
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Physics Theses and Dissertations Physics 

Summer 8-6-2019 

Massive elementary particles in the Standard Model and its Massive elementary particles in the Standard Model and its 

supersymmetric triplet Higgs extension supersymmetric triplet Higgs extension 

Keping Xie 
Southern Methodist University, kepingx@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/hum_sci_physics_etds 

 Part of the Elementary Particles and Fields and String Theory Commons 

Recommended Citation Recommended Citation 
Xie, Keping, "Massive elementary particles in the Standard Model and its supersymmetric triplet Higgs 
extension" (2019). Physics Theses and Dissertations. 7. 
https://scholar.smu.edu/hum_sci_physics_etds/7 

This Dissertation is brought to you for free and open access by the Physics at SMU Scholar. It has been accepted 
for inclusion in Physics Theses and Dissertations by an authorized administrator of SMU Scholar. For more 
information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_physics_etds
https://scholar.smu.edu/hum_sci_physics
https://scholar.smu.edu/hum_sci_physics_etds?utm_source=scholar.smu.edu%2Fhum_sci_physics_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=scholar.smu.edu%2Fhum_sci_physics_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_physics_etds/7?utm_source=scholar.smu.edu%2Fhum_sci_physics_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


MASSIVE ELEMENTARY PARTICLES IN THE STANDARD MODEL

AND ITS SUPERSYMMETRIC TRIPLET HIGGS EXTENSION

Approved by:

Dr. Pavel M. Nadolsky, Advisor
Southern Methodist University

Dr. Roberto Vega, Advisor
Southern Methodist University

Dr. Stephen J. Sekula, Committee Chair
Southern Methodist University

Dr. John M. Campbell, Committee Member
Fermi National Accelerator Laboratory

Dr. Chien-Peng Yuan, Committee Member
Michigan State University



MASSIVE ELEMENTARY PARTICLES IN THE STANDARD MODEL

AND ITS SUPERSYMMETRIC TRIPLET HIGGS EXTENSION

A Dissertation Presented to the Graduate Faculty of the

Dedman College of Humanities and Sciences

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Physics

by

Keping Xie

(B.S., Physics, Peking University)

August 6, 2019



Copyright (2019)

Keping Xie

All Rights Reserved



ACKNOWLEDGMENTS

This dissertation would not have been possible without the mentoring of my advisors,

Pavel Nadolsky and Roberto Vega. They have been constantly teaching me not only the

research skills but also the balance between work and leisure in my academic life. They guide

me a lot on my journey into particle physics to explore the unknown universe. Both of them

introduced me a great many excellent collaborators, who shape my understanding of science.

It was always a pleasure to work as Roberto’s teaching assistant (TA) in my first year here at

SMU. Special thanks to Pavel for continuously supporting me with research-assistant (RA)

fellowship in the past 4 years. Also, gratitude to him for providing me plenty of travel funds

to participate in many conferences, workshops, and summer schools.

It is my honor to have Stephen Sekula as an experimentalist to serve as my dissertation

committee chair. He has done a lot for us in the past five years, including assigning the

TA tasks, maintaining the computing system, and organizing students to attend the Texas

sections of APS (American physics society) meetings. We had some good experience together,

such as giving a joint seminar and participating in the SUSY 2015 and the APS April Meeting

2019. Many thanks to John Campbell for the service as one of the external members in my

committee. With his kindness to be my host, I visited Fermilab for one and a half years.

It was a great opportunity to expose myself to the particle-physics community, and I took

this advantage to communicate with a lot of scholars, including faculties and visitors in

the Theoretical Physics Department, and experimentalists in various groups such as CMS,

NOvA. Gratitude to C.-P. Yuan to serve as another external member. With his support,

I visited Michigan State University serval times. Each time, we had a great time there

collaborating on the CTEQ-TEA projects and meeting with his colleagues, students, and

family members.

I would like to express my appreciation to all of my collaborators. They are Roberto Vega-

Morales, Bowen Wang, Sayip Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Jan Winter, Tim

Hobbs, Joey Huston, Carl Schmidt, Daniel Stump, Jon Pumplin, Bo-Ting Wang, and Walter

iv



Giele. I had many extensive discussions with Tie-Jiun on many topics, not limited to our

projects. He guided me in many technical skills, such as Fortran, Unix scripts, gnuplot,

and the CTEQ fitting package. Marco helped me with xFitter. Jun guided me about the

Mathematica package MP4LHC. Walter instructed me about the OpenMP/MPI paralleliza-

tion. Roberto Vega-Morales gave me many suggestions during my postdoc application. I

collaborated with Bowen about a higher-order calculation for deep inelastic scattering.

I have to acknowledge the Department of Physics at SMU for providing me the oppor-

tunity to accomplish my Ph.D. degree. Thanks to Lacey Breaux and Michele Hill for their

administrative work. Special Memoriam to Kent Hornbostel, who served as the Director of

Graduate Studies, but unfortunately passed away in 2018. Also gratitude to all other facul-

ties in our department, especially Ryszard Stroynowski, Fredrik Olness, Jingbo Ye, Thomas

Coan, Jodi Cooley, Roberto Kehoe. Meanwhile, I would like to deliver my thanks to all

the other students in our department. They are Huanzhao Liu, Tingting Cao, Hang Qiu,

Biao Wang, Li Zhou, Xiandong Zhao, Ryan Staten, Daniel Jardin, Peilong Wang, Matthew

Feickert, Madalyn McKay, Matthew Stein.

Thanks to Linda Evans for helping me with my English proficiency during the seminars

for international TAs. Thanks to Paula Walvoord for providing me a cozy house to live and

a lot of conveniences. Thanks to Mandy Pathak for organizing the Chi Alpha to host the

weekly dinners for international students. Thanks to John Wheeler for working together for

many overnights. Thanks to Mia Guo for many delightful discussions and encouragements.

Thanks to the PKU Alumni Association at DFW for many gatherings. Thanks to the DASH

Running Club for organizing us to train and to participate in marathon races.

Last but not least, I own my inexpressible gratitude to all my family members, who

always constantly support me in pursuing my academic career. Their love and encouragement

always give me magnificent power to overcome the difficulties in my life oversea.

v



Xie, Keping B.S., Physics, Peking University

Massive elementary particles in the Standard Model

and its supersymmetric triplet Higgs extension

Advisors: Dr. Pavel M. Nadolsky, Dr. Roberto Vega

Doctor of Philosophy degree conferred August 6, 2019

Dissertation completed August 6, 2019

In this dissertation, we focus on massive elementary particles in the Standard Model

and its supersymmetric triplet Higgs extension.

In the first part, we start with a review of electroweak (EW) sector in the Standard Model.

Motivated by nonzero neutrino masses, we consider triplet scalars in addition to the Standard

Model. The vacuum expectation values of scalar triplets are strongly constrained by the ρ

parameter, extracted from electroweak precision measurements. Therefore, we introduce a

custodial symmetry to weaken this constraint and obtain the well-known Georgi-Machacek

(GM) Model. The GM model still requires fine-tuning to satisfy the ρ parameter constraint.

It is because the custodial symmetry is broken by the hypercharge gauge interaction, which

leads to quadratic divergences in the quantum corrections to the ρ parameter, starting at

the 1-loop level. By adopting supersymmetry (SUSY), which solves the quadratic divergence

problem in quantum corrections both to the ρ parameter and to the squared mass of Higgs

simultaneously, we obtain the Supersymmetric Custodial Triplet Model (SCTM). It doubles

the GM scalar fields with the mirror -GM sector. In the limit of large dimensionful param-

eters, B-terms, the mirror -GM particles are decoupled, and the spectrum of the GM-like

particles looks the same as that in the GM model at the electroweak scale. We dub this limit

as the “supersymmetric GM (SGM) model”, which serves as a weakly coupled origin for the

GM model. Incorporating the gauge-mediated supersymmetry breaking (GMSB) mecha-

nism, we perform a phenomenological study for a pair of benchmark scenarios to illustrate

when the SGM model can behave in the same way as the GM model, and when the GM

and SGM models are distinguishable. When confronting the experimental diphoton data, we

take the GM and SGM models as explicit examples to show how a light exotic Higgs boson
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can escape the current experimental constraints through cancellations between different loop

contributions to the effective couplings, or via decaying into the invisible sector.

In the second part, we focus on massive particle production, both in DIS experiments

and at hadron-hadron colliders. By applying the QCD factorization theorem, hadronic cross

sections can be factorized as convolutions of long-distance parton distribution functions

(PDFs) and short-distance partonic cross sections. The partonic cross section can be ob-

tained through perturbative calculations, thanks to the asymptotic freedom of the strong

interaction. The universal PDFs have to be extracted from experimental data and are grad-

ually becoming the largest uncertainty source that obscures the discovery of the new physics,

especially at hadron colliders. Precise determinations of the PDFs require us to treat the

massive quarks correctly. We discuss various factorization schemes to deal with the mas-

sive quarks in DIS, and we perform the calculations of the DIS structure functions in the

intermediate-mass scheme at N3LO. We develop a new method called the SACOT-MPS

(Simplified-ACOT with massive phase space) scheme to deal with heavy-quark production

at hadron colliders, and we apply it to the B± production at the LHCb experiment.
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Notations and Conventions

In this dissertation, we will work in the natural units, where

~ = c = 1. (0.1)

All the physical units can be related to the mass dimension,

[L] = [T ] = [M ]−1, [p] = [E] = [M ]. (0.2)

The mass dimensions for scalar, spinor and vector fields respectively are

[φ] = [M ], [ψ] = [M ]3/2, [V ] = M. (0.3)

We take the west coast (timelike) convention of the Minkowski metric,

gµν = gµν = diag(1,−1,−1,−1). (0.4)

Usually, the Greek indices (µ, ν, α, · · · ) run over 0, 1, 2, 3, and the Roman indices (i, j, k · · · )
denote only the three spatial components 1, 2, 3. The four-vector is defined as

xµ = (x0, ~x), xµ = gµνx
ν = (x0,−~x), (0.5)

where the repeated indices are summed implicitly. The dot product is defined as

p · x = pµgµνx
ν = p0x0 − ~p · ~x. (0.6)

The Pauli matrices are defined as

σ1 = τ 1 =

0 1

1 0

 , σ2 = τ 2 =

0 −i
i 0

 , σ3 = τ 3 =

1 0

0 −1

 . (0.7)

The generators of the SU(2) group are T i = τ i/2, which satisfy [T i, T j] = iεijkT k, where εijk

is the fully antisymmetric tensor.

Most of the time, we take the Weyl (chiral) basis of Dirac’s gamma matrices,

γ0 =

 0 I2

I2 0

 , γk =

 0 σk

−σk 0

 , γ5 =

−I2 0

0 I2

 , (0.8)

where I2 is the identity matrix in 2 × 2 dimensions. Usually, we define σ0 = σ̄0 = I2

and σ̄k = −σk. The chiral projecting operators are defined as PL,R = 1∓γ5
2

, which satisfy

P 2
L,R = PL,R.
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Chapter 1

Introduction

1.1 The known and unknown

So far, we know that the matter in our universe is made of atoms that bind nuclei and

electrons together through electromagnetic force. Nuclei, in turn, consist of protons and

neutrons, together named as nucleons. Nucleons are bound objects composed of quarks

and gluon fields held together by the strong interactions. This hierarchy structure of the

universe is sketched in Figure 1.1. A free neutron is not stable and therefore will decay into

an electron, a proton, and an invisible neutrino. The decay is mediated by the so-called

weak interactions. These 3 kinds of interactions (electromagnetic, weak, and strong) are

successfully unified in the Standard Model (SM) of elementary particles and fields. The

SM is based on the symmetries of nature and a quantum gauge theory which reflects these

symmetries. It is not yet understood how to write a consistent quantum theory for gravity,

which remains the major stumbling block for unifying all four forces under one fundamental

theory. It is not even clear whether such a theory exist. It is the goal of theoretical particle

physics to sort these questions out and perhaps find the so-called theory of everything (TOE)

or the final theory. String theory appears to provide a possible direction, but it remains to

be seen what form the ultimate TOE will take.

The term “Standard Model” was first coined by Abraham Pais and Sam Treiman [2],

with reference to Steven Weinberg’s electroweak theory [3], which embraces the idea of

Yang-Mills’ gauge field theory [4] and spontaneous symmetry breaking (SSB) [5, 6]

realized through the Higgs mechanism [7, 8, 9]. Weak gauge fields acquire mass by absorbing

degrees of freedom of the massless Goldstone bosons. The SM predictions were tentatively

established by experiments in the early 1980s, especially by the discovery of W/Z bosons by

the UA1 [10, 11], and UA2 [12, 13] experiments at CERN. In 2012, the last unknown piece
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Figure 1.1: The composition of matter in our universe. This figure is taken from website [1].

of the Standard Model, the Higgs boson, was discovered by the ATLAS [14] and CMS [15]

collaborations at the Large Hadron Collider (LHC). These discoveries symbolized a great

triumph of the Standard Model.

However, even though the Standard Model is proven to be a great success, it is not the

end of the story to explain all the phenomena observed in our universe. In spite of that,

the SM is a self-consistent renormalizable theory, it can be only considered as an effective

field theory (EFT) valid at the electroweak scale. There are many hints that the SM is not

even close to the final theory since it fails to explain many puzzling observations about our

universe. Here we briefly rephrase some of them, without going in all the details.

• Neutrino mass: The original version of the Standard Model predicts neutrinos to

be massless. Conversely, neutrino oscillation experiments suggest that neutrinos must

have a nonzero mass. However, thinking more carefully, we realize it is not a serious

problem, considering that the quarks and charged leptons are massive. In the Standard

Model, the fermions obtain mass through the Yukawa interactions with the Higgs

boson. The neutrino in the original Standard Model must be massless, because of the

missing of the right-handed neutrinos. This hint suggested the modified version to solve

this problem by adding the right-handed neutrinos to the Standard Model. Similarly to
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the right-handed up-type quarks, the right-handed neutrinos couple to the Higgs boson

through the Yukawa interaction in a gauge-symmetry preserving way. After the Higgs

field develops the vacuum expectation value (VEV) during the Electroweak Symmetry

Breaking (EWSB), the neutrinos automatically obtain mass that is proportional to the

Higgs VEV and the Yukawa coupling. In such a way, we add more particle contents

and more parameters to the Standard Model.

• Hierarchy problem: Different from the neutrino mass puzzle which is driven by

experiments, the hierarchy problem emerges from a theoretical argument of the nat-

uralness principle. Once Planck obtained his famous constant h (or reduced one ~),

he realized that the gravitational force must merge quantum mechanics at the Planck

scale of order 1019 GeV. The weak force is characterized by the electroweak (EW)

scale (around 100 GeV). There is a large discrepancy between the aspects of the grav-

itational and weak force. In the Standard Model, the squared mass of Higgs boson

acquires quantum corrections that result in quadratic divergence at scales much larger

than the EW scale. If there is no new physics between the Planck and EW scales,

one would expect that the corrections would be inevitably large compared to the ob-

served value at the EW scale unless there exists an incredible cancellation between the

quadratic divergence and the Lagrangian bare mass. This fine-tuning problem suggests

that new physics is hiding somewhere behind the corner. By now, people have come

up with several solutions to this hierarchy problem, among which supersymmetry is

perhaps the most prospective one.

• Dark Matter: Astrophysical observations, including spinning galaxies, gravitational

lensing, and colliding galaxies, suggest that 85% of the matter (27% of the total energy

density) in our universe is dark matter, which cannot be explained by the particle con-

tent of the Standard Model. The observations of the cosmological large-scale structure

indicate that the dark matter should be cold, that is, the dark matter moves relatively

slow compared to the speed of light. We are not sure what the Dark Matter consists of,

but a lot of candidates can make it work, among which, the WIMPs (weakly interact-

ing massive particles) are most explored ones, both theoretically and experimentally.

Supersymmetric extensions of the Standard Model predict a lot of new particles, and
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the lightest supersymmetric particle (LSP) satisfies the Dark Matter properties, which

is being tested by the current and future direct detection experiments.

• Matter-antimatter asymmetry: According to astronomical observations, the stars

and gas in our universe are made up of visible matter (proton, neutron, and electron).

In comparison, the antimatter (positron, anti-proton, etc) is only produced artificially

in laboratories. This imbalance of the baryonic and antibaryonic matter in our ob-

servable universe implies a baryogenesis process, which violates the baryon number

conservation and charge-parity (CP) symmetry. In the Standard Model, the phase δ

in the CKM matrix is the only known source of CP-violation. However, it is too small

to explain the observed matter-antimatter asymmetry. We need more CP-violation

sources, which must come from BSM physics.

• Quantization of gravity. The Standard Model does not include graviton which

accounts for the quantization of gravity. More generally speaking, a quantum field

theory (QFT) cannot canonically quantize gravitation, which is described by a classical

theory called general relativity. The fundamental structure of gravity is not the same

as the other three forces. We hope string theory or loop quantum gravity can provide

us with an answer to this puzzle.

• Inflation: The isotropy and homogeneity of our visible universe, revealed by the

cosmic microwave background (CMB) radiation, requires a stage of extremely rapid

expansion called the inflationary epoch right after the big bang. The Standard Model

does not contain the fields accounting for inflation.

• Cosmological constant: The zero-point energy of the quantum field theory is much

larger (120 orders of magnitude higher) than the observed vacuum energy density.

The Standard Model cannot help us to understand this many-orders-of-magnitude

discrepancy between theory and observation.

• Dark Energy: We observe that the present-day universe is expanding at an acceler-

ating rate, which suggests that 68% of the total energy in the observable universe is in

a hypothesized unknown energy form, called dark energy. Otherwise, the expansion of

our universe should be slowing down because of the gravitational attraction.
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• Strong CP problem: The strong interaction is described by quantum chromody-

namics (QCD), which could allow a Charge-Parity violation (CPV) term θ g2

32π2GµνG̃
µν .

However, the experimental measurement of the neutron electric dipole moment (EDM)

dn ' θ
emq

M2
N

< 3× 10−26 ecm, (1.1)

which suggests θ < 10−9. This is another example of a fine-tuning problem. We hope

that a pseudo-scalar particle called axion in Peccei-Quinn symmetry will provide us

with a satisfactory answer.

• Ad hoc parameters: The Standard Model contains 18 free parameters:

λ, µ, g1,2,3,me,µ,τ ,md,u,s,c,b,t, θ12,13,23, δ. (1.2)

If we count the θ as yet another parameter, we would have 19 parameters in total. Now,

we realize that neutrinos have mass discovered by oscillation experiments. Therefore,

we need to add 7 more parameters into this model:

m1,2,3, θ
′
12,13,23, δ

′. (1.3)

If the neutrino is a Majorana fermion, we would have 2 additional phase factors, α1,2.

Therefore, the extended Standard Model contains 26-28 parameters in total, and all of

them should be determined in experiments. It is rather unsatisfying that a fundamental

theory would suffer from such a plethora of free parameters with such a large range

of values. Moreover, we found that there exists a hierarchy structure among the 3

generations of the leptons and quarks,

me < mµ < mτ , md,u < ms,c < mb,t. (1.4)

We do not yet know whether neutrinos satisfy the hierarchy structure, i.e., m1 < m2 <

m3, and we have no explanation for this hierarchy within the Standard Model.

• Generations: All the quarks and leptons that have been discovered can be classi-

fied into three generations distinguished by the scale of their masses. However, the

observed Universe appears to be composed entirely of just quarks and leptons in the

first generation. This generation can form a complete and consistent (anomaly free)

theory by itself. The other generations only manifest themselves involving collisions at

high energies. The Standard Model fails to explain why there should be exactly three

generations.
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Of course, this is not a complete list of all the problems that the SM suffers from. Each

problem motivates us to search for new physics beyond the Standard Model (BSM). One

strategy to follow is to modify or extend the SM and to see ways in which the predictions of

these extended models differ from those of the SM. The modifications should be driven by

their adequateness in resolving some of the issues or weakness of the SM listed above.

1.2 Organization of this dissertation

Our target is to deal with massive elementary particles in the Standard Model and its

BSM extensions. We divide this dissertation into two parts. In the first part, we cover various

heavy particles in the framework of triplet Higgs models and the supersymmetric versions. In

order to produce these new particles, we need hadron colliders. And the production of heavy

particles, both in the SM and new physics, is based on our understanding of perturbative

quantum chromodynamics, which is the main subject of our second part.

1.2.1 Higgs triplet Models

In the first part of this dissertation, we start with the Standard Model and explore the

modifications of which extended the Higgs sector to include, in addition to the usual SM

doublet representation, triplet representations of SU(2). Several intimations lead us to scalar

triplets. First, scalar triplets possess the potential to provide neutrinos with nonzero masses

through Yukawa interactions of the scalar triplets’ coupling to the Majorana neutrinos, which

is well-known as the Type-II seesaw mechanism [16, 17], which is discussed in Chapter 3.

A natural source for this mechanism can be provided by the Left-Right symmetric models

[18]. Second, the seesaw Yukawa interactions violate lepton number and therefore satisfy one

of the Sakharov’s conditions [19] on global quantum number generation in the evolution of

the Universe. Triplet models also encompass the possibility of charge-parity (CP) violation,

either explicitly or spontaneously, which satisfy another Sakharov’s condition. These two

conditions lead us to the leptogenesis [20], which can be converted into the baryogenesis [21]

through a nonperturbative process called sphaleron [22]. Third, triplet models naturally

arise in the Higgs composite models and Little Higgs models. Finally, scalar triplet models

contain rich phenomenology with new particles (such as doubly charged scalars H±±) and
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new couplings to vector bosons (such as HV V or HHV ), which can be directly measured

at current and future colliders.

In general, the vacuum expectation values (VEVs) of the neutral components of the scalar

triplets are strongly constrained by electroweak precision measurements, and ρ parameter

is one of the biggest constraints [23]. However, these constraints are strongly weakened if

the triplet scalar representations are added in such a way as to obey the accidental SU(2)

custodial symmetry of the SM. The implication of imposing a custodial symmetry is that one

must add at least one real and one complex triplet representations. Such a model was first

proposed by Georgi and Machacek [24], and is commonly known as the Georgi-Machacek

(GM) Model. The GM model, nevertheless, still requires fine-tuning in order to satisfy the

ρ parameter constraints. Similarly to the SM, the solution to this additional naturalness

problem is supersymmetry, as discussed in Chapter 4. Therefore, we supersymmetrize the

GM model, and obtain the Supersymmetric Custodial Triplet Model, in Chapter 5. We

study a particular limit of dimensionful parameters for this model which, in the scalar sector,

reproduces the spectrum of the GM model at energies in the TeV range. We dub this limit

as the Supersymmetry GM (SGM) model.

In Chapter 6, we assume gauge-mediate supersymmetry breaking (GMSB) [25] and per-

form a phenomenological study for a pair of benchmark scenarios to illustrate when the SGM

model can mimic the GM model, and when they are distinguishable. When confronting the

experimental diphoton data, in Chapter 7, we take the GM and SGM models as explicit

examples to show how light exotic Higgs boson can escape the current experimental con-

straints through different loop contributions to the effective couplings, or via decaying into

the invisible sector. The lightest supersymmetric particle (LSP) in the SGM model is very

stable. It behaves like a WIMP (weakly interacted massive particles) and therefore is a

good candidate for dark matter. We explore the direct detection constraints from various

dark-matter search experiments. We leave this possibility for future study.

1.2.2 Massive particle production

We would like to test our new physics models at colliders. Direct evidence must come from

the production of massive particles predicted by these models at colliders. Hadron colliders
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are the most powerful machines which can push the energy up to its highest frontier. In

history, the heaviest fundamental particles were discovered at hadron colliders, such as W,Z

boson at the UA1 [10, 11] and UA2 [12, 13], bottom quark at the Fermilab E288 [26], and

top quark at the Tevatron [27, 28]. The latest discovery of this kind is the Higgs boson

discovered at the LHC in 2012 [14, 15]. All these big discoveries rely heavily on hadron

colliders, which will continue to be the most powerful tools to explore new physics in the

future.

Understanding of the production of massive particles at hadron colliders is based on the

QCD factorization theorem. In perturbative Quantum Chromodynamics (pQCD), we

can separate a cross-section for hadron collisions into 2 parts: a soft part to characterize

the long-distance interaction and a hard part for the short-distance one. The hard partonic

cross-section can be calculated through perturbative expansion, thanks to the asymptotic

freedom of the non-Abelian SU(3) gauge. In contrast, the long-distance interaction cannot

be calculated from the first principle, due to its nonperturbative behavior. Fortunately,

we can parameterize it by universal parton distribution functions (PDFs), which can be

extracted from benchmark experiments, such as deep inelastic scattering (DIS), and fixed-

target collisions. In Chapter 8, we first consider the Higgs production through gluon-gluon

fusion (ggF) as an example to illustrate the framework of factorization theorem. After

discussing the general features of the factorization formalism, we talk briefly about the

Drell-Yan process, which was the first application of the factorization theorem to hadron-

hadron collisions. Then, we move on to deep inelastic scattering, which provides the most

precise information to constrain the PDFs in our global analysis. We also summarize some

sum rules of the PDFs and higher-order corrections, taking DIS structure functions as an

example.

In history, DIS played a key role in the development of QCD. In modern theory, the

DIS data serve as a backbone for describing the partonic structure of the proton, which is

described by PDFs. Precise determinations of PDFs require to correctly include massive

heavy quarks in DIS structure functions. In Chapter 9, we compare various factorization

schemes to deal with heavy-quark mass dependence. Then, we apply one of them, the
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intermediate-mass (IM) scheme, to calculate the DIS structure functions up to N3LO. In

Chapter 10, we extend these schemes to the hadron-hadron collider case.

Let’s see how we tackle these problems, and how far we can get.
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Part I

Electroweak sector in the Standard Model and beyond
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Chapter 2

Electroweak physics in the Standard Model

The Standard Model is a very successful model in particle physics, which has been tested

to be correct up to very high precision. It describes three of the four known fundamental

forces (the electromagnetic, weak and strong interactions, but not including gravity) and

classifies all known elementary particles in our universe. We will review the electroweak

(EW) physics of the Standard Model in this chapter, mostly by following Chong Sheng Li’s

lecture notes on Quantum Gauge Field Theory [29].

2.1 Gauge groups

The fundamental particles in the Standard Model can be classified into 3 categories:

spin-1/2 fermion, spin-0 scalar, and spin-1 vector boson, all illustrated in Figure 2.1. The

scalar particle called Higgs Boson is responsible for the Spontaneous Symmetry Breaking

(SSB) through the Higgs Mechanism [30, 8]. A vector boson mediates gauge interactions

and, therefore, is called a gauge boson. There are 3 kinds of gauge interactions, described

by the direct product of 3 gauge groups SU(3)c⊗ SU(2)L⊗U(1)Y . The SU(3)c is the color

group, where subscripts c stands for color charge carried only by quarks. The subscript L in

the isospin group SU(2)L indicates left-handedness (chirality). It means the weak force only

acts on the left-handed fermions (including quarks and leptons ) and the Higgs boson. Y in

the Abelian group U(1)Y represents the hyper-charge, which is carried by all the fermions

and scalars. The electroweak group SU(2)L⊗U(1)Y is spontaneously broken. However, the

electric charge Q = T 3
L + Y/2 is conserved, where T 3

L = τ 3/2 is the third generator for the

isospin group SU(2)L. That is to say,

SU(2)L ⊗ U(1)Y
SSB−−→ U(1)Q : (2.1)

the EW group is broken into an Abelian gauge group U(1)Q, i.e., Quantum Electrodynamics

(QED) responsible for electromagnetic interactions. On the other hand, the strong interac-

tion symmetry described by SU(3)c group, also called Quantum Chromodynamics (QCD),
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is unbroken. We first review EW theory in this chapter and leave QCD to the second part

of this dissertation.

