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Abstract – The winter of 2009/2010 was particularly severe in Northern Portugal resulting in higher river
flow levels. A study was undertaken to assess the impact of this situation on several populations of freshwater

bivalves (e.g., Anodonta anatina, Corbicula fluminea, Margaritifera margaritifera, Potomida littoralis and Unio
delphinus) in the catchments of the Rivers Minho, Douro, Tâmega, Tua and Sabor. Massive die-offs occurred
for all species in all rivers, resulting in the removal of great numbers and biomass from the riverbed to the

adjacent riverbanks, reaching maximum values of 2280 individuals.mx2 and 10 225 g wet weight.mx2, respec-
tively. The invasive Asian clam C. fluminea had both highest density and biomass (however, this invasive
bivalve is not dominant in several surveyed sites, and some rivers are still not colonized by this species).
Results show that the quantitative and qualitative importance of this carrion transfer to the riverbank should

be incorporated in future studies on the assessment of ecosystem function, contributing to a better under-
standing of the role of freshwater bivalves as resource pulses in adjacent terrestrial habitats. Some of the
affected species have conservational importance and these extreme climatic events are predicted to increase in

the future. These massive die-off events should be incorporated into management plans and selected restora-
tion measures such as rapid relocation of endangered native mussels back to the riverbed can be easily applied
to lessen possible impacts.
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Introduction

Floods are important drivers of ecological change that
can significantly alter the aquatic biota (Ward, 1998; Adis
and Junk, 2002; Lytle and Poff, 2004). Major floods can be
responsible for important alterations in the riverbed,
scouring and washing away aquatic/riparian vegetation
and increasing the drift of aquatic organisms (Dodds,
2002). This situation can affect human and animal health,
increase chemical pollution, degrades soils and impact
agriculture and farming (Wetzel, 2001). Economic losses
as a consequence of these events are usually high, often
resulting in important costs in human lives.

Although spatial and temporal variation are widely
recognized to be fundamental attributes of natural

systems, scientists are only just beginning to integrate
rare, but major events such as floods into ecological
assessments. Little attention has been paid to researching
flood impacts on biota; systematic studies are still rare due
to the obvious difficulties associated with predicting these
events and the collection of data, complicating the analysis
of short- and long-term effects (Hering et al., 2004; Ilg
et al., 2009). Studies quantifying the material transported
by physical processes such as floods from aquatic to
adjacent terrestrial habitats are even rarer. This trans-
boundary resource flux can influence food webs in both
terrestrial and aquatic habitats with marked changes in
primary and secondary productivity and biodiversity
(Polis et al., 1997; Anderson et al., 2008; Romanuk and
Levings, 2010).

In freshwater ecosystems, more attention has been paid
to the transport of organic and inorganic materials such as*Corresponding author: ronaldo.sousa@ciimar.up.pt
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terrestrial invertebrates, nutrients, leaves, sediments and
woody debris from the terrestrial to the aquatic areas
(Polis et al., 1997). More attention is now being paid to the
transport of resources from aquatic to terrestrial areas
with most studies emphasizing the importance of
emergent insects for terrestrial ecosystems (Baxter et al.,
2005; Burdon and Harding, 2008; Gratton and Vander
Zanden, 2009). Recent studies in food web dynamics
highlight the importance of resource pulses at the indivi-
dual, population, community and ecosystem levels (Yang,
2004; Holt, 2008) and the significance of this research topic
in freshwater systems. Examples of rare episodic events
of extreme resource abundance (Ostfeld and Keesing,
2000; Anderson et al., 2008; Yang et al., 2008) include
massive production of flowers, fruits and seeds, synchro-
nous emergence of arthropods, outbreaks of large numbers
of small mammals and insects, mass input of carcasses,
dung or urine, synchronous coral spawning and storm-
driven runoff from terrestrial to aquatic systems. Such
processes have been poorly documented in freshwater
ecosystems, with the exception of post-spawning mortality
events of anadromous fishes such as salmonids (Ben-
David et al., 1998; Helfield and Naiman, 2001; Gende
et al., 2002).

