the central role in the phenomena involving spontaneously

magnetic ordering.
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field tensor Fµν to replace the magnetic field or electric field. The magnetic moment
~N as the response to magnetic field, with the electric dipole moment ~P as the response

to electric field, should be combined into a tensor field,

( ~E, ~B)→ Fµν , ( ~N, ~P )→Mµν (1.1)

This replacement has many advantages when we are going to write down a theoretical

model in a Lorentz invariant framework but has no any obstacle if we only care about

its non-relativistic limit. By an antisymmetric tensor field, we can use a very compact

form to take magnetic moment and electric dipole moment into account in Lorentz

invariant form. We can see later that magnetic moment is a pseudo-vector field

automatically in this setup.

(3) Furthermore, according to the origin of magnetic moment, magnetism of material

is controlled by the intrinsic magnetism of electrons which is obtained from the La-

grangian for electrons,

Le = i(ψ/∂ψ −mψψ)− ejµAµ −
e

4m
ψσµνψFµν . (1.2)

where Aµ is the gauge potential, Fµν is the gauge strength field and jµ is current

density which is defined as jµ = − i
2mψ(

−→
∂ µ −

←−
∂ µ)ψ. Then the magnetic moment

density
−→
N is the spatial component of an antisymmetric tensor field,

N i = εijkM
jk, Mµν =

e

4m
〈ψσµνψ〉. (1.3)

Here i, j, k = 1, 2, 3. Thus we see that an effective field to describe magnetic moment

in the boundary field in a covariant manner needs an antisymmetric tensor and its

spatial component corresponds to the magnetic moment. These considerations can

be generalized into 2+1 dimensions, where magnetic moment should still be regarded

as the spatial components of an antisymmetric tensor field.

Then according to the spirit of AdS/CFT, we can use an antisymmetric tensor field

in the bulk to dual such a tensor operator in the boundary. Recently, it has been found

in ref. [30] that the original model in [23] contains a vector ghost and a new model has

been proposed, there the exterior differential is used to replace the covariant derivative in

the kinetic term of the antisymmetric tensor field. With such a simple modification it has

been shown that there does not exist any ghost and causality violation does not appear in

the new model, while the key results in the original model are kept qualitatively. While

in ref. [30] we paid our main attention to the health of the model and showed that the

spontaneous magnetization can happen when the temperature gets low enough, in this

paper, we are going to study this model in some detail with some directions. Before going

on, we mention here that in this paper we assume the physical phase is homogeneous

and will not consider inhomogeneous phases. This assumption is just for simplifying our

discussions in technology. The possibility whether the inhomogeneous phase could appear

spontaneously in this model under the homogeneous boundary conditions is left to study

in future.
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This paper is organized as follows. In section 2, we will describe the holographic model.

We will give our ansatz for matter field and derive equations of motion in section 3. In this

section, we will show that there exists an analytical black hole solution different from the

AdS Reissner-Nordtrsöm solution in this model and discuss associated properties of the

solution. In sections 4 and 5, we will investigate the paramagnetism/ferromagnetism phase

transition in two different probe limits. One is to neglect the back reaction of the 2-form

field to the black brane geometry and to the Maxwell field, and the other to neglect the

back reaction of both the Maxwell field and the form field. In the former case, we will also

calculate the off-shell free energy of the holographic model near the phase transition point

by using the Sturm-Liouville eigenvalue method and obtain a free energy form like the

Ginzburg-Landau one, and make a comparison with the Ising-like universal class model.

In the latter case, we calculate the DC resistivity in the ferromagnetic phase, which shows

the behavior of the colossal magnetic resistance effect in condensed matter physics. We

study the full back reaction effect in section 6 by solving the full equations of motion of

the model and find that the phase transition is always second order. The summary and

some discussions are included in section 7.

2 The model

In this paper, the model we are considering is just Einstein theory with a negative cosmolog-

ical constant Λ = −3/L2, a U(1) field Aµ and a massive 2-form field Mµν in 4-dimensional

space-time. The ghost free action reads [30]

S =
1

2κ2

∫
d4x
√
−g(L1 + λ2L2),

L1 = R+
6

L2
− FµνFµν , (2.1)

L2 = − 1

12
(dM)2 − m2

4
MµνM

µν −MµνFµν −
J

8
V (M).

where L is the AdS radius which will be set to be unity and 2κ2 = 16πG is associated to

the gravitational constant in the bulk, which will be set to be unity in the following. g is

the determinant of the bulk metric gµν . dM is the exterior differential of 2-form field Mµν .

m2 6= 0 is the squared mass of 2-form field Mµν and must be greater than zero, which

will be explained shortly. λ and J are two real model parameters with J < 0 in order the

magnetization to happen spontaneously. λ2 characterizes the back reaction of the 2-form

field Mµν to the background geometry and to the Maxwell field strength.2 V (Mµν) is a

nonlinear potential of the 2-form field. It describes the self-interaction of the polarization

tensor, which should be expanded as the even power of Mµν . In this model, we take the

following form,

V (Mµν) = (∗MµνM
µν)2 = [∗(M ∧M)]2. (2.2)

2Note that here λ can be also understood as the measurement of the coupling between the tensor field

Mµν and the Maxwell field strength Fµν by rescaling the tensor field and the parameter J .
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Here ∗ is the Hodge-star operator. The choice of nonlinear potential is not unique. We

choose this form just for simplicity. As shown in ref. [30], this potential shows a global

minimum at some nonzero value of ρ.

By varying action (2.1), we can get the equations of motion for the matter fields and

gravitational field as

∇τ (dM)τµν −m2Mµν − J(∗MτσM
τσ)(∗Mµν) = Fµν ,

∇µ
(
Fµν +

λ2

4
Mµν

)
= 0, (2.3)

Rµν −
1

2
Rgµν −

3

L2
gµν = Tµν .

The energy-momentum tensor Tµν reads

Tµν = λ2

[
1

4
(dM)σµτ (dM)σατgαν +

m2

2
MτµM

τ
ν

+Mτ(νF
τ
ν) +

J

8
V (M)gµν

]
+ 2F τ µFτν

+
1

2
(λ2L2 − FµνFµν)gµν . (2.4)

In the AdS/CFT correspondence, a hairy black hole with appropriate boundary con-

ditions can be explained as a condensed phase of the dual field theory, while a black hole

without hair is dual to a normal phase. Clearly when Mµν vanishes, the model admits

the AdS Reissner-Nordström (RN) black brane solution, which corresponds to the normal

phase in the dual field theory. When Mµν appears, we will see that there exists an analytical

black brane solution differing from the AdS-RN solution. The new solution corresponds to

the normal phase rather than the usual AdS RN solution. When we lower the temperature,

the system exhibits an instability which triggers to break time reversal symmetry sponta-

neously as well as spatial rotation symmetry since the condensate will pick out one direction

as special (if spatial dimension is more than 2) and the paramagnetism/ferromagnetism

phase transition happens.

3 Ansatz and trivial solution

As we will discuss the full solution to the action (2.1) including the back reaction to the

spacetime geometry, we start with the following ansatz for the metric

ds2 = −r2f(r)ea(r)dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2), (3.1)

and take the self-consistent ansatz for polarization field and U(1) field as

Mµν = −p(r)dt ∧ dr + ρ(r)dx ∧ dy,
Aµ = φ(r)dt+Bxdy, (3.2)

with some real functions f(r), a(r), φ(r), p(r),and ρ(r). The bulk field B is a constant

magnetic field, which can be regarded as external magnetic field in the dual boundary

– 5 –
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theory. We will denote the position of the horizon as rh and the conformal boundary will

be at r →∞. Since we would like to study a dual theory with finite chemical potential or

charge density accompanied by a U(1) symmetry, we turn on At in the bulk.

Suppose the black brane horizon is located at rh with f(rh) = 0. According to

gauge/gravity duality, the Hawking temperature of the black brane is identified with the

temperature of boundary thermal state, which is given by

T =
(r2f(r))′ea(r)/2

4π

∣∣∣∣∣
r=rh

, (3.3)

and the thermal entropy S is given by the Bekenstein-Hawking entropy of the black brane

S = 4πA = 4πr2
hV2, (3.4)

where A denotes the area of the horizon and V2 =
∫
dxdy.

Put the ansatz (3.1) and (3.2) into equations (2.3), the independent equations of mo-

tion read

ρ′′ +

(
a′

2
+
f ′

f

)
ρ′ − m2 + 4Jp2e−a

r2f
ρ− B

r2f
= 0,(

m2 − 4Jρ2

r4

)
p− φ′ = 0,

φ′′ +

(
2

r
− a′

2

)
φ′ + λ2

(
pa′

8
− p′

4
− p

2r

)
= 0,

a′ − λ2ρ′2

2r3
= 0,

f ′ +
e−a

r

(
4Jρ2

r4
−m2

)(
4Jρ2

r4
−m2 +

λ2

4

)
p2 (3.5)

−3

r
+

(
3

r
+
λ2ρ′2

4r3

)
f +

λ2ρ
(
m2ρ+ 2B

)
+ 4B2

4r5
= 0,

where a prime denotes the derivative with respect to r. The first three equations are for the

polarization field and Maxwell field, and the last two are the two independent components

of gravitational field equations. In fact, there are three nonzero components of gravitational

field equations, but only two of them are independent due to the Bianchi identity.