Figure 2.1: The elementary particles and the interactions in the Standard Model. The table
and plot are taken from WikipediA [31].

2.2 Elementary particles

The Standard Model contains 12 kinds of fermions, shown in Figure 2.1. We can organize

them into SU(2)L representations and the corresponding hypercharges,

qL =

uL
dL

 (Y =
1

3
), dR(Y = −2

3
), uR(Y =

4

3
),

lL =

νL
eL

 (Y = −1), eR(Y = −2).

(2.2)

The gauge transformation under SU(2)L ⊗ U(1)Y are respectively

ψL → e−i
~θ·~τ

2
−iβ Y

2 ψL, ψR → e−iβ
Y
2 ψR, (2.3)

where ~τ is the Pauli matrices, and ~θ, β are the group transformation parameters. Here ψL

denotes isospin doublets qL, lL, and ψR represents isospin singlets dR, uR, eR. The gauge-

invariant Lagrangian for the fermion sector can be written as

Lf = iψ̄L /DψL + iψ̄R /DψR, (2.4)
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where the Feynman d-slash is /D = γµDµ. The covariant derivatives are defined as

DµψL = (∂µ − ig1
Y

2
Bµ − ig2

τ i

2
W i
µ)ψL, DµψR = (∂µ − ig1

Y

2
Bµ)ψR. (2.5)

Bµ and W i
µ represent the corresponding gauge field of U(1)Y and SU(2)L, and g1,2 are the

gauge couplings. The Lagrangian for the gauge field can be written as

Lg = −1

4
BµνBµν −

1

4
W µν
i W i

µν , (2.6)

where W i
µν and Bµν are the field strength tensors for the weak isospin and hypercharge field,

Bµν = ∂µBν − ∂νBµ, W i
µν = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν . (2.7)

The εijk is the fully antisymmetric tensor.

2.3 Higgs sector

In the unbroken phase, the Higgs Boson is a SU(2)L doublet with hypercharge Y = 1,

Φ =

H+

H0

 (Y = 1). (2.8)

The corresponding covariant derivative is

DµΦ = (∂µ − ig1
1

2
Bµ − ig2

τ i

2
W i)Φ. (2.9)

Therefore, the Higgs sector in the SM Lagrangian can be written as

LH = (DµΦ)†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (2.10)

When µ2 > 0 and λ > 0, the Higgs potential looks like Figure 2.2. By rolling to a lower-

Figure 2.2: A sketch of the “Mexican hat” potential of Higgs V (Φ). This plot is taken from
WikipediA [32].

energy state at the brim of the “Mexican hat”, the Higgs field develops a vacuum expectation
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value (VEV) as

〈Φ〉0 ≡ 〈0|Φ|0〉 =
1√
2

0

v

 , v =

√
µ2

λ
. (2.11)

We can easily check that the gauge symmetry is broken in the vacuum state 〈Φ〉0,

T iL〈Φ〉0 6= 0, (i = 1, 2, 3), Y 〈Φ〉0 6= 0. (2.12)

where T iL = τ i/2. However, the vacuum is invariant under action of the electric charge

operator Q:

Q〈Φ〉0 = (T 3
L +

Y

2
)〈Φ〉0 =

1 0

0 0

 1√
2

0

v

 = 0. (2.13)

It means the EW gauge symmetry breaks down to a smaller group SU(2)L⊗U(1)Y → U(1)Q,

which can be interpreted as the Abelian group describing the quantum electrodynamics

(QED).

We can shift the Higgs boson in the neighborhood of its VEV Φ = 〈Φ〉0 +

 H+

hR+ihI√
2

.

The Higgs potential can be expressed as

V (Φ) =− µ4

4λ
+ µ2h2

R +
√
λµhR(h2

R + h2
I + 2H+H−) +

λ

4
(h2

R + h2
I + 2H+H−)2. (2.14)

Therefore, we obtain three massless Goldstone boson hI and H±, and one massive Higgs

boson with mass mH =
√

2µ =
√

2λv. In the unitary gauge, we can parameterize the Higgs

boson as

Φ = U−1(ζ)

 0

v+η√
2

 = exp
(
i~ζ · ~τ/v

) 0

v+η√
2


≈ v√

2
+

1√
2

ζ2 + iζ1

η − iζ3

 = 〈Φ〉0 +
1√
2

i√2w+

η − iz0

 .

(2.15)

We can see easily that w± and z0 are Goldstone bosons. They are absorbed into gauge

bosons that consequently acquire mass. The VEVs for these shifted fields are

〈0|ζi|0〉 = 〈0|η|0〉 = 0. (2.16)

We redefine the Higgs field in the unitary gauge,

Φ′ = U(ζ)Φ =

 0

v+η√
2

 =
v + η√

2
χ, χ =

0

1

 . (2.17)
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The Higgs sector can be rewritten as

LH = (DµΦ′)†(DµΦ′)− V (Φ′) (2.18)

where

DµΦ′ = (∂µ − ig1
1

2
B′µ − ig2

1

2
~τ · ~W ′

µ)
v + η√

2
χ, V (Φ′) = µ2η2 + λvη3 +

1

4
η4. (2.19)

We have dropped the zero-point energy −1
4
λv4 in V (Φ′). We obtain the mass of the gauge

boson in the |DµΦ′|2 term,
v2

2
χ†(g1

1

2
B′µ + g2

1

2
~τ · ~W ′)(g1

1

2
B′µ + g2

1

2
~τ · ~W ′µ)χ

=
v2

8

{
g2

2

[
(W ′1

µ )2 + (W ′2
µ )2
]

+ (g2W
′3
µ − g1B

′
µ)2

}
=m2

WW
+
µ W

−µ +
1

2
m2
ZZµZ

µ.

(2.20)

where

W±
µ =

1√
2

(W ′1
µ ∓ iW ′2

µ ), m2
W =

1

4
g2

2v
2 (2.21)

Conversely, we find that the vector boson of the gauge eigenstate can be expressed as the

mass eigenstate (physical state) as

W ′1
µ =

1√
2

(W+
µ +W−

µ ), W ′2
µ =

i√
2

(W+
µ −W−

µ ). (2.22)

For the neutral vector boson, we have unbroken U(1)Q symmetry Q〈Φ〉0 = 0, which

corresponds to the massless gauge boson, or photon Aµ.
1

2
m2
ZZµZ

µ =
v2

8
(g2W

′3
µ − g1B

′
µ)2

=
v2

8
(W ′3

µ , B
′
µ)

 g2
2 −g1g2

−g1g2 g2
2

W ′3µ

B′µ


=

1

2
(Zµ, Aµ)

m2
Z 0

0 0

Zµ

Aµ

 .

(2.23)

The physical gauge fieldsZµ
Aµ

 =

cos θW − sin θW

sin θW cos θW

W ′3
µ

B′µ

 , m2
Z =

1

4
(g2

1 + g2
2)v2. (2.24)

where θW = arctan(g1/g2) is the Weinberg angle. Conversely, the gauge eigenstates of the

vector boson can be expressed in terms of the mass eigenstates as

W ′3
µ = cWZµ + sWAµ, B′µ = −sWZµ + cWAµ, (2.25)

where sW ≡ sin θW and cW ≡ cos θW .
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2.4 Yukawa sector

When we introduce the Yukawa interaction,

LY = yei ēRΦ†lL + ydij d̄RiΦ
†qLj + yuijūRΦ̃†qLj + h.c., (where Φ̃ = iτ2Φ∗), (2.26)

the fermion will obtain mass after the Higgs boson develops a VEV. In the unitary gauge,

we have

Φ =
1√
2

 0

v + η

 , Φ̃ =
1√
2

v + η

0

 . (2.27)

Therefore, the fermions acquire mass proportional to the Higgs VEV,

me
i =

1√
2
yei v, Md

ij =
1√
2
ydijv, Mu

ij =
1√
2
yuijv. (2.28)

The original version of the Standard Model developed by Steven Weinberg [3] does not

include the right-handed neutrinos. As a result, the neutrinos νe,µ,τ could only be left-handed

and massless. But this is not the case in our real world, as explained later.

Under the CP transform, we have

ēRΦ†lL
CP←→ h.c. (2.29)

Therefore, if we have ye 6= ye∗, the Yukawa interactions will break the CP symmetry ex-

plicitly. However, if we do not have mixing among different generations, then, equivalently

speaking, the Yukawa coupling matrix yeij is diagonal,

yeij = yei δij = |yei |eiαiδij. (2.30)

In this case, one can absorb the phase eiαi into the redefined field of the Dirac fermion

(electron here). This redefinition would be equivalent to having the real Yukawa coupling

yei = ye∗i that conserves the CP symmetry as a result. However, our real world is not so

simple. We realize that yij must be complex and also non-diagonal in order to be responsible

for the CP violation discovered in neutral K-meson decays [33]. Taking the quark sector as

an example, we have the mass term as

(ū1, ū2, ū3)RM
u


u1

u2

u3


L

+ (d̄1, d̄2, d̄3)RM
d


d1

d2

d3


L

+ h.c. (2.31)

The mass matrices Md
ij and Mu

ij contain 9× 2 complex matrix elements. We can diagonalize

the mass matrix by multiplying it by matrix A from the left and matrix B from the right,
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as

A†MB = D, B†M †A = D†,

A†MM †A = DD†, B†M †MB = D†D.
(2.32)

The solution for these equation is M = ADB†. Therefore, before the EWSB, we can write

the isospin gauge eigenstates (u1, u2, u3) and (d1, d2, d3) in terms of the mass eigenstates

(u, c, t) and (d, s, b) as
u1

u2

u3


L,R

= UL,R


u

c

t


L,R

,


d1

d2

d3


L,R

= DL,R


d

s

b


L,R

, (2.33)

which diagonalizes the mass matrices

U †RM
uUL =


mu 0 0

0 mc 0

0 0 mt

 , D†RM
dDL =


md 0 0

0 ms 0

0 0 mb

 . (2.34)

Here UL,R, DL,R are unitary matrices. Therefore, we can rewrite the Yukawa interaction for

the quark sector in terms of mass eigenstates as

LY = (d̄1, d̄2, d̄3)RM
d


d1

d2

d3


L

(
1 +

η

v

)
+ (ū1, ū2, ū3)RM

u


u1

u2

u3


L

(
1 +

η

v

)
+ h.c.

= (d̄, s̄, b̄)RD
†
RM

dDL


d

s

b


L

(
1 +

η

v

)
+ (ū, c̄, t̄)RU

†
RM

uUL


u

c

t


L

(
1 +

η

v

)
+ h.c.

= (d̄, s̄, b̄)R


md 0 0

0 ms 0

0 0 mb



d

s

b


L

(
1 +

η

v

)
+ (ū, c̄, t̄)R


mu 0 0

0 mc 0

0 0 mt



u

c

t


L

(
1 +

η

v

)
+ h.c.

=
∑
i

(mi
dd̄
i
Rd

i
L +mi

uū
i
Ru

i
L)

(
1 +

η

v

)
+ h.c. =

∑
i

(mi
dd̄
idi +mi

uū
iui)

(
1 +

η

v

)
.

(2.35)

Here mi
dd̄
idi +mi

uū
iui is the Dirac mass term for quarks, where i runs over (d, s, b) for down-

type and (u, c, t) for up-type quarks in the sums. The weak charge current can be written
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in terms of the mass eigenstates as well

J+
µ = (ū1, ū2, ū3)Lγµ


d1

d2

d3


L

= (ū, c̄, t̄)LU
†
LDLγµ


d

s

t


L

(2.36)

We can define a unitary 3 × 3 matrix V = U †LDL, which is called Cabibbo-Kobayashi-

Maskawa (CKM) mixing matrix. The CKM matrix can be parameterized in terms of three

Euler angles (θ12,13,23) and one CP-violation phase δ,

V =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(2.37)

where cij = cos θij and sij = sin θij. As a result, there is only one degree of freedom (the δ

phase here) corresponding to the CP violation in the SM. If we only have 2 generations, the

CKM matrix would be reduced to the 2× 2 Cabibbo rotation matrix

V =

 cos θc sin θc

− sin θc cos θc

 . (2.38)

In such case, there is no degree of freedom accounting for the CP violation. We need at least

3 generations to get the CP-breaking effect.

2.5 The SM parameters

Up to this stage, we are able to count all parameters in the Standard Model. First, we

have 3 gauge couplings g1,2,3 corresponding to the 3 gauge groups. In the Higgs sector, we

have 2 parameters µ2, λ. In the Yukawa sector, we have the masses corresponding to all the

massive fermions,

me,mµ,mτ ,md,ms,mb,mu,mc,mt. (2.39)

The CKM matrix has 4 parameters, θ12, θ13, θ23, δ. Therefore, we have 18 parameters so far

in the SM, and all of them correspond to observables which have to be determined from

the experimental measurements. As we mentioned in Chapter 1, no symmetry forbids the
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strong CP violation term θ
g23

32π2GµνG̃
µν in the QCD, and the θ value also has to be measured

experimentally. That is why someone quote that the SM contains 19 free parameters in

total, depending on how you count.

As we know, neutrino oscillations were first implied by the solar neutrino problem [34,

35], then observed by the Super-Kamiokande Observatory (SuperK) [36] and the Sudbury

Neutrino Observatories (SNO) [37]. From these experiments, we know that neutrinos have

mass: therefore, we have to add the right-handed neutrinos νR and the corresponding Yukawa

couplings yνij to the Standard Model in order to account for this effect:

Lν = yνij ν̄RiΦ̃
†lLj + h.c., Mν

ij =
1√
2
yνijv. (2.40)

Similarly to the quark sector, the Yukawa couplings can have complex values and couple to

different generations, which will introduce the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

mixing matrix [38, 39, 40, 41]. While the quarks are known to be Dirac fermions, we do not

know whether the neutrinos are Dirac or Majorana fermions. If the neutrinos are Majorana

fermions, which means that the antineutrinos are the same fields as neutrinos, we would

expect to observe the neutrinoless double beta (0ν2β) decay, shown in Figure 2.3. However,

we have not observed this phenomenon up to now, leaving us a puzzle to be resolved in the

future.

Figure 2.3: A representative Feynman diagram of neutrinoless double beta decay.
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We can parameterize the PMNS mixing matrix similarly to the CKM one, with a slight

difference:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



eiα1/2 0 0

0 eiα2/2 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



eiα1/2 0 0

0 eiα2/2 0

0 0 1

 .

(2.41)

Here we may have two phase factors α1,2 if neutrinos are Majorana fermions. If the neutrinos

are Dirac fermions, we can absorb the phase factors into the redefinition of Dirac fields.

Therefore, the α1,2 will disappear for the Dirac case. Instead, for the Majorana case, we can

only absorb one phase into one generation of neutrino, while the relative phase difference

α1,2 would remain. Therefore, there are 3 mass parameters m1,2,3, three Euler angles θ12,13,23

and 1 CPV phase term δ for the Dirac neutrinos (and 2 more phase factors α1,2 for the

Majorana case). Therefore, we have 7 (9 for Majorana case) more parameters to be added

into the SM. In summary, the modified SM contains 26 (28) free parameters in total.

2.6 Determinations of SM parameters

Starting from the SM Lagrangian, we can obtain Feynman rules. The gauge-field coupling

to the leptons can be written in terms of

Lg−l =l̄Lγ
µ(g2

~τ

2
· ~W ′

µ − g1
1

2
Bµ)lL − ēRg1γ

µB′µeR

=g2(
1

2
l̄L~τγ

µlL) ~W ′
µ +

1

2
g1(−l̄LγµlL − 2ēRγ

µeR)B′µ

=g2(Jµ1W
′
1µ + Jµ2W

′
2µ) + (g2J

µ
3W

′
3µ +

1

2
g1J

µ
YB
′
µ)

=LCC + LNC .

(2.42)

We separate the Lg−l term into the charged and neutral current parts, LCC and LNC . The

charged current part can be written as

LCC = g2(Jµ1W
′
1µ + Jµ2W

′
2µ) =

g2

2
√

2
(J−µW−

µ + J+µW+
µ ), (2.43)

where the charged current is defined as

J−µ = 2(J1µ − iJ2µ) = l̄L(τ 1 − iτ 2)γµlL = 2l̄Lτ
−γµlL = ēγµ(1− γ5)ν. (2.44)
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Similarly, we have J+µ = 2(J1µ + iJ2µ). The Feynman rules for the respective coupling

factors are drawn in Figure 2.4. When scattering energies are much lower than MW,Z , we

i g2√
2
PLVij i g2

cW
(gV − gAγ5)

ZµW+
µ

ieQfγµ

Aµ

Figure 2.4: Feynman rules for EW gauge boson couplings to fermions.

can replace a subgraph containing W or Z propagators between qq̄W or qq̄Z vertices by an

effective four-fermion coupling, shown in Figure 2.5. Therefore, we have

LCCeff = lim
q2→0

(
g2

2
√

2

)
J−µ

gµν
q2 −m2

W

(
g2

2
√

2

)
J+ν =

−g2
2

8m2
W

J−µ J
+µ. (2.45)

By comparing with the effective Lagrangian Leff = −GF√
2
J†µJ

µ [42, 43] of the V-A current-

−ig2
2
√
2 i

q2−m2
W

−i g2
2
√
2

iGF√
2=⇒

q2 ≪ m2
W

Figure 2.5: The Feynman diagram for the low-energy four-fermion interaction.

current theory, we can obtain
GF√

2
≡ g2

2

8M2
W

=
1

2v2
=⇒ v = (

√
2GF )−1/2 = 246.22 GeV. (2.46)

Here GF = 1.1663787× 10−5 GeV−2 is taken from the latest Review of Particle Physics [23].
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Considering the neutral current, we have

LNC = g2J
µ
3W

′
3µ +

1

2
g1J

µ
YB
′
µ

= gJµ3 (cWZµ + sWAµ) + g1tW (JµQ − Jµ3 )(−sWZµ + cWAµ)

= gsWJ
µ
QAµ +

g

cW
Jµ0 Zµ.

(2.47)

Here we introduce the notation tW ≡ tan θW . We can define

e ≡ gsW ,

Jµ0 ≡ Jµ3 − s2
WJ

µ
Q = l̄γµ(gV − gAγ5)l,

gV ≡ T 3
L − 2Qfs

2
W , gA ≡ T 3

L,

(2.48)

where T 3
L = τ 3/2. As a consequence, we have the neutral currents for the neutrino and

electron respectively as

Jµ0ν = ν̄Lγ
µ(

1

2
− 1

2
γ5)νL =

1

2
ν̄γµ(1− γ5)ν and

Jµ0e = ēLγ
µ(−1

2
+ 2s2

W +
1

2
γ5)eL + ēRγ

µ(+2s2
W )eR = −1

2
eγµ(1− 4s2

W + γ5)e.
(2.49)

Similarly to the charged current, we can also have effective 4-fermion interactions for the

neutral current as

LNCeff = lim
q2→0

g2
2

4c2
W

Jµ†0ν

gµν
q2 −m2

Z

Jµ0e =
−g2

2

16m2
Zc

2
W

[ν̄γµ(1− γ5)ν][eγµ(1− 4s2
W + γ5)e]. (2.50)

Afterwards, we can define one dimensionless measure of the relative strength of neutral and

charged-current interactions in the 4-fermion interactions as [44, 45]

ρ ≡ m2
W

m2
Zc

2
W

=
1
4
g2

2v
2

1
4
(g2

1 + g2
2)v2 g22

g21+g22

= 1. (2.51)

If we use the tree-level relation between the W and Z boson mass, we obtain ρ = 1.

The electric couplings can be determined in terms of the fine-structure constant,

α ≡ e2

4π
≈ 1

137
, e =

√
4πα ≈ 0.3028. (2.52)

Many other EW parameters were measured very precisely, such as

s2
W = 0.23126, mW = 80.385 GeV, mZ = 91.1876 GeV. (2.53)

Together with the VEV v = 246.22 GeV, we can fix the gauge couplings g1,2. The fermion

(quark and lepton) mass and CKM matrix elements are all measured precisely in various

experiments. The specific values can be found in the latest Review of Particle Physics [23].

The last parameter to discuss is the quartic coupling λ or the µ parameter in the Higgs

sector, which have also been determined by the Higgs mass [14, 15],

mH =
√

2µ = 125 GeV, λ =
m2
H

2v2
= 0.129. (2.54)
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Chapter 3

Electroweak symmetry breaking beyond the Standard Model

In the last chapter, we reviewed the EW theory of the SM. We also mentioned that

neutrinos have nonzero masses, as indicated by the neutrino oscillation experiments. It is a

hint suggesting that the SM is not complete. In this chapter, we will start with the seesaw

mechanism to solve the neutrino mass problem, and then move to discuss the scalar triplet

models.

3.1 Seesaw mechanism

As discussed in Chapter 2, the neutrino must be massless in the original version of the SM

written down by Steven Weinberg [3], which contradicts the neutrino oscillation experiments

[34, 35, 36, 37]. We have also proposed to solve this problem, by adding right-handed

neutrinos.

However, experiments also tell us the neutrino must be superlight. The most stringent

upper bound on the ν̄e mass from scattering experiment is

mν̄e < 2.05 eV at 95% CL, (3.1)

obtained in the Troitsk experiment [46, 47]. A similar result is obtained by the Mainz

experiment [48]: mν̄e < 2.3 eV at 95% CL. The Cosmic Microwave Background (CMB) data

of WMAP and PLANCK indicate
∑

jmj . 0.3− 1.3 eV [49]. The latest combined analysis

of the Planck CMB temperature spectrum and Baryon Acoustic Oscillations (BAO) lowers

the limit to [50] ∑
j

mj < 0.170 eV at 95% CL. (3.2)

As a result, we obtain a large hierarchy between the mass of neutrinos and charged

leptons or quarks. More specifically, the lightest charged lepton is the electron, whose mass

is me = 0.511 MeV. We obtain at least an order of 106 difference between masses of the

charged and neutral leptons. As we know, the electron and neutrino both acquire mass
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through Yukawa interactions; so the mass hierarchy means the Yukawa couplings also differ

by many orders of magnitude.

One straightforward way to generate such small neutrino masses is the well-known See-

saw Mechanism. In an effective field theory (EFT), we can write down a lepton-number

violating interaction,

Leff =
c

Λ
(L̄cΦ̃∗)(Φ̃†L). (3.3)

This is the only one mass dimension-5 operator that we may have, originally written down by

Steven Weinberg [51]. After the Higgs develops a VEV, 〈0|Φ̃|0〉 = (v, 0)T/
√

2, the neutrino

would acquire mass as

mν =
c

Λ

v2

2
, (3.4)

where v = 246 GeV. We can easily see how the seesaw mechanism works: when Λ � v,

mν � v.

3.1.1 Type-I seesaw mechanism

There are several ways to obtain this seesaw mechanism. In Chapter 2, we have already

added right-handed neutrinos into the SM, and also discussed the possibility of Majorana

neutrinos. Therefore, we can add a Majorana mass term together with the Yukawa coupling

in the Lagrangian,

Lν = yν ν̄RΦ̃†lL +
1

2
MνTRCνR + h.c. (3.5)

If we separate the left-handed and right-handed neutrinos,

ν = νL + Cν̄TL , N = νR + Cν̄TR , (3.6)

we get the mass mass matrix for the ν and N , 0 mD

mT
D M

 , mD = yν
v√
2
. (3.7)

Here the Dirac mass term proportional to mD comes from the Yukawa coupling. Diagonal-

izing this matrix would give us the mass value as

mν,N =
M

2

(
1∓

√
1− 4m2

D

M2

)
M�mD−−−−→ m2

D

M
,M. (3.8)

Therefore, we have the light neutrino mass,

mν =
m2
D

M
=
y2v2

2M
. (3.9)
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This can be also understood in an EFT way. The Feynman diagram for the scattering process

is shown in the left panel of Figure 3.1. After integrating out the heavy particle N , we get

the mass term for the y2v2

M
ν̄ν.

ν
ν

N

H H
H H

∆

ν ν
ν

ν

Σ

H H

Figure 3.1: Three basic seesaw mechanisms to give neutrino small mass.

If we require the Yukawa coupling to be order of one, y ∼ O(1), we can estimate the

heavy neutrino mass to be

M =
yv2

2mν

∼ 12(100GeV)2

1eV
∼ 1013 GeV. (3.10)

3.1.2 Type-II seesaw

The heavy right-handed neutrino is not the only solution for getting a small neutrino

mass. In an alternative approach, we can introduce a scalar isospin SU(2)L triplet ∆ =

(δ++, δ+, δ0)T with hypercharge Y = 2 in addition to the SM scalar doublet. The electric

charge is assigned by Q = T 3
L +Y/2, where T 3

L = diag(1, 0,−1) is the third component of the

triplet representation of the SU(2)L group. We can convert this triplet into a 2× 2 matrix

representation as

∆ =

δ+/
√

2 δ++

δ0 −δ+/
√

2

 . (3.11)

Using this notation, we can write down the following new Lagrangian:

L = Tr[(Dµ∆)†(Dµ∆)]−M2
∆Tr(∆†∆)− µΦ̃T iτ2∆Φ̃ + ylTLCiτ2∆LlL + h.c. (3.12)

The triplet will develop a VEV after the Spontaneous Symmetry Breaking (SSB),

〈∆〉 =

 0 0

v∆ 0

 , v∆ '
µv2

2M2
∆

. (3.13)
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The value of the triplet VEV v∆ in Equation (3.13) is approximate, and its exact value

depends on the specific structure of the full scalar potential for both doublet and triplet scalar

fields. As a result, the neutrino will obtain mass through the triplet Yukawa interactions,

mν = 2yv∆ = y
µv2

M2
∆

. (3.14)

The Feynman diagram that generates this mass can be viewed in the middle panel of Figure

3.1.

Performing a simple estimation, we have

O(y) ∼ 1,mν ∼ 1 eV, v ∼ 100 GeV,M∆ ∼ 1 TeV, µ ∼ 1 keV. (3.15)

We can see a big advantage in this mechanism: every scale is within the experimentally

accessible range, which means we can test this idea at current and future colliders.

3.1.3 Type-III seesaw

Finally, let us take a glimpse at the Type III seesaw mechanisms. Instead of the scalar

triplet, we can add a fermion (isospin) triplet with hypercharge Y = 0 into the SM and write

it in the 2× 2 matrix representation as

Σ =

Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

 . (3.16)

Therefore, we can write the following additional Lagrangian:

L = Tr[Σ̄ /DΣ] +
1

2
TrΣ̄mΣΣc +

√
2Y Φ̃†Σ̄lL + h.c. (3.17)

After the doublet Higgs develops a VEV, we can integrate out the heavy-fermion triplet and

obtain the neutrino mass term as

mν =
v2

2
yT

1

mΣ

y, (3.18)

as shown in the right diagram of Figure 3.1. When mΣ � v, we obtain a small neutrino

mass, mν � v. Similarly to the Type-I seesaw, the heavy fermion mass can be estimated as

mΣ ∼ 1013 GeV when y ∼ O(1).