Extreme climatic events are predicted to increase in the
near future. Major floods can be responsible for mass
mortalities of aquatic species, including freshwater bivalves
(Hastie et al., 2001). Freshwater bivalves are an important
faunal group in aquatic ecosystems, responsible for
important trophic and non-trophic functions (a food
resource for higher trophic levels, parasites of fishes,
reducing turbidity, nutrient recycling and creating habitats
for other benthic species (Vaughn and Taylor, 1999;
Strayer et al., 1994, 2004; Strayer, 2006; Vaughn, 2010).
Given the various key roles of freshwater bivalves in
aquatic ecosystems, it is important to assess the effects of
changes in density and biomass resulting from extreme
climatic events.

The severe winter of 2009/2010 provided us with an
ideal opportunity to assess the mortality of different
freshwater bivalve species in five river basins on the
Iberian Peninsula (Rivers Minho, Douro, Tâmega, Tua
and Sabor). The principal aims of this study were to
determine mortality in terms of density and biomass of
several freshwater bivalve species, namely Anodonta anati-
na (Linnaeus, 1758), Corbicula fluminea (Müller, 1774),
Margaritifera margaritifera (Linnaeus, 1758), Potomida
littoralis (Cuvier, 1798) andUnio delphinus (Spengler, 1793)
and to discuss the possible ecological implications of this
carrion as a resource pulse.

Material and methods

Study area

The surveyed area covers the two major river catch-
ments located in Northern Portugal, the Rivers Minho and
Douro (the Rivers Tâmega, Tua and Sabor are sub

catchments of the Douro catchment). The River Minho
(area 17 080 km2 and a total length of 300 km) has generally
good environmental conditions, although there are some
problems related to the introduction of invasive species
(Sousa et al., 2008c). The River Douro (area 97 603 km2

and a total length of 895 km) flows westward across Spain
and Northern Portugal. Both river systems are inter-
national with 95% of the Minho catchment area situated
in Spain. The Portuguese area of the Douro basin (19.1%
of the total area) has a more irregular annual flow, but is
highly regulated by several dams. The main impacts on the
Douro basin are (i) urban, with major conurbations
situated along the final kilometres that negatively affect
water quality and (ii) the presence of several dams,
resulting in habitat fragmentation, loss of connectivity
and flow regulation. The main Portuguese tributaries of
the River Douro such as Rivers Tâmega, Tua and Sabor
are much smaller and deeply incised, flowing through
gorges before entering the River Douro. TheRiver Tâmega
(area 3309 km2 and a total length of 140 km) receives some
pollution and some areas are affected by the extraction of
inerts. The River Tua has a total area of 3813 km2 (690 km2

in Spain and 3123 km2 in Portugal) and a total length of
106 km. The River Sabor (area 3868 km2, 555 km2 are
located in Spain), flows in a North–South direction and is
approximately 112 km long. The latter two rivers are in
good environmental condition due to low levels of human
pressure, although there are some problems of organic
pollution in downstream areas of the River Tua.

Sampling strategy and data analysis

Data from the Portuguese National Water Institute
(INAG) provided information on monthly cumulative
river flow from 1990 onwards for the Rivers Minho (Foz
do Mouro hydrometric station), Douro (Poçinho hydro-
metric station) and Tâmega (Torrão hydrometric station).
We calculated the mean monthly cumulative values for the
last 20 years as a proxy for a normal year and we check for
possible differences in the mean monthly cumulative river
flow for the different rivers between December 2009 and
May 2010 and mean monthly cumulative values from
December to May along the last 20 years.