We are interested in the black brane configurations which have a regular event horizon

located at rh. Therefore, in addition to f(rh) = 0, one must require φ(rh) = 0 in order for

gµνAµAν being finite at the horizon. We require the regularity conditions at the horizon

r = rh, which means that all functions will have finite values at rh and admit a series

expansion in terms of (r − rh). Then, at the horizon, we have the following relations,

φ = 0, φ′ =

(
m2 − 4Jρ2

r4

)
p,

ρ′ =
ρ
(
m2 + 4Jp2e−a

)
+B

f ′
, (3.6)

f ′ = −e−a
(
4Jρ2 −m2

)(
4Jρ2 −m2 +

λ2

4

)
p2 + 3−

λ2ρ
(
m2ρ+ 2B

)
4

+B2.
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The black brane solution should be asymptotically AdS. Thus one has the following asymp-

totic solutions near the AdS boundary,

ρ = ρ+r
(1+δ)/2 + ρ−r

(1−δ)/2 + · · · − B

m2
, a = a0 + · · · ,

φ = µ− σ

r
+ · · · , f = 1 +

f0

r3
+ · · · , p =

σ

m2r2
+ · · · , (3.7)

where δ =
√

1 + 4m2 and the dots stand for the higher order terms of 1/r, ρ± and f0 are all

constants. The Breitenlohner-Freedman (BF) bound requires m2 > −1
4 according to the

asymptotic solution of ρ. According to the AdS/CFT dictionary, up to a normalization,

the coefficients µ and σ are directly related to the chemical potential and charge density in

the dual system, respectively. The magnetic moment density in the dual theory is defined

by the integration [23, 30]

N = −λ
2

2

∫ ∞
rh

ρea/2

r2
dr. (3.8)

From the equation for ρ in eqs. (3.5), we see that ρ → −ρ as B → −B under the time

reversal transformation, which leads to the property of magnetic moment defined in eq. (3.8)

under the time reversal transformation such as N → −N . This is agreement with the fact

that magnetic field is pseudo-vector in 3+1 boundary dimensions or pseudo-scalar in 2+1

boundary dimensions.

Note that there is an additional restriction on m2 when we treat the magnetic field B

as the source of ρ. In order to keep ρ damping, we have to impose boundary condition for

ρ such that ρ+ = 0 and a restriction on the parameter such that m2 > 0 [30], otherwise

the integration (3.8) will diverge or the equation for ρ can not be linearized near the

AdS boundary. These two restrictions can be understood in another way: when B = 0,

the constant ρ+ should be viewed as the source of the corresponding operator in the

boundary field theory, according to AdS/CFT duality. In order the symmetry to be broken

spontaneously, one has to turn off the source term.

In addition, in order to make ρ condense in the case without external magnetic field

when the temperature is low enough, the model parameters should violate the BF bound

for ρ near the horizon, whose geometry is an AdS2 for an extremal black brane.

To see how this requirement restricts the parameters, we first consider the solution

for (3.5) in the case of ρ(r) = B = 0 and a(r) = V (M) = 0. The equations (9) become,

m2p− φ′ = 0,

φ′′ +
2

r
φ′ − λ2

(
p′

4
+

p

2r

)
= 0, (3.9)

f ′ +
3

r
+
p2m2

r

(
m2 − λ2

4

)
− 3

r
= 0.

The equations admit an analytical solution when m2 6= 0, i.e.,

φ(r) = µ(1− rh/r), p(r) =
µrh
m2r2

,

f(r) = 1−
(µ̃+ 1)r3

h

r3
+
µ̃r4

h

r4
, µ̃ =

µ2

r2
h

(
1− λ2

4m2

)
.

(3.10)
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Then the temperature of the black brane is

T =
rh
4π

(3− µ̃). (3.11)

Compared with the usual planar AdS RN black brane solution [31], we see that µ2 in the

metric of usual AdS RN solution is just replaced by µ̃ in the new solution. Namely, the

new solution has the same form as the planar AdS RN solution with the same Maxwell

field φ(r), but also with a nontrivial profile of p(r) for the massive 2-form field.

Then we can easily calculate the free energy Ω and the charge density σ of the sys-

tem as3

Ω = Ω(T, µ) = −2V2r
3
h(1 + µ̃)

σ = σ(T, µ) = − 2

V2

(
∂Ω

∂µ

)
T

= 2

(
1− λ2

4m2

)
rhµ.

(3.12)

We see that the properties of this black brane solution depends on the value of 1−λ2/4m2.

When 1− λ2/4m2 = 0, the solution is just the planar AdS Schwarzschild black brane with

nonzero U(1) gauge field and polarization field. To investigate the physical properties when

1−λ2/4m2 6= 0, it is useful to compute the partial derivative of charge density with respect

to chemical potential,(
∂σ

∂µ

)
T

= − 1

V2

(
∂2Ω

∂2µ

)
T

= 6rh

(
1− λ2

4m2

)
1 + µ̃

3 + µ̃
. (3.13)

It is easy to see that eq. (3.13) is positive when 1 − λ2/4m2 > 0. However, when

1− λ2/4m2 < 0, the value of (3.13) can become negative, which leads the dual bound-

ary system to be chemical instability. To understand it, one can image that a box is

submerged into the environment with fixed temperature T and chemical potential µ in

equilibrium state. The energy and charge can exchange between the interior of the box

and environment through the wall (see figure 1). Now because of thermal fluctuation, the

chemical potential in the box then is µ− δµ < µ, which leads to some charge coming into

the box. However, because eqs. (3.13) is negative, adding the charge of the system will

decrease the chemical potential of the system. Then we see that the chemical potential will

decrease again, which will lead that more charges come into the box. So the charge inside

the box will be more and more and the system is unstable. From eq. (3.13), we can find

the dual boundary system is chemical stable region only when temperature and chemical

potential satisfy4
√

2π

5
<

|µ|(
λ2

4m2 − 1
)
T
< π. (3.14)

If eq. (3.13) is positive, we see that adding charge will increase the chemical potential,

so after some time, the system can be in equilibrium again. In fact, in the case of

3The total charge density σ can be also calculated from the second equation in (2.3), which gives the

same value as the one in (3.12). This also confirms that the chemical potential of the system is given by µ.
4It is worth noting that this condition is only valid in grand canonical ensemble. In other ensembles,

the stable condition is different in general.
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Figure 1. The schematic diagram for chemical instability.

1− λ2/4m2 > 0, the solution shares all the properties of usual AdS RN black brane except

we have to replace µ2 by µ̃. But in the case of 1 − λ2/4m2 < 0, the properties are very

different from those of usual AdS RN black brane. For example, the temperature gets in-

creased when we increase the chemical potential while fixing the horizon radius and there

does not exist zero temperature entropy.

In this paper, we only focus on the situation of 1 − λ2/4m2 > 0, which can give a

chemical stable dual boundary system and zero temperature black hole solution whose IR

geometry has the form of asymptotic AdS2 geometry. With this, we consider the possibility

of spontaneous symmetry breaking of this system in low temperature. This can be analyzed

by solving the following equation in the background (3.10),

ρ′′ +
f ′ρ′

f
−
(
m2

r2f
+

4Jµ2

r6m4f

)
ρ = 0. (3.15)

The condition of instability for ρ in some low temperature is that the BF bound in AdS4

is retained but the BF bound in AdS2 is violated. Near the horizon for an extremal

black brane, the geometry is asymptotic AdS2. In this region, the asymptotic solution for

equation (3.9) is,

ρ = ρ+r
−(1−

√
1+4m̃2)/2 + ρ−r

−(1+
√

1+4m̃2)/2, m̃2 =
m2

6
+

8J

m2(4m2 − λ2)
. (3.16)

So the conditions for spontaneous condensate are,

m2 > 0, m2(4m2 − λ2) > 0, m̃2 =
m2

6
+

8J

m2(4m2 − λ2)
< −1

4
. (3.17)

One can immediately see that these inequalities have solution only when J < 0.

Under the restriction of (3.17), there is a critical temperature, lower than which the

nonzero ρ begins to appear. Then the full coupled equations of motion do not admit an

analytical solution. Therefore, we have to solve them numerically. We will use shooting

method to solve equations (3.5). In order to find the solutions for all the five functions

F = {ρ, φ, p, a, f}, where we can directly solve φ(r) =
∫∞
rh
dr(m2−4Jρ2/r4)p and then put

it into the equation of φ′′ and obtain an equation for p, we must impose suitable boundary

conditions at both the horizon r = rh and conformal boundary r → ∞. There are two

kinds of scaling symmetries which are useful when we perform numerical computations:

r → αr, (t, x, y)→ (t, x, y)/α, (3.18)

(ρ,B) → α2(ρ,B), φ→ αφ, T → αT. (3.19)
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and

a→ a+ λ, ea → eλea, t→ e−
λ
2 t, φ→ e

λ
2 φ. (3.20)

Under the above two scaling symmetries, we finally have four independent parameters

{a(rh), ρ(rh), p(rh)} and horizon radius rh at hand. In this paper, we will fix the boundary

chemical potential to be unitary. When these four parameters are given, we can integrate

the equations out of the horizon to obtain the whole solutions. When we perform the

numerical computations, we can first set {rh = 1, a(rh) = 0}. Then for a given ρ(rh), we can

adjust the value of p(rh) to match the boundary condition ρ+ = 0 at r →∞. After solving

the coupled differential equations, one should use the second scaling symmetry (3.20) to

satisfy the asymptotic conditions a(∞) = 0. Then we use the first transformation (3.18) to

fix the chemical potential for each solution the same. By this method, we get one-parameter

solution ρ(r;T ) for T < Tc. And then we can get the behavior of magnetic moment density

N with respect to temperature T .

When the parameters satisfy the inequalities (3.17), the solution of ρ 6= 0 will appear

even in the case of B = 0. Because under the time reversal transformation, B → −B, in

order to make action be invariant, we have to have ρ→ −ρ. So when B = 0 but ρ 6= 0 in

the source free case, the time reversal symmetry is broken spontaneously.

In order to see the main properties of the model, let us first study the model in probe

limit for simplicity. Here we may consider two kinds of probe limit. The first one is to

take the model parameter λ → 0 as we did in ref. [23]. This case is just to neglect the

back reaction of the massive 2-form field to the black brane geometry and to the Maxwell

field, but to consider the effect of the Maxwell field to the background geometry. This

probe limit corresponds to the case in such materials that their electromagnetic response

properties are very weak compared with the external field and have little effects on the their

transport properties. In other words, in this probe limit, the influence of external field on

the materials is considered, but we neglect the back reaction of electromagnetic response

to the external field and structures of materials such as crystal structure or energy band.

The other is to neglect all back reaction of matter fields including the Maxwell field to

the background geometry. In this probe limit, the interaction between the electromagnetic

response and external field is taken into account so that we can study how spontaneous

magnetization influences the electric transport, but they both have little influence on the

structures of materials. We will study these two cases in the following sections separately.