3.2 Scalar Triplets

In the last section, we mentioned that the scalar triplet VEV depends on the specific

scalar potential in the Type-II seesaw mechanism. We will explore the general properties of

the scalar triplet and some related issues in this section.

26



3.2.1 ρ parameter

Among the 3 types of seesaw mechanisms, we see that only the Type-II seesaw can bring

the mass of the heavy particle down to EW scale, which opens the possibility to test this

mechanism at colliders. However, this model is not free of problems. For example, to get

the neutrino mass mν = 2yv∆ ∼ 1 eV� v, we need either to fine-tune the Yukawa coupling

y � 1 or to take the limit v∆ � v. As pointed out already in Chapter 1, the triplet Yukawa

operator ylTLCiτ2∆LlL violates the lepton number. We have not observed lepton number

violation processes in experiments yet, which means the associated Yukawa couplings must

be very small. Therefore, we will accept that these Yukawa couplings are small and even set

them to zero. We will refer to this choice as fermiophobic. On the other hand, the triplet

VEV v∆ will quantify its contribution to the electroweak symmetry breaking (EWSB) in the

following way:

ρ =

∑
i[Ii(Ii + 1)− (I3

i )2]v2
i

2
∑

i(I
3
i )2v2

i

. (3.19)

Here Ii is the SU(2)L isospin, and I3
i is the third component for the scalar field i which

develops VEV vi. For the SM doublet Higgs Φ, the isospin is I = 1/2, while I3 = ±1/2, and

we naturally have ρ = 1, i.e.

∆ρ = ρ− 1 =
[I(I + 1)− 3(I3)2]v2

2(I3)2v2
= 0. (3.20)

The experiments strongly constrain this parameter to be small at a very high precision [23],

∆ρ = (0.39± 0.19)× 10−3. (3.21)

For the isospin triplet I = 1, the third component can be I3 = −1, 0,+1. In a Higgs model

only involving triplet scalars (no doublets or other representations), such as Georgi-Glashow

SO(3) Model [52] generalized by T. D. Lee [53, 54], we would have

∆ρ =
−v2

+ + 2v2
0 − v2

−

2(v2
+ + v2

−)
. (3.22)

We can very easily get a non-zero contribution to this ρ-parameter if the triplet model is

not carefully constructed, which would be easily excluded by the experimental data. One

straightforward way to escape this constraint is to add a triplet together with the Standard

Model doublet H, and to take the triplet VEV to be small v∆ � vH . For example,

∆ρ =
−v2

+ + 2v2
0 − v2

−

2(1
4
v2
H + v2

+ + v2
−)
, |∆ρ| < 2v2

max
1
2
v2

< 10−3 =⇒ vmax < 4 GeV. (3.23)

Here we have used the total EWSB v2
H + 4(v2

+ + v2
−) = v2 = 246 GeV.
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However, this small triplet VEV bears a disadvantage when embedded into the Standard

Model. It behaves almost the same way as in the Standard Model, which makes it almost

impossible for the triplet signals to be observed above the Standard Model backgrounds. For

example, the doubly charged Higgs coupling to vector bosons,

gH±±W∓µ W∓ν = ig2v∆g
µν , (3.24)

proportional to v∆, will disappear in the v∆ → 0 limit. Therefore, we need to come up with

a technique to increase the v∆ value, without violating the ρ-parameter constraint. When

looking at the form of ∆ρ in Equation (3.23), we see that the ∆ρ = 0 implies v± = v0, which

is a natural consequence of a global symmetry called custodial symmetry [55]. Starting

with the Standard Model, we need at least 2 more triplets: a real scalar giving triplet the

VEV v0 with isospin 0, and a complex one giving v± with isospin ±1. This is the well-known

Georgi-Machacek (GM) model [24].

3.2.2 The Georgi-Machacek Model

In the GM model, we have one SM doublet Higgs H (Y = 1), one real triplet Higgs with

hypercharge η, and one complex Higgs χ with hyper-charge Y = 2. We can write these fields

in a matrix form as

Φ =

φ0∗ φ+

φ−, φ0

 , ∆ =


χ0∗ η+ χ++

χ− η0 χ+

χ−− η− χ0

 . (3.25)

Sometimes, we also use (H+, H0)T to denote the doublet Higgs. The matrix form transforms

under the global SU(2)L ⊗ SU(2)R symmetry as

Φ→ ULΦU †R, ∆→ UL∆U †R. (3.26)

Therefore, we can construct the scalar potential in a global SU(2)L⊗SU(2)R invariant way,

V (Φ,∆) =
µ2

2

2
Tr(Φ†Φ) +

µ2
3

2
Tr(∆†∆) + λ1

[
Tr(Φ†Φ

)
]2 + λ2Tr(Φ†Φ)Tr(∆†∆)

+ λ3Tr(∆†∆∆†∆) + λ4

[
Tr(∆†∆)

]2 − λ5Tr(Φ†τaΦτ b)Tr(∆†ta∆tb).

(3.27)

Here, the τa,b and ta,b are generators for the SU(2) group in the 2 × 2 and 3 × 3 matrix

representations, respectively, and a, b = 1, 2, 3. The original version of the GM model does

not contains the cubic term, as it violates a Z2 symmetry. However, if we relax this Z2
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symmetry, we would allow 2 cubic terms as

∆V = −M1Tr(Φ†τaΦτ b)(U∆U †)ab −M2Tr(∆†ta∆tb)(U∆U †)ab, (3.28)

where the matrix U is

U =


−1/
√

2 i/
√

2 0

0 0 1

1/
√

2 i/
√

2 0

 . (3.29)

We will see these 2 cubic terms are necessary when we supersymmetrize this model in Section

5.

After the spontaneous symmetry breaking (SSB), both doublet and triplet scalars will

develop vacuum expectation values. As a result, the global SU(2)L×SU(2)R will break into

a subgroup. Since the vacuum conserve charge, only neutral components can allow VEVs,

〈φ0〉 =
vH√

2
, 〈χ0〉 = vχ, 〈η0〉 = vη. (3.30)

Other charged fields’ VEVs are zero. Therefore, we would get the scalar potential in terms

of the VEVs as

V (vH , vχ, vη). (3.31)

As the VEV minimize this scalar potential, we can obtain the tadpole equations

0 =
∂V

∂vH
, 0 =

∂V

∂vχ
, 0 =

∂V

∂vη
, (3.32)

which will give us the VEVs. Similar to the treatment in the SM, we could also use these 3

tadpole equations to substitute 3 Lagrangian parameters with these 3 VEVs.

We have 9 free parameters in total in the scalar potential, which leaves us a enough

degree of freedom to impose a global custodial symmetry,

〈Φ〉 SU(2)C−−−−→ UV 〈Φ〉U †V = 〈Φ〉, 〈∆〉 SU(2)C−−−−→ UV 〈∆〉U †V = 〈∆〉. (3.33)

That is, we require the left and right unitary matrix to be the same, UL = UR = UV , in the

SU(2)L⊗SU(2)R transformation. Under this symmetry, the VEVs must take the alignment

form as

〈Φ〉 =
1√
2

vH 0

0 vH

 , 〈∆〉 =


v∆ 0 0

0 v∆ 0

0 0 v∆

 . (3.34)
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That is to say, the custodial symmetry is equivalent to the VEV alignment condition vχ =

vη = v∆. We would like to remind that, the custodial symmetry is not a unique solution to

the tadpole equations, but a prior assumption to be imposed.

As we indicated before, this custodial symmetry will ensure the alignment of the triplet

VEV v± = v0. As a result, it naturally satisfies ∆ρ = 0 at tree level. Both the doublet and

triplet VEVs will contribute to the EWSB,

v2
H + 8v2

∆ = v2 = (246 GeV)2. (3.35)

The EWSB will be associated with the global symmetry breaking SU(2)L ⊗ SU(2)R →
SU(2)C . In terms of the Goldstone theorem, we would expect to obtain 3 massless bosons

to be eaten by the gauge bosons W±, Z to acquire mass.

We can shift the scalar field in terms of the the VEV as

φ0 =
vH√

2
+
φ0
R + iφ0

I√
2

, χ0 = v∆ +
χ0
R + iχ0

I√
2

, η0 = v∆ +
η0
R + iη0

I√
2

(3.36)

Then, the matrix form of the gauge eigenstates can be decomposed into the custodial basis.

In terms of the 2⊗ 2 = 1⊕ 3 and 3⊗ 3 = 1⊕ 3⊕ 5 decompositions, we will get 2 singlets, 2

triplets, and 1 quintuplet. The quintuplet is fully composed of the isospin triplet

H±±5 = χ±±, H±5 =
χ± − η±√

2
, H0

5 = −
√

1

3
χ0
R +

√
2

3
η0, (3.37)

with the squared mass

m2
5 =

M1

4v∆

+ 12M2v∆ +
3

2
λ5v

2
φ + 8λ3v

2
∆. (3.38)

The physical 1 triplets come from the mixing between the isospin doublet and triplet. In the

custodial basis, we can define the custodial triplet as

δ±3 =
χ± + η±√

2
, δ0

3 = χ0
I ; φ±3 = φ±, φ0

3 = φ0
I . (3.39)

The squared mass matrix is diagonalized into one zero eigenvalue, while another one as

m2
3 =

M1

4v∆

(v2
H + 8v2

∆) +
λ5

2
(v2
H + 8v2

∆) = (
M1

4v∆

+
λ5

2
)v2, (3.40)

which corresponds to one massless Goldstone boson and another massive triplet as

G±3 = cHφ
±
3 + sHδ

±
3 , G0

3 = cHφ
0
I + sHχ

0
I ,

H±3 = −sHφ±3 + cHδ
±
3 , H0

3 = −sHφ0
I + cHχ

0
I .

(3.41)

Here we have defined

cH ≡ cos θH =
vH
v
, sH ≡ sin θH =

2
√

2v∆

v
. (3.42)

1Here the physical state means the mass eigenstate.
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Degeneracy
GM

scalar pseudoscalar
singlet h,H
triplet G3, H3

quintuplet H5

Table 3.1: The mass spectrum of the GM model

Similarly, we have the custodial singlets as

δ0
1 =

√
2χ0

R + η0√
3

, φ0
1 = φ0

R. (3.43)

The squared mass matrix is

M2 =

M2
11 M2

12

M2
21 M2

22

 , (3.44)

where

M2
11 = 8λ1v

2
H ,

M2
12 =

√
3

2
vH [−M1 + 4(2λ2 − λ5)v∆],

M2
22 =

M1v
2
H

4v∆

− 6M2v∆ + 8(λ3 + 3λ4)v2
∆.

(3.45)

Diagonalizing this squared mass matrix will give us the squared mass of the physical singlets,

h = cαφ
0
1 − sαδ0

1, H = sαφ
0
1 + cαδ

0
1, (3.46)

where the cα ≡ cosα, sα ≡ sinα and the angle α is defined in terms of

sin 2α =
2M2

12

m2
H −m2

h

, cos 2α =
M2

22 −M2
11

m2
H −m2

h

, (3.47)

and

m2
h,H =

1

2

[
M2

11 +M2
22 ∓

√
(M2

11 −M2
22)2 + 4(M12)2

]
. (3.48)

We summarize the physical spectrum of the GM model in Table 3.1. One of the singlets

in h,H can be interpreted as the SM-like 125 GeV Higgs, which can be either the lighter

one h or the heavier one H. We can count the parameters in this model. Starting from

the Standard Model, adding the isospin triplets, and writing the scalar potential, we have

quadratic terms µ2
2,3, cubic terms M1,2 and the quartic terms λ1,2,3,4,5. With the tadpole

equations, we can replace two of them with the VEVs of the doublet vH and triplet v∆, and

we choose to replace µ2
2,3. The EWSB and the Higgs mass will fix two of these parameters
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as

v2
H + 8v2

∆ = v2 = (246 GeV)2, mh,H = 125 GeV. (3.49)

As a result, we will have 7 free parameters in this model.

3.2.3 Bounds on the GM parameters

The parameters in the GM model are not totally free. For example, the quartic couplings

have to satisfy the perturbative unitary bounds on the 2→ 2 scalar scattering amplitudes,

|a0| ≤ 1, or |Re a0| ≤
1

2
. (3.50)

Here a0 is the zeroth partial wave amplitude, which is related to the matrix element M of

the 2→ 2 process by

M = 16π
∞∑
J=0

(2J + 1)PJ(cos θ)aJ . (3.51)

Here J is the orbital angular momentum, and PJ(cos θ) are the Legendre polynomials. This

unitary bound will constrain the magnitudes of the scalar quartic terms λi. Here we directly

take the results from Reference [56],

− 1

3
π < λ1 <

π

3
, − 2

3
π < λ2 <

2

3
π, − 1

2
π < λ3 <

3

5
π,

− 1

5
π < λ4 <

1

2
π, − 8

3
π < λ5 <

8

3
π.

(3.52)

The Georgi-Machacek (GM) model can provide us with a lot of benefits. As mentioned

in Section 3.2.2, the custodial symmetry will give us naturally ∆ρ = 0 at tree level, which

allow sizable contributions to the EWSB from the triplet sectors. Therefore, we can relax

the constraint of v∆ < 4 GeV in Equation (3.23) to get the following bound:

v∆ <

√
v2 − v2

H

8
≤
√
v2

8
= 87 GeV. (3.53)

This large triplet VEV v∆ will give us large triplet signals, such as the H±±W∓W∓ vertex

mentioned above. In another example, the singlet Higgs h,H coupling to W boson can be

written as

ghW+W− = g0

(
cαcH −

√
8

3
sαsH

)
, gHW+W− = g0

(
sαcH +

√
8

3
cαsH

)
, (3.54)

where g0 = ig2
2v/2 is the SM value. In the large v∆ limit, i.e. sH → 1, we could even get a

larger h(H)W+W− coupling than the SM one, which can be easily measured at colliders.

Upon a more careful consideration, we find that the upper bound of the triplet VEV

v∆ ≤ 87 GeV corresponds to the doublet VEV vH ≥ 0. However, same as in the Standard
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Model, the doublet VEV is responsible for giving nonzero masses to fermions through Yukawa

couplings. There is another perturbative unitary bound which constrains the fermion-fermion

scattering ff̄ → ff̄ , shown in Figure 3.2. The amplitude is

f

f̄

H

f

f̄

Figure 3.2: The fermion-fermion scattering through the intermediate Higgs boson.

M = v̄2iyu1
1

s−m2
H

ū3iyv4. (3.55)

The Mandelstam variable is defined as s = (p1 + p2)2 = 4E2. In the high-energy limit

s� m2
H , we have

v̄2u1 = 2E, ū3v4 = 2E =⇒ M = −y2. (3.56)

Then, we have a unitary bound

|a0| =
y2

16π
≤ 1, y ≤

√
16π. (3.57)

If we include both up- and down-type quarks in the scattering, we would get the zeroth

partial wave amplitude as [57, 58],

|a0|max =
GF

8
√

2π

[
3(m2

1 +m2
2) +

√
9(m2

1 −m2
2)2 + 4m2

1m
2
2(2 + s2

C)2

]
. (3.58)

Here m1,2 are the masses for the up- and down-type quarks, respectively, and sC = sin θC ≤ 1

is a Cabibbo-like angle. When taking the degeneracy limit m1 = m2 = m, we would get

|a0|max =
5GF

4
√

2π
m2 =

5y2

16π
. (3.59)

If we have a pronounced mass hierarchy, such as mt � mb, we would have

|a0| =
3y2

t

16π
≤ 1 =⇒ yt ≤

√
16π/3. (3.60)

The top-quark mass will give us a lower bound on the doublet VEV (vH):

mt =
ytvH√

2
= 175 GeV =⇒ vH =

√
2mt

yt
≥
√

2× 175√
16π/3

= 60 GeV. (3.61)
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From this condition, we can get a more exact upper bound to the triplet VEV,

v∆ =

√
v2 − v2

H

8
≤ 84 GeV. (3.62)
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Chapter 4

Supersymmetry in the electroweak sector

In the previous chapter, we showed that the custodial symmetry existing in the Higgs

triplet model of the Georgi-Machacek type enforces the condition ρ = 1 at tree level, thus

circumventing an important constraint on new physics models imposed by experimental

measurements. In this chapter, we will discuss 1-loop electroweak corrections to the GM

model. We will show that a quadratic divergence that arises in the 1-loop correction to the

ρ parameter can be eliminated by introducing supersymmetry.

4.1 Quadratic divergence

As we discussed in section 3.2.2, the custodial symmetry in the Georgi-Machacek Model

will give us a sizable contribution to the EWSB without violating the ρ-parameter constraint.

The ρ = 1 condition (i.e., ∆ρ = 0) is only held at tree level, as a natural result of the custodial

symmetry. When including higher-oder contributions, we would receive corrections to ∆ρ.

As defined in Ref. [59], the ρ parameter is no longer directly related to vector boson masses.

Instead, it directly probes the gauge boson two-point functions at small p2 as

∆ρ =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (4.1)

where ΠV V (V = W,Z) is the coefficient of −igµν in the vacuum-polarization amplitude of

the gauge boson,

Πµν
V V (p2) = −igµνΠV V (p2), (4.2)

which corresponds to the quantum correction to the transversal component of gauge-boson

self-energy. The scalar contributions to the self-energy of a gauge boson are depicted in Figure

4.1. The left diagram can be removed by the tadpole equations that shift VEVs. With the

power counting rules, the bubble diagram in the middle gives a logarithm divergence (ln Λ2),

and the right one has a quadratic divergence (Λ2). The divergent behavior is systematically

investigated in Reference [60]. The respective contribution to ∆ρ is

∆ρ =
g2

1s
2
H

4πm2
5

Λ2. (4.3)
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This is an explicit example of the custodial symmetry violation caused by hypercharge gauge

interaction U(1)Y . The quadratic divergence comes from the scalars running in the right

loop diagram of Figure 4.1, and also from the fermions running in the middle loop diagram

of Figure 4.1.

Figure 4.1: The self-energy of a vector boson contributed from scalars.

4.1.1 Quadratic divergence in the Higgs self-energy

Actually, the quadratic divergence emerging in ρ parameter is not a new characteristic.

It is well-known for a long time and arises from the corrections to the Higgs mass. In the

Standard Model, we have two kinds of quadratic divergences contributing to the Higgs self

energy, shown in Figure 4.2. Let us briefly review the SM Yukawa interaction for the

iy/
√
2 iy/

√
2 −i3!λv −i3!λv

−i3!λ

Figure 4.2: The quadratic divergence contributing to the Higgs self-energy.

contribution of one fermion flavor f . After the SSB, the shifted Higgs field in the unitary

gauge can be written as Φ = (0, φ)T = (0, v+h√
2

)T . The Yukawa interaction Lagrangian is

LY = yf̄LfRφ+ h.c. =
y√
2
hf̄f +

yv√
2
f̄f. (4.4)

This interaction renders the fermion mass as mf = yv/
√

2 after the SSB, and the fermion-

scalar coupling as iy/
√

2. Therefore, the fermion loop integral in the first diagram of Figure
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4.2 can be written as

Πf
hh(0) = −Nc

∫
d4k

(2π)4
Tr

iy√
2

i

/k −mf

iy√
2

i

/k −mf

= −2y2Nc

∫
d4k

(2π)4

k2 +m2
f

(k2 −m2
f )

2
= −2y2Nc

∫
d4k

(2π)2

[
1

k2 −m2
f

+
2m2

f

(k2 −m2
f )

2

]
.

(4.5)

Here the minus sign is due to the antisymmetry of the fermion loop, and Nc is the color

factor whose value is 1 for leptons and 3 for quarks. We perform the Wick rotation to the

Euclidean space,

k0 → ik0, k
2 → −k2

0 − ~k2 = −k2
E, (4.6)

and compute the first integral as∫
d4k

(2π)4

1

k2 −m2
f

= i

∫
d4kE
(2π)4

1

−k2
E −m2

f

=
−i

(2π)4

∫
k3
EdkEdΩ4

1

k2
E +m2

f

=
−i

16π2

∫ Λ2

0

k2
Edk2

E

k2
E +m2

f

=
−i

16π2

(
Λ2 −m2

f log
Λ2 +m2

f

m2
f

)
,

(4.7)

where we have used the surface area of a Euclidean unit 4-sphere:
∫

dΩ4 = 2π2. This exercise

tells us explicitly that the quadratic divergence emerges in the loop integrals of 1/(k2−m2)

type, which is a simple example of the power counting [61, 62]. The Higgs propagator

can be written as the summation of series as

Ghh =
i

p2 −m2
h

+
i

p2 −m2
h

Πhh
i

p2 −m2
h

+ · · ·

=
i

p2 −m2
h

1

1− Πhh
i

p2−m2
h

=
i

p2 −m2
h − iΠhh

.
(4.8)

We obtain the quadratic divergence in the corrections to the Higgs squared mass as

∆m2
h = iΠhh ∼

−2y2Nc

16π2
Λ2. (4.9)

At the same time, we can get the Higgs self-energy through the self-interaction (quartic

coupling λ) shown in the second and third diagrams of Figure 4.2. In the unitary gauge, the

Higgs potential terms are

Lh = −µ2h2 − λvh3 − λ

4
h4. (4.10)

The Higgs mass is mh =
√

2µ =
√

2λv. The Feynman rules for Higgs self-couplings should

be

Vhhh = −i3!λv, Vhhhh = −i4!
λ

4
= −i3!λ. (4.11)
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where 3! = 6 and 4! = 24 are symmetric factors. Therefore, the self-energy contributed by

the two scalar loops is

ΠS
hh(0) =

∫
d4k

(2π)4
(−i3!λv)

i

k2 −m2
h

(−i3!λv)
i

k2 −m2
h

+

∫
d4k

(2π)4
(−i3!λ)

i

k2 −m2
h

= 6λ

∫
d4k

(2π)4

[
1

k2 −m2
h

+
6λv2

(k2 −m2
h)

2

]
.

(4.12)

When summing over the scalar and fermion contributions to the self energy Πf
hh(0)+ΠS

hh(0),

we would expect a cancellation of the quadratic divergence, if the scalar quartic coupling

and the Yukawa coupling are fixed by a specific relation, such as 6λ − 2Ncy
2 = 0. That is

exactly the condition predicted by the supersymmetry (SUSY).

4.1.2 Cancellation of the quadratic divergence in supersymmetry

Let us play with a toy model to demonstrate how the quadratic divergence is canceled

exactly. Under the SUSY, we will have the scalar superpartners f̃L and f̃R that accompany

the chiral fermion fL and fR. The corresponding interaction can be written as

Lf̃ f̃h = λ|φ|2(|f̃L|2 + |f̃R|2) =
1

2
λh2(|f̃L|2 + |f̃R|2) + vλh(|f̃L|2 + |f̃R|2). (4.13)

Therefore, we obtain the scalar’s contribution to the Higgs self-energy as

Πf̃
hh(0) =−Ncλ

∫
d4k

(2π)4

(
1

k2 −m2
f̃L

+
1

k2 −m2
f̃R

)

+Nc(λv)2

∫
d4k

(2π)2

[
1

(k2 −m2
f̃L

)2
+

1

(k2 −m2
f̃R

)2

]
.

(4.14)

Here mf̃L,R
are the mass for the scalars f̃L,R. If the SUSY is unbroken, we have

mf = mf̃L
= mf̃R

, λ = −y2. (4.15)

Therefore, when summing over the contributions from fermion and scalar (superpartner), we

get the Higgs self-energy as

Πf
hh(0) + Πf̃

hh(0) = 0. (4.16)

Therefore, we explicitly verify the non-renormalization theorem [63]. Generally, in a

supersymmetric model, each spin-0 (scalar) or spin-1 (vector) particle has a spin-1/2 super-

partner, and each spin-1/2 (fermion) particle has a spin-0 (sfermion) superpartner. In such a

way, every divergence is canceled systematically. If the SUSY is broken softly, the coupling

relation λ = −y2 is still valid, but the mass of superpartners are not degenerate anymore,
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i.e. mf 6= mf̃L,R
. As a consequence, the quadratic divergence will be removed, while the

logarithm divergence remains.

4.2 The Minimal Supersymmetric Standard Model

We leave the details of the supersymmetry algebra and superfields to the textbook of

Quantum Field Theory (QFT) such as [64, 65], and move directly to the Minimal Super-

symmetric Standard Model (MSSM).

4.2.1 The superpotential

In order to supersymmetrize the SM, we need to introduce superfields for each field in

the SM, which will result in a superpartner for every particle. As a result, we would have

spin-0 sfermions, such as sleptons and squarks, that accompany spin-1/2 leptons and quarks.

We would also have Majorana fermions called gauginos associated with the gauge boson. For

the scalar Higgs, we will have fermionic higgsinos, such as neutralinos and charginos. All

the superfields are listed in Table 4.1. Just one reminder here: in the Standard Model,

we can have only one scalar Higgs doublet, which gives the mass origins to both up-type

and down-type fermion. The down-type fermions (down-type quarks and electron) couple to

Φ, while the up-type fermions (up-type quarks) couple to the charge conjugate Φ̃ = iτ 2Φ∗.

When supersymmetrizing the SM, we would need to double the number of the scalar fields,

both for the up-type Hu and down-type Hd
1, and couple them separately to the up-type

and down-type superfields in the superpotential. It is required by the holomorphic principle

[63], which means that the superpotential can be only written as a function in terms of the

chiral superfields, but not their complex conjugates. Therefore, we need to introduce another

superfield Hu to take the place of Φ̃ to couple to the up-type fermions. A non-holomorphic

superpotential would lead to holomorphic anomalies that break the non-renormalization

theorem [66, 67].

Furthermore, the non-renormalization theorem also requires the superpotential to be at

most cubic. Therefore, we can only write down the following terms in the MSSM superpo-

tential to satisfy the gauge symmetry SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

W = µHd ·Hu + λeHd · LĒ + λdHd ·QD̄ + λuQ ·HuŪ . (4.17)

1In the following, we will denote Hd,u as H1,2.
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Superfield SU(3)c SU(2)L U(1)Y

L =
(
Lν
Le

)
1 2 −1

Ē 1 1 2

Q =
(
Qu
Qd

)
3 2 1/3

Ū 3̄ 1 −4/3
D̄ 3̄ 1 2/3

Hd =

(
H0
d

H−d

)
1 2 −1

Hu =

(
H+
u

H0
u

)
1 2 1

Table 4.1: The superfields of the MSSM.