A total of 31 sites were sampled along the banks of the
five rivers (Fig. 1). Sites were chosen for ease of access to
the riverbanks and to cover the maximum possible length
of each river under study. Five sites were sampled along
the River Minho, from the international upstream section
to the estuarine area to avoid possible bias in the mortality
values due to reasons other than flood. Only two sites were
surveyed on the River Douro since this river is highly
regulated. On the River Tâmega, two sites were sampled in
the main channel plus three sites along two tributaries
(Rivers Terva and Beça). A total of 13 sites were surveyed
along the River Tua; seven were located along the River
Rabaçal and two along the River Tuela. Six sites were
sampled in downstream and upstream sections of the
River Sabor. All samplings were carried out during May
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and June 2010 after the return of normal flow conditions
(the end of April during 2010). Depending on bivalve
density, one of three sampling methods was used at each
site: (i) 62 quadrats with an area of 0.25 m2, 60 of which
were randomly located and the remaining two were placed
on areas with maximum density (determined visually);
(ii) where density levels were very low, a minimum of
three people walked and searched selected areas contain-
ing deposits of dead shells, collecting all individuals
encountered during a minimum of 1 h; and (iii) at some
sites we combined the two described collecting strategies
using quadrats to assess the density and biomass of
C. fluminea and surveying the whole area to assess the
density and biomass of A. anatina, M. margaritifera,
P. littoralis and U. delphinus. Detailed information on
site location, methodologies and total area surveyed is
given in Table 1.

The area surveyed was estimated for each site and all
dead shells were collected, measured and identified to
species. Collected fragments of shells and old shells that we
could not confidently identify as being washed away on
that year (i.e., with no periostracum) were excluded from
analyses.

Biomass was determined by length–wet weight rela-
tionships of live specimens of each species collected
between May and June 2010 from each river system.
Differences in the bivalve composition between rivers were
assessed using ANOSIM (PRIMER package; Clarke and
Warwick, 2001).

Results

Historical data of the cumulative river flows measured
at the Rivers Minho, Douro and Tâmega between October
2009 and September 2010 and mean monthly values for
the last 20 years are given in Figure 2. Comparison of
cumulative river flows measured between December 2009
and May 2010 and mean values from the 20 year data set
(comprising values from December to May) reveal a
clearly higher cumulative river flow during the 2009/2010
period in the Rivers Minho (F=5.19, P<0.05), Douro
(F=3.95, P<0.05) and Tâmega (F=4.45, P<0.05).
No data were available for the Rivers Tua and Sabor.
Despite the fact that both the Rivers Tua and Sabor have
lower flow levels than the other rivers; based on expert
opinion we concluded that a pattern of increased flow
during 2009/2010 also occurred in these systems. Since
both of these rivers are much less affected by regulation,
it is actually possible that this pattern was even more
marked than in the other rivers under study. Therefore,
rivers in northern Portugal exhibited higher flow during
the winter of 2009/2010 and early spring 2010 and we
can consider 2009/2010 as an unusual year in terms of river
flow.

A total of five bivalve species (A. anatina, C. fluminea,
M. margaritifera, P. littoralis andU. delphinus) were trans-
ported from the riverbed to adjacent riverbanks, where
they were subject to desiccation and subsequent death
(Figs. 3a and b). On the River Minho, we collected three

Fig. 1. Map showing sampling site locations.
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species (A. anatina, C. fluminea and P. littoralis), three
species on the River Douro (A. anatina, C. fluminea and
U. delphinus), four species on the River Tâmega (all species

except P. littoralis), five species on the River Tua and
four species on the River Sabor (all species except
M. margaritifera). There were clear differences in the
species composition between the five different river basins
(ANOSIM R=0.27; P<0.05). There were also clear
differences along the longitudinal profile, in particular for
the Rivers Tua and Sabor (Tab. 1).

Table 1 summarizes the density, biomass and distribu-
tion of dead bivalves collected from the five river basins.
Higher densities were collected in the River Minho, with
the highest density occurring at site 5 (2280 ind. mx2); the
invasive species C. fluminea clearly predominated. The
lowest densities occurred in the Rivers Terva and Beça
(tributaries of the River Tâmega), Rabaçal sites 6 and 7
and Tuela sites 1 and 2 (tributaries of the River Tua). The
lowest overall observed density was at Beça site 1 (0.001
ind. mx2). Sites with lower density were dominated by the
presence ofM. margaritifera (with the exception of Tuela 1

a

b

c

Fig. 2. Cumulative river flow values for the (a) River Minho

measured at Foz do Mouro, (b) River Tâmega measured at
Torrão and (c) River Douro measured at Pocinho. Black lines
represent cumulative river flow values measured from October
2009 to September 2010 and grey lines represent mean values

from 1990 to 2010.