4 Probe limit in the case of λ → 0

4.1 Spontaneous magnetization and susceptibility

Let us first investigate the spontaneous magnetization in the limit of λ → 0. In this

limit, we neglect the back reaction of polarization field to the gauge field and background

geometry. The background geometry and the Maxwell field can be taken as

φ(r) = µ(1− 1/r), f(r) = 1− 1 + µ2

r3
+
µ2

r4
, T =

1

4π
(3− µ2), (4.1)
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where we have set the horizon radius rh = 1. In this case, the equations of the polarization

field read

ρ′′ +
f ′

f
− m2 + 4Jp2

r2f
ρ =

B

r2f
,(

m2 − 4Jρ2

r4

)
p− µ

r2
= 0. (4.2)

Note that the expression of p(r) can be solved directly. We put it into the equation of ρ(r),

and get

ρ′′ +
f ′

f
ρ′ −

[
m2

r2f
+

4Jµ2(
m2r2 − 4Jρ2

r2

)2
r2f

]
ρ− B

r2f
= 0. (4.3)

This equation shows that ρ will be spontaneously condensed below a critical temperature

only when m2 > 0. When m2 > 0, near the critical temperature where ρ is very small and

therefore the term ρ2 can be neglected in (4.3), thus increasing the chemical potential5 will

decrease the effective mass at the horizon (note that J < 0), which leads that ρ can be

condensed spontaneously below a critical temperature.6 Furthermore, the restrictions on

the parameters in the case of λ→ 0 are,

m̃2 =
m2

6
+

2J

m4
< −1

4
, m2 > 0. (4.4)

In what follows, since different parameters will give similar results, we will choose m2 =

−J = 1/8 as a typical example when we perform numerical computations.

To study the spontaneous magnetization, we need set B = 0. Since near the critical

temperature, ρ is very small, the nonlinear term of ρ can be neglected in (4.3).To find the

critical temperature, we can solve the linearized equation of ρ with initial condition

ρ′ =
m6 + 4J(3− 4πT )

4πTm4
ρ, (4.5)

at the horizon r = 1 and boundary condition ρ+ = 0 at r → ∞. Without loss the

generality, we take the initial value of ρ at horizon to be unity, and treat T as the shooting

parameter to match the source free condition. There will be many solutions for shooting

parameters T , we choose the highest one as the critical temperature Tc. We find the critical

temperature Tc/µ ' 1.78 for the case of given model parameters.

When the temperature is lower than the critical temperature Tc, in order to examine

whether the polarization field ρ can make spontaneous magnetization when the external

magnetic field B = 0. We plot the value of ρ+ versus ρ(rh) at the horizon in the left

panel of figure 2. Each curve in this plot corresponds to different temperature. This

plot shows a typical example in the high and low temperature cases which correspond to

the red and the black lines, respectively, while the case with the critical temperature is

shown by the blue curve. In the case of high temperature, we see that the curve has no

5This implies that the temperature is decreased in grand canonical ensemble [see (4.1)].
6If m2 < 0, ρ will get spontaneously condensed at a temperature higher than a critical temperature.

This solution is unstable and we will not discuss it any more.

– 11 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

Figure 2. Left panel: the value of ρ(rh) in different temperature. Right panel: the magnetic

moment N as a function of temperature. Here we choose the model parameters as m2 = −J = 1/8.

The critical temperature Tc/µ ' 1.78.

intersecting point with horizontal axis except a trivial point at the origin, which corresponds

to a trivial solution with ρ = 0 and it describes the paramagnetic phase. On the other

hand, when the temperature is low enough, we find that there exists a nontrivial solution

which locates at ρ(rh) 6= 0. This solution breaks the time reversal symmetry and the

system gets into a ferromagnetic phase. As a result, we see that the model indeed can

give rise to a paramagnetism/ferromagnetism phase transition in the case without external

magnetic field.

Furthermore, when the temperature is lower than the critical temperature Tc, we have

to solve the equation (4.3) with the condition of ρ+ = 0 by shooting method. The spon-

taneous magnetization N is defined by the integration (3.8) with a = 0. The spontaneous

magnetic moment with respect to temperature is shown in the right panel of figure 2. In

addition, since the magnetic moment of the polarization field obtains an expectation value,

the time reversal symmetry is broken spontaneously.

By fitting this curve near the critical temperature, we find that there is a square root

behavior for the magnetic moment versus temperature, which is a typical behavior for a

second order phase transition, specifically, for m2 = −J = 1/8, we have

N2/λ4µ2 ' 4.910(1− T/Tc). (4.6)

This gives the critical exponent 1/2, the same as the one from the mean field theory.

Except for the magnetic moments which is one of the characteristic properties of ferro-

magnetic material, another remarkable one is the behavior of susceptibility density of the

material in the external magnetic field. The static susceptibility density is defined by

χ = lim
B→0

∂N

∂B
. (4.7)
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Numerical results
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Figure 3. The behavior of the inverse susceptibility density in the paramagnetic phase near the

critical temperature when m2 = −J = 1/8. Here we set 2κ2 = 1 for convenience.

When we turn on the external magnetic field B, the function ρ is nonzero in any temper-

ature. In order to compute the susceptibility density, we need to shoot for the boundary

conditions with one parameter ρ(rh) for equation (4.3) under the given external magnetic

B and temperature T . From the definition of χ, which involves only the behavior of B → 0,

so the computation can be simplified in the following way.

In the case of T > Tc, considering the result ρ = 0 when B = 0, we expect that ρ

is in the same order as B, then ρ2 is as the same order as B2. So in the case with weak

magnetic field, we can neglect nonlinear terms in equation (4.3). In that case, we just need

to solve the “linearized” equation

ρ′′ +
f ′ρ′

f
−
(
m2

r2f
+

4Jµ2

r6m4f

)
ρ− B

r2f
= 0. (4.8)

Because ρ ∝ B, we can set B = 1, Solving the equation (4.8) with the boundary condition

ρ+ = 0, the susceptibility density then can be computed by

χ = N = −λ2

∫ ∞
rh

ρ

2r2
dr. (4.9)

In figure 3, we show the magnetic susceptibility as a function of temperature and find it

satisfies the Curie-Weiss law of ferromagnetism in the region of T → T+
c . Concretely, for

the chosen model parameters, we have

λ2/µχ ' 4.0499(T/Tc − 1). (4.10)

So we can conclude that the dual system is in a paramagnetic phase in high tempera-

ture and ferromagnetic phase in low temperature. The model can describe a paramag-

netism/ferromagnetism phase transition. We will see later that the exponents in eqs.(4.6)

and (4.10) are exact and can be obtained by analytical methods.
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4.2 Holographic Ginzburg-Landau formulation

In action (2.1), two parameters appear in the Lagrangian. One is the mass of the polar-

ization field, which corresponds to the conformal dimension of the dual operator by the

standard dictionary. The other is the self-interaction coupling constant J . So a natural

question is what the meaning of this constant is in the dual boundary theory? To answer

this question, we need to compare our holographic GL free energy with the one in mi-

crocosmic theories. Unfortunately, in this bottom-up setup of the holographic model, we

have no such microcosmic theories in strong correlated system. But, in general, a universal

phenomenological theory can emerge from several different microcosmic theories. In this

subsection, we will try to give a process about how to give out a quantitative interpretation

if we know the microcosmic theory in the boundary. As an example to perform this process,

we assume that some microcosmic theories could be approximately described by Ising-like

universal class model. In this subsection, we also will build a holographic Ginzburg-Landau

formulation for our holographic model. By it, we can understand the properties of our holo-

graphic model at critical point in the probe limit by analytical method.

Since we are working in the probe limit, the geometry and external Maxwell field are

fixed, this leads to a simplification to compute the partition function of the bulk theory.

This is the reason that we consider this kind of probe limit here. Our method is to compute

the effective grand thermodynamic potential in both sides and to equate them (which are

equivalent to compute the partition functions in both sides and to equate them). Then we

can “read off” the meaning of J in the dual boundary theory.

Now let us frist consider the gravity side of the holographic model to compute the

grand thermodynamic potential. It is convenient to make a coordinate transformation by

z = rh/r. As p can be solved directly, then we put it into the equation of ρ(r), and get

ρ′′ +

(
2

z
+
f ′

f

)
ρ′ −

[
m2

z2f
+

4Jµ2z2

(m2 − 4Jρ2z4)2f

]
ρ =

B

z2f
,

(m2 − 4Jρ2z4)p− µz2 = 0.

(4.11)

As we will care about the behavior of T → Tc, the value of ρ will be a small quantity near

the transition point. In this case, we can make a Taylor’s expansion on the nonlinear term

of ρ in eq. (4.11) as,

4Jµ2z2

(m2 − 4Jρ2z4)2
=

4Jµ2z2

m4
+

32J2µ2ρ2z6

m6
+O(ρ4) (4.12)

Neglecting the high order terms, eq. (4.11) can be rewritten as

L̂ρ = J̃fρ
3z8 −B,

L̂ = − d

dz

[
z2f(z)

d

dz

]
+ q(z),

q(z) = m2 +
4Jµ2z4

m4
,

J̃f = −32J2µ2/m6 < 0.

(4.13)
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Up to the order of ρ4, the part of polarization field in action (2.1) can be written as,

S(T,B; ρ)

λ2V2
=

(
z2

2
fρ′ρ+ zfρ2

)∣∣∣∣zh
0

−
∫ zh

0
dz

[
ρ

2
L̂ρ+Bρ−

J̃f
4
z8ρ4

]
, (4.14)

which is a function of T and B, but a functional of ρ. The asymptotic solution for (4.13) is

ρ = ρ̃− B

m2
, with ρ̃ = ρ+z

−(1+δ)/2 + ρ−z
−(1−δ)/2. (4.15)

The source free condition is ρ+ = 0 as z → 0+. Under this, the grand thermodynamic

potential or free energy in grand canonical ensemble Ω is,

Ω(T,B; ρ) = Ω̃(T,B; ρ)V2 = λ2V2

∫ zh

0
dz

[
ρ

2
L̂ρ+Bρ−

J̃f
4
z8ρ4

]
. (4.16)

According to thermodynamic relationship,

dΩ(T,B) = −SdT − V2NdB ⇒ N/λ2 = − 1

V 2

(
∂Ω(T,B)

∂B

)
T

. (4.17)

It seems that the magnetic moment should be,

N = −λ
2

V2

(
∂Ω(T,B; ρ)

∂B

)
T,ρ

= −λ2

∫ zh

0
ρdz. (4.18)

However, in our previous papers, we defined the magnetic moment as,

N/λ2 = −
∫ zh

0

ρ

2
dz. (4.19)

There is a difference factor 1/2 between (4.19) and (4.18). Now we show that the expres-

sion (4.18) is not true. The reason is as follows. The relation (4.17) is on-shell, while the

equation (4.16) is off-shell. In order to obtain the differential relation of Ω(T,B; ρ) with

respect to (T,B, ρ), we need to use the Euler homogenous function theorem. We should

first note that under the scaling transformation z → kz, (t, x, y) → k(t, x, y), we have

Ω(kT, k2B; k2ρ) = kΩ(T,B; ρ), which gives,

Ω(T,B; ρ) =

(
∂Ω

∂T

)
ρ,B

T + 2

(
∂Ω

∂B

)
ρ,T

B + 2

∫ zh

0

(
δΩ

δρ(z)

)
T,B

ρ(z)dz. (4.20)

Submitting (4.16) into (4.20) and considering the on-shell condition δΩ/δρ = 0, we find

that,

N/λ2 = − 1

V2

(
∂Ω(T,B)

∂B

)
T,on-shell

= −
∫ zh

0

ρ

2
dz. (4.21)

This is just the definition (4.19).