The λ terms give us the Yukawa couplings, while only the µ-term is allowed for the Higgs po-

tential. Integrating out the anti-communicating coordinates {θα, θ̄α̇} of the superpotential,

we get the F-term potential as∫
d2θW + h.c.→ VF = F ∗i Fi. =

∣∣∣∣∂W∂Φi

∣∣∣∣2 . (4.18)

In such a way, we get the MSSM F-term potential for the Higgs fields

VF = µ2(|h1|2 + |h2|2). (4.19)

Similarly, integrating the Kahler potential, we get the D-term potential as∫
d4θΦ†eqV Φ→ VD =

1

2

[
D2
Y + ~D2 +DaDa

]
. (4.20)

Here DY , ~D,D
a correspond to the groups U(1)Y , SU(2)L, SU(3)c, respectively:

DY = −g1φ
†Y

2
φ, ~D = −g2φ

†~τ

2
φ, Da = −g3φ

†λ
a

2
φ, (4.21)

where λa/2 are the generators for the SU(3)c group, and λa are the Gell-man matrices. The

Higgs field does not participate in the color group, and as a result, only DY = −g1(−h†d 1
2
hd+

h†u
1
2
hu) and ~D = −g2(h†d

~τ
2
hd + hu

~τ
2
hu) contribute to the Higgs D-term potential as

VD =
G2

8
(|h1|2 − |h2|2|)2 +

g2
2

2
|h†1h2|2, (4.22)

where we define

G2 ≡ g2
1 + g2

2, g1 = G sin θW , g2 = G cos θW . (4.23)
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4.2.2 Soft SUSY breaking

Under supersymmetry, the particle and its superpartner must share the same mass values.

However, we have not yet found any superpartners of the Standard Model particles, meaning

that the SUSY is broken by some unknown mechanism. From the phenomenological point

of view, we can add an effective Lagrangian to break SUSY explicitly, which is called soft

SUSY breaking. In the MSSM, we can have the following soft breaking terms in the Higgs

sector,

Vsoft = m2
1|h1|2 +m2|h2|2 + (Bµh1 · h2 + h.c.). (4.24)

Here m1,2 is the soft mass term, and Bµ is the B-term corresponding to the µ-term in the

superpotential.

By now, we have obtained all the pieces of the Higgs potential for the MSSM,

VH =VF + VD + Vsoft

=
G2

8
(|h1|2 − |h2|2)2 +

g2
2

2
|h†1h2|2 +m1h|h1|2 +m2h|h2|2 + (Bµh1 · h2 + h.c.),

(4.25)

where we redefine the mass parameters as m2
1,2h = m2

1,2 + |µ|2.

The Spontaneous Symmetry Breaking will induce the VEVs as

〈h1〉 =
1√
2

v1

0

 , 〈h2〉 =
1√
2

 0

v2

 , (4.26)

which minimize the Higgs potential,

V (v1, v2) =
1

32
G2(v2

1 − v2
2)2 +

1

2
m2

1hv
2
1 +

1

2
m2

2hv
2
2 −Bµv1v2. (4.27)

The tadpole equations will allow us to replace two parameters with the VEVs. Thus, we

choose m2
1,2h as 

∂V
∂v1

= 0

∂V
∂v2

= 0

=⇒

m
2
1h = Bµ

v2
v1
− 1

8
G2(v2

1 − v2
2),

m2
2h = Bµ

v1
v2

+ 1
8
G2(v2

1 − v2
2).

(4.28)

The kinematical terms of the Higgs fields will give the W and Z boson masses as

mW =
g2

2
v, mZ =

G

2
v, v =

√
v2

1 + v2
2 = 246 GeV. (4.29)

We can define a ratio of two VEVs as

tβ ≡ tan β ≡ v2/v1, v2 = v sin β, v1 = v cos β. (4.30)
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In the following, we will often shorten the trigonometric functions as sβ ≡ sin β and cβ ≡
cos β. We can rewrite the potential in terms of the shifted fields as

h1 =

v1+hR1 +ihI1√
2

h−1

 , 〈h2〉 =

 h+
2

v2+hR2 +ihI2√
2

 . (4.31)

The quadratic terms will give us the mass spectrum of the Higgs scalars and their compo-

nents. For the charged Higgs (h+
1 , h

+
2 ), we have

(h+
1 , h

+
2 )

m2
1h + 1

8
G2(v2

1 − v2
2) + 1

4
g2

2v
2
2 Bµ + 1

4
g2

2v1v2

Bµ + 1
4
g2

2v1v2 m2
2h − 1

8
G2(v2

1 − v2
2) + 1

4
g2

2v
2
1

h−1
h2

2


=

(
Bµ

v1v2

+
1

4
g2

2

)
(h+

1 , h
+
2 )

 v2
2 v1v2

v1v2 v2
1

h−1
h−2

 ,

(4.32)

where m2
1,2h are replaced by v1,2. Diagonalizing this matrix, we will get the mass spectrum

as

m2
G± = 0, m2

H± =

(
Bµ

v1v2

+
1

4
g2

2

)
(v2

1 + v2
2) =

g2
2v

2

4
+

Bµ

cβsβ
. (4.33)

The corresponding physical states are

G± = cβh
±
1 − sβh±2 , H± = sβh

±
1 + cβh

±
2 . (4.34)

The massless Goldstone boson G± will be absorbed by the W± bosons that will acquire

mass.

Similarly, the squared mass matrix for the pseudoscalars (hI1, h
I
2) ism2

1h + 1
8
G2(v2

1 − v2
2) Bµ

Bµ m2
2h − 1

8
G2(v2

1 − v2
2)

 = Bµ

v2/v1 1

1 v1/v2

 . (4.35)

Therefore, we have the mass spectrum

m2
G0 = 0, m2

A =
Bµ

cβsβ
. (4.36)

As expected, we have one massless Goldstone boson G0, which is eaten by the Z boson.

Surprisingly, we obtain the squared mass relation

m2
H± = m2

W +m2
A =⇒ mH± > mA. (4.37)

Doing the same to the scalar fields (hR1 , h
R
2 ), we get

M2 =

M2
11 M2

12

M2
12 M2

22

 =

Bµ + 1
8
G2(3v2

1 − v2
2) −B − 1

4
G2v1v2

−Bµ − 1
4
G2v1v2 Bµ + 1

8
G2(3v2

2 − v2
1)


=

 m2
As

2
β +m2

Zc
2
β −(m2

A +m2
Z)sβcβ

−(m2
A +m2

Z)sβcβ m2
Ac

2
β +m2

Zs
2
β

 .

(4.38)
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The squared mass for this neutral scalars (CP-even) is

m2
h,H =

1

2

[
M2

11 +M2
22 ∓

√
(M2

11 −M2
22)2 + 4(M2

12)2

]
=

1

8
G2v2 +

B

sin 2β
∓ 1

8 sin 2β

√
64B2 − 16BG2v2 cos 4β sin 2β +G4v4 sin2 2β.

(4.39)

We also have the relation of the squared masses:

m2
h +m2

H =
1

4
G2v2 +

B

sin β cos β
= M2

Z +m2
A. (4.40)

The mass eigenstates (h,H) can be expressed as a rotation of the gauge eigenstate

(hR1 , h
R
2 ): H

h

 =

 cosα sinα

− sinα cosα

hR1

hR2

 . (4.41)

The rotation angle is defined from

sin 2α =
2M2

12√
(M2

11 −M2
22)2 + 4(M2

12)2
= −(m2

H +m2
h)

m2
H −m2

h

sin 2β,

cos 2α =
M2

11 −M2
22√

(M2
11 −M2

22)2 + 4(M2
12)2

= −(m2
A −m2

Z)

m2
H −m2

h

cos 2β,

tan 2α =
2M2

12

M2
11 −M2

22

=
m2
A +m2

Z

m2
A −m2

Z

tan 2β =
m2
h +m2

H

m2
A −m2

Z

tan 2β

(4.42)

We have used the following relations:

M2
12 = −(m2

A +m2
Z)sβcβ = (m2

h +m2
H)

sin 2β

2
,

M2
11 −M2

22 = −(m2
A −m2

Z) cos 2β.

(4.43)

One of the neutral scalars (h,H) will be interpreted as the SM-like 125 GeV Higgs [14, 15].

In terms of the squared mass relations (4.37) and (4.40), we get the following mass hierarchy:

max(M2
W ,m

2
A) < m2

H+ , m2
h < min(m2

A,M
2
Z) ≤ max(m2

A,M
2
Z) < m2

H . (4.44)

Let us count the parameters in the Higgs sector of the MSSM. The superpotential only

contains 1 parameter µ, while the soft-breaking terms have 3 parameters: two soft masses

m2
1,2 and one B-term Bµ corresponding to µ in the superpotential. The tadpole equation will

replace 2 parameters with the VEVs as m2
1,2 → v1,2. In addition, the EWSB v = 246 GeV

and the SM-like Higgs mass mh,H = 125 GeV will fix two parameters. As a result, we only

have 2 free parameters in the Higgs sector of the MSSM. Usually, we choose them to be Bµ

and tan β.
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Learning from the GM model, we may impose a custodial symmetry to obtain the aligned

VEVs,

v1 = v2 = v/
√

2 =⇒ tan β = 1 =⇒ β =
π

4
. (4.45)

Therefore, we have cβ = sβ = 1/
√

2, and the specific mass spectrum as

m2
H± = m2

W + 2Bµ, mA = 2Bµ, mh,H = 0,m2
Z + 2Bµ. (4.46)

We only have one free parameter Bµ in such a custodial limit. When inspecting the spectrum

closely, we notice mild mass splitting in the approximate mass triplet (H,H±),

m2
H −m2

H± = m2
Z −m2

W =
1

4
g2

1v
2. (4.47)

It means that the custodial symmetry is slightly broken by the hypercharge interaction

U(1)Y . If we take the g1 → 0 limit, the custodial symmetry is restored. In such limit, the

gauge bosons W± and Z share the same mass as mW = g2v/2 and form a gauge triplet.

We can take another limit Bµ →∞ (i.e., Bµ � G2v2), which gives

m2
H ∼ m2

A ∼ m2
H± ∼

B

sβcβ
→∞. (4.48)

That is m2
H,A,H± � m2

Z . It means that all the non-SM scalar particles are decoupled from

the SM ones. In this decoupling limit, we have

m2
h = m2

Zc
2
β, tan 2α = tan 2β =⇒ 2α− 2β = ±π, cos(α− β) = 0. (4.49)

That is, we have |α− β| → π/2, which is also called the alignment limit [68, 69, 70], since

the Yukawa couplings hff̄ are exactly identical to the SM ones:

hfdf̄d :
sα
cβ

= 1; hfuf̄u :
cβ
sβ

= 1;

Hfdf̄d :
cα
cβ

= tβ; Hfuf̄u :
sα
sβ

= −1/tβ.
(4.50)

4.2.3 Neutralinos and charginos

The MSSM particles in the Higgs sector and the corresponding superpartners are listed in

Table 4.2. Starting with the Kahler potential Φ†eV Φ, we can obtain the gaugino-higgsino-

Higgs coupling term as

−
√

2gT aλaξφ∗ + h.c. (4.51)

where λa is the gaugino for the gauge group generator T a, while ξ and φ are the fermionic

and bosonic component of a Higgs chiral superfield, respectively. After the φ develop a VEV,

we get the mass matrix mixing between the gaugino and the higgsino. We can write down
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boson fermion

Higgs

H1 =

(
h0

1

h−1

)
higgsino

H̃1 =

(
h̃0

1

h̃−1

)
H2 =

(
h+

2
h0

2

)
H̃2 =

(
h̃+

2

h̃0
2

)
B boson B bino B̃
W boson W i wino W̃ i

Table 4.2: Particles and the corresponding super-partners in the MSSM Higgs sector.

the charged gaugino filed (such as the wino) in the same form as the corresponding charged

gauge boson (such as W±),

W̃± =
1√
2

(W̃1 ∓ iW̃2). (4.52)

In the soft-breaking Lagrangian, we have the Majorana mass term to account for heavy

undiscovered gauginos,

L = −1

2
M1B̃B̃ −

1

2
M2W̃

iW̃ i. (4.53)

Therefore, we can write down the mass terms of the charged fermionic superpartner of the

Higgs sector as

Lc = − g2√
2

(v1W̃
+h̃−1 + v2W̃

−h̃+
2 + h.c.)− (M2W̃

+W̃− + µh̃−1 h̃
+
2 + h.c.). (4.54)

With the definition of four-component chargino field as

ψ+ =

W̃+

h̃+
2

 , ψ− =

W̃−

h̃−1

 . (4.55)

The mass term can be written as

− Lc = (ψ−)TXψ+ + h.c., X =

 M2

√
2mW sβ

√
2mW cβ µ

 . (4.56)

When taking the custodial limit,

v1 = v2 =⇒ sβ = cβ =
1√
2

=⇒ X =

M2 mW

mW µ

 . (4.57)

We can diagonalize this mass matrix for fermions with 2 unitary matrices U and V :

M2
c = V X†XV † = U∗XX†UT =

m2
1 0

0 m2
2

 , (4.58)
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boson fermion
singlet h0

1 = −sβh0
d + cβh

0
u h̃0

1 = −sβh̃0
d + cβh̃

0
u

triplet
h+

3 = h+
u h̃+

3 = h̃+
u

h0
3 = cβh

0
d + sβh

0
u h̃0

3 = cβh̃
0
d + sβh̃

0
u

h−3 = h−d h̃−3 = h̃−d
W boson W± = (W 1 ∓ iW 2)/

√
2 wino W̃± = (W̃ 1 ∓ iW̃ 2)/

√
2

Z boson Z = cWW
3 − sWB zino Z̃ = cW W̃

3 − sW B̃
photon γ = sWW

3 + cWB photino γ̃ = sW W̃
3 + cW B̃

Table 4.3: The MSSM particles in rotation basis.

m2
1,2 =

1

2

[
|M2|2 + |µ|2 + 2m2

W ±
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
. (4.59)

In terms of the mass eigenstates of charginos

χ+ =

χ+
1

χ+
2

 = V

W̃+

h̃+
2

 , χ− =

χ−1

χ−2

 = U

W̃−

h̃−1

 , (4.60)

the respective Lagrangian can be rewritten as

−Lc = (ψ−)TUTU∗XV −V ψ+ + h.c. = (χ−)TMcχ
+ + h.c.,

Mc = U∗XV − =

m1 0

0 m2

 .
(4.61)

If taking the limit M2 � µ ∼ mW , we expect to get a wino-like χ+
1 and and a higgsino-like

χ+
2 with masses

m1 ∼M2, m2 ∼ |µ|. (4.62)

Similarly, we get the mass term of the neutralinos in the gauge eigenstate basis ψ0 =

(B̃, W̃ 0, h̃0
1, h̃

0
2),

Ln = −1

2
(ψ0)TMψ0 + h.c., (4.63)

where

M =


M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0

 . (4.64)
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Next, we will express mass terms in the following rotation basis: γ̃
Z̃

 =

 cW −sW
sW cW

 B̃

W̃ 3

 ,

 h̃0
3

h̃0
1

 =

 cβ sβ

−sβ cβ

h̃0
d

h̃0
u

 . (4.65)

We list all the MSSM particles in this rotation basis in Table 4.3. In this basis, the neutralino

mass matrix becomes
M1c

2
W + M2s

2
W (M2 −M1)cW sW 0 0

(M2 −M1)cW sW M2c
2
W +M1s

2
W mZ 0

0 mZ −µ sin 2β µ cos 2β

0 0 µ cos 2β µ sin 2β



tanβ=1,tW=0−−−−−−−−→


M1 0 0 0

0 M2 mZ 0

0 mZ −µ 0

0 0 0 µ

 .

(4.66)

Here the limit corresponds to the custodial v2 → v1 and small hypercharge interaction

g1 → 0,

tan β =
v2

v1

= 1, tW =
g1

g2

= 0. (4.67)

In such a limit, the zino Z̃ only mixes with the neutral component of triplet higgsino h̃0
3.

Another point we see is that the masses of the higgsinos h̃0
1,3 remain of order of the mass

parameter µ. In contrast, the masses of gauginos γ̃, Z̃ are of order the Majorana mass M1,2.

The mass matrix is symmetric and can be diagonalized using a unitary matrix Z,

Z∗MZ† = Mn = diag(m1,m2,m3,m4). (4.68)

The neutralino mass eigenstate can be obtained as

χ0 = Zψ0. (4.69)

The lightest neutralino χ0
1 is the Lightest Supersymmetric Particle (LSP), which is very

stable and weakly interacting with the SM particles. Therefore, it can function as a WIMP-

like (Weakly Interacting Massive Particle) dark matter candidate – the possibility that we

explore as one of the future directions in the last chapter.
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4.3 Two-Higgs-Doublet Model

Up to now, we have discussed the MSSM, which contains 2 doublet scalars. If we for-

get about the superpartner sector and only focus on the scalar Higgs sector, it becomes a

specimen of the generic Two-Higgs-Doublet Model (2HDM). We can write down the most

general scalar potential with 2 complex Higgs doublets H1,2 as

VH = M2
11H

†
1H1 +M2

22H
†
2H2

+ λ1(H†1H1)2 + λ2(H†2H2)2 + λ3H
†
1H1H

†
2H2 + λ4H

†
1H2H

†
2H1

+ (M2
12H

†
1H2 +

λ5

2
H†2H1H

†
2H1 + h.c.).

(4.70)

Using tadpole equations, we can replace M2
11,M

2
22 with the vacuum expectation values v1,2.

Then, we can get the squared mass of pseudoscalar and the charged Higgs bosons as

m2
A = −(λ5 +

M12

v1v2

)(v2
1 + v2

2), m2
H+ = −(

λ4 + λ5

2
+
M12

v1v2

)(v2
1 + v2

2). (4.71)

Here the VEVs satisfy v2 = v2
1 + v2

2 = 1/(
√

2Gf ) = (246.22 GeV)2. Therefore, if fixing

λ4 = λ5, we will get degenerate masses mA = mH+ .

The squared masses of the singlets are

m2
h,H = −M2

12 + (λ1 + λ2)v2
1 ±

√
(M2

12 + (λ3 + λ4 + λ5)v2
1)2 + (λ1 − λ2)2v4

1. (4.72)

One of the (h,H) can be interpreted as the SM-like 125 GeV Higgs. The singlet Higgs

couplings to the W boson are

ghW+W− = g0 sin(β − α), gHW+W− = g0 cos(β − α), (4.73)

where g0 = ig2
2v/2 is the SM value. We can see that these couplings are always smaller than

the SM one, which is different from the GM (or other triplet) model. Similar observations

apply to the H(h)ZZ couplings.

Again we can choose the custodial basis v1 = v2 = v/
√

2. In addition, we can eliminate

the mass dimensional parameter M2
12 by imposing a Z2 symmetry H+

1 → −H−∗1 . In such a

case, the mass splitting for the singlets is

m2
H −m2

h =
√

(λ1 − λ2)2 + (λ3 + 2λ4)2v2. (4.74)

Therefore, we can choose a benchmark point λ1 = λ2, which gives m2
H −m2

h = (λ3 + 2λ4)v2

by assuming λ3 + 2λ4 > 0. In such a case, all the Higgs squared masses are

m2
h = (λ1 −

λ3

2
− λ4)v2, m2

H = (λ1 +
λ3

2
+ λ4)v2, m2

A = m2
H+ = −λ4v

2, (4.75)
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and the squared mass matrix of singlet is

M2 =

 λ1
λ3
2

+ λ4

λ3
2

+ λ4 λ1

 v2. (4.76)

Therefore, we get the rotation angle as

sin 2α =
2M2

12

m2
H −m2

h

= 1 =⇒ α =
π

4
. (4.77)
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Chapter 5

The Supersymmetric Custodial Triplet Model

Now, equipped with the knowledge of supersymmetry and the two-Higgs-doublet elec-

troweak sector in the MSSM, we will supersymmetrize the Georgi-Machacek model to obtain

the Supersymmetric Custodial Triplet Model (SCTM) [71].

5.1 The Higgs scalar potential

As the MSSM case, the holomorphic principle will double the scalar particle contents in

the GM model, as we are not allowed to write down the conjugate of a superfield in the

superpotential. Therefore, besides the 2 MSSM electroweak doublets,

H1 =

H0
1

H−1

 , H2 =

H+
2

H0
2

 , (5.1)

we need 3 triplets Σ−,Σ0,Σ+ with hyperchargess as Y = (−2, 0, 2) [71]. We write them

down in a 2× 2 matrix form,

Σ− =

 χ−√
2
−χ0

χ−− −χ−√
2

, Σ+ =

ψ+
√

2
−ψ++

ψ0 −ψ+
√

2

 , Σ0 =

 φ0√
2
−φ+

φ− − φ0√
2

 . (5.2)

We can organize the fields into bi-doublet and bi-triplet representations of of SU(2)L ×
SU(2)R,

H̄ =

 H1

H2

 , ∆̄ =

−Σ0
√

2
Σ−

−Σ+
Σ0√

2

 . (5.3)

Here we put a bar above the fields to remind us that they are in the SU(2)L⊗SU(2)R basis.

The superpotential can be written in terms of H̄ and ∆̄ as

W = λH̄ · ∆̄ H̄ +
λ∆

3
Tr
{

∆̄∆̄∆̄
}

+
µ

2
H̄ · H̄ +

µ∆

2
Tr
{

∆̄∆̄
}
, (5.4)

and manifestly satisfies the SU(2)L×SU(2)R global symmetry. Here, the antisymmetric dot

product is defined as

X · Y = εabεijX
i
aX

j
b , ε12 = −ε12 = 1, (5.5)

where the upper a, b and lower i, j indices are acted upon by the SU(2)L and SU(2)R groups,

respectively. We have dimensionless parameters λ, λ∆ and mass dimension parameters µ, µ∆.
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With VF = |∂W
∂Φ
|2, we obtain the F-term potential as

VF = µ2 H̄†H̄ + µ2
∆ Tr

{
∆̄†∆̄

}
+ 2λµ

(
H̄†∆̄H̄ + c.c.

)
+ λ2

(
4 Tr

{
(∆̄H̄)† ∆̄H̄

}
+ (H̄†H̄)2 − 1

4
|H̄ · H̄|2

)
+ λ2

∆

(
Tr
{

∆̄†∆̄†∆̄∆̄
}
− 1

4
Tr
{

∆̄†∆̄†
}

Tr
{

∆̄∆̄
})

+ λλ∆

(
H̄ · ∆̄†∆̄†H̄ − 1

4
H̄ · H̄ Tr

{
∆̄†∆̄†

}
+ h.c.

)
+ λµ∆

(
H̄ · ∆̄†H̄ + c.c.

)
+ λ∆µ∆

(
Tr
{

∆̄†∆̄†∆̄
}

+ h.c.
)
.

(5.6)

Also the D-term is derived from Kahler potential with VD = 1
2
D2. The D-term for hyper-

charge gauge is

DY = −g1

2

(
H̄†YHH̄ + Tr

{
∆̄Y∆∆̄

})
= −g1

2

(
−H†1H1 +H†2H2 + 2 Tr

{
−Σ†−Σ− + Σ†+Σ+

}) (5.7)

where

YH =

−1 0

0 1

 , Y∆ =

−2 0

0 2

 . (5.8)

Similarly, we have a D-term for isospin weak gauge SU(2)L,

~D = −g2

2

(
H̄† ~TH̄ + Tr

{
∆̄† ~T ∆̄

})
= −g2

2

(
H†1~τH1 +H†2~τH2 + Tr

{
Σ†−~τΣ− + Σ†0~τΣ0 + Σ†+~τΣ+

})
,

(5.9)

where generator ~T = diag(~τ , ~τ) in the representations of H̄ and ∆̄.

We can impose a G-parity condition:

H̄c = CH̄T = diag(−iτ2,−iτ2)H̄∗, ∆̄c = C∆̄TC = ∆̄†, where C =

 0 1

−1 0

 . (5.10)

In such circumstance, we have

H2 = −iτ2H
∗
1 , Σ− = −Σ†+, Σ0 = Σ†0. (5.11)

More specifically, the component fields satisfy charge conjugate relations:

h0∗
1 = h0

2, h−∗1 = −h+
2 ,

χ0∗ = ψ0, χ−∗ = −ψ+, χ−−∗ = ψ++,

φ0∗ = φ0, φ−∗ = −φ+.

(5.12)

Therefore, we obtain DY = 0 and ~D = 0 because of

H†1H1 = H†2H2, H†1~τH1 +H†2~τH2 = 0,

Σ†−Σ− = Σ†+Σ+, Σ†−~τΣ− + Σ†+~τΣ+ = 0, Σ†0~τΣ0 = 0,
(5.13)
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which means that D-term potential is zero (VD = 0) under the G-parity.

Next, we introduce soft supersymmetry breaking terms. They also respect the SU(2)L⊗
SU(2)R global symmetry,

Vsoft = m2
2H̄
†H̄ +m2

3 Tr
{

∆̄†∆
}

+
(1

2
BH̄ · H̄ +

1

2
B∆ Tr

{
∆̄∆̄

}
+ AλH̄ · ∆̄H̄ +

1

3
A∆ Tr

{
∆̄∆̄∆̄

}
+ h.c.

)
,

(5.14)

Here m2
H ,m

2
∆, B,B∆ have dimension of squared mass, while A,A∆ have dimension of mass.

We will see that B,B∆ will help us to decouple the non-GM spectrum, similarly to the

MSSM that decouples the SM particles.

After the SSB, the neutral scalars will develop VEVs:

〈H0
1 〉 = v1/

√
2, 〈H0

2 〉 = v2/
√

2,

〈χ0〉 = vχ/
√

2, 〈ψ0〉 = vψ/
√

2, 〈φ0〉 = vφ/
√

2.
(5.15)

VEVs for other charged scalars must be zero, as the vacuum must be neutral to conserve

charge. These VEVs minimize the scalar potential V (v1, v2, vχ, vφ, vψ) and, therefore, we

have the tadpole equations,
∂V

∂v1

=
∂V

∂v2

=
∂V

∂vχ
=
∂V

∂vφ
=
∂V

∂ψ
= 0. (5.16)

With these five tadpole equations, we can replace the Lagrangian parameters by the respec-

tive VEVs. As in the GM model, we can impose a custodial symmetry, which will require

the VEVs to be aligned, that is,

vd = vu = v2, vχ = vψ = vφ = v3. (5.17)

The Higgs kinematical terms will give the gauge boson masses as

2v2
2 + 8v2

3 = v2 = (246 GeV)2, mW =
g2v

2
, mZ =

√
g2

1 + g2
2v

2

2
. (5.18)

Recalling that the EWSB in the GM model satisfies v2
H + 8v2

∆ = v2, we find from Equation

(5.18) that the VEVs in the GM and SCTM models are related as

v2 = vH/
√

2, v3 = v∆. (5.19)

Similarly, we can define the VEV angle θH as

cH = cos θH =

√
2v2

v
, sH = sin θH =

2
√

2v3

v
. (5.20)

Let us count the parameters in the Higgs sector of the SCTM model. The superpotential

contains 2 cubic terms λ, λ∆ and 2 quadratic terms µ, µ∆. Correspondingly, we have the 2

A-terms A,A∆ and 2 B-terms B,B∆ in the soft SUSY breaking terms. Furthermore, we have

two soft-mass terms m2
2,3 for the doublet and triplet, Consequently, we have 10 parameters
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in total. Two of them can be replaced be the 2 VEVs v2,3 – we choose to replace the soft

masses m2
2,3,

m2
2 =

1

2

[
−3λ2v2

2 − 3λv2
3(3λ+ λ3)− 2µ2 + 3

√
2λv3(2µ+ µ∆)− 2B + 3

√
2Av3

]
,

m2
3 =

1

2v3

[
v3(−2λ2

3v
2
3 + 3

√
2λ3v3µ∆ − 2µ2

∆) + λv2
2

(
−2v3(3λ+ λ3) +

√
2(2µ+ µ∆)

)
− 2v3B∆ +

√
2v2

2A+
√

2v2
3A∆

]
.