a

b

Fig. 3. Photos showing massive mortalities at (a) Minho site

5 with a great accumulation of C. fluminea shells and (b) Sabor
site 1 with the accumulation of C. fluminea, P. littoralis and
U. delphinus shells.
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where U. delphinus also occurred). C. fluminea was clearly
the densest species and was present at 21 sites (68% of all
sites surveyed). Biomass values followed similar trends as
density; the highest values occurred on the River Minho
with maximum biomass at Minho site 5 (10 225 g wet
weight.mx2) and a minimum at Beça site 1 (0.1 g wet
weight.mx2). Again, C. fluminea was the species with the
highest biomass, although the dominance was not as
strong as with the density results (Tab. 1).

Discussion

The severe winter of 2009/2010 resulted in higher river
flows compared to mean values recorded over the last
20 years in Northern Portuguese rivers. The higher flows
provoked mass movement of sediments, uprooted trees
and affected riparian vegetation. The high river flows also
resulted in the movement of live bivalves from the
riverbed, where they normally live partially buried in the
sediment with the posterior part of their shells exposed to
the water column, dislodging and depositing them on the
stream banks.

Even in normal hydrological years, it is not unusual to
find dead freshwater bivalves on riverbanks but the
numbers reported in this study are clearly exceptional.
Although some studies show that several species manage
to avoid the major effects of floods by sheltering behind
rocks and boulders or burrowing deeper into the sedi-
ments, such strategies may be impossible when large flood
events occur (Hastie et al., 2001). The results of this study
show that a large quantity of freshwater bivalves were
transported and stranded on the riverbanks where they
subsequently died due to desiccation when the water level
returned to normal levels during May. Such a situation is
expected, due to the low locomotion capability of these
species (Vaughn and Taylor, 1999). Unfortunately, our
data could not assess the percentage of individuals
removed from the water to the riverbanks since earlier
density and biomass data from the survey sites were
unavailable. According to Hastie et al. (2001), 4–8% of
the M. margaritifera population were killed during a
major flood in the River Kerry (Scotland). Applying such
findings to our results it was also possible that the higher
river flows during 2009/2010 resulted in higher mortalities,
negatively affecting bivalve populations and possibly im-
posing a serious threat to some species. C. fluminea, has a
typical opportunistic life cycle (Sousa et al., 2008b, 2008d,
2008e) giving this species an advantage over the four
native species concerning extreme climatic events, since it
recovers more rapidly (Sousa et al., 2008a, 2008c; Ilarri
et al., 2011). Extreme events are predicted to increase over
the next few decades as a result of climate change. Thus,
the resilience of the different species should be studied to
assess resulting ecological alterations. In addition, some
native freshwater bivalve species, such as M. margaritifera
and P. littoralis, have high conservation status; findings
from such mortality events should be incorporated into
management plans and selected restoration measures such

as rapid relocation of endangered native mussels back to
the riverbed can be easily applied to lessen possible
impacts. However, the construction of several large
hydroelectric dams is already underway or due to begin
very soon in the Rivers Tâmega, Tua and Sabor. The
impact of these infrastructures will impose an additional
threat that may outweigh the impacts of floods to these
native populations.

Our results showed that mortality rates differed
between sites and river systems, reflecting spatial distribu-
tion patterns and habitat preference of the freshwater
bivalve species under study. However, other factors such
as the characteristics of each catchment and the different
river flow levels acting at the local scale may contribute to
the different values of density and biomass found on the
riverbanks.