The key step for computing the grand thermodynamic potential is to construct the

Sturm-Liouville problem,7 which is the following ODE:

P̂ ρn =
L̂ρn
ω(z)

=
1

ω(z)

{
− d

dz

[
z2f(z)

dρn
dz

]
+ q(z)

}
ρn = λnρn. (4.22)

7The method is similar to the one used in ref. [32], but is completely different from the Sturm-Liouville

(SL) eigenvalue method in ref. [33], there the precision depends on the trial function one chooses.
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with the boundary conditions:

(a) At z = zh, f(zh) = 0, |ρn(zh)| is required to be finite;

(b) At z → 0+, we impose ρn(0) = 0.

The weight function ω(z) can be an arbitrary positive continuous function in the region

of [0, zh]. From a practical point of view, we choose weight function such that the values

of λn will not influence the asymptotic behaviors of equation (4.22) when z → 0+. There

are many choices for weight function. Here we choose ω(r) = zk with an integer k > 2.

Once note that the asymptotic solution when r →∞ for equation (4.22) is,

ρn = ρ+z
−(1+δ)/2 + ρ−z

−(1−δ)/2, (4.23)

one can find that the boundary condition (b) corresponds to ρ+ = 0. Let L2([0, zh], ω(z), dz)

be the Hilbert space of square integrable functions on [0, zh], i.e.,

L2([0, zh], ω(z), dz) =

{
h : [0, zh] 7→ R

∣∣∣∣∫ zh

0
ω(z)|h(z)|2dz <∞

}
(4.24)

with the inner product

〈h1, h2〉 =

∫ zh

0
ω(z)h1(z)h2(z)dz, (4.25)

and D be the subspace of L2([0, zh], ω(z), dz) that satisfies the boundary conditions of (a)

and (b), i.e.,

D =
{
∀h ∈ L2([0, zh], ω(z), dz)

∣∣h ∈ C2[0, zh], h(0) = 0, |h(zh)| <∞
}
. (4.26)

Then we can prove that P̂ is the self-adjoint operator on D, i.e.,

∀h1, h2 ∈ D, 〈h1, P̂ h2〉 = 〈P̂ h1, h2〉. (4.27)

According to the properties of SL problem, the solutions of (4.22) form a function basis on

D with which one can expand any functions belonging to D, i.e.,

〈ρn, ρk〉 = δnk, (4.28)

and

∀h ∈ D, ∃{cn} ⊂ R, h(z) =

∞∑
n=1

cnρn(z) (4.29)

with cn = 〈ρn, h〉.
Note that all the parameters in equation (4.22) depend on temperature, so do the

eigenvalues λn and eigenfunctions ρn. Indeed, the minimal eigenvalue, i.e., the first eigen-

value λ1 is the function of temperature. There is a critical temperature Tc, at which we

have λ1 = 0. We can find that when T > Tc, λ1 > 0. In order to show this, we take

m2 = 1/8 as an example to plot ρ+ with respect to λ. The boundary condition (b) is

equivalent to ρ+(λn) = 0. Figure 4 shows the value of y(λ) = arctan[10ρ+(λ)] with respect
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Figure 4. The function y(λ) = arctan[10ρ+(λ)] with respect to λ at temperature of T ' 2.00Tc(left

one) and T ' 0.491Tc(right one) in the case of m2 = 1/8. The x-coordinate values of zero points

give the eigenvalues λn. Here Tc ' 1.7766µ.

to λ1/3 (it is just for convenience). The x-coordinate values of zero points (y = 0) give the

eigenvalue λn. We can see that all the eigenvalues are positive when T > Tc and λ1 < 0

when T < Tc. For any temperature, the equation has infinite eigenvalues and the smallest

eigenvalue exists, which shows the system is stable.

Let us now turn our attention to the free energy (4.16). For convenience, we will use

scaling transformation to set zh = 1 in the process of computation, and then transform

into the case of fixing chemical potential in the final results.

Let ρ̃(r) = ρ(r) + B/m2 be any function configuration belonging to D, in which ρ(r)

dose’t need to be the solution of EoM (4.13). We can use the eigenfunction ρn to expand

ρ̃(r) and magnetic moment as,

ρ̃ =

∞∑
n=1

cnρn ⇔ ρ =

∞∑
n=1

cnρn −
B

m2
,

N =
λ2B

2m2
− λ2

∫ 1

0

ρ̃

2
dz =

λ2B

2m2
− λ2

2

∞∑
n=1

cnNn,

(4.30)

where cn and Nn are coefficients, defined as,

cn =

∫ 1

0
ωρ̃ρndz, Nn =

∫ 1

0
ρndz. (4.31)

Here we have assumed that {ρn} is an unit base. Then the variational principle of Ω(T,B; ρ)

underlying the equations of motion, or finding a solution of EoM (4.13), is equivalent to

minimizing Ω(T,B, cn) with respect to cn’s.

Let us consider the case of spontaneous magnetization, i.e., the case with B = 0. In

this case, we have

Ω̃(T, cn) = λ2

∫ 1

0
dz
[ωρ

2
P̂ ρ− J̃fz8ρ4/4

]
, (4.32)

with ρ =
∑∞

n=1 cnρn. Using the orthogonal relationship, we have,

Ω̃(T, cn) =
λ2

2
〈ρ, P̂ ρ〉 −

λ2J̃f
4

∫ 1

0
z8ρ4dz =

λ2

2

∞∑
n=1

λnc
2
n −

λ2J̃f
4

∫ 1

0
z8ρ4dz. (4.33)
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If T > Tc, then λn > 0. Because of J̃f < 0, we can find that Ω̃(T, cn) ≥ 0. The minimization

of Ω(T, cn) = 0 is achieved only when cn = 0, i.e., ρ = 0. So the nonzero solution appears

only when λ1 < 0, i.e., T < Tc. This is just what we have obtained in the pervious section.

When T → T−c , we can set λ1 = a0(T/Tc−1) with a0 > 0 and assume that the off-shell

solution is dominated by the first term in (4.30) only, i.e., |c1| � cn for n ≥ 2 in (4.31). As

a result, we have,

λ−2Ω̃(T, cn) ' 1

2
λ1c

2
1 −

J̃fc
4
1

4

∫ 1

0
dzρ4

1z
8 ' 1

2
a0(T/Tc − 1)c2

1 − J̃fc4
1a1 (4.34)

with a1 = 1
4

∫ 1
0 ρ

4
1z

8dz|T=Tc > 0 and,

N ' −λ2c1N1/2. (4.35)

Put (4.35) into (4.34), we can obtain,

Ω̃(T, cn) ' Ω̃(T,N) ' 2a0

λ2N2
1

(T/Tc − 1)N2 +
−16J̃fa1

λ6N4
1

N4. (4.36)

We can see that this is just the Ginzburg-Landau (GL) theory of ferromagnetic model.

To understand the meaning of the parameters appearing (4.36), we can compare it

with some suitable microcosmic model. Unfortunately, a universal microcosmic model

to describe spontaneously magnetization in strongly coupling system has not yet been

built. One of classes of theory is so-called Ising universality, which is an approximate

theoretical model appearing in variety of microcosmic models [34, 35]. Recently, ref. [36]

shows that scale invariance implies conformal invariance for Ising universality class in all

the dimensions, which implies some intrinsic connections with Ising universality class and

conformal field theory. Here we aren’t going to investigate this topic deeply. As an example

about how to use our GL-formulism in eq. (4.36), we here assume that the the spontaneous

magnetization in the boundary theory can be described by Ising universality class model

at least in the vicinity of critical temperature. The Hamiltonian for the Ising universality

class model is,

H = −1

2

∑
r,r′

J (r − r′)−→s (r) · −→s (r′) +
∑
r

K[−→s (r)2 − 1]2, (4.37)

where r, r′ are the positions of lattices, J (r−r′) > 0 is the exchange integration of lattices r

and r′, s(r) the z-component of spin at lattice r, K is a positive constant which corresponds

to the deviation from the Ising model. When K →∞, Hamiltonian (4.37) reduces to that

of the usual Ising model.

In this paper, the dual boundary is a (2+1)-dimensional spacetime, i.e., a film system.

Then the spin (or magnetic moment) in fact is just a pseudoscalar. So we have −→s = s. To

compare with our holographic model, it is convenient to change Hamiltonian (4.37) into

the one in continuous limit,

H =

∫
d2xl−2

[
−1

2
J l2R2

J s(x)
−→
∇2s(x)− (J + 2K)s(x)2 +Ks(x)4

]
, (4.38)
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where l is the lattice spacing and J =
∑

r J (r), R2
J =

∑
r r

2J (r). The summations for

J and R2
J are only in one crystal lattice. We see that the Ising like Hamiltonian is a λφ4

theory if we use s̃ = s
√
JRJ . From appendix A, we can find that the grand thermodynamic

potential in the mean field approximation in the high temperature limit reads,

Ω̃ '1

2

(
λsγET

4π
−m2

s

)
s̃2
cl +

λss̃
4
cl

4!
+ · · · (4.39)

with

m2
s =

2J + 4K

J l2R2
J
, λs =

4!K

J 2l2R4
J
. (4.40)

Here we have used s̃cl to represent the classical value of s. We see that there is a critical

temperature Tc = 4πm2
s/λsγE . When T > Tc, the thermodynamic equilibrium phase

corresponds to s̃cl = 0, while T < Tc, the thermodynamic equilibrium phase has s̃cl 6= 0.