(5.21)

5.2 The mass spectrum

We decompose the Higgs field representations as 2⊗ 2 = 1⊕ 3 and 3⊗ 3 = 1⊕ 3⊕ 5:

H̄ = h1 ⊕ h3, ∆̄ = δ1 ⊕ δ3 ⊕ δ5, (5.22)

where the subscripts represent the dimensionality of the SU(2)V representations. Hence, we

can write the isospin doublet H̄ in the custodial basis,

h0
1 =

1√
2

(H0
1 +H0

2 ),

h+
3 = H+

2 , h
0
3 =

1√
2

(H0
1 −H0

2 ), h−3 = H−1 .
(5.23)

Similarly, the isospin triplet ∆̄ can decomposed as

δ0
1 =

φ0 + χ0 + ψ0

√
3

,

δ+
3 =

ψ+ − φ+

√
2

, δ0
3 =

χ0 − ψ0

√
2

, δ−3 =
φ− − χ−√

2
,

δ++
5 = ψ++, δ+

5 =
φ+ + ψ+

√
2

, δ0
5 =
−2φ0 + ψ0 + χ0

√
6

, δ−5 =
φ− − χ−√

2
, δ−−5 = χ−−.

(5.24)

All fields components are complex. After the EWSB, the global symmetry SU(2)L⊗SU(2)R

will break into a subgroup SU(2)V . We can shift the fields around the VEVs as

h0
1 = v2 +

h0
1R + ih0

1I√
2

, δ0
1 =

√
3

2
v3 +

δ0
1R + iδ0

1I√
2

,

ha3 =
ha3R + iha3I√

2
, δa3 =

δa3R + iδ3I√
2

, (a = +, 0,−),

δa5 =
δa5R + iδ5I√

2
, (a = ++,+, 0,−,−−).

(5.25)

This custodial basis will help us to construct the physical mass eigenstates.

Let us start from the quintuplet. The quintuplet is fully composed of the isospin triplet,

and we can easily decompose it as scalar (CP-even) Fs part and pseudoscalar part Fp, where
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letter F stands for the fiveplet.

Fs =



1√
2
(δ++

5 + δ−−∗5 )

1√
2
(δ+

5 + δ−∗5 )

δ0
5R

1√
2
(δ−5 + δ+∗

5 )

1√
2
(δ−−5 + δ++∗

5 )


, Fp =



1√
2
(δ++

5 − δ−−∗5 )

1√
2
(δ+

5 − δ−∗5 )

δ0
5R

1√
2
(δ−5 − δ+∗

5 )

1√
2
(δ−−5 − δ++∗

5 )


. (5.26)

The squared masses are

m2
5 =

v2
H

[
λ(2µ− µ∆)− Aλ

]
√

2v∆

+
3

2
λv2

H(λ∆ − 2λ)
√

2v∆(3λ∆µ∆ + A∆)− v2
∆λ

2
∆

M2
5 =

v2
2[λ(2µ+ µ∆) + A]√

2v3

− 1

2
v2

2(6λ+ λ3) + 2
√

2λ3v3µ∆ − 2B∆.

(5.27)

Here Fs is the quintuplet that emerges in the GM model with squared mass m2
5, while Fp is

the mirror particle, with squared mass M2
5 . We want to emphasize that the squared mass

M2
5 (capital letter) for the pseudoscalar field Fp has contributions from the soft B-term,

which will help us to decouple Fp from the low-energy scale particles. We have already seen

how this works in the MSSM case. The mass eigenvalue can be expanded around v3 ≈ 0 as

M2
5 ≈

v2
H [λ(2µ− µ∆)− Aλ]√

2v∆

− 2B∆ +
1

2
λ v2

H(λ∆ − 6λ) +O(v∆). (5.28)

The physical 1 triplets also include two scalars and two pseudoscalars. The pseudoscalar

triplets show up in the GM model, while the scalar triplets are the corresponding mirror

particles. For the pseudoscalar triplets, we write down the mass term as

(ha3I , δ
a
3I)

M2
11 M2

12

M2
21 M2

22

ha3I
δa3I

 = (Ga, Aa)

0 0

0 m2
3

Ga

Aa

 , (5.29)

where a = 0,±, and the squared mass matrix elements are given by

M2
11 = 2v3[−λv3(2λ+ λ3) +

√
2λ(2µ+ µ∆) +

√
2A],

M2
22 =

v2
2[−λv3(2λ+ λ3) +

√
2λ(2µ+ µ∆) +

√
2A]

2v3

,

M2
12 =M2

21 = v2[λv3(2λ+ λ3)−
√

2λ(2µ+ µ∆)−
√

2A].

(5.30)

Diagonalization of this matrix will give us one zero eigenvalue, which corresponds the Gold-

stone Boson G0,±, while another eigenvalue is for the pseudoscalar A0,± with squared mass

m2
3 =

v2
2 + 4v2

3

2v3

[λ(2µ− µ∆ − (2λ− λ3)v3)− A]. (5.31)

1As mentioned before, the physical means mass eigenstate.
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The mass eigenstate can be expressed as the rotation of the custodial pseudo scalar triplet,Ga

Aa

 =

 cH sH

−sH cH

ha3I
δa3I

 , a = +, 0,−. (5.32)

The rotation angle is defined as cH =
√

2v2/v and sH = 2
√

2v3/v.

Similarly, we write down the squared mass term for the mirror triplet (ha3R, δ3R) in the

custodial basis

(ha3R, δ
a
3R)

M2
11 M2

12

M2
21 M2

22

ha3R
δa3R

 = (T a1 , T
a
2 )

M2
3 0

0 M2
3′

T a1
T a2

 , (5.33)

where a = 0,±, and the elements are

M2
11 = Gv2

2 + 2λ(−4λv2
∆ + λv2

2 + 4µv3) + 2B − 2v3[A+ λ(µ∆ − λ3v∆)],

M2
22 = 4G2v3 − [2B∆ − 3λλ3v

2
2 + 2v3(λ3

3v∆ − A3)]

− 1

v3

[2λv2
2(λv3 − µ)− (λv2

2 − 2λ3v
2
3)µ∆ − v2

2A],

M2
12 =M2

21 = 2v2[−A+ v3(G2 − 4λ2 − λλ3) + λµ∆].

(5.34)

Here G2 = g2
2 for the charged scalars, while G2 = g2

1 +g2
2 for the neutral components. This is

an explicit example showing that the hypercharge group U(1)Y breaks the custodial SU(2)V

symmetry, which will break the degeneracy among the neutral and charged triplets. When

we take the conjugate condition ∆̄ = ∆ and H2 = −iτ2H
∗
1 , the D-term will vanish and make

the total mirror sector disappear. The model will return to the GM case. Similarly, we

see the B-terms in both diagonal elements M2
11 and M2

22. We can obtain the squared mass

values by diagonalizing this matrix. We can expand the mass eigenvalues around the small

v3 ≈ 0 limit as

M2
3′ ≈

v2
H [λ(2µ− µ∆)− Aλ]√

2v∆

− 2B∆ +
1

2
λ v2

H(3λ∆ − 2λ) +O(v∆),

M2
3 ≈

1

2
v2
H(G2 + 2λ2) + 2B +O(v∆).

(5.35)

The physical states are given byT a1
T a2

 =

 cosαT sinαT

− sinαT cosαT

ha3R
δa3R

 , a = +, 0,−, (5.36)

where the mixing angle can be expressed as

sin 2αT =
2M2

12√
Tr2M2 − 4 detM2

, cos 2αT =
M2

22 −M2
11√

Tr2M2 − 4 detM2
. (5.37)

Finally, let’s examine the singlets (h1, δ1). We now have real scalar singlets (CP-even)

that appear in the GM model, and the corresponding pseudoscalar singlets (CP-odd) as
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mirror particles. The squared mass matrix for the scalar singlet is written as

(h0
1R, δ

0
1R)

M2
11 M2

12

M2
21 M2

22

h0
1R

δ0
1R

 = (S1, S2)

m2
h 0

0 m2
H

S1

S2

 , (5.38)

where

M2
11 = 6λ2v2

2,

M2
22 =

v2
2

v∆

[λ(2µ− µ∆)− A] + v∆[−A3 + λ∆(4λ∆v3 − 3µ∆)],

M2
12 =M2

21 =
√

6v2[A+ λ(6λv3 − 2λ3v∆ − 2µ+ µ∆].

(5.39)

The eigenvalues of this matrix give us the physical masses m2
h,H . The eigenvectors correspond

to the mass eigenstates (h,H), given by rotating the custodial states asS1

S2

 =

 sinαS sinαS

− sinαS cosαS

h0
1R

δ0
1R

 , (5.40)

with the rotation angle is defined analogously in Equation (5.37). We can expand the mass

m2
h,H and angle sinαS around v3 ≈ 0 as

m2
S1

= 6λ2v2
2 +O(v3),

m2
S2

=
λ(2µ− µ∆)− A

v3

+O(v3),

sinαS = −
√

6
v3

v2

+O(v2
3),

(5.41)

These 2 CP-even scalars match onto the singlets in the GM model, and one of them can be

interpreted as the SM-like 125 GeV Higgs measured at the LHC [14, 15]. This boson can

be either the lighter one h or the heavier H. We will explore the experiment constraints in

both cases.

For the mirror pseudoscalar singlets (h0
1I , δ

0
1I), we have the mass term

(h0
1I , δ

0
1I)

M2
11 M2

12

M2
21 M2

22

h0
1I

δ0
1I

 = (P1, P2)

M2
1 0

0 M2
1′

P1

P2

 . (5.42)

The mass eigenstates are expressed asP1

P2

 =

 sinαP sinαP

− sinαP cosαP

h0
1I

δ0
1I

 , (5.43)

where the rotation angle is defined similarly to Equation (5.37). We expand the squared

mass eigenvalues M2
1 and M2

1′ around v3 ≈ 0 as

M2
1′ ≈

v2
H [λ(2µ− µ∆)− Aλ]√

2v∆

− 2B∆ + 2λλ∆v
2
H +O(v∆),

M2
1 ≈ 2B.

(5.44)
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Degeneracy
GM SCTM

scalar pseudo scalar scalar pseudo scalar
singlet h,H S1,2 P1,2

triplet G,H3 T1,2 G,A
quintuplet H5 Fs Fp

Table 5.1: The mass spectrum of the SCTM compared with the GM model

Finally, let us summarize the spectrum in Table 5.1. As we mentioned, we need 2

complex isospin doublets and 3 complex isospin triplets. In terms of the 2 ⊗ 2 = 1 ⊕ 3

and 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 decompositions, we have 1 complex quintuplet, with the real part

(CP-even) matching on the scalar quintuplet H5 in the GM model, and the imaginary part

as its corresponding mirror particle Fp. We have 2 complex triplets, of which the imaginary

parts show up already in the GM model as a Goldstone boson and physical triplet H3, and

the real parts as their mirror-GM particles T1,2. Similarly, we have 2 complex singlets, and

the real part matching onto the physical singlets (h,H) in the GM model, and with the

corresponding pseudoscalar singlets P1,2 being their mirror particles.

When looking at the squared mass of all the mirror-GM particles M2
5,3,3′,1,1′ in Equations

(5.28,5.35,5.44), we realize that all of them contain the soft SUSU breaking B-terms B,B∆.

We have already seen this behavior in the MSSM. Therefore, if we take the decoupling limit

|B| ∼ |B∆| → ∞, all the masses of the mirror particles become large, while the GM-like

scalars remain light at the EW scale. Of course, we need to properly adjust the sign of

the B,B∆ in order to avoid tachyons (negative squared mass states), as those indicates an

unstable vacuum. In short, in the large-B limit,

B →∞, B∆ → −∞, (5.45)

the SCTM behaves exactly the same as the GM model, and we dub this decoupling limit of

the SCTM as the Supersymmetric Georgi-Machacek (SGM) model [72], which gives a

weakly coupled origin for the GM model at the EW scale.

5.3 The Supersymmetric Georgi-Machacek Model

Let us count the free parameters in the Higgs sector of the SGM model. In the superpo-

tential of the SCTM, we have 2 cubic terms λ, λ∆ and 2 quadratic terms µ, µ∆. Correspond-
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ingly, we have the soft SUSY breaking terms A,A∆ corresponding to λ, λ∆, and the bilinear

terms B,B∆ corresponding to µ, µ∆. Furthermore, we have 2 soft mass terms m2
2,3 for the

isospin doublets and triplets, respectively. As a consequence, we have 10 parameters in the

Higgs sector of the SCTM model. We have taken the decoupling limit B = −B∆ → ∞
to get the SGM model, which eliminates 2 parameters. If we assume a gauge-mediated

supersymmetry breaking (GMSB) scenario [25], the trilinear soft SUSY breaking terms

are generated at two loops. Therefore, the A-parameters are much smaller than masses of

the scalars and the gauginos. We can safely set them to be zero in our phenomenological

applications,

A→ 0, A∆ → 0. (5.46)

As a result, the SGM Higgs sector contains 6 parameters. The electroweak measurements of

the Higgs and W boson mass [23] will provide us with

2v2
2 + 8v2

3 = v2 = (246 GeV)2, mh = 125 GeV. (5.47)

Here this SM-like 125 GeV Higgs can be interpreted as one of the scalar singlets S1,2. As a

result, we have only 4 free parameters in total for the SGM model.

5.3.1 Map the SGM onto the GM model

Going back to the GM model, we can construct the bi-doublet and bi-triplet fields in

terms of

∆̄† = ∆̄, H2 = −iτ2H
∗
1 . (5.48)

Then, we can rewrite the Higgs potential as

VGM =
1

2
µ2

2 H̄
†H̄ +

1

2
µ2

3 Tr
{

∆̄∆̄
}

+ λ1(H̄†H̄)2 + (λ2 +
1

4
λ5)(H̄†H̄) Tr

{
∆̄∆̄

}
− 2λ3 Tr

{
(∆̄∆̄)2

}
+ (

3

2
λ3 + λ4) Tr

{
∆̄∆̄

}2 − λ5 H̄
†∆̄∆̄H̄

+
M1

2
H̄†∆̄H̄ + 2M2 Tr

{
∆̄∆̄∆̄

}
.

(5.49)

When comparing it to the SCTM scalar potential VSCTM = VF + VD + Vsoft, we obtain the

mapping between two models,

λ1 =
3

4
λ2, λ2 = λ2, λ3 = −1

2
λ2

∆, λ4 =
1

2
λ2

∆, λ5 = 2λ(λ∆ − 2λ),

M1 = 4
[
λ(2µ− µ∆)− Aλ

]
, M2 =

1

3
(3λ∆µ∆ + A∆),

µ2
2 = 2(µ2 +m2

H) +B, µ2
3 = 2(µ2

∆ +m2
∆) +B∆.

(5.50)
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We will use these mapping conditions to define the SGM model Higgs potential in terms of

the GM potential in Equations (3.27) and (3.28).

In one sense, we can treat the SGM model as a doubled version of the GM model. We

can construct the SCTM in terms of (2, 2̄) and (3, 3̄) representations of the global SU(2)L⊗
SU(2)R symmetry as

Φ =

H0
1 H+

2

H−1 H0
2

 , X =


χ0 φ+ ψ++

χ− φ0 ψ+

χ−− φ− ψ0

 , (5.51)

which transform like Φ→ ULΦU †R and X → ULXU
†
R. The superpotential can be constructed

like

W = 2λ Tr
[
Φc
τi
2

Φ
τj
2

]
[UXU †]ij −

λ∆

6
Tr[XctiXtj][UX U †]ij

− µ

2
Tr[ΦcΦ] +

µ∆

2
Tr[XcX],

(5.52)

where τi/2 and ti are the dimension-2 and dimension-3 representations of the SU(2) gener-

ators,

t1 =
1√
2


0 1 0

1 0 1

0 1 0

 , t2 =
1√
2


0 −i 0

i 0 −i
0 i 0

 , t3 =


1 0 0

0 0 0

0 0 −1

 . (5.53)

The matrix U is defined to rotate the matrix field X into the Cartesian basis,

U =


−1/
√

2 i/
√

2 0

0 0 1

1/
√

2 i/
√

2 0

 . (5.54)

The complex conjugate fields are defined as

Φc = τ2ΦT τ2, Xc = CXTC, C =


0 0 1

0 −1 0

1 0 0

 . (5.55)

With these definitions, the fields Xc and Φc are transformed in the same way as fields X†

and Φ† under the global group SU(2)L ⊗ SU(2)R. In terms of the fields (Φ,Φc, X,Xc), we
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can write the F-term potential of the SCTM as

VF = µ2 Tr
{

Φ†Φ
}

+ µ2
∆ Tr

{
X†X

}
+ λ2

(
Tr
{

Φ†Φ
}2 − 1

4
Tr{ΦcΦ} Tr

{
Φ†cΦ

†}
+ Tr

{
X†tiXtj

}
Tr
{

Φ†τiΦτj
}

+ Tr
{
X†X

}
Tr
{

Φ†Φ
}
− Tr

{
X†tiX

}
Tr
{

Φ†τiΦ
}

− Tr
{
X†c tiXc

}
Tr
{

Φ†cτiΦc

} )
+
λµ∆

2

(
Tr{ΦcτiΦτj}

[
UX†U †

]
i,j

+ h.c.
)

− λ2
3

2

(
Tr
{
X†XX†X

}
− Tr

{
X†X

}2
)
− λ3λ

4

(
Tr
{
X†tiX

†
c tj
}

Tr{ΦτjΦcτi}+ h.c.
)

− λ3µ∆

2

(
Tr
{
X†tiXtj

} [
UXU †

]
i,j

+ h.c.
)
− λ µ

(
Tr
{

Φ†τiΦτj
} [

UXU †
]
i,j

+ h.c.
)
,

(5.56)

The soft SUSY breaking terms can be constructed in a similar fashion,

Vsoft = m2
H Tr

{
Φ†Φ

}
+m2

∆ Tr
{
X†X

}
+

(
B∆

2
Tr{XcX} −

B

2
Tr{ΦcΦ}

+
Aλ
2

Tr{Φc τiΦτj}(UXU †)ij −
A∆

6
Tr{XctiXtj}(UXU †)ij + h.c.

)
,

(5.57)

In light of the self-conjugation condition of the matrix fields,

Xc = X†, Φc = Φ†, (5.58)

which indicates VD = 0, the SCTM scalar potential VSCTM = VF + VD + Vsoft can be totally

reduced to the form of the GM one,

VGM =
µ2

2

2
Tr
{

Φ†Φ
}

+
µ2

3

2
Tr
{
X†X

}
+ λ1 Tr

{
Φ†Φ

}2
+ λ2 Tr

{
Φ†Φ

}
Tr
{
X†X

}
+ λ3 Tr

{
X†XX†X

}
+ λ4 Tr

{
X†X

}2 − λ5 Tr
{

Φ†τa Φ τ b
}

Tr
{
X†taXtb

}
−M1 Tr

{
Φ†τaΦ τ b

}
(UXU †)ab − M2 Tr

{
X†ta Xtb

}
(UXU †)ab,

(5.59)

by applying the mapping conditions of Equation (5.50). We can see the cubic terms λ(3)µ(∆)

in Equation (5.56) and Aλ(∆) in Equation (5.57) are mapped onto the cubic terms in Equation

(3.28), which violate the discrete Z2 symmetry.

If we take the SGM model to define a weakly coupled origin for the GM model at the

electroweak scale, the mapping condition (5.50) implies the following constraints among the

five quartic couplings in the Higgs potential of the GM model:

λ1 =
3

4
λ2, λ3 = −λ4, λ5 = −4λ2 + 2

√
2λ2λ4. (5.60)

Therefore, the 5 quartic couplings of the GM model can be written in terms of λ2 and λ4,

henceforth defining a constrained GM model. Here we have made an implicit assumption that

the dimensionless parameters λ and λ∆ in the superpotential are real. If these 2 parameters
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are complex, we would get the mapping conditions as

λ1 =
3

4
|λ|2, λ2 = |λ|2, λ3 = −1

2
|λ∆|2, λ4 =

1

2
|λ∆|2, λ5 = 2λ(λ∆ − 2λ). (5.61)

Therefore, the holomorphic principle for the superpotential implies a bound 0 < λ2,4 ∈ R
on the couplings in a constrained GM model.

Once again, we will count the parameters, this time in the constrained GM model. We

have 5 quartic coupling parameters λ1···5 which can be written in terms of two of them, λ2,4.

The mass terms µ2
2, µ

2
3 are responsible for the isospin doublet and triplet respectively. In

addition, we have 2 cubic terms M1,2 which is necessary when mapping the SGM model onto

the GM model. Therefore, we have 6 parameters in total for this constrained GM model,

which can be one-to-one mapped to that of the SGM model,

(λ2, λ4,M1,M2,m
2
2,m

2
3)↔ (λ, λ∆, µ, µ∆,m

2
2,m

2
3). (5.62)

The mass terms m2
2,m

2
3 can be replaced by the VEVs (v2, v3), and those can be fixed from

the experimental measurements of the W and Higgs boson masses,

v = 246 GeV, mh,H = 125 GeV. (5.63)

Altogether, we have 4 parameters in both the GM and SGM models.

5.3.2 The fermionic superpartners

Now, we want to compare the GM vs SGM models in the above 4-dimensional parameter

space. By the way of Equation (5.50), the spectrum and the couplings are exactly the same

in both models, which makes the phenomenology at the LHC quite the same, too. However,

the SGM model contains higgsinos and gauginos as the fermionic superpartners of the GM-

like particles. We will see that the masses of these superpartners are also at the EW scale,

which provides us the possibility to distinguish the SGM model from the GM model.

We list all the superpartners of the Higgs and gauge bosons in Table 5.2. We can write

down the mass matrix for these higgsinos and gauginos, together called electroweakinos as

well. Let us first look at the doubly charginos f−− = χ̃−− and f++ = ψ++. Their mass is as

simple as 2

− L = (f−−)Tmf++ + h.c., m = µ∆ +
Λ3v3√

2
. (5.64)

2In this section, we replace symbols λ, λ∆ as Λ,Λ3 in order to distinguish from the quartic couplings λ1···5
in the GM model.
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boson fermion

Higgs

H1 =

(
h0

1

h−1

)

higgsino

H̃1 =

(
h̃0

1

h̃−1

)
H2 =

(
h+

2
h0

2

)
H̃2 =

(
h̃+

2

h̃0
2

)
Σ− =

(
χ−√

2
−χ0

χ−− −χ−√
2

)
Σ̃− =

(
χ̃−√

2
−χ̃0

χ̃−− − χ̃−√
2

)

Σ0 =

(
φ0√

2
−φ+

φ− − φ0√
2

)
Σ̃0 =

(
φ̃0√

2
−φ̃+

φ̃− − φ̃0√
2

)

Σ+ =

(
ψ+
√

2
−ψ++

ψ0 −ψ+
√

2

)
Σ̃+ =

(
ψ̃+
√

2
−ψ̃++

ψ̃0 − ψ̃+
√

2

)
B boson B bino B̃
W boson W i wino W̃ i

Table 5.2: Particles and the corresponding super-partners in the SGM Higgs sector.

We can see that, for this doubly chargino, the gauge eigenstate is the same as the mass

eigenstate, also the same as the custodial state that is shown in Table 5.3.

For the single-charged electroweakinos, we write down the mass term in the gauge basis

f+ = (W̃+, h̃+
u , φ̃

+, ψ̃+), f− = (W̃−, h̃−d , φ̃
−, χ̃−). (5.65)

The mass term is

−L = (f−)TMf+ + h.c., M =


M2

g2v2√
2

−g2v3 g2v3

g2v2√
2
−Λv3√

2
− µ −Λv2 Λv2

−g2v3 −Λv2
Λ3v3√

2
µ∆

g2v3 Λv2 µ∆
Λ3v3√

2

 . (5.66)

Similarly to the scalar particles, we can construct the custodial multiplets of the electroweaki-

nos as in Table 5.3. Then, we can rotate the single-charged electroweakino mass to the

custodial basis

f+ = (W̃+, h̃+
3 , δ̃

+
3 , δ̃

+
5 ), f− = (W̃−, h̃−3 , δ̃

−
3 , δ̃

−
5 ), (5.67)
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boson fermion

singlet h0
1 = (h0

d + h0
u)/
√

2 h̃0
1 = (h̃0

d + h̃0
u)/
√

2

triplet
h+

3 = h+
u h̃+

3 = h̃+
u

h0
3 = (h0

u − h0
d)/
√

2 h̃0
3 = (h̃0

u − h̃0
d)/
√

2
h−3 = h−d h̃−3 = h̃−d

singlet δ0
1 = (φ0 + χ0 + ψ0)/

√
3 δ̃0

1 = (φ̃0 + χ̃0 + ψ̃0)/
√

3

triplet
δ+

3 = (ψ+ − φ+)/
√

2 δ̃+
3 = (ψ̃+ − φ̃+)/

√
2

δ0
3 = (χ0 − ψ0)/

√
2 δ̃0

3 = (χ̃0 − ψ̃0)/
√

2
δ−3 = (φ− − χ−)/

√
2 δ̃−3 = (φ̃− − χ̃−)/

√
2

quintuplet

δ++
5 = ψ++ δ̃++

5 = ψ̃++

δ+
5 = (φ+ + ψ+)/

√
2 δ̃+

5 = (φ̃+ + ψ̃+)/
√

2
δ0

5 = (−2φ0 + ψ0 + χ0)/
√

6 δ̃0
5 = (−2φ̃0 + ψ̃0 + χ̃0)/

√
6

δ−5 = (φ− + χ−)/
√

2 δ̃−5 = (φ̃− + χ̃−)/
√

2
δ−−5 = χ−− δ̃++

5 = χ̃−−

W boson W± = (W 1 ∓ iW 2)/
√

2 wino W̃± = (W̃ 1 ∓ iW̃ 2)/
√

2
Z boson Z = cWW

3 − sWB zino Z = cW W̃
3 − sW B̃

photon γ γ = sWW
3 + cWB photino γ̃ = sW W̃

3 + cW B̃

Table 5.3: The SGM particles in custodial basis

and get the block-diagonal form,
M2

g2v2√
2

−
√

2g2v3 0

g2v2√
2

−µ− Λv3√
2
−
√

2Λv2 0

−
√

2g2v3 −
√

2Λv2 −µ3 + Λ3v3√
2

0

0 0 0 µ3 + Λ3v3√
2

 . (5.68)

We separate the singly-charged quintuplet δ̃±5 automatically in this basis. Similarly to

the MSSM case, the charged triplet gaugino W̃± mixes with the charged triplet higgsinos

(h̃±3 , δ̃
±).