The most important result of this study is the possible
fundamental role of these die-offs as a resource pulse on
adjacent terrestrial areas. Recent studies in food web
dynamics emphasize the importance of spatial subsidies, in
particular, the significance of the link between different
habitats via the flow of nutrients, energy and materials
(Polis et al., 1997; Maron et al., 2006). One possible cause
of resources pulses are climatic or environmentally driven
events (e.g., El Niño Southern Oscillation; unusual
precipitation patterns combined with increased erosion).
The extremely high density and biomass transferred to the
riverbanks, highlights bivalves as a major resource pulse of
considerable amounts of nutrients and energy to the
adjacent terrestrial food web. Resource pulses are defined
as episodes of low frequency (rarity), large magnitude
(intensity) and short duration (brevity) that result in
increased resource availability in space and time, but
subsequently decay in temporal availability (Yang et al.,
2008). In our study, we can conclude that the 2009/2010
floods were not frequent events when compared with
results from the 20-year dataset, that the density and
biomass levels removed through bivalves die-off were very
high and the resources were only available for short
periods of time (at least for the surface-dwelling con-
sumers).

Theoretically, resource pulses can affect consumer
responses at both individual and population levels, and
can also be responsible for indirect effects at community
and ecosystem levels (Yang et al., 2008). The bivalve
mortality reported in this study resulted in high-quality
carrion, a vital resource pulse available across different
trophic levels. This biomass can be consumed by wide-
spread generalists, relatively specialized and highly mobile
consumers and detrital consumers (Ostfeld and Keesing,
2000; Yang, 2004). Widespread generalist consumers with
relatively non-selective diets can exploit bivalve carrion
when it becomes available. In this study, ant, beetle,
spider, mammal and bird species were observed to
consume bivalve carrion (Sousa, personal observation).
However, relatively specialized and highly mobile con-
sumers, capable of travelling long distances can also
consume bivalve carrion. Thus, the availability of bivalve
carrion can act as a driver of numerical changes due to
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behavioural aggregative responses, increases in reproduc-
tive rates or the combination of both processes (Yang
et al., 2008). The availability of bivalve carrion can initiate
effects across multiple trophic levels, since the increase in
resources will increase the density of one consumer which
may become a secondary resource pulse for consumers
at higher trophic levels. Considering that the biomass
resulting from these mortalities may be quite high, it is
possible that this resource pulse may be a surplus to
predators and other surface-dwelling consumers. As a
result, a considerable amount of this biomass can enter the
detrital food web driving changes in microbial biomass
and nutrient cycles (Yang, 2004). Future studies should
include the influence of this situation on plant growth and
nutrient cycles, including the availability of calcium
derived from bivalve shells.

It was not the aim of this study to assess how this
subsidy influences the structure and dynamics of the
recipient food web. However, given the quantity of
biomass removed, we believe that this situation deserves
future attention. Our results support the growing body of
evidence indicating that terrestrial food webs adjacent to
rivers can be strongly subsidized by the movement of
nutrients and energy from adjacent riverbed onto less
productive land, which are often also subject to harsher
conditions (Ben-David et al., 1998; Helfield and Naiman,
2001). Although, some examples have been reported on
migratory fishes, this study emphasizes the possible
fundamental role of freshwater bivalves. It is also imp-
ortant to note that invasive species such as C. fluminea
could become a significant fraction of bivalve die-off
resource pulses and this situation should be taken in
account in aquatic ecosystems already affected by this and
other invasive bivalves (e.g., Dreissena polymorpha and
Limnoperna fortunei) that could attain high biomass
and are subject to frequent massive mortalities.

Conclusion

Floods are fundamental elements in the natural cycles
and often impact key natural components such as
macroinvertebrates, fishes and riparian vegetation.
However, the possible importance of floods as drivers of
resource pulses through freshwater bivalve die-offs is
poorly studied in freshwater ecology. The findings of this
study emphasize the importance of the availability of this
carrion source to consumers (directly consuming these
bivalves as prey or indirectly as a source of dead organic
material). The influence of climate change on such
resource pulses is of particular interest due to the predicted
increase in climatic variability (e.g., more frequent and
intense extreme climatic events). The further study of such
changes will be particularly important in areas of interface
between aquatic and terrestrial ecosystems (Yang et al.,
2008). Freshwater bivalves are one of the faunal groups
exhibiting an accelerated rate of extinction; thus, the
impacts of floods should be considered more widely in
future ecological and conservational studies.
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