Now the grand thermodynamic potentials of the holographic model in the gravity side

and in the boundary theory side are in hand, we can use the AdS/CFT duality to relate

them, which gives,

ΩQFT = Ωgravity. (4.41)

Here we should mention that the dual theory in the boundary being an Ising-like model is an

assumption. With this equality, at the critical temperature, comparing (4.36) with (4.39),

we can obtain,

−16J̃fa1

λ6N4
1

N4 ∼ λss̃4
cl (4.42)

Note that in materials, the spontaneous magnetization is proportional to the expectation

value of z-component of spin, i.e., N ∝ s̃cl. Following the definition of J̃f in eqs. (4.13) and

λs in eqs. (4.40), we see that if J = 0, then eq. (4.42) leads to K = 0. Therefore we can

interpret the parameter J in action (2.1) as the deviation from the standard Ising model

in the boundary theory.

Here some remarks are in order. First, the equality eq. (4.41) is exact according to

the AdS/CFT correspondence. However, the expressions for the grand thermodynamic

potentials in both sides are just some approximations. In gravity side, because we used

the probe limit which neglects the back reaction of polarization field to the background

geometry and to external field and we only computed the grand thermodynamic potential

in the classical level which neglects the quantum correction. In the boundary side, we used

mean field expansion and only took the tree level of the quantum fluctuation into account.

So the relationship (4.42) is only approximately valid and our explanation for J is only

a qualitative description. Second, the Ising-like model (4.37) can only describe the local

moment system, which is usually suitable for insulator. For metal magnetic materials, we

need to use different model. So what the meaning of J is in these materials needs to be

considered in the future.

With the grand thermodynamic potential in eq. (4.36), we can obtain the expression

of magnetic moment in the ferromagnetic phase as,

N/λ2 =

√
N2

1a0

−16J̃fa1

(1− T/Tc)1/2. (4.43)
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This confirmed the critical behavior obtained in the numerical calculations and the critical

exponent 1/2 is an exact result. We can compute all the coefficients appearing in (4.43) and

compare them with the numerical ones. We can also compute the grand thermodynamic

potential when magnetic field is nonzero and get the magnetic susceptibility and hysteresis

loop. The details are given in appendix B.

5 Probe limit by neglecting the back reaction of all matter fields

5.1 Spontaneous magnetization and susceptibility

In the probe limit by neglecting the back reaction of all matter fields including the Maxwell

field, the background geometry is just the planar AdS Schwarzschild black brane with,

f(r) = 1−
r3
h

r3
, T =

3rh
4π

. (5.1)

In the background, the equations for Maxwell field read,(
m2 − 4Jρ2

r4

)
p− φ′ = 0,

φ′′ +
2

r
φ′ − λ2

(
p′

2
+

p

2r

)
= 0. (5.2)

We can directly obtain φ(r) =
∫∞
rh
dr(m2 − 4Jρ2/r4)p with φ(rh) = 0 and put it into the

equation of φ′′, then the equation for p can be obtained. So in this probe limit, we need

only solve the three equations of matter fields numerically,

ρ′′ +
f ′

f
ρ′ − m2 + 4Jp2

r2f
ρ+

B

r2f
= 0,(

m2 − 4Jρ2

r4

)
p− φ′ = 0, (5.3)

p′ +

(
2

r
+

32Jρρ′

λ2r4 + 16Jρ2 − 4m2r4

)
p = 0.

Note that in this case, there does not exist the AdS2 geometry, the near horizon geometry

of an extremal black brane with vanishing temperature. To have the spontaneous magneti-

zation when the temperature is lowered, the restrictions (3.17) need to be reconsidered. To

find the restriction about the parameters, let us consider eqs. (5.3) in the high temperature

region where ρ vanishes and the solutions for φ and p are the same expressions shown in

eqs. (3.10). We can read off the effective mass square of ρ at the horizon as,

m2
ρeff = m2 + 4Jp(rh)2 = m2 +

4Jµ2

m4r2
h

= m2 +
9Jµ2

m44π2T 2
. (5.4)

Because of J < 0, the temperature term contributes a negative term into the effective mass

square, which is divergent when T → 0. Thus we see that in the grand canonical ensemble,

the instability always appears provided that the temperature is low enough. As a result,

in this case, we need not the restrictions in (3.17). But, the parameters have to satisfy the
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condition λ2 < 4m2. To see this, let us recall the charge density in eq. (3.12). In this probe

limit, we have,

σ(T, µ) = 2

(
1− λ2

4m2

)
4πTµ

3
. (5.5)

Then we reach, (
∂σ

∂µ

)
T

= 2

(
1− λ2

4m2

)
4πT

3
. (5.6)

We see that it is positive only when λ2 < 4m2.

Now we consider the spontaneous magnetization in this probe limit. First, let us

compute the critical temperature Tc when B = 0. Similar to the case in the first kind

of probe limit, the polarization field ρ is a small quantity near the critical temperature,

we can neglect the nonlinear terms of ρ in the equations of φ and p. Then we can get

φ(r) = µ(1−rh/r) and p(r) = µrh/r
2m2 which are identical with expressions in eqs. (3.10).

The equation of ρ is just eq. (3.15). At the horizon, the initial conditions are,

ρ′ =
m6 + 4Jµ2

3m4
, ρ(rh) = 1. (5.7)

When we perform the numerical computation, we can first fix the horizon radius rh = 1 so

the temperature is also fixed. By adjusting the chemical potential, we shoot the boundary

condition ρ+ = 0. In the end, we can use the scaling transformations (3.18) and (3.20)

to transform our results into the case in grand canonical ensemble where the chemical

potential is fixed. As a typical example, we also choose parameters as m2 = −J = 1/8

and λ = 1/2. The critical temperature is Tc/µ ' 1.7871. Similarly, we can plot the

relationship between ρ+ and shooting parameter µ, in order to examine whether ρ gets

spontaneous condensation when T < Tc. We find that the solution of source free always

appears, which results in the spontaneous magnetization of the system, and breaks the

time reversal symmetry in low temperatures.

When the temperature is lower than the critical one Tc, we have to solve eq. (5.3) to get

the solution of the order parameter ρ, and then compute the value of magnetic moment N ,

which is also defined by eq. (3.8) with a = 0. In the left panel in figure 5, we plot the value

of magnetic moment N as a function of temperature. We see that when the temperature is

lower than Tc, the non-trivial solution ρ 6= 0 and spontaneous magnetic moment appears. It

corresponds to a time reversal symmetry breaking spontaneously. In addition, let us stress

here that if the boundary spatial dimension is three, the spatial rotational symmetry is

also broken spontaneously, since a nonvanishing magnetic moment chooses a direction as a

special. The numerical results show that this phase transition is a second order one with the

behavior N ∝
√

1− T/Tc near the critical temperature. The result is still consistent with

the mean field theory description of the paramagnetism/ferromagnetism phase transition.

Next we calculate the static magnetic susceptibility in this probe limit, defined by

eq. (4.7). Based on the previous analysis, the magnetic susceptibility is still obtained by

solving eq. (4.8), and the only difference is the form of f(r). Thus we can also set the

magnetic field B = 1 and get λ2

χ
√
µ̃

= 5.7(T/Tc − 1), which satisfies the Curie-Weiss law of

ferromagnetism in the region of T > Tc. Its inverse is shown in the right panel of figure 5.
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Figure 5. Left panel: the magnetic moment N as a function of temperature. Right panel: the be-

havior of the inverse susceptibility density in the paramagnetic phase near the critical temperature.

Here, we choose parameters as m2 = −J = 1/8. The temperature Tc/µ ' 1.7871.

5.2 DC conductivity in the ferromagnetic phase

The electric transport is also an important property in the materials involving spontaneous

magnetization. Now let us study how the DC conductivity is influenced by spontaneous

magnetization in this model. In order to simplify our computation in technology, we will

work in the probe limit by neglecting back reactions of all the matter fields. This limit can

give out the main features near the critical temperature. However, in the case of near zero

temperature, we have to consider the model with full back reaction. We will consider this

in the future.

To compute the conductivity, we have to consider some perturbations for gauge field

with harmonically time varying electric field. Due to the planar symmetry at the boundary,

the conductivity is isotropic. Thus for simplicity, we just compute the conductivity along

the x-direction. According to the dictionary of AdS/CFT, we consider the perturbation

δAx = εax(r)e−iωt. In the probe limit, this perturbation will also lead to the perturbations

of polarization field in the first order of ε. As a result, we have to consider the perturbations

for all the components of gauge field and polarization field. However, if we only care the

conductivity in the low frequency limit, i.e., T � ω → 0, the problem can be simplified.

In the low frequency limit, we only need turn on the three perturbations,

δAx = εax(r)e−iωt,

Mrx = εCrx(r)e−iωt,

Mty = εCty(r)e
−iωt,

(5.8)

– 22 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

and corresponding equations for the three perturbations in the low frequency limit read

C ′′ty −
m2Cty
r2f

− 4JpρCrx
r2

+O(ω) = 0, (5.9a)

Crx −
a′x
m2
− 4JpρCty

r4fm2
+O(ω) = 0, (5.9b)

[r2f(a′x − λ2Crx/4)]′ +
axω

2

r2f
+O(ω) = 0, (5.9c)

with p and ρ determined by eqs. (5.3). Here O(ω) is the terms with order of ω which can

be neglected when ω → 0. In general, the term ω2/r2f(r) can not be neglected since f(r)

is zero at the horizon, which leads to that the limit of ω → 0 is ambiguous. However, at

the horizon, if we impose the ingoing conditions for Crx, Cty and ax,

Cty = C
(0)
ty + C

(0)
ty (r − rh) + · · · ,

Crx = e−iωr∗ [C(0)
rx + C(1)

rx (r − rh) + · · · ],

ax = e−iωr∗ [a(0)
x + a(1)

x (r − rh) + · · · ]

(5.10)

with r∗ =
∫
dr/(r2f), we find the system has a well-defined limit when ω → 0 if T 6= 0.