Finally, we go to the neutralino case. We first write down the mass term in the gauge

basis

− 1

2
(f 0)TMf 0, f 0 = (B̃, W̃3, H̃

0
d , H̃

0
u, χ̃

0, φ̃0, ψ̃0), (5.69)
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where the mass matrix is

M1 0 −g1v2
2

g1v2
2

−g1v3 0 g1v3

0 M2
gv2
2

−g2v2
2

g2v3 0 −g2v3

−g1v2
2

g2v2
2

−
√

2Λv3 −Λv3√
2

+ µ 0 −Λv2√
2

−
√

2Λv2

g1v2
2

−g2v2
2
−Λv3√

2
+ µ −

√
2Λv3 −

√
2Λv2 −Λv2√

2
0

−g1v3 g2v3 0 −
√

2Λv2 0 −Λ3v3√
2
−Λ3v3√

2
+ µ∆

0 0 −Λv2√
2

−Λv2√
2

−Λ3v3√
2

µ∆ −Λ3v3√
2

g1v3 −g2v3 −
√

2Λv2 0 −Λ3v3√
2

+ µ∆ −Λ3v3√
2

0


. (5.70)

Rotating it to the custodial basis,

f 0 = (h̃0
1, δ̃

0
1, γ̃, Z̃, h̃

0
3, δ̃

0
3, δ̃

0
5), (5.71)

we arrive at a block-diagonal mass matrix

µ− 3Λv3√
2

−
√

3Λv2 0 0 0 0 0

−
√

3Λv2 µ3 −
√

2Λ3v3 0 0 0 0 0

0 0 M1c
2
W +M2s

2
W (M2 −M1)cW sW 0 0 0

0 0 (M2 −M1)cW sW M1s
2
W +M2c

2
W

Gv2√
2

√
2Gv3 0

0 0 0 Gv2√
2

−µ− Λv3√
2

√
2Λv2 0

0 0 0
√

2Gv3

√
2Λv2 −µ3 + Λ3v3√

2
0

0 0 0 0 0 0 µ3 + Λ3v3√
2


.

(5.72)

Here G =
√
g2

1 + g2
2 for the neutralinos, while G = g2 for the charginos. We make an already

familiar observation that the hypercharge interaction breaks the custodial symmetry. Also,

the triplet higgsinos (h̃0
3, δ̃

0
3) mix with zino Z̃, and zino Z̃ also mixes with photino γ̃, which

also has been seen in the MSSM already. A new phenomenon emerges that the singlet

higgsinos mix with each other, which does not happen in the MSSM, since it has one singlet

higgsino (neutral). Diagonalizing the block matrix for the singlet higgsinos, we get the

eigenvalues as

Mf01
=

 µ− 3Λv3√
2

−
√

3Λv2

−
√

3Λv2 µ3 −
√

2Λ3v3

 =⇒

mf01
=

1

4

[
2(µ+ µ3)−

√
2v3(3Λ + 2Λ3)±

√
48Λ2v2

2 + (2(µ− µ3)−
√

2v3(3Λ− 2Λ3))2

]
.

(5.73)

If we take the limit of a small hypercharge interaction,

g1 = 0, sW = 0, cW = 1, G = g2, (5.74)
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the mass matrix for neutralinos becomes

µ− 3Λv3√
2

−
√

3Λv2 0 0 0 0 0

−
√

3Λv2 µ3 −
√

2Λ3v3 0 0 0 0 0

0 0 M1 0 0 0 0

0 0 0 M2
g2v2√

2

√
2g2v3 0

0 0 0 g2v2√
2

−µ− Λv3√
2

√
2Λv2 0

0 0 0
√

2g2v3

√
2Λv2 −µ3 + Λ3v3√

2
0

0 0 0 0 0 0 µ3 + Λ3v3√
2


. (5.75)

We obtain a block matrix for the singly-charged electroweakinos, which means that the

custodial symmetry gets recovered.

We can further assume the Majorana mass for the gaugino to be large, M2 → ∞, to

decouple the winos W̃±, Z̃ from the triplet higgsino:

Mf03
=

 −µ− Λv3√
2

√
2Λv2

√
2Λv2 −µ3 + Λ3v3√

2

 =⇒

mf03
=

1

4

[
− 2(µ+ µ3) +

√
2v3(−Λ + Λ3)±

√
32Λ2v2

2 + (2(µ− µ3)−
√

2v3(Λ + Λ3))2

]
.

(5.76)

Let’s take the small triplet VEV limit v3 → 0, then the mass eigenvalues simplify as

mf01
=

1

2
(µ+ µ3 ±

√
12Λ2v2

2 + (µ− µ3)2),

mf03
=

1

2
(−µ− µ3 ±

√
8Λ2v2

2 + (µ− µ3)2),

mf05
= µ3.

(5.77)

By taking µ = µ3, we will get

mf01
= µ±

√
3|Λ|v2, mf03

= −µ±
√

2|Λ|v2, mf05
= µ. (5.78)

We can also take µ = −µ3 to get

mf01
= ±

√
3Λ2v2

2 + µ2, mf03
= ±

√
2Λ2v2

2 + µ2, mf05
= −µ. (5.79)

Now let us examine how the higgsino mass behaves. First, the unitary bound (3.52) of

the GM model, associated with the map conditions (5.50), gives us the allowed parameter

space:

− 1

3
π < λ1 =

3

16
Λ2 <

π

3
, − 2

3
π < λ2 =

1

4
Λ2 <

2

3
π, − 1

2
π < λ3 = −1

8
Λ2

3 <
3

5
π,

− 1

5
π < λ4 =

1

8
Λ2

3 <
1

2
π, − 8

3
π < λ5 = −Λ(Λ +

1

2
Λ3) <

8

3
π,

(5.80)
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Figure 5.1: Left: The parameter space (Λ,Λ3) allowed by pertubativity. The curved bound-
ary results from the constraint −8

3
π < λ5 = −Λ(Λ+ 1

2
Λ3) < 8

3
π. Right: The higgsino masses

M1,3,5 [GeV] for singlet, triplet, and quintuplet in the 2-dimensional parameter space (Λ, µ),
when taking µ = −µ3, v3 = 0.
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With these conditions, we roughly have |Λ| < 4
√
π/3 ≈ 2.36327 and |Λ3| < 2

√
π ≈ 3.54491,

which is shown in Figure 5.1. For this allowed Λ space, the higgsino masses mf1,3,5 for the

singlet, triplet, and quintuplet are shown in the right plot of Figure 5.1, with

Λ ∈ [0,
4

3

√
π], µ = −µ3 ∈ [0, 200] GeV, v3 = 0. (5.81)

We can see that the quintuplet higgsino mass follows the µ parameter, while the singlet and

triplet higgsino mass roughly follows the Λ parameter. When Λv2 � µ, we roughly have

mf1,f3 ∝ Λ, given that v2 ≈ 246 GeV is fixed by the W mass.
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Chapter 6

Phenomenological applications

In the previous chapter, we have constructed the SCTM and obtained a decoupling limit

called the SGM model, which in turn gives rise to the GM model at the EW scale. In this

chapter, we will perform some phenomenological studies in these models.

6.1 Higgsino production at colliders

The first interesting question to explore is how we produce the new particles predicted by

these models. In this regard, we wish to single out the doubly-charged electroweakino f++.

Since it possesses two units of electric charges, its production rate through electromagnetic

interaction is enhanced by a factor of 24 compared to the singly-charged particles. Let

us calculate its production rate at the LEP with collision energy
√
s = 209 GeV. For the

electromagnetic interaction of f±±, we have the coupling to photon as

gf++f−−Aµ = i(g1cW + g2sW )γµ = iG sin 2θW = 2ieγµ, (6.1)

where g2 = e/sW and g1 = e/cW . Similarly for the Z-boson interaction, we have

gf++f−−Zµ = i(−g1sW + g2cW )γµ = iG cos 2θW = 2i
e

tan 2θW
γµ. (6.2)

For the photon-mediated process e+e− → γ∗ → f++f−− with the Feynman diagram depicted

in Figure 6.1, the squared scattering amplitude is

|M|2 =
1

16
(g1cW + g2sW )2(5g2

1c
2
W + 2g1g2sW cW + g2

2s
2
W )

2M4 + T 2 + 2M2(S − T − U) + U2

S2
,

(6.3)

where M is the mass of f±± and S, T, U are the Mandelstam variables,

S = (p1 + p2)2 = (p3 + p4)2, T = (p1− p3)2 = (p2− p4)2, U = (p1− p4)2 = (p3− p2)2. (6.4)

When we substitute the couplings e = g2sW = g1cW , we get

|M|2 = 2e4 2M4 + 2M2(S − T − U) + T 2 + U2

S2
. (6.5)

Parameterizing the S, T, U in the center-of-mass frame of e+e− pairs,

S = Q2, T = −Q2(1 + β2 − 2β cos θ)/4, U = −Q2(1 + β2 + 2β cos θ)/4, (6.6)
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where Q is the collision energy, θ is the scattering angle, and the Lorentz factor β =√
1− 4M2/Q2, we have

|M|2 = e4(2− β2 sin2 θ). (6.7)

The cross section measured in the phase space dΦ2 = β
32π2 dΩ is

dσ =
1

2S
dΦ2

1

4

∑
spin

|M|2 = 4dΩ
α2

4S
β(2− β sin2 θ). (6.8)

Here the prefactor 1
4

arises from averaging over the spin of the initial states, while the sum

runs over the spins of all final states. Integrating out the azimuthal angle, we get the total

cross section as

σ =
e4β(3− β2)

6πQ2
= e4

√
1− 4M2

Q2

2M2 +Q2

3πQ2
. (6.9)

The cross section in the (Q,M) space is shown in Fig. 6.1. In the limit Q � M , we have

e−

e+

f++

f−−

e−

e+

f++

f−−

γ

Z

ieγµ 2ieγµ

i g2
cW

γµ(gv − gAγ5)
2i e

tan 2θW
γµ
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Figure 6.1: Left: The Feynman Diagrams for e+e− → γ∗/Z → f++f−−, Right: The cross
section σ(e+e− → γ∗ → f++f−−) [pb] in the parameter space (Q,M).

β ≈ 1, and σ ∼ 1 + 2M2/Q2, that is why we observe the behavior that the cross section

decreases with the increase of collision energy in Figure 6.1.

In order to obtain large amounts of numerical calculations, we need to invoke widely used

codes including SPheno [73, 74] and MadGraph [75]. In the following, we perform benchmark
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calculations to make sure these codes work correctly. We take a numerical point,

α = e2/4π = 1/132.2, M = 11.9 GeV, Q =
√
S = 209 GeV, (6.10)

as a trial. The analytical cross section (6.9) for this trial point turns out to be

σ(e+e− → γ∗ → f++f−−) = 8.57 pb. (6.11)

MadGraph gives us the numerical values

σ(e+e− → γ∗ → f++f−−) = 8.54 pb. (6.12)

which agrees with our analytical calculation satisfactorily. Furthermore, we can easily get

the cross section

σ(e+e− → γ∗ → f+f−) = 2.13 pb, (6.13)

from Madgraph, which verifies the ratio

σ(f++f−−)/σ(f+f−) = (Qf++/Qf+)2 = 4. (6.14)

These cross sections does not depend on the mixing angle (rotation matrix) because the

vertices γf5f5 are fully determined by the electric charges. If we include the γ∗/Z mixing,

the numerical cross sections from MadGraph become

σ(e+e− → γ∗/Z → f++f−−) = 11.6 pb, σ(e+e− → γ∗/Z → f+f−) = 2.90 pb. (6.15)

Additionally, we can verify σ(e+e− → f 0f 0) = 0 in Madgraph to test Vf05 f05 γ∗(Z) = 0.

Next, let us explore the fermionic quintuplet couplings to charged vector boson,

Vf05 f
−
5 W

+ = −i
√

3

2
g2γ

µ, Vf+5 f
−−
5 W+ = i

√
2

2
g2γ

µ. (6.16)

The Scalar-Scalar-Vector (SSV) coupling in the convention V µ
SSV = igSSV (p1 − p2)µ is

gH0
5H
−
5 W

+ = −i
√

3

2
g2, gH+

5 H
−−
5 W+ = i

√
2

2
g2, (6.17)

which is a result of supersymmetry. Similarly to γ(Z)f5f5, the vertices H5H5V are fully

determined by the gauge couplings g2, which is independent of the small v3 suppression.

Consequently, the processes pp → W± → H0
5H
±
5 and pp → W± → f 0

5 f
±
5 dominate the H0

5

and f 0
5 hadroproduction rates. The production cross sections for the LHC 13 TeV, with

NNPDF 3.1 NNLO QED PDF [76] and µR = µF = MW , Mf5 = 11.9 GeV, are given by

σ(pp→ W± → f 0
5 f
±
5 ) = 5.14 pb, σ(pp→ W± → f±5 f

∓∓
5 ) = 3.42 pb. (6.18)

The ratio satisfies

σ(pp→ W± → f 0
5 f
±
5 )

σ(pp→ W± → f±5 f
∓∓
5 )

=

(
Vf05 f

−
5 W

+

Vf+5 f
−−
5 W+

)2

=
3

2
. (6.19)
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6.2 Higgs decay

The SGM and GM models introduce so a large amount of new Higgs (pseudo)scalars.

This subsection, we will examine the decays of these (pseudo)scalars, especially into the SM

particles.

6.2.1 The SM Higgs

To familiarize ourselves with the calculations, we start with the decays and production

of the Standard Model Higgs boson. First, let us calculate a simpler case for the process

H(k1)→ b(k2)b̄(k3) at tree level, Feynman diagram shown in Figure 6.2. The amplitude is

H

b

b̄

im
v

Figure 6.2: The Feynman diagram for H → bb̄ decay.

M =
mb

v
ū2v3 =

emb

2MW sW
ū2v3. (6.20)

We have substituted MW = gv/2 and e = gsW . Then the squared amplitude averaged over

spins is given by∑
s2,s3

|M|2 =
∑
s2,s3

3αm2
bπ

M2
W s

2
W

(ū2v3)∗ū2v3 =
3αm2

bπ

M2
W s

2
W

Tr(/k2 −mb)(/k3 +mb)

=
3αm2

bπ

M2
W s

2
W

[Tr(/k2/k3)− 4m2
b ] =

3αm2
bπ

M2
W s

2
W

(4k2 · k3 − 4m2
b).

(6.21)

We have used Tr(γµ) = 0 and Tr(γµγν) = 4gµν (due to {γµ, γν} = 2gµνI). We have the

momentum conservation as

k1 = k2 + k3 ⇒M2
H = k2

1 = (k2 + k3)2 = m2
b + 2k2 · k3 +m2

b . (6.22)

Therefore, we get∑
|M|2 =

3αm2
bπ

M2
W s

2
W

[
2(M2

H − 2m2
b)− 4m2

b

]
=

3αm2
bπ

M2
W s

2
W

2M2
Hβ

2. (6.23)

We have defined the phase space suppression factor β =
√

1− 4m2
b/M

2
H .
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The two-body phase space for system A(P )→ B(p1) + C(p2) is very simple:

dΦ2 = (2π)4δ(4)(P − p1 − p2)
d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

=
1

(2π)2
δ(M − p0

1 − p0
2)

d3p1

4p0
1p

0
2

=
1

(2π)2
δ(M −

√
m2

1 + p2 −
√
m2

2 + p2)
p2dpdΩ

4p0
1p

0
2

=
1

(2π)2

δ(p− p∗)
p√

m2
1+p2

+ p√
m2

2+p2

p2dpdΩ

4p0
1p

0
2

=
1

(2π)2

p

4(p0
1 + p0

2)
dΩ =

p

(2π)24M
dΩ.

(6.24)

The 3-momentum is obtained as

p =
1

2M

√
(M2 −m2

1 −m2
2)2 − 4m2

1m
2
2 =

√
λ(M2,m2

1,m
2
2)

2M
, (6.25)

where λ(a, b, c) = (a− b− c)2−4bc is the Kallen function. Then, we obtain the partial width

for the Higgs decay into bb̄ pair,

Γ(H → bb̄) =
1

2MH

∫
dΦ2|M|2 =

1

2MH

∫
p

(2π)24MH

dΩ
3αm2

bπ

M2
W s

2
W

2M2
Hβ

2 =
3αMHm

2
b

8M2
W s

2
W

β3,

(6.26)

where we have used

p =

√
λ(M2

H ,m
2
b ,m

2
b)

2MH

=

√
M4

H − 4M2
Hm

2
b

2MH

=
MH

2
β. (6.27)

Let us move on to the 1-loop induced decay H → γγ. In the Standard Model, all the

charged particles can induce a Higgs decay into a photon pair. The fermion induced decay

is dominated by the top quark loop, due to top’s large Yukawa coupling, and is shown in

Figure 6.3. With FeynArts [77] and FormCalc [78], we can get the amplitude of these

H

γ

γ

H

γ

γ

t t

Figure 6.3: The Feynman diagram for top quark loop induced decay H → γγ decay.

diagrams to be

M =
2αem2

t

3MWπsW

[
(2B0 +M2

HC0 − 8C00 + 2M2
HC2)ε∗2 · ε∗3

− 2(C0 + 4C12 + 4C2 + 4C22)ε∗2 · k1ε
∗
3 · k1

]
.

(6.28)
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The loop integral functions are defined in Section A.1. Here we introduced B,C functions,

B(0,m2
t ,m

2
t ), C(0, 0,M2

H ,m
2
t ,m

2
t ,m

2
t ). (6.29)

For a massless vector boson (photon), we have kµ = (E,~k), where E = |~k|. We define

k̄µ = (E,−~k). So the polarization sum in |M|2 is∑
λ=±1

εµε
∗
ν = −gµν +

kµk̄ν + kν k̄µ
k · k̄ =

−gi,j −
kikj

|~k|2
(i, j = 1, 2, 3)

0 (µ and/or ν = 0)

(6.30)

to the amplitude square (matrix element) |M|2. For a massive vector boson, such as W/Z,

the polarization sum is ∑
λ=0,±1

εµε
∗
ν = −gµν +

kµkν
m2

. (6.31)

We can work in the center-of-mass frame of the Higgs boson for H(k1) → γ(k2)γ(k3).

The 4-momentum for external particles are

k1 = (MH , 0, 0, 0), k2 = (MH/2, 0, 0,MH/2), k3 = (MH/2, 0, 0,−MH/2). (6.32)

Therefore, we can get the squared amplitude as∑
λ2,λ3

|M|2 =
32α3m4

t

9M2
Wπs

2
W

|2B0 +M2
HC0 − 8C00 + 2M2

HC2|2. (6.33)

In our special case for H(k1) → γ(k2)γ(k3), we have M = MH and p = MH/2. The decay

width is given by

Γ =
1

2MH

∫
dΦ2

1

2

∑
λ2,λ3

|M|2

=
1

4MH

∫
MH/2

(2π)24MH

dΩ
32α3m4

t

9M2
Wπs

2
W

|2B0 +M2
HC0 − 8C00 + 2M2

HC2|2

=
α3m4

t

9π2MHM2
W s

2
W

|2B0 +M2
HC0 − 8C00 + 2M2

HC2|2.

(6.34)

Here we included a symmetric factor 1
2

in the front, since photons in the final states are

identical. Indistinguishability of identical particles restricts the integration to inequivalent

configurations, i.e., to dividing the integral by a factor of n! after integrating all the sets of

momenta 1. With the Standard Model parameter inputs [23], we have

Γ = 7.8× 10−7 GeV. (6.35)

Let us go to the W -loop induced H → γγ decay, shown in Figure 6.4. With FormCalc,

1Please refer Page 108 of Michael Peskin’s QFT textbook [61] or Page 316 of the book [79].
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Figure 6.4: The Feynman diagram for W± loop induced decay H → γγ decay.

we obtain

Γ(τW ) =
α3M2

W

32MHπ2s2
W

∣∣∣4B0 − 6B′0 + 4(−M2
H +M2

W )C0 + 20C00 +M2
HC1 + 4M2

HC2

∣∣∣2. (6.36)

Here the integral functions are

B0(0,M2
W ,M

2
W ), B′0 = B0(M2

H ,M
2
W ,M

2
W ), C(0, 0,M2

H ,M
2
W ,M

2
W ,M

2
W ), (6.37)

respectively. After we plug in the SM parameters, we obtain

Γ(τW ) =

1.55× 10−5 GeV (µ = MH),

5.97× 10−6 GeV (µ = MW ).

(6.38)

Here, the results strongly depend on the scale choice, which is mainly comes from the B

function generated by the third diagram in Figure 6.4. So we choose µ = MH(MW ) as

benchmarks. The analytical formula for Higgs decay into diphoton can be found in literature

[80]:

Γ(H → γγ) =
GFα

2M3
H

128
√

2π3

∣∣∣∑
f

NcQ
2
fA

H
1/2(τf ) + AH1 (τW )

∣∣∣2,
AH1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2,

AH1 (τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)]τ−2,

f(τ) =

arcsin2√τ (τ ≤ 1),

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
]

(τ > 1).

(6.39)

where the parameters τi = M2
H/4M

2
i for i = f,W for the heavy-loop particles. For the top

quark running in the loop, we have τt = M2
H/4m

2
t < 1. In turn,

Γ(H → γγ) =
GFα

2M3
H

128
√

2π3

∣∣∣3(2

3

)2

2
[
τ + (τ − 1) arcsin2

√
τ
]
τ−2
∣∣∣2 = 7.84× 10−7 GeV, (6.40)

which agrees with our calculation very well. For the W -induced part, we have

Γ(τW ) =
GFα

2M3
H

128
√

2π3

∣∣∣−[2τ 2 + 3τ + 3(2τ − 1) arcsin2
√
τ
]
τ−2
∣∣∣2 = 1.62× 10−5 GeV, (6.41)
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which agrees with our calculation with the choice of µ = MH . With these calculations, we

arrive at a conclusion that most of the H → γγ decay rate is contributed by the diagrams

with W± bosons running in the triangle and bubble loops.

Similarly, we can have a 1-loop top-quark induced decay H → gg, with the same diagram

as Figure 6.3, but with the photon replaced by a gluon. Then we repeat the 1-loop calculation

and get the decay width as

Γ(H → gg) =
1

2

αα2
sm

4
t

4MHM2
Wπ

2s2
W

∣∣∣2B0 +M2
HC0− 8C00 + 2M2

HC2

∣∣∣2 = 2.14× 10−4 GeV. (6.42)

This result agrees well with Ref. [80],

Γ(H → gg) =
GFα

2
sM

3
H

36
√

2π3

∣∣∣3
4
AH1/2(τ)

∣∣∣2 = 2.16× 10−4 GeV. (6.43)

We obtain a slight difference from our value estimated in Equation (6.42) because of the

choice of the renormalization scale in our calculation. In the limit τ = M2
H/4m

2
t = 0.13� 1,

we have AH1/2(τ)→ 4/3, which gives Γ =
GFα

2
sM

3
H

36
√

2π3 = 2.03×10−4 GeV. At the next-to-leading

order (NLO), the digluon partial width of Higgs boson can be found in Ref. [81] as

ΓNF [H → gg(g), qq̄g] = ΓLO[α(NF )
s (µ)](1 + ENF

α
(NF )(µ)
s

π
),

ENF =
95

4
− 7

6
NF +

33− 2NF

6
log

µ2

M2
H

(6.44)

Taking the scale µ = MH and NF = 5, we get the NLO corrections to the Higgs’ digluon

decay as a ratio

K = ΓNLO/ΓLO ≈ 1.68. (6.45)

6.2.2 The Higgs decay in the GM and SGM models

Equipped with the tree-level and 1-loop induced decay of the SM Higgs boson, we are

able to apply the same calculations to the Higgs bosons in the GM and SGM models. Firstly,

let us reorganize the mass terms for neutral scalar (CP-even) and pseudoscalar (CP-odd) in

the gauge basis,

L0 = −1

2
(H0

g )TM2
H,gH

0
g −

1

2
A0
gM2

A,gA
0
g

H0
g = (h0

1R, h
0
2R, χ

0
R, φ

0
R, ψ

0
R)T , Ag = (h0

1I , h
0
2I , χ

0
I , φ

0
I , ψ

0
I )
T .

(6.46)
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We can rotate this gauge basis into the mass basis in one step, by jumping over the inter-

mediate custodial basis,

L0 = −1

2
(H0

g )T (ZH)†ZHM2
H,g(Z

H)†ZHH0
g −

1

2
(A0

g)
T (ZA)†ZAM2

A,g(Z
A)†ZAA0

g

= −1

2
(H0

m)TM2
H,mH

0
m −

1

2
(A0

m)TM2
A,mA

0
m

(6.47)

With the rotation matrices ZH,A, we get the diagonalized squared-mass matrices as

M2
H,m = ZHM2

H,g(Z
H)† = diag(m2

H1
,m2

H2
,m2

H3
,m2

H4
,m2

H5
),

M2
A,m = ZAM2

A,g(Z
A)† = diag(m2

A1
,m2

A2
,m2

A3
,m2

A4
,m2

A5
),

(6.48)

The physical states in the mass basis can be obtained by rotating the gauge eigenstates as

H0
m = ZHH0

g , A
0
m = ZAA0

g, (6.49)

Similarly, the mass term for singly-charged Higgs in the gauge basis is

L± = −(H+
g )†M2

±,gH
+
g , H

+
g = (h−∗1 , h+

2 , χ
−∗, φ−∗, φ+, ψ+)T , (6.50)

Diagonalizing this squared mass matrix, we get spectrum for the singly-charged Higgs boson,

L± = −(H+
g )†(Z±)†Z±M2

±,m(Z±)†Z±H+
g = −(H+

m)M2
±,gH

+
m, (6.51)

The corresponding eigenvalues and eigenvectors for the squared mass matrix are

M2
±,m = diag(m2

H±1
,m2

H±2
,m2

H±3
,m2

H±4
,m2

H±5
,m2

H±6
), H+

m = Z±H±g . (6.52)

Numerically, we have m2
H±1

= m2
A1

= 0, which correspond to the Goldstone bosons. The

doubly-charged Higgs mass term in the gauge basis is much simpler,

L±± = −(H++
g )M2

±±,gH
++
g , H++

g = (χ−−∗, ψ++)T . (6.53)

After diagonalizing the squared mass matrix, we rewrite the mass term in the mass basis as

L±± = −(H+
g )†(Z±±)†Z±±M±±,m(Z±±)†ZH++

g = −(H++
m )M2

±±,gH
++
m . (6.54)

The eigenvalues, eigenvectors and the rotation matrix are

M±± = diag(m2
H±±1

,m2
H±±2

), H++
m = Z±±H++

g , Z±± =

 1/
√

2 1/
√

2

−1/
√

2 1/
√

2

 . (6.55)

These mass eigenstates are the same as that in custodial basis (5.26), with the masses are

the same as that in Equation (5.27).

So far, we have obtained all the numerical squared masses of the physical states, and

we can compare the specific values to pick out singlets, triplets, and quintuplets. Just a

reminder here: in the mirror -GM sector, the masses of the triplet neutral components T 0
1,2

are a little different from that of charged one T±1,2, which is the consequence of the custodial

symmetry violation due to the hypercharge gauge. However, in the decoupling limit, all the
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mirror -GM particles become very heavy, which leaves that the small difference in the triplet

mass spectrum does not impact the GM-like particles at the EW scale.

Let us perform a benchmark study. As we mentioned before, we have totally 4 free

parameters in the SGM model. In addition, we can choose relations λ = λ∆ and µ = −µ∆

to fix 2 degrees of freedom. In such a case, we only have 2 free parameters, and we set them

to be GM-like triplet and quintuplet masses,

m3 = 750 GeV, m5 = 500 GeV. (6.56)

We list all other numerical inputs here,

A = A3 = 0 GeV, B = −B3 = −(103 GeV)2,

Λ = Λ3, µ = −µ3, MB̃ = MW̃ = 1000 GeV,

mh = 125 GeV, 2v2
2 + 8v2

3 = v2 = (246.22 GeV)2.

(6.57)

We can solve the spectrum equations to get the SGM parameters,

µ = 896 GeV, Λ = 1.08, v3 = 33.6 GeV. (6.58)

The mapping conditions (5.50) between the GM and SGM models can help us to determine

all the GM Lagrangian parameters as

vX = 33.6 GeV, λ1 = 0.217, λ2 = 0.290,

λ3 = −0.145, λ4 = 0.145, λ5 = −1.74,

M1 = 1365 GeV, M2 = −341 GeV.

(6.59)

At this stage, we are able to calculate all the spectrum in both the GM and SGM

models, and we list the results in Table 6.1. We see a slight difference in the masses of the

GM SCTM
scalar pseudo scalar pseudo fermion

singlet 125, 818 125, 818 1320, 1599 869, 997, 1000
triplet 0, 750 1432, 1588 0, 750 926(931), 956, 1030(1025)

quintuplet 500 500 1525 871

Table 6.1: Benchmark of mass spectrum [GeV] calculated with SARAH [82, 83] and confirmed
by SPheno [73, 74]). The numbers in the parentheses denote the charged component of the
triplet fermions, which quantify the custodial symmetry violation.

neutral and charged (numbers in the parentheses) fermionic triplet, which results from the

custodial symmetry violation. Here we have fixed the Majorana masses of gauginos to be

MB̃ = MW̃ = 1 TeV. As a result, we obtain the masses for photino, zino-like and wino-like
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fermions as

mγ̃ = 1000 GeV, mZ̃ = 1030 GeV, mW̃ = 1025 GeV. (6.60)

The zino-like and wino-like fermions get small contributions from the gauge-doublet VEV as

Gv2/
√

2 and gauge-triplet VEV as
√

2Gv3, where G = g2,
√
g2

1 + g2
2 for the wino-,zino-like

charginos. The lightest supersymmetric particle (LSP) is a singlet fermion with mass as

mf1 = 868.9 GeV, and next-to-LSP is a neutral quintet fermion f 0
5 , whose mass can be

determined analytically as

mf5 =
Λ3v3√

2
− µ∆ = −871 GeV. (6.61)

We have discovered the Standard Model (or SM-like) Higgs [14, 15], whose mass is less

than twice of that of W,Z bosons. It means tree-level decays H → W±W∓ and H → ZZ

are threshold forbidden. The Higgs boson can only decay in this channel to an off-shell state,

such as H → ZZ∗, Z∗ → l+l−. However, in the GM and SGM models, the Higgs masses

can be larger than twice of W,Z boson masses. Under such a circumstance, we can obtain

the Higgs’ di-Boson decay at the tree-level, which may dominate the Higgs branching ratio.

With the rotation matrix ZH , we obtain the vertices gH0
i V V

(V = W±Z) as in Figure 6.5,

where the index i indicates the mass ordering from the lowest to the highest.

H0
i

W+

W−

i
2g

2
2[vdZ

H
i1 + vuZ

H
i2 + 2v∆(Z

H
i3 + 2ZH

i4 + ZH
i5 )]

H0
i

Z

Z

i
2(g1sW + g2cW )2[vdZ

H
i1 + vuZ

H
i2 + 4v∆(Z

H
i3 + ZH

i5 )]

Figure 6.5: The Feynman diagrams for decays H0
i → W+W− and H0

i → ZZ.

78



Here, we choose the quintuplet H5(Fs) with mass m5 = 500 GeV in our benchmark

example, with index i = 2 from Table 6.1. With FeynArts [77] and FormCalc [78], we

obtain the squared amplitudes as

|M(Fs → W+W−)|2 =
1

16
g4

2

(
12− 4m2

5

M2
W

+
m4

5

M4
W

)[
v2(ZH

21 + ZH
22) + 2v3(ZH

23 + 2ZH
24 + ZH

25)
]2
,

|M(Fs → ZZ)|2 =
1

16
(cWg2 + sWg1)4

(
12− 4m2

5

M2
Z

+
m4

5

M4
Z

)[
v2(ZH

21 + ZH
22) + 4v3(ZH

23 + ZH
25)
]2
.

(6.62)

Considering the fact that quintuplets are totally composed of the gauge triplets, we determine

the corresponding rotation matrix elements as

ZH
2,1···5 = 0, 0,−1/

√
6, 2/
√

6,−1/
√

6,
5∑
i=1

(ZH
2,i)

2 = 1, (6.63)

which simplifies the squared amplitudes as

|M(Fs → W+W−)|2 =
1

16
g4

2

(
12− 4m2

5

M2
W

+
m4

5

M4
W

)[
2v3(2/

√
6)
]2
,

|M(Fs → ZZ)|2 =
1

16
(cWg2 + sWg1)4

(
12− 4m2

5

M2
Z

+
m4

5

M4
Z

)[
4v3(−2/

√
6)
]2
.

(6.64)

In the small hypercharge coupling limit, we have

g1 ≈ 0 =⇒ sW ≈ 0, MW ≈MZ =⇒ |M(Fs → W+W−)|2 ≈ 1

4
M(Fs → ZZ)|2. (6.65)

Integrating out the phase space, we obtain

Γ(Fs → W+W−) ≈ 1

2
Γ(Fs → Z+Z−). (6.66)

We want to remind that for the Fs → ZZ case, we have a symmetry factor 1/2 due to the

identical particles in the final states. Inputing the numerical values, we get the results from

FormCalc as

Γ(Fs → W+W−) = 3.47 GeV, Γ(Fs → Z+Z−) = 6.65 GeV. (6.67)

We implement the SGM and GM models in SPheno [73, 74], which gives us the total width

and branching ratios as

Γtot(Fs) = 17.03 GeV Br(Fs → W+W−) = 0.204, Br(Fs → ZZ) = 0.403. (6.68)

Therefore, we have

Γ(Fs → W+W−) = 3.47 GeV, Γ(Fs → ZZ) = 6.86 GeV. (6.69)

In such a way, we get an excellent agreement with the results of FormCalc. In such a way,

we validate our numerical calculations in SPheno.

In Table 6.2, we list the total decay widths and the dominated branching ratios of GM-like

particles in both the GM and the SGM models. We can see that the SGM model reproduces
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States Channel GM SGM

h
Γtot 3.71E-03 3.65E-03

W+W−∗ 2.46E-01 2.50E-01
bb̄ 5.41E-01 5.49E-01

H

Γtot 2.62E+01 2.62E+01
tt̄ 1.90E-01 1.90E-01

W+W− 5.41E-01 5.41E-01
ZZ 2.67E-01 2.67E-01

A(H3)

Γtot 6.63E+01 6.63E+01
tt̄ 1.05E-01 1.05E-01
FsZ 3.32E-01 3.32E-01
F+
s W

− 2.62E-01 2.62E-01
F−s W

+ 2.62E-01 2.62E-01

Fs(H5)
Γtot 5.26E+00 5.26E+00

W+W− 3.42E-01 3.42E-01
ZZ 6.58E-01 6.58E-01

Table 6.2: The total decay width Γtot [GeV] of the GM-like particles and the corresponding
dominant branching ratios.

the GM model very well in our benchmark case, which can be understood in terms of the

decoupling of non-GM particles. As shown in Table 6.1, the masses of non-GM scalars are

around mS

��GM
≈ 1500 GeV and the masses of the electroweakinos are around mf ≈ 1000

GeV. The mapping conditions (5.50) ensure the spectrum and the coupling vertices of the

GM-like particles are exactly the same in both models. The non-GM particles in the SGM

model are decoupled at high scale, and do not affect the low-energy EW scale physics, which

behaves the same as the GM model.

6.2.3 How to distinguish the SGM model from the GM model

By now, we have calculated the decay of the GM-like particles in both the GM and

SGM models. As a benchmark study in Section 6.2.2, we obtained the same spectrum,

decay width and branching ratios in both models. The next question for us is whether we

can distinguish the SGM model from the GM model. To answer this question, we need to

perform a systematic analysis in the full parameter space. In the ten parameters of the

SGM model, two B,B∆ →∞ are taken to be large in order to obtain the decoupling limit.

Furthermore, we have adopted the gauge mediated supersymmetry breaking scenario [25],

which fixes A = A∆ = 0. With tadpole equations, we can replace two of the Lagrangian (or
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superpotential) parameters by the VEVs of the gauge doublet vH and gauge triplet v∆. In

some cases, we use v2,3 to denote the VEVs, as well. With the mapping conditions (5.50),

we have the one-to-one correspondence relationship between the SGM and GM models,

(λ, λ∆, µ, µ∆, v2, v3)↔ (λ2, λ4,M1,M2, vH , v∆). (6.70)

We remind readers that the A = A∆ = 0 is not strictly necessary in other SUSY break-

ing mechanisms, such as supergravity [84] or anomaly mediated supersymmetry breaking

(AMSB) [85]. We take this condition only for simplification while without qualitatively

changing the results. We may consider relaxing this constraint in a more comprehensive

analysis in the future.

Furthermore, we take the experimental measurements of the Higgs and W boson mass

[23], which would fix 2 degree of freedom in the parameter space,

v = 246 GeV, mh = 125 GeV. (6.71)

These two inputs will allow us to eliminate the isospin doublet and triplet VEVs in both the

SGM and GM models. As a result, the six-dimensional (6D) parameter space in Equation

(6.70) is reduced to a four-dimensional (4D) one, and we choose the free parameters to be

(λ, λ∆, µ, µ∆)↔ (λ2, λ4,M1,M2). (6.72)

As we used in Equation (6.57) before, we furtherly reduce this 4D parameter space down

to a 2D one by imposing the conditions λ = ±λ∆ and µ = ±µ∆. We have to carefully

choose the signs in order to avoid the negative eigenvalues of the squared mass matrices

for scalars, which represent the unstable vacuum. Finally, we obtain 2 benchmark scenarios

which provide us with a safe scalar spectrum,

Point 1 : λ = λ∆, µ = −µ∆;

Point 2 : λ = −λ∆, µ = µ∆.
(6.73)

Thus, we have 2 degrees of freedom in our systematical analysis, and we choose them to

be the GM-like triplet and quintuplet masses m3,5. All other parameters are determined

self-consistently.

We remind the reader that the (m3,m5) parameter space is not totally free. We have

to confront several constraints. The first one is the perturbative unitarity of the 2 → 2

scalar field scattering amplitudes, which requires the quartic couplings in the GM model to

satisfy the conditions (3.52). Combining these with the mapping conditions (5.50), we get

81



the constraints on the coefficients of the cubic terms in the superpotential, as in Equation

(5.80). The allowed (λ, λ∆) parameter space is depicted in Figure 5.1. The second set of

constraints is coming from the unitarity bounds on the Yukawa couplings, as in Equation

(3.60). Together with the top quark mass mt = 175 GeV, we get a lower bound on the

isospin doublet VEV to be vH ≥ 60 GeV as in Equation (3.61), and the upper bound on the

isospin triplet VEV to be v∆ ≤ 84 GeV as in Equation (3.62). The last set of constraints

is from the non-negativity of the eigenvalues of all the scalar squared mass matrices, which

constrains the combinations of all the Lagrangian parameters. We summarize these three

constraints as follows.

• Perturbative unitarity of scattering hh → hh constraints on quartic couplings λ’s

requires

− 1

3
π < λ1 =

3

16
Λ2 <

π

3
, − 2

3
π < λ2 =

1

4
Λ2 <

2

3
π, − 1

2
π < λ3 = −1

8
Λ2

3 <
3

5
π,

− 1

5
π < λ4 =

1

8
Λ2

3 <
1

2
π, − 8

3
π < λ5 = −Λ(Λ +

1

2
Λ3) <

8

3
π,

(6.74)

• Perturbative unitarity of ff̄ → h→ ff̄ constraints on Yukawa couplings requires

yt ≤
√

16π

3
=⇒ vH ≥ 60 GeV, v∆ ≤ 84 GeV. (6.75)

• Non-negativity of the eigenvalues of scalar squared mass matrices requires

m2
S ≥ 0, S = H0

1···5, A
0
1···5, (H

±
1···6, H

±±
1,2 ). (6.76)

Here, due to the mass degeneracy, the H±1···6 must share the same masses as three H0
i

and three A0
i . H

±±
1,2 must share the same masses as two H±i , one H0

i , and one A0
i in

order to form one scalar quintuplet Fs and one pseudoscalar quintuplet Fp.

First, lets us take a glimpse at the approximate mass hierarchy structure. Starting with

the GM-like triplet and quintuplet, we have

m2
3 −m2

5 = Λ2(
3

2
v2 − 17v2

3) + 5
√

2Λv3µ. (6.77)

Here we have already used the relation 2v2
2 + 8v2

3 = v2 = (246 GeV)2. Therefore, if Λ > 0

and µ > 0, we roughly have m2
3 > m2

5 when v3 < v
√

3/34 = 73 GeV. We do not consider

about the negative triplet VEV case v3 < 0, as the negative sign can be rotated away with a

phase factor eiπ. For GM-like singlets, we interpret the lighter one as the SM-like mh = 125

GeV Higgs. The heavier singlet Higgs mass mH is derived from the eigenvalue of squared

mass matrix M2
S1,2

, which involves the square root when solving the quadratic equations.
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We take the small gauge triplet VEV limit v3 → 0 to expand these square roots, and get the

value referred to the quintuplet mass as

m2
H −m2

5 =
9v2Λ2

4
+

15Λµv3√
2
− 45Λ2v2

3. (6.78)

Therefore, we roughly get mH > m5 if v3 < v/
√

20 = 55 GeV. Similarly, we get the relation

of the SM-like Higgs h when compared with the scalar quintet,

m2
h −m2

5 = − Λv2µ

2
√

2v3

+
15Λ2v2

4
+ 2
√

2Λµv3 + Λ2v2
3. (6.79)

We will see that the sign of this difference is uncertain, as it can flip in our numerical scan.

We also estimate the difference of the squared mass of the heavier singlet and the triplet as

m2
H −m2

3 =
3Λ2v2

4
+

5Λµv3√
2
− 28Λ2v2

3, (6.80)

and we get mH > m3 when v3 < v
√

3/112 = 40 GeV. To summarize, the mass hierarchy

approximately goes as

m5,mh . m3 . mH . (6.81)

The sign of the squared mass difference between the quintet m2
5 and SM-like Higgs singlet

m2
h is unknown. All the mirror-GM particles are very heavy in our SGM model, when we

take the decoupling limit B = −B∆ →∞.

Now, to perform the numerical calculations, and we will choose the mass parameter

range 0 < m3,5 < 2mh = 250 GeV. We focus on the mass range below 2mh for two reasons.

First, we limit ourselves to be within the threshold forbidden region for the S → 2h decay.

The partial widths Γ(S → hh) are related by the triple Higgs couplings Vhhh [86], and we

reserve it for a future study. Second, a new Higgs scalar with mass below 250 GeV can be

well-probed at the current and future Large Hadron Collider (LHC), which can provide us

powerful and robust data for direct search of the Higgs bosons in this range [87, 88].

Let us first take a look at the physical parameters for our two benchmark points in

Equation (6.73), which are shown in Figure 6.6. Here we plot the masses for the heavier

singlet Higgs mH and the Lightest Supersymmetric Particle mLSP, and the gauge triplet VEV

v3. As we discussed before, the upper boundary of the allowed parameter space (m3,m5)

indicates the approximate hierarchy m5 . m3, and the blue lines representing the heavier

singlet mass indicate that m3 . mH . In the left figure corresponding to Point 1, the LSP

mass is roughly within the same range of the GM-like scalar masses. In contrast, the right
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Figure 6.6: The heavier Higgs mass mH , LSP mass mLSP and isospin triplet VEV v3 for
Point 1 (left) and Point 2 (right).

figure (Point 2) shows the LSP mass is much smaller when compared to the GM-like scalar

masses m3,5,H . Also, we obtain a different trends about the mLSP when (m3,m5) goes from

the left-upper corner to the right-lower direction, which indicates a phase transition. We will

see this phase transition will have an effect on the cross-section of LSP-nucleon scattering in

the Dark Matter direct detection (DD) experiments in Chapter 11.

Even though we have not found any new particles beyond the Standard Model yet, they

are still allowed within the current experimental uncertainties. The smoking gun to discover

the GM-like particles is to observe the doubly-charged Higgs through same-sign W boson pair

decay H±± → W±W±. The doubly-charged Higgs is one component of the mass quintuplet,

which has the neutral partners H0
5 . Let us look at this neutral component of the quintuplet

H0
5 first. We have calculated the total and partial decay width for one benchmark point

in Section 6.2.2 already. Now, we can perform a systemically scan in the parameter space

0 < m3,5 < 250 GeV for Point 1 and Point 2. The total decay width is shown in Figure

6.7. We can see for the Point 1 case, we have roughly the same decay width for the neutral

quintuplet H0
5 in both the GM and SGM models, in spite of that the decay width of the

SGM H0
5 is slightly larger. In contrast, the H0

5 decay width for the Point 2 in the SGM

model is significantly larger than the GM one. The ΓSGM
H0

5
can even be a few order higher
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Figure 6.7: The total decay width of the neutral quintuplet H0
5 for the Point 1 and Point

2.

than ΓGM
H0

5
, i.e., ΓSGM

H0
5
� ΓGM

H0
5

. It is because of the light LSP mass for this point, which

opens up the new decay channels, H0
5 → fif̄j. These channels do not exist in the GM model.

As a result, we would expect the branch fractions for the standard decay channels, such as

H0
5 → γγ,W+W−, ZZ, should be lower down significantly.

Let us look at the quintuplet decays to the γγ and ZZ pairs. We are interested in di-

photon decay because it is a very powerful direct search for the new particles, which have

been proved to be very successful in the SM-like Higgs discovery [14, 15]. Meanwhile, the

LHC has produced robust diphoton data up to now and will generate more in the future

runs. It provides us a very good battlefield to pursue the BSM particles predicted by various

new physics models, such as H0
5 in the GM and SGM models. The branching fractions 2 of

H5 → γγ for Point 1 and Point 2 in the GM and SGM models are displayed in Figure 6.8.

As we expected, for Point 1, we have roughly similar branching fractions of Br(H0
5 → γγ)

in both the GM and SGM models, while totally different ones for the Point 2. For the Point

2, BrSGM
H5→γγ � BrGM

H0
5→γγ

can be understood easily. We have very low LSP mass in this case of

2The branching fraction, also be called as branching ratio, is defined as the fraction of a partial width Γi

in the total width Γtot, while the total width sums over the partial width of all the possible decay channels,

Bri =
Γi

Γtot
=

Γi∑
j Γj

. (6.82)
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Figure 6.8: The branching ratios Br(H0
5 → γγ) for the Point 1 and Point 2 of the GM and

SGM models.

the SGM model, which opens the channels of H0
5 decay into the fermionic superpartners of

the GM and mirror-GM scalars. These new decay channels enter into the total decay width

of H0
5 and lower down the branching fractions of H0

5 → γγ in the SGM model. However,

the LSP is much heavier in the Point 1 case, which forbids the H0
5 on-shell decay into

the fermionic electroweakinos. Remind that we have taken the gaugino mass to be large as

M1 = M2 = 1 TeV. Here we want to point it out that in the upper-right coroner of Figure

6.8 left plot, the BrSGM
H0

5→γγ
& BrGM

H0
5→γγ

, which contradicts to the new decay channels open in

the Point 2 case. This can be understood as new charged particles (chargios and doubly

charginos) enter into the triangle loops in Figure 6.3 to induced the H0
5 → γγ decay. As

a result, we expect the effective couplings CH0
5γγ

get an enhancement from the constructive

contributions of these new charged particles, especially the doubly charginos. Therefore, the

partial decay width Γ(H0
5 → γγ) increases, which is confirmed by Figure 6.9. In the next

Chapter, we will use this effective coupling method to explore the new particles’ constructive

and destructive contributions to the diphoton decays of light exotic Higgs.

Let us move on toH0
5 → ZZ decay. The ZZ pair production attracts a lot of experimental

interests, as the ZZ → 4l mode provides very clean final state signature, which can be used

to fully reconstruct the Higgs mass with excellent detector resolution, including both electron

and muon channels. It is one of the main channels contributing to the Higgs discovery in
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Figure 6.9: The partial decay width Γ(H0
5 → γγ) for the Point 1 and Point 2 of the GM

and SGM models.

both ATLAS [14] and CMS [15] experiments. Furthermore, this channel is an excellent

instrument to study the spin and parity of new resonance, since the full decay chain and

intrinsic property can be reconstructed from the angular and invariant mass distribution of

the final states [89]. The branching fractions for H5 → ZZ∗ in both the GM and SGM

models for Point 1 and Point 2 are shown in Figure 6.10. We expect that the branching

ratio for H0
5 → ZZ∗ behaves pretty much the same for Point 1 of the GM and SGM models,

while for Point 2, the SGM Br(H0
5 → ZZ∗) is much smaller than that of the GM model, as

the low LSP mass in the SGM model open new decay channels. However, the H0
5 → ZZ∗

decay happens at the tree level, shown in Figure 6.5. The mapping conditions (5.50) ensure

that the vertex of gH0
5ZZ

is exactly the same in the GM and the SGM models. We would

expect the partial width of Γ(H0
5 → ZZ∗) is the same in the GM and SGM models, even

though the branching fractions can be very different.

The experimental searches for this neutral quintuplet suffer a lot from large uncertain-

ties, including the luminosity and the backgrounds. However, we can come up with some

ratio or double ratio observables which cancel a lot of systematic uncertainties, including

experimental and theoretical ones (such as renormalization and factorization uncertainties).
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Figure 6.10: The branching ratios Br(H0
5 → ZZ∗) for the Point 1 and Point 2 of the GM

and SGM models.

The Higgs golden ratio is such an observable defined as [90]

DBSM
γγ =

BrBSM
h→γγ/BrBSM

h→ZZ

BrSM
h→γγ/BrSM

h→ZZ
, (6.83)

where we use BrSM
h→γγ = 0.228% and BrSM

h→ZZ = 2.64% [23]. This observable can be measured

very precisely as many uncertainties from the production side cancel. We would expect the

experimental measurements of Dγγ to reach O(1%) precision in the future colliders, such

as high luminosity LHC. We show the contours of this Golden Ratio Dγγ in the 2D space

(m3,m5) in both the GM and SGM models in Figure 6.11. Same result as before, we obtain

similar contours in both models for the Point 1 case, while totally different for the Point

2. Good to see that in both cases, we got large parameters space close to the Standard

Model value DSM
γγ = 1, while large deviations from this value may be excluded when the

measurements become more precise.
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Figure 6.11: The Higgs Golden Ratio DBSM
γγ defined in Equation (6.83) for the Point 1 and

Point 2 of the GM and SGM models.
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Chapter 7

Light Exotic Higgs

We have talked about the Georgi-Macachek (GM) and Supersymmetric Georgi-Macachek

(SGM) Models as examples of isospin triplet extensions of the Standard Model Higgs sector.

As discussed in Section 3.1.2, this triplet VEV can provide the neutrino mass through the

Type II seesaw mechanism,

mν = 2yv∆. (7.1)

As we know, the neutrino mass is constrained by mν . 1 eV [46, 47, 48, 49, 50], which

means either the Yukawa coupling is very small, or the triplet VEV is small. We manually

impose the Custodial Symmetry in the GM and SGM models, which allows us to obtain

triplet VEV to be large as long as v∆ < 84 GeV in Equation (3.62). Under these conditions,

the Yukawa couplings must be bounded as tiny as y . 10−10. It means the isospin triplet

scalars’ couplings to the Standard Model fermions are extremely suppressed or even vanish.

As a result, these models give us exotic fermiophobic scalars, which cannot be produced via

gluon-gluon fusion mechanism [87, 88]. In this chapter, we take the GM and SGM models

as examples to talk about a more general exotic Higgs.

7.1 Exotic Higgs production channels

The current Higgs searches strongly depend on the vector boson fusion (VBF) and Higgs

associated with vector boson production (VH) mechanisms, shown in Figure 7.1. The cross

sections for both types production of the exotic Higgs are proportional to the square of

coupling gV V h, which is proportional to the exotic Higgs VEV vex. Similarly to our previous

definition of the triplet VEV angle θH in Equation (3.42) and (5.20), we can define a SM

doublet-exotic Higgs VEV mixing angle as

cθ ≡ cos θ =
vH
v
, sθ ≡ sin θ =

vex

v
, v2

H + v2
ex = v2 = (246 GeV)2. (7.2)
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Figure 7.1: The. Feynman diagrams for VBF and VH production.

If this VEV angle sθ is small, both VBF and VH production quickly become highly sup-

pressed. In such scenario, both VBF and VH searches become obsolete.

However, in comparison with VBF and VH production, we have a new production mech-

anism through Drell-Yan (DY) Higgs pair production, shown in Figure 7.2, which is not

present in the Standard Model because of no charged Higgs [87, 91]. The cross section of

this channel is determined by the Higgs-Higgs-Vector boson couplings, which can be param-

eterized as

gV HH = −ig2CV HH(p1 − p2)µ, (7.3)

where the coefficient CV HH is fixed by SU(2)V custodial representations (N, N̄). For ex-

ample, in the GM model, we have the mass triplet H0,±
3 and quintuplet H0,±,±±

5 , with the

couplings to W± boson as

CW±H∓3 H0
3

=
1

2
, CW±H∓5 H0

5
=

√
3

2
, CW±H±5 H

∓∓
5

=
1√
2
. (7.4)

The mixing representations CWHH′ , such as CW+H−3 h
, is proportional to sH defined in Equa-

tion (7.2). Similarly, Z boson mediated neutral Higgs pair production channel also mixes

different custodial representations, with CZHH′ (such as CZhH0
3
) proportional to sθ as well.

Although experimental measurements of the SM-like 125 GeV Higgs couplings [92] still

allow exotic Higgs VEV contributions to the EWSB, they constrain vex well enough at low

masses. As a result, the DY Higgs pair production dominates when compared with the

single Higgs production channels such as VBF or VH, which is suppressed by the small vex.

We take H0
5H
±
5 as an example of DY Higgs pair production and compare its Leading Order
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Figure 7.2: The Feynman diagrams for Drell-Yan Higgs pair production.
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Figure 7.3: The cross section for Drell-Yan Higgs Higgs production [87].

cross-section with VBF at various sθ in Figure 7.3. Furthermore, we also include the cross-

section with assuming a 100 GeV mass splitting between the neutral and charged scalars

MH±N
> MH0

F
(solid orange curve) to account for some custodial symmetry violation effects.

The cross section of Z boson mediated H0
FH

0
N production (solid blue curve) with the same

mass splitting is significantly smaller than the W mediated channels. We see clearly when

sθ � 1, the cross-section for VBF production channel quickly become highly suppressed

relative the DY Higgs pair production. Similar behavior occurs to the VH production chan-

nels, whose cross sections are typically smaller than the VBF ones expect at very low masses

[93, 94, 95].
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Figure 7.4: One-loop contributions from W± loops to the H0
FV γ(V = Z, γ) effective cou-

plings defined in Equation (7.9).