At the AdS boundary with the source free condition, we have the following asymptotic

solutions,

Cty = Cty+r
(1+δ)/2+Cty−r

(1−δ)/2+· · · , Crx = − ax−
r2m2

+· · · , ax = ax++
ax−
r

+· · · . (5.11)

Then the gauge/gravity duality implies that electric current 〈Jx〉 = ax− and the DC con-

ductivity is given by,

σ = lim
ω→0

ax−
iωax+

. (5.12)

As a holographic application of the membrane paradigm of black holes, we can directly

obtain the DC conductivity from eqs. (5.9) using the method proposed by Iqbal and Liu

in [37]. In fact, the transport coefficients in the dual field theory can be obtained from the

horizon geometry of the dual gravity in the low frequency limit. Applying this into U(1)

gauge field, this conclusion implies that the DC conductivity is given by the coefficient of

the gauge field kinetic term evaluated at the horizon. To see this, we assume that T > 0

and ω → 0, then we can neglect all the terms of ω in eqs. (5.9). We first note that,

lim
r→∞

r2f(r)(a′x − λ2Crx/4) = r2

(
−〈Jx〉
r2

+
λ2〈Jx〉
4r2m2

)
= −(1− λ2/4m2)〈Jx〉. (5.13)

Eq. (5.9c) shows that this quantity is conserved along the direction r. So at the horizon,

using eqs. (5.9b) and (5.9c), we have,

−
(

1− λ2

4m2

)
〈Jx〉 = lim

r→rh
r2f

(
a′x −

λ2Crx
4

)
= r2f

[(
1− λ2

4m2

)
a′x +

4JpρCty
m2f

]
r=rh

.

(5.14)
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Figure 6. Left panel: DC resistivity vs temperature in our model. Here we choose parameters as

m2 = −J = 1/8 and λ = 1/2. The critical temperature Tc/µ ' 1.7871. Right panel: temperature

dependence of resistivity for various single crystals of La1−xSrxMnO3. Arrows indicate the Curie

temperature. For more details, see ref. [38].

Combining eqs. (5.9a) and (5.9b) and considering the fact that Cty is regular at the horizon,

we have, [
m2 +

16J2p2ρ2

m2r4

]
Cty = −4Jpρ

m2
fa′x (5.15)

at r → r+
h . Thus we have from eqs. (5.15) and (5.14) that

− (1− λ2/4m2)〈Jx〉 = lim
r→r+h

r2fa′x

[
1− λ2m2

4(m4 + 16J2p2ρ2/r4)

]
. (5.16)

Now let us take the ingoing condition for ax at the horizon, which tells us that,

r2fa′x =
d

dr∗
ax = −iωax, at r → r+

h , (5.17)

finally we get,

〈Jx〉 =
iωax(rh)

1− λ2

4m2

[
1− λ2m2

4(m4 + 16J2p2
0ρ

2
0/r

4
h)

]
. (5.18)

Here p0 and ρ0 are the initial values of p(r) and ρ(r) at the horizon, which can be computed

from eqs. (5.3). In the low frequency limit, eqs. (5.9) imply that the electric field is constant,

i.e., limr=rh ax(r) = ax+. So we have seen that we can obtain the DC conductivity near

the horizon as,

σ =
1

1− λ2/4m2

[
1− λ2m2

4(m4 + 16J2p2
0ρ

2
0/r

4
h)

]
. (5.19)

In the left panel of figure 6, we plot the numerical result on the DC resistivity 1/σ as a

function of temperature. We see that the resistivity shows a metallic behavior when the

temperature is below the Curie temperature.
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With the appearance of ferromagnetism, DC resistivity decreases when the sample

gets cooling, which shows in many interesting phenomena in condensed matter physics,

especially in a class of manganese oxides which are widespread because of the discovery

of colossal magnetoresistance (CMR) and receive a lot of interest both in theory and ex-

periment [39, 40]. Note that this effect has a completely different physical origin from the

“giant” magnetoresistance observed in layered and clustered compounds. Over the past

twenty years, CMR is among the main topics of study within the area of strongly corre-

lated electron systems and its popularity is reaching the level comparable to that of the

high-temperature superconducting cuprates. In the right panel of figure 6, we show the

experimental data from a typical CMR material La1−xSrxMnO3 as an example. We see

that our model gives a very similar behavior as the latter with x ≥ 0.175. Of course, we

should mention here that there still exist some differences between our model result and

experimental data on CMR. In general, when T > Tc, the material shows a semiconductor

or insulator behavior and the DC resistivity increases with cooling the sample. In our

model, however, the DC resistivity is a constant when T > Tc. So this model only gives

partial property of CMR when T < Tc. But this is an exciting and enlightening result,

because it implies that this model can lead to a possibility to build a holographic CMR

model and to investigate this typical and important strong correlated electrons system in

the AdS/CFT setup. We are going to investigate this issue in the future.8

6 Phase transition with back reaction

In previous sections, we have studied the spontaneous magnetization in two kinds of probe

limit. However, probe limit may lead to some information lost. For example, in some

holographic superconductor models, it will lead to the appearance of the first or zeroth

order phase transition when the strength of back reaction gets beyond some values (see

refs. [26, 42, 43], for example). In addition, when the temperature is low enough, the probe

limit may lose its validness. To have a complete phase diagram for the holographic model,

we need go beyond the probe approximation and include the back reaction.

6.1 On-shell free energy

The model admits various solutions, in order to determine which phase is thermodynami-

cally favored, we should calculate the free energy of the system for both normal phase and

condensed phase. In gauge/gravity duality the grand potential Ω of the boundary thermal

state is identified with temperature T times the on-shell bulk action with Euclidean signa-

ture. Since we are considering a stationary problem, the Euclidean action is related to the

Minkowski one by a minus sign as

−SE =

∫
d4x
√
−g
(
R+

6

L2
+ Lm

)
, (6.1)

where Lm = −FµνFµν + λ2L2 and g is the determinant of the metric. We first show that,

when evaluated on a solution, this action reduces to a simple surface term at the AdS

8A holographic realization of metal/insulator phase transition and the CMR has been recently studied

in [41].
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boundary. From the symmetries of the solution (5) and (6), the yy component of the stress

energy tensor only has a contribution from the terms proportional to the metric. Thus,

the gravitational filed equations imply that

R+
6

L2
= 2Ryy + 2T yy. (6.2)

The Euclidean action is then

−SE
V2

=

∫
dr

[
(2r3fea/2 − λ2fρρ′ea/2)′ − B(4B − λ2ρ)ea/2

r2

]
, (6.3)

The surface term on the horizon vanishes since f(rh) = 0. Thus we can get the Euclidean

action that contains the surface term at r∞ as,

−SE
V2

= 2r3fea/2 − λ2fρρ′ea/2|r=r∞ −
∫
dr
B(4B − λ2ρ)ea/2

r2
. (6.4)

As the first item of eq. (6.4) diverges when r → ∞ and must be regulated. This counter

terms we need to regulate the action are the standard ones (see for example [25]):

Sc.t. =
1

2κ2

∫
d3x
√
−g∞(−2K + 4/L) |r=r∞ , (6.5)

where g∞ is the induced metric on the boundary r = r∞ and K = gµν∞∇µnν is the trace of

the extrinsic curvature (nµ is the outward pointing unit normal vector to the boundary).

The summation Son-shell
Euclidean = SE + Sc.t. is now finite in the limit r → ∞. The regularized

action becomes, after considering the asymptotical forms in (3.7),

Ω = TSon-shell
Euclidean/V2 = −

∫ ∞
rh

dr
B(4B − λ2ρ)ea/2

r2
+ 2f0. (6.6)

6.2 Tensor hairy solutions and phase transition

We are interesting in the black brane solutions with nontrivial space-space component ρ of

the tensor field. For this, we have to adopt the numerical method to find such solutions.

Without loss of generality, the location of rh can be fixed to be unity in our numerical

calculation. We are then left with two independent parameters {ρ(rh), p(rh)}. By choos-

ing p(rh) as the shooting parameter to match the source free condition at r → ∞, i.e.,

ρ+ = 0, we finally have a one-parameter family of solutions labeled by the value of ρ(rh).

Other coefficients can be expressed in terms of those parameters. After solving the set of

equations, we can calculate the spontaneous magnetization N and free energy density.

With a fixed m2, we scan a wide range of J and λ within the limitation eq. (3.17) in

3-dimensional plane in order to trace out the evolution of critical temperature Tc versus

these parameters. Figure 7 plots the critical temperature Tc as a function of J and λ in

the cases with m2 = 1/4, 1/8. 1/16 and 1/160, respectively. We can see from figure 8 that

the critical temperature is weakly dependent on the parameter λ. Moreover, the smaller

the value of m2, the larger the phase transition temperature Tc when the same value of J

and λ are considered. For each value of λ, the analytical black brane solution (3.10) always
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Figure 7. The critical temperature Tc with respect to the model parameters J and λ. Here (a),

(b), (c) and (d) correspond to m2 = 1/4, 1/8, 1/16, and 1/160, respectively. In (a), some part of

the surface is cut because that J and λ should satisfy the relation (3.17).

0.2 0.3 0.4 0.5 0.6 0.7
1.775
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1.785

1.79

λ
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µ

Figure 8. The critical temperature Tc as a function of λ in the case with model parameter

m2 = −J = 1/8.

exists. However, for sufficiently low temperature, we always find additional solutions with

non-vanishing ρ which are thermodynamically favored. That is to say, for each value of

λ we take, there is a phase transition occurring at a certain temperature Tc where the

black brane developing a new “tensor hair” with nontrival ρ becomes thermodynamically

favored. In the dual field theory side, it means that magnetic moment acquires a vacuum

expectation value breaking the time reversal symmetry spontaneously.

The left panel of figure 9 presents the condensate as a function of temperature for

λ = 1/8, 1/2 and 7/10, from which one can see that N rises continuously from zero at

Tc. For small λ, the curve is similar to the case with the probe limit (compare the case of

λ = 1/8 in figure 9 and the plot in the right panel of figure 2), We can see from the figure

that when λ gets larger, the condensate increases. However, near the critical temperature,
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Figure 9. The magnetic moment N (left panel) and the grand potential deference ∆Ω (right panel)

as a function of temperature with different λ. Here m2 = −J = 1/8 for both plots.

the square root behavior still holds as

N ∝
√
T − Tc. (6.7)

The free energy difference of the condensed phase and the normal phase is expressed by

∆Ω, which is plotted in the right panel of figure 9. It is obvious that below the critical

temperature Tc, the state with non-vanishing magnetic “tensor hair” is indeed thermody-

namically favored over the normal phase because ∆Ω always is less than zero. Moreover,

our numerical calculation indicates that the order of the phase transition is only second

order, no matter how we increase the strength of the back reaction in the allowed param-

eters region, i.e., λ2/4m2 < 1. The first order or even the zeroth order phase transition

does not appear in this model.

7 Summary and discussion

In this paper we have presented a holographic model to realize the paramagnetism/fer-

romagnetism phase transition in AdS black brane background by introducing a massive 2-

form field in the bulk. This 2-form field couples to the background Maxwell field strength

and carries self interaction.

The model admits a new analytical black brane solution with a non-trivial time-space

component of the tensor field. The properties of the black brane solution depend on the

value of λ2/4m2. When λ2/4m2 < 1, this new solution is very similar to the planar AdS

RN black hole. But if λ2/4m2 > 1, the black brane solution is chemically unstable in grand

canonical ensemble unless the temperature and chemical potential satisfy some additional

conditions. In that case, there is no corresponding extreme black hole, i.e., the horizon

radius is zero when temperature goes to zero. A very special case is that when λ2/4m2 = 1,

the space-time geometry is just the planar AdS Schwarzschild geometry but both the U(1)

field and 2-form field do not vanish.
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For our goal in this paper we focused on the case with λ2/4m2 < 1 so that an asymp-

totic AdS2 geometry near the horizon emerges when the temperature tends to zero. By this

emergent AdS2 geometry, we obtained the condition under which the spontaneous symme-

try breaking can happen. If the parameters satisfy the condition, time reversal symmetry

will be broken spontaneously and the paramagnetism/ferromagnetism phase transition can

happen when the temperature is lower than a critical value.

In order to understand the properties of this holographic ferromagnetic phase transi-

tion, we investigated the paramagnetism/ferromagnetism phase transition in two kinds of

probe limit and in the case with full back reaction, respectively.

In the case of the first kind of probe limit where the model parameters λ → 0. This

probe limit neglects the back reactions of the 2-form field to the Maxwell field and back-

ground geometry and makes it simple to study the behavior of spontaneous magnetization.

In this probe limit, we computed the critical exponents by both numerical and analytical

approaches, which are agreement with the mean field results. In addition, we obtained a

Ginzburg-Landau-like free energy near the critical temperature for the holographic model

and in order to give a possible explanation for the model parameter in terms of microscopic

theory in the boundary, we related the Ginzburg-Landau-like free energy in the bulk to the

one for a Ising-like model.

In the second kind of probe limit, we neglected all back reaction of matter fields to

the background geometry but considered the interaction between the tensor field and the

Maxwell field. In this probe limit, we are able to study the influence of spontaneous

magnetization on the electric transport properties in a relatively simple way, where the

background geometry is fixed. We found that the critical exponents are the same as ones

in the first kind of probe limit. We also computed the DC resistivity in this probe limit. It

was found that the DC resistivity is suppressed by spontaneous magnetization and shows a

metallic behavior. This is very similar to the strong correlated phenomenon named CMR

effect found in the some manganites.

Next we considered the case with full back reaction and solved the full equations of

motion numerically. It was found that the free energy difference between the condense

phase and normal phase, ∆Ω, is zero at critical temperature and always negative when

T < Tc. The phase transition is always a second order one as one increases the strength of

the back reaction.

Main calculations are made in 3 + 1 dimensions in this paper, but it can be easily

extended into the higher dimensional case. In the latter case, the space rotation symmetry

will be broken spontaneously when the phase transition happens. In addition, we can also

generalize this model to the case with the Lifshitz symmetry in the bulk and study the

influences of the Lifshitz dynamical exponent z on the condensate both in the probe limit

and in the case with the back reaction. In addition, in all the calculations in this paper,

we assumed that the solution in the bulk or the phase at the boundary is homogeneous,

which is a strong assumption. In fact, inhomogeneous solution may exist even in a model

whose Lagrangian has translation symmetry and the boundary conditions are homoge-

neous (see ref. [17], for example). In many materials, the inhomogeneous phase can appear

spontaneously in a chemical homogeneous materials. Therefore it is of great interest to
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study whether the inhomogeneity could appear spontaneously in this model. Although we

focused on the ferromagnetic phase transition only in this paper, which has been under-

stood well in condensed matter physics, it offers a framework rather than only a specific

model, which can be regarded as a basic starting point to understand more complicated

phenomenon involving spontaneous magnetization. As a result, there are various prospects

to study and we expect more exciting results could be reported in the future.
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A Ginzburg-Landau theory for Ising universality class

In this appendix, we will compute the grand thermodynamic potential of the Ising-like

Hamiltonian (4.38). We can rewrite it into the form of λφ4 theory,

H =

∫
d2x

[
−1

2
(s̃
−→
∇2s̃+m2

s s̃
2) +

λss̃
4

4!

]
. (A.1)

Turn into the Lagrangian form9 and go to the case with Euclidian signature, we have the

action,

SE =
1

2

∫ β

0
dτ

∫
d2x

[
(∂τ s̃)

2 + (
−→
∇ s̃)2 −m2

s s̃
2 +

λss̃
4

12

]
, (A.2)

with β = 1/T , the inverse temperature of the system. We see that the mass dimension of

coupling constant [λs] = 1, so effective action (A.2) is renormalizable. In order to compute

the quantum effective potential, we take the mean field expansion method. We split as

usual the field into classical background part and quantum fluctuation part,

s̃ = s̃cl + η. (A.3)

The quadratic part of η in the action is then controlled by a kinetic operator of the form,

δ2SE
δ2s̃

[s̃cl] = −∂2
τ −∇2 +M2(s̃cl), (A.4)

where

M2(s̃cl) = −m2
s +

λss̃
2
cl

2
. (A.5)

In addition, the Euclidian action contains the linear term of η, but this term contributes

nothing and can be dropped. And, if we neglect the cubic and quartic order terms of η, we

can obtain the result in mean field approximation by only taking the tree level of η into

9Here we assume the relativistic depression relation.

– 30 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

account. This is a good approximation if λs and λss̃cl are small.10 Then it is easy to find

the grand thermodynamic potential density in the mean field approximation as,

Ω = −1

2
m2
s s̃

2
cl +

1

4!
λss̃

4
cl +

∫
d2k

4π2

[
ω

2
+ T ln(1− e−βω)

]
. (A.6)

Here ω =
√
k2 +M2(s̃cl). The first term in the integral of (A.6) contributes the zero-point

energy and can be neglected. Then the second term in the integral of (A.6) then can be

written as,
T 3

2π

∫ ∞
0

dxx ln
(

1− e−
√
x2+x20

)
, (A.7)

where x2
0 = β2M2(s̃cl). The result of (A.7) does not admit a compact expression. We

can get a series expression by high temperature expansion, where x0 is treated as a small

quantity, ∫ ∞
0

dxx ln
(

1− e−
√
x2+x20

)
=
∞∑
n=0

cnx
2n
0 , (A.8)

where

c0 = −ζ(3), c1 = γE/2, · · · . (A.9)

Here γE = 0.5772 · · · is the Euler constant and ζ(3) = 1.202 · · · is the value of Riemann-ζ

function. In this limit we have,

Ω ≈ − T

2π

[
ζ(3)T 2 +

γEm
2
s

2

]
+

1

2

(
λsγET

4π
−m2

s

)
s̃2
sl +

λss̃
4
sl

4!
, (A.10)

from which we can obtain the expression in (4.39).

B Semi-analytic calculations near the critical temperature

B.1 Spontaneous magnetization

In this appendix, we will compute the values of N1, a0 and a1 appearing in section 4. With

these we can get the coefficients in (4.43) and compare with the numerical results in the

previous sections.

Let us first compute N1 and a1. For this we have to first find the eigenfunction ρ1,

which is the solution of,

− d

dz

[
f(z)

dρn
dz

]
+ q(x)ρn = 0 (B.1)

at T = Tc with the conditions,

ρ1(1) = 1, ρ1+ = 0. (B.2)

10In the vicinity of critical temperature, λss̃cl is always small. So in this region, the cubic term can

always be neglected. However, λs in general may not be a small quantity. In this case, loop-corrections

must be considered.

– 31 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

−0.01 −0.005 0 0.005 0.01

−0.01

−0.005

0

0.005

0.01

T/Tc − 1

λ1

−0.01 −0.005 0 0.005 0.01

−5

0

5

x 10
−3

T/Tc − 1

λ1

Figure 10. The value of λ1 with respective to temperature in the case of m2 = −J = 1/8 and

ω = z4(left) and ω = z3(right).

For convenience, here we do not assume that {ρn} form an unit base. Thus we have,

N1 =
1

C1

∫ 1

0
ρ1dz, a1 =

1

4C4
1

∫ 1

0
z8ρ4

1dz, (B.3)

here C1 is the normalization coefficient and

C2
1 = 〈ρ1, ρ1〉 =

∫ 1

0
ωρ2

1dz. (B.4)

In order to compute a0, we need to solve equation (B.1) in the limit T → T−c . To clarify

that the results are independent of the specific form of weight function, we choose k = 3, 4

as two examples. Then we fit the relation λ1 = a0(T/Tc − 1) to find a0. Figure 10 shows

that λ1 and T/Tc−1 indeed satisfies a linear relation very well. Numerical results show that

N1 ' 2.0412, a1 ' 0.7276,a0 ' 1.1309 for k = 4 and N1 ' 1.8370, a1 ' 0.4772,a0 ' 0.9155

for k = 3. We have,

N2/µ2
c =

N2
1a0

−16J̃fa1µ2
c

(1− T/Tc) ' a2(1− T/Tc). (B.5)

with a2 ' 4.966 for k = 4 and a2 ' 4.964 for k = 3. We see that different weight functions

give different values for N1, a1 and a0, but the same value of magnetic moment N(up to a

numerical error).

The value of a0 can also be obtained directly by solving ODE (4.22). In the region near

the critical temperature, we assum λ1 = a0(T/Tc−1). Note that all quantities in (4.22) are

the functions of temperature, so take derivative with respect to T and evaluate at T = Tc,

we get,

dP̂

dT
ρ1 + P̂

dρ1

dT
=
a0

Tc
ρ1. (B.6)

Here ρ1 is the eigenfunction of (B.1). Now treat ρT = dρ1
dT as an unknown function to be

solved, then the task to find a0 becomes to solve a non-homogenous eigenvalue problem,

P̂ ρT =

[
a0

Tc
− dP̂

dT

]
ρ1. (B.7)
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At the AdS boundary, ρT has the same asymptotic behavior as (4.23), thus we can impose

the boundary conditions as

|ρT (1)| <∞, ρT+ = 0. (B.8)

We find that ρT ∈ D. We then use the basis {ρn} to expand ρT , i.e.,

ρT =

∞∑
n=1

dn
Cn

ρn. (B.9)

Here Cn are the modules of ρn. Using the fact λ1 = 0 at T = Tc and

〈C−1
1 ρ1, P̂ ρT 〉 =

∞∑
n=1

dn〈C−1
1 ρ1, C

−1
n P̂ ρn〉 =

∞∑
n=1

dnλnδ1n = d1λ1 = 0. (B.10)

we have,

〈ρ1,

[
a0

Tc
− dP̂

dT

]
ρ1〉 =

a0C
2
1

Tc
−
∫ 1

0
ωρ1

dP̂

dT
ρ1dz =

a0C
2
1

Tc
−
∫ 1

0
ρ1
dL̂

dT
ρ1dz = 0. (B.11)

Furthermore we get,

a0 =
Tc
C2

1

∫ 1

0
dzρ1

dL̂

dT
ρ1. (B.12)

It is very useful to find its equivalent form in the case with fixed rh = 1, since it is convenient

when we perform numerical computation. If we fix rh = 1, the shooting parameter is

chemical potential µ. The relation between temperature in grand canonical ensemble and

chemical potential is given by,

T =
3− µ2

4πµ
. (B.13)

Thus the expression (B.12) can be rewritten as

a0 =
Tc
µ2
cC

2
1

dµ2

dT

∫ 1

0
dzρ1

dL̂

dµ2
ρ1 = −8µ3

cπTc
3C2

1

∫ 1

0
dzρ1

dL̂

dµ2
ρ1

∣∣∣∣∣
µ=µc

. (B.14)

Here µc is the critical chemical potential when we fix rh = 1 and Tc = 3−µ2c
4πµc

is the critical

temperature in grand canonical ensemble. Combining (B.3) and (B.14), we have,

N2/µ2
cλ

4 =
πµcTc(

∫ 1
0 ρ1dz)2

∫ 1
0 dzρ1

dL̂
d(µ2)

ρ1

24J̃f
∫ 1

0 dzz
4ρ4

1

(1− T/Tc). (B.15)

We can see that it is determined by the equation (B.1), but independent of the weight

function! The expression (B.14) depends on the weight function, because it depends on

C1. In order to check the formula (B.14), let us compute the values of a0 in the cases

of k = 4 and k = 3. The results gives 1.1286 and 0.9140, respectively. We see that,

up to numerical errors, they are the same as what we have obtained by fitting the curve

in figure 10. In addition, the expression (B.15) gives a2 = 4.9560, which is very close to

what we obtained in the numerical calculation.
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B.2 Susceptibility and hysteresis loop

When B 6= 0, the susceptibility for T > Tc is defined as,

χ = lim
B→0

(
∂N

∂B

)
T

. (B.16)

In the case with T > Tc and B → 0, we can neglect the non-linear term, i.e., setting J̃f = 0.

The solution of equation (4.13) can be expressed as,

ρ =
∞∑
n=1

cnρn −
B

m2
, (B.17)

Taking into account the equation (4.13) with J̃f = 0, we have

0 = L̂ρ+B =
∞∑
l=1

clL̂ρl −
4BJµ2z4

m6
=
∞∑
l=1

clC
−1
l λlωρl −

4BJµ2z4

m6
. (B.18)

Multiplying a factor ρn/Cn and integrating the above equation from 0 to 1, we can obtain

cn =
Bγn
λn

, with γn =

∫ 1

0

4Jµ2z4

Cnm6
ρndz. (B.19)

Thus we can get the magnetic moment density as

N/λ2 =
B

2m2
−B

∞∑
n=1

γnNn

2λn
, (B.20)

and the magnetic susceptibility

χ/λ2 =
1

2m2
−
∞∑
n=1

γnNn

2λn
. (B.21)

When T → T+
c , we have λ1 = a0(T/Tc − 1)→ 0+. Thus χ is dominated by the first term

in the summation of (B.21) and its inverse can be expressed as

λ2χ−1/µc = − 2a0

µcγ1N1
(T/Tc − 1), as T → T+

c . (B.22)

In the case of m2 = −J = 1/8, we have λ2χ−1/µc ' 4.0520(T/Tc − 1), which is very close

to our numerical result λ2χ−1/µc ' 4.0499(T/Tc − 1) given in the numerical calculation.

Next let us move to the case with B 6= 0. In this case from (4.13) we have,∫ 1

0
ρn(ωP̂ρ+B − J̃fρ3z8)dz = 0. (B.23)

Consider (4.30), we can rewrite it to∫ 1

0
ρn(ωP̂ ρ̃+B

[
1− q(z)

m2

]
− J̃fρ3z8)dz = 0. (B.24)
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Figure 11. The relation between magnetic moment density N and external magnetic field B in

the cases of T = 1.05Tc, T = 0.9Tc and T = Tc, respectively.

Using the expansion expression (4.30), we have,

cnC
2
nλn +Bγn −

∫ 1

0
ρnJ̃fρ

3z8dz = 0, n = 1, 2, · · · . (B.25)

For convenience, we assume that {ρn} is an unit base, i.e., Cn=1. The equations (B.25) are

equivalent to (4.13) if we take all the terms in (4.30) into account. In the case of T → T−c ,

assume that the first term in (4.30) dominates only, i.e., |c1| � cn for n ≥ 2 in (4.31),

we have

N/λ2 =
B

2m2
− c1N1/2. (B.26)

Taking n = 1 in (B.25), we have,

c1λ1 +Bγ1 − c3
1J̃f

∫ 1

0
ρ4

1z
8dz = c1λ1 +Bγ1 − 4c3

1J̃fa1 = 0. (B.27)

For a given temperature T → Tc, we can combine (B.26) and (B.27) to obtain a relation

between external magnetic field B and magnetic moment density N . Figure 11 shows the

results with T = 1.05Tc, T = 0.9Tc and T = Tc, respectively, in the case of m2 = −J = 1/8.

We see that it is very similar to what we have obtained in the previous work [23].

Finally, let us notice that in GL theory, the equation for magnetic moment density is,

A1(T − Tc)N +A2N
3 −B = 0 (B.28)

with two positive coefficients A1 and A2. However, it is easy to see that the equation

for N in our model is different from the usual form (B.28) from the GL theory, which

can be obtained by combining (B.26) and (B.27) to eliminate c1. Namely, although our

model gives the similar results near the critical temperature in GL theory, there exist some

differences between the holographic model and the GL theory even in the region near the

critical temperature.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 35 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[5] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys.

Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[6] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12

(2008) 015 [arXiv:0810.1563] [INSPIRE].

[7] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant.

Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

[8] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42

(2009) 343001 [arXiv:0904.1975] [INSPIRE].

[9] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy

Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

[10] G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011)

313 [arXiv:1002.1722] [INSPIRE].

[11] R.-G. Cai, L. Li, L.-F. Li and R.-Q. Yang, Introduction to Holographic Superconductor

Models, Sci. China Phys. Mech. Astron. 58 (2015) 060401 [arXiv:1502.00437] [INSPIRE].

[12] S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys.

Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

[13] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83

(2011) 065029 [arXiv:0903.2477] [INSPIRE].

[14] M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the

Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

[15] A. Aperis, P. Kotetes, E. Papantonopoulos, G. Siopsis, P. Skamagoulis and G. Varelogiannis,

Holographic Charge Density Waves, Phys. Lett. B 702 (2011) 181 [arXiv:1009.6179]

[INSPIRE].

[16] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013)

126008 [arXiv:1303.4398] [INSPIRE].

[17] Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator Transition by Holographic

Charge Density Waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].

[18] K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium Condensation Process in a

Holographic Superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [INSPIRE].

[19] M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic

Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett. 110 (2013) 015301

[arXiv:1207.4194] [INSPIRE].

– 36 –

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://arxiv.org/abs/hep-th/9803131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://arxiv.org/abs/0803.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://arxiv.org/abs/0810.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1563
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1975
http://dx.doi.org/10.1155/2010/723105
http://dx.doi.org/10.1155/2010/723105
http://arxiv.org/abs/0909.0518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0518
http://dx.doi.org/10.1007/978-3-642-04864-7_10
http://dx.doi.org/10.1007/978-3-642-04864-7_10
http://arxiv.org/abs/1002.1722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1722
http://dx.doi.org/10.1007/s11433-015-5676-5
http://arxiv.org/abs/1502.00437
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00437
http://dx.doi.org/10.1103/PhysRevD.79.086006
http://dx.doi.org/10.1103/PhysRevD.79.086006
http://arxiv.org/abs/0809.3402
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3402
http://dx.doi.org/10.1103/PhysRevD.83.065029
http://dx.doi.org/10.1103/PhysRevD.83.065029
http://arxiv.org/abs/0903.2477
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2477
http://dx.doi.org/10.1126/science.1174962
http://arxiv.org/abs/0904.1993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1993
http://dx.doi.org/10.1016/j.physletb.2011.06.092
http://arxiv.org/abs/1009.6179
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6179
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://dx.doi.org/10.1103/PhysRevD.87.126008
http://arxiv.org/abs/1303.4398
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4398
http://dx.doi.org/10.1103/PhysRevLett.113.091602
http://arxiv.org/abs/1404.0777
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0777
http://dx.doi.org/10.1007/JHEP07(2010)050
http://arxiv.org/abs/1005.0633
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0633
http://dx.doi.org/10.1103/PhysRevLett.110.015301
http://arxiv.org/abs/1207.4194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4194


J
H
E
P
1
1
(
2
0
1
5
)
0
2
1

[20] A. Adams, P.M. Chesler and H. Liu, Holographic Vortex Liquids and Superfluid Turbulence,

Science 341 (2013) 368 [arXiv:1212.0281] [INSPIRE].
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