7.2 Fermiophobic Higgs Diboson Decays

In addition to V HH couplings, the neutral fermiophobic Higgs H0
F couplings to the

WW and ZZ boson pairs, which are generated through EWSB and proportional to the

exotic Higgs VEV vex. We can parametrize these couplings with the VEV angle sθ as

L ⊃ sθ
H0
F

v
(gZm

2
ZZ

µZµ + gWm
2
WW

+µW−
µ ), (7.5)

where gZ and gW are fixed by SU(2)V custodial representations of H0
F . For example, in the

GM and SGM models, we have the mass quintuplet H0
5 ,

gZ =
4√
3
, gW =

2√
3
. (7.6)

The mass triplet couplings are zero as it is CP-odd property, while the couplings to the

singlet H, h involve the rotation angles α. We can define a ratio of the couplings

λW/Z = gW/gZ , (7.7)

which is fixed the custodial symmetry at tree level to be

λW/Z =

1, H0
F = H, h,

1/2, H0
F = H0

5 .

(7.8)

The factor of sθ is implicitly canceled in this coupling ratio.

Starting at one-loop level, the charged particles will generate the effective couplings to

photon, shown in Figure 7.4. As a result, we would expect the following effective operators

L ⊃ H0
F

v
(
cγγ
4
F µνFµν +

cZγ
2
ZµνFµν), (7.9)

where field tensor is defined as Vµν = ∂µVν − ∂νVµ. Again, we can define coupling ratios

λV γ = cV γ/gZ , V = Z, γ, (7.10)

to absorb the implicit factor sθ. Any charged particles will contribute to the effective cou-

plings in Equation (7.9), including the W± boson, charged scalars and also charged fermions
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Figure 7.5: The Branching ratios of H0
F as a function of its mass by assuming λW/Z = 1.

The solid curves corresponds to effective couplings cV γ only generated by W± loop, while
dashed curves is calculated by taking effective couplings as λγγ = λZγ = 0.05 in Equation
(7.10) [87].

as well. In such case, the effective couplings can be enhanced when the charged particles in

the loop carry large chargers such as H±±, f±± and interface constructively with other loop

contributions. However, these effects are in principle expected to cannel to lead small cV γ

effective couplings [96, 97].

We illustrate effect of these effective couplings with the branching ratios of the fermio-

phobic Higgs in two scenarios in Figure 7.5. The solid curves correspond to the effective

couplings cV γ generated only by W± loops, in which λV γ ∼ 0.005 − 0.01 depending on the

Higgs mass. In the second scenario, we take the effective couplings cV γ as free parameters

and set cZγ = cγγ = 0.05 to plot the branching ratios as dashed curves in Figure 7.5. Under

the threshold of (2)MW,Z , the branching ratios are obtained with the 3 or 4 body decays in

H0
F → V γ → 2lγ and H0

F → V V → 4l.

7.3 Diboson and diphoton searches at the LHC

Combining the fermiophobic Higgs boson production and decays, we can examine the

possibility to search for fermiophobic Higgs bosons with diphoton and diboson searches at the

LHC. As we discussed the before, no gluon fusion channels are available for the fermiophobic

Higgs production, and single Higgs production channels such as VBF and VH associated

94



(13 TeV)

sθ = 0.1

sθ = 0.4

s θ
=
1
(V
BF

)

CMS WW (7 + 8 TeV)

|λ
WZ | = 1

|λ
Vγ
| =
0.
05

|λ
Vγ | = 10 -3

ΔM
H = 100 GeV

|λ
WZ | = 1

50 100 150 200 250

5

10

50

100

500

1000

MHF0 [GeV]

σ
(p
p
→
H
F0
H
N±
)*
B
R
W
W
[f
b
]

(13 TeV)

sθ = 0.1

sθ = 0.4

s θ
=
1
(V
B
F)

|λ
WZ | = 1

|λ
V
γ
| =
0.
05

|λ
V
γ |
=
10

-
3

ΔM
H = 100 GeV

|λ
WZ | = 1

CMS ZZ
(7 + 8 TeV)

50 100 150 200 250

5

10

50

100

MHF0 [GeV]

σ
(p
p
→
H
F0
H
N±
)*
B
R
Z
Z
[f
b
]

Figure 7.6: The products of the cross section σ(pp → W± → H0
FH

±
N) times the branching

ratios BR(H0
F → WW,ZZ), compared with the 95% exclusion limits from CMS diboson

searches [98].

production are suppressed by the small VEV angle sθ. We only consider the DY Higgs pair

production mechanism pp → W± → H±NH
0
F , where H0

F and H±N can have a degenerated

mass or large mass splitting. The cross sections for VBF and VH production are suppressed

through a small angle of sθ, which can be seen in Figure 7.3.

7.3.1 Diboson probing intermediate masses

Recently, the CMS collaboration has published the search results for a heavy boson in

the H → WW and H → ZZ decay channels based on
√
s = 7 and 8 TeV data [98]. No

significant signal of new Higgs boson has been found yet, but the upper exclusion limits at

95% confidence level on the production cross section times the branching ratios have been

obtained, shown as dashed lines in Figure 7.6. The data only constrain the Higgs in mass

range 145 < MH < 1000 GeV. When compared with the DY Higgs pair production cross

section σ(pp → W± → H±NH
0
F ) and the branching ratios BR(H0

F → WW,ZZ), we see the

CMS 7+8 TeV exclusion limits are not quite sensitive to constrain our fermiophobic Higgs

H0
F . However, if the 13 and 14 TeV data can improve the current limits by an order of

magnitude, these two channels will become quickly sensitive to probe fermiophobic Higgs

boson in the intermediate mass range (& 2MW,Z) and up to ∼ 250 GeV.

7.3.2 Diphoton to probe light masses

In contrast to the diboson WW,ZZ channels, the diphoton can probe very light mass

range as no threshold effect at all in this channel. The ATLAS collaboration has performed
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Figure 7.7: The production cross section of σ(pp → W± → H0
FH

±
N) at 8 TeV times the

branching ratio BR(H0
F → γγ), compared with the ATLAS 95% exclusion limits [99].

the analysis of the 8 TeV data of possible scalar particles decaying into two photons in

the mass range 65-600 GeV [99]. Similarly, no significant signal for new scalars has been

observed, and the results are presented as 95% exclusion limit of the cross section times

branching ratios, shown in Figure 7.7. When comparing with DY Higgs pair production

pp → W± → H±NH
0
F times the branching ratios BR(H0

F → γγ) by assuming only W± loop

contributing to the effective couplings cV γ, we realize the fermiophobic Higgs masses below

∼ 115 GeV is ruled out by this ATLAS 8 TeV data. Recently, the latest 13 TeV data from

both CMS [100] and ATLAS [101] have come out, but both groups only analyzed data up

to 110 GeV diphoton invariant mass. In the future, we would expect the 13 TeV data could

push the bound up to 125 GeV when all the diphoton data are released.

However, the exclusion limit mH0
F
& 115 GeV relies on various assumptions. The first

one is that the neutral Higgs H0
F has a degenerate mass with charged Higgs H±N . If we

allow the charged scalar to be heavier than the neutral one MH±N
> MH0

F
, which quantifies

the custodial symmetry breaking effects, the cross-section of the DY Higgs pair production

σ(pp → W± → H±NH
0
F ) will decrease, shown as the blue dashed curves in Figure 7.7. As a

result, the bound on the neutral fermiophobic Higgs mass can be lowered down. Another

assumption is that we only include the W± boson in the loop contributing to the effective

couplings cV γ. If other charged particles such as charged scalars H±N or charged fermion f±

enters into the loops in Figure 7.4, we would expect constructive or destructive interfaces

96



Figure 7.8: The allowed custodial quintuplet branching ratio into photons in the GM (blue)
and SGM (orange) models [102].

with the W± loops. By taking λV γ = 10−3 to quantify the destructive effect, we would

lower down the bounds to MH0
F
& 90 GeV, shown in Figure 7.7. On the contrary, if we

allow large charged particles such as doubly charged scalars H±± or fermions f±± to run in

the cV γ loops, or the new charged particles contribute to cV γ constructively by the interface

with W± loops, we would expect to get large effective couplings cV γ. For example, with

λV γ = 0.05 shown in Figure 7.7, the bounds on the neutral fermiophobic Higgs mass can be

as large as MH0
F
& 160 GeV. We want to mention that VBF production mode by assuming

sθ ≈ 1, this ATLAS 8 TeV diphoton searches would rule out the SM-like scalar with masses

below ∼ 140 GeV. But this production mode becomes less sensitive when sθ . 0.1, which is

constrained by the measurements of the exotic contributions to the EWSB.

Besides the mass splitting from the custodial symmetry violation and new charged parti-

cles’ contribution to cV γ loops, there is another possibility which can help us to lower down

the exclusion limit of the fermiophobic Higgs mass, which is the invisible decay into the dark

sector. Taking the SGM model as an example, we have a whole sector of fermionic superpart-

ners accompanying with the scalars in the GM model. If these fermionic superpartners are

light, which is quantified by the LSP mass, we would expect the GM-like scalars to decay into

the fermion higgsinos, which would lower down the branching ratios of the neutral scalars

H0
F decay into photons. As a result, we could allow very low mass neutral fermiophobic

scalars as long as the invisible LSP mass is even lower than the neutral H0
F . Here in Figure

7.8, we show the allowed branching ratios of the quintuplet emerging in the GM and SGM
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models, by dividing the latest CMS 8+13 TeV 95% exclusion limit of σ × BR(H → γγ)

[100] with DY Higgs pair production cross section σ(pp → W± → H0
5H
±
5 ). We can see

a lot of points with low quintuplet mass m5 are stilled allowed by the current LHC limit,

which corresponds to the LSP mass in the SGM model. Furthermore, we have projected

the current LHC limit to the future by assuming two orders of magnitude improvement in

sensitivity, which is beyond the future LHC diphoton searches, but achievable at future high

energy colliders, such as CLIC, ILC, HL-LHC, etc [103].
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Part II

Massive quarks in perturbative Quantum Chromodynamics
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Chapter 8

QCD factorization theorem

In the first part, we explored Higgs triplet models as a window to the physics beyond

the Standard Model, and we used them to predict a large number of new particles, including

the Higgs scalars and the superpartners. A remaining fundamental question is how we can

directly detect these BSM particles in laboratories. The most powerful experimental machine

is the hadron collider, offering the most efficient way to push the energy up to the highest

frontier. The physics at hadron colliders strongly relies on our understanding of the proton

structure in the framework of quantum chromodynamics (QCD), which is the main subject

of this part.

8.1 Factorization theorem

In the last chapter of Part I, we have discussed Higgs production through vector-boson

fusion (VBF), associated with vector boson production (VH), and the Drell-Yan (DY) Higgs

pair production, see Figures 7.1 and 7.2. However, the primary production mechanism for

the SM-like Higgs boson at hadron colliders is gluon fusion gg → H, shown in Figure 8.1.

In this section, we will take the gluon fusion as a starting example to demonstrate the QCD

factorization theorem.

8.1.1 Higgs production through gluon fusion

With the notation

k2
1 = 0, k2

2 = 0, (k1 + k2)2 = p2 = ŝ = M2
H , (8.1)

the partonic cross section can be expressed as

σ̂(gg → H) =
1

2ŝ

∫
d3p

(2π)32Ep
(2π)4δ4(k1 + k2 − p)|M|2. (8.2)
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k1

k2

p = k1 + k2

l

l − k2

l + k1

Figure 8.1: The Feynman diagrams for Higgs production through gluon fusion at the lowest
order.

The amplitude square |M|2 already shows up in Equation (6.42). Therefore, we can express

the LO partonic cross section in terms of the partial decay width as

σ̂(gg → H) =
8π2

N2
gMH

Γ(H → gg)

∫
d4p

E
δ4(k1 + k2 − p)

=
π2

8MH

Γ(H → gg)δ(ŝ−M2
H) = σ0δ(ŝ−M2

H),

(8.3)

where the partial width is

Γ(H → gg) =
GFα

2
sM

3
H

36
√

2π3

∣∣∣∣34A1/2(τ)

∣∣∣∣2 , (8.4)

and

A1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2,

f(τ) =

arcsin2√τ (τ ≤ 1)

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
]

(τ > 1).

(8.5)

The τ parameter is defined as τ = M2
H/4m

2, where m denotes the quark mass running in the

triangle loops. The main contribution is from top quark, due to its large Yukawa coupling.

Hence, we can safely ignore other SM quarks and only focus on top quark. In turn, we have

the final partonic cross section of gluon fusion as

σ̂(gg → H) =
GFα

2
sM

2
H

288
√

2π

∣∣∣∣34A1/2(τt)

∣∣∣∣2 δ(ŝ−M2
H) = σ̂0M

2
Hδ(ŝ−M2

H), (8.6)

where the prefactor is defined as σ̂0 = GFα
2
s

288
√

2π

∣∣3
4
A1/2(τt)

∣∣2. In the large top quark mass limit

mt →∞, i.e., τt → 0, we have

f(τt) = 0 =⇒ A1/2(τt) =
4

3
=⇒ σ̂0 =

GFα
2
s

288
√

2π
. (8.7)
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The gluons come from the initial hadrons (e.g. protons), shown in Figure 8.2. In

P1

P2

k1

k2

H

X

X

Figure 8.2: The gluon fusion pp→ H in proton-proton collision.

the picture of the parton model or its QCD improved version, the gluon momenta can be

parameterized as

k1 = x1P1, k2 = x2P2, (8.8)

where

P1 =

√
s

2
(1, 0, 0, 1), P2 =

√
s

2
(1, 0, 0,−1), s = (P1 + P2)2, (8.9)

where we neglect the proton mass and work in the center-of-mass frame of the initial-state

protons. Here we only consider at the LO to demonstrate the QCD factorization. At a higher

order, the gluon can come from splitting of initial-state gluons or quarks. The δ function in

Equation (8.6) gives us

M2
H = p2 = ŝ = (k1 + k2)2 = x1x2s. (8.10)

In the QCD improved parton model, the hadronic cross section can be obtained by weighting

the partonic cross section σ̂(gg → H) with the parton distribution functions (PDFs) fg/p(x),

σ(pp→ H) =

∫
dx1dx2fg/p(x1)fg/p(x2)σ̂(gg → H) = σ̂0M

2
HLgg(M

2
H), (8.11)

where we define the partonic luminosity as [104]

Lgg(M
2
H) =

∫
dx1dx2fg/p(x1)fg/p(x2)δ(ŝ−M2

H) =
1

s

∫
dx1

x1

fg/p(x1)fg/p(
τ

x1

), (8.12)
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with τ = x1x2 = M2
H/s at the LO. In many cases, we shorten the gluon PDF as g(x) =

fg/p(x).

8.1.2 The factorization formalism

The hadronic cross section in Equation (8.11) reflects the factorization theorem of Quan-

tum Chromodynamics (QCD). It was first pointed out by Drell and Yan that Bjorken scaling

[105] and Feynman’s parton model [106, 107], which was developed for deep inelastic scat-

tering (DIS), can be extended to hadron-hadron collision processes [108]. As an example,

a massive lepton pair production through quark-antiquark annihilation, or Drell-Yan (DY)

process qq̄ → l+l− can be formulated as

σ(AB) =
∑
a,b

∫
dxadxbfa/A(xa)fb/B(xb)σ̂ab, (8.13)

where fa/A(x) is the parton distribution function that in early 1970s was extracted from the

structure functions in DIS, and is now extracted from the global analysis of QCD processes.

However, problems arise when perturbative corrections to Equation (8.13) from real and

virtual gluon emissions are included. Large logarithms from the collinear gluon emission spoil

the perturbation convergence. It was quickly realized that these large logarithms should be

absorbed into the redefinition of the parton distribution functions via DGLAP evolution

equations [109, 110, 111, 112], which explains the phenomenon of the scaling violation of the

structure functions. The magic is that all the logarithms appearing in the collinear parton

emission in the corrections to the DY process can be absorbed into renormalized PDFs.

It has been rigorously proved that inclusive scattering cross section of the DIS and DY

processes dependent on one typical energy scale Q� 1 GeV can be systematically factorized

into the short-distance and long-distance parts [113, 114]. The short-distance part absorbs

hard interactions of partons that can be calculated as a perturbative series in the QCD

coupling strength. In contrast, the long-distance part absorbs the nonperturbative effects.

It is parameterized by functions describing the distribution of partons in the hadron. For

other single-scale QCD observables, we have no rigorous proof of the factorization theorem

yet.
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Beyond the leading order (LO), we expect the perturbative corrections to the hadronic

cross section of Equation (8.13) to be schematically written in the form

σ =
∑
a,b

∫
dxadxbfa/A(xa, µF )fb/B(xb, µF )[σ̂0 + αs(µR)σ̂1 + · · · ] +O(ΛQCD/Q). (8.14)

Here µF is called a factorization scale, symbolizing the scale to separate the long- and short-

distance effects, and µR is the renormalization scale for renormalization group equation

(RGE) running of the strong coupling αs. Formally, the all-order cross-section, which is a

physical observable, does not depend on the choice of the factorization and renormalization

scales. That is to say, the cross section calculated to all orders in Equation (8.14) is invariant

when varying the artificial parameters µF and µR. However, obtaining the complete set of

higher-order corrections is impractical, which forces us to make a reasonable choice of the

two scales to ensure the predictivity of our theoretical calculations. The standard choice is

to set the two scales equal to the physical energy scale Q of the hard scattering process1, to

avoid large logarithms, such as µF = µR = Q = Mll for the DY process. Varying these scales

yields the scale uncertainty, which can be used as an estimator of the unknown higher-order

corrections.

8.1.3 Drell-Yan process

As we mentioned above, the Drell-Yan process corresponds to the lepton pair (e+e−

or µ+µ−) production in a hadron-hadron collision. In the basic process, a quark and an

antiquark annihilate to produce a massive virtual photon, which decays into a lepton pair,

qq̄ → γ∗ → l+l−, as shown in Figure 8.3. The total partonic cross section for the DY process

at the LO can be obtained from e+e− → µ+µ− in QED by inserting the appropriate color

and electric charge factors,

σ̂(qq̄ → γ∗ → l+l−) = σ̂0

e2
q

Nc

, σ̂0 =
4πα2

3ŝ
. (8.15)

Here eq is the fractional electric charge of quarks: eu = 2/3 and ed = −1/3, and Nc = 3 is

the color factor.

As in Equation (8.8), the momenta of the initial partons in the lab frame can be

parametrized as

k1 =

√
s

2
(x1, 0, 0, x1), k2 =

√
s

2
(x2, 0, 0,−x2). (8.16)

1Sometimes, we multiply by a factor of order unity. That is, µF,R = ξQ, where ξ ∼ O(1).
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P1

P2

X

X

q

q̄

Z/γ∗
l+

l−

Figure 8.3: The Feynman diagram for the DY process.

At the LO, the momentum conservation gives us the invariant mass of the final-state lepton

pair as

ŝ = M2
ll = p2

ll = (k1 + k2) = x1x2s. (8.17)

With the definition of rapidity of the lepton pair as

y ≡ 1

2
log

p0
ll + p3

ll

p0
ll − p3

ll

=
1

2
log

x1

x2

, (8.18)

we have

x1 =
Mll√
s
ey, x2 =

Mll√
s
e−y. (8.19)

In terms of the factorization formalism (8.13), the LO hadronic cross section takes the form

σ =

∫
dx1dx2

∑
k

[qk(x1,Mll)q̄k(x2,Mll) + q̄k(x1,Mll)qk(x2,Mll)] σ̂0
e2
k

Nc

. (8.20)

where we choose the factorization scale to be the invariant mass of the lepton pair, µF = Mll.

Substituting the integration variables as

dx1dx2 =

∣∣∣∣∂(x1, x2)

∂(M2
ll, y)

∣∣∣∣ dM2
lldy =

1

s
dM2

lldy, (8.21)

we can get the double-differential cross section as
dσ

dM2
lldy

=
σ̂0

Ncs

∑
k

e2
k [qk(x1,M)q̄k(x2,M) + q̄k(x1,M)qk(x2,M)] . (8.22)

105



8.2 Deep inelastic scattering

As we mentioned above, deep inelastic scattering (DIS) is another process in which the

factorization theorem has been proved rigorously. Because of its relatively simple structure, it

has been extensively studied since the SLAC experiment [115, 116, 117], both experimentally

and theoretically. DIS is very important for the QCD factorization in two aspects. First,

it was the first experiment to see partons as point-like particles inside the hadron, which

stimulated the formulation of the parton model [106, 107] and Quantum Chromodynamics

(QCD). Second, DIS experiments provide the most precise data to determine the parton

distribution functions, which will play a key role in searches for new physics beyond the

Standard Model in the future.

8.2.1 Kinematics

The Feynman diagram for deep inelastic scattering at the Born level is illustrated in

N(p)

X

xp

e−(k1) e−(k2)

γ∗(q)

Figure 8.4: The Feynman diagram for deep inelastic scattering e−(k1)N(p)→ e−(k2)X

Figure 8.4. The particle momenta defined in the rest frame of the proton are

p = (mp, 0), k1 = (E1, ~k1), k2 = (E2, ~k2). (8.23)
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We can define the Lorentz-invariant variables as

S = (p+ k1)2 = p2 + 2p · k1 = m2
p + 2mpE1,

ν = p · q/mp = E1 − E2,

Q2 = −q2 = 2k1 · k2 = 2E1E2(1− cos θ),

(8.24)

where we have used the zero-mass approximation for lepton k2
1 = k2

2 = 0. We can introduce

the dimensionless variables

x =
Q2

2p · q =
Q2

2mpν
, y =

q · p
k1 · p

=
ν

E1

= 1− E2

E1

, (8.25)

which satisfies

0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (8.26)

Hence, all the Lorentz variables can be expressed in terms of S, x and y.

p · q = M(E1 − E2) = ME1(1− E2/E1) = Sy/2,

Q2 = 2xp · q = Sxy,

p · q
q2

=
Sy/2

−Sxy = − 1

2x
.

(8.27)

Then, we can integrate the phase space

dΦ =
d3k2

(2π)32E2

=
1

(2π)32E2

2πd cos θE2
2dE2

=
yS

(4π)2
dxdy =

y

x(4π)2
dQ2dx,

(8.28)

where we have integrated out the azimuthal angle
∫

dφ = 2π. The differential cross section

for DIS is

dσ =
1

F

d3k2

(2π)32E2

∑
X

(2π)4δ4(q − p− pX)
1

2

∑
se

|M|2

=
1

2S
dΦLµν

e4

q4
W µν .

(8.29)

Here F = 4E1M = 2S is the flux factor in the hadron rest frame. The matrix element
1

2

∑
se

|M|2 =
e4

q4
Lµν〈H(p)|Jµh |X〉〈X|Jνh |H(p)〉 (8.30)

contains the leptonic tensor Lµν that for me = 0 takes the form

Lµν =
1

2

∑
se

[
ū(k1γµu(k2)ū(k2)γνu(k))

]
=

1

2
Tr[ /k1γµ /k2γν ] = 2(k1,µk2,ν + k1,νk2,µ − gµνk1 · k2).

(8.31)
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We define a structure function of the hadron as

W µν
H (q, p) =

∑
X

(2π)4δ4(q + p− pX)〈H(p)|Jµh |X〉〈X|Jνh |H(p)〉

= (−gµν +
qµqν

q2
)W1 + (pµ − p · q

q2
qµ)(pν − p · q

q2
qν)W2

= (gµνQ2 + qµqν)
W1

−Q2
+ (pµ +

qµ

2x
)(pν +

qν

2x
)W2

= (gµνSxy + qµqν)
W1

−Sxy + (2xpµ + qµ)(2xpν + qν)
W2

4x2
,

(8.32)

where we have used the identity (pX − p)µ〈X|Jµh |J(p)〉 = 0, and in turn qµW
µν
H (q, p) =

qνW
µν
H (q, p) = 0 because of the U(1)EM Ward identity. Since qµLµν = qνLµν = 0, we have

LνµW
νµ
H (q, p) = 2SxyW1 + S2(1− y)W2. (8.33)

So, we have the fully differential cross section,
dσ

dxdy
=
yα2

2Q4
S[2xyW1 + S(1− y)W2], (8.34)

which can be also written in terms of (x,Q2),
dσ

dxdQ2
=
yα2

2Q2

[
2yW1 + S

1− y
x

W2

]
=

4πα2

Q2

[
y2F1 + F2

1− y
x

]
, (8.35)

Equation (8.35) contains the structure functions Fi(x,Q
2) that are commonly introduced in

modern DIS calculations:

F1(x,Q2) = W1/4π, F2(x,Q2) = SyW2/8π. (8.36)

For the charged-current neutrino DIS process,

νµ(k1) +H(p)→ µ−(k2) +X, or ν̄µ(k1) +H(p)→ µ+(k2) +X. (8.37)

we derive the cross sections by following Ref. [118]. We just need to change the propagator

and EW couplings in the amplitude,

− e2

q2
→ 1

8

g2

m2
W − q2

=
GF√

2

m2
W

m2
W +Q2

. (8.38)

If Q2 � m2
W , we can write the differential cross section as

dσνH,ν̄H
dxdy

=
G2
F

2π
2ME

[
(1− y)F±2 (x,Q2) + xy2F±1 (x,Q2)± xy(1− 1

2
y)F±3 (x,Q2)

]
. (8.39)

8.2.2 The parton model

Similarly to the hadronic cross section defend in Equation (8.13) at the lowest order in

QCD coupling αs, we can obtain the hadronic tensor by weighting the partonic tensor with

the parton distribution function as

W µν(x,Q2) =
∑
a

∫
dx

x
fa(x)wµν(x,Q2), (8.40)

108



where wµν denotes the partonic tensor:

wµν(x,Q2) = 〈q|Jµ|X〉〈X|Jν |q〉 =
∑
X

∫
dΦX |M(γq → X)|2 = 2 ImM(γq → γq), (8.41)

where we have applied the optical theorem. Therefore, inserting the amplitude of “deeply

virtual Compton scattering”, we obtain the hadronic tensor as

W µν(x,Q2) =2 Im

∫
dx

x
f(x)(−1

2
) Tr

[
γµ

x/p+ /q

(xp+ q)2 + iε
γνx/p

]
=2 Im

∫
dx

x
f(x)

1

2
(−4)

2xpµxpν + xpµqν + xpνqµ − gµνxp · q
2xp · q −Q2 + iε

.

(8.42)

Using the imaginary part of the expression,

Im
−1

2xp · q −Q2 + iε
= πδ(2xp · q −Q2) =

π

yS
δ(x− Q2

2p · q ), (8.43)

we obtain

W µν = f(x)
2π

xyS
(2xpµ2xpν + 2xpµqν + 2xpνqν − gµνxys)

= f(x)
2π

xyS

[
− (gµνSxy + qµqν) + (2xpµ + qµ)(2xpν + qν)

]
.

(8.44)

By comparing to the Equation (8.32), we get the structure functions as

W1 =
f(x)

x

2π

yS
Q2 =

f(x)

x

2π

yS
Sxy = f(x)2π,

W2 =
f(x)

x

2π

yS
4x2 = 8f(x)x

π

yS
.

(8.45)

Substituting W1,2 into the Equation (8.34), we get the fully differential cross section for DIS

as
dσ

dxdy
=
α2y

2Q4
S

[
2xyf(x)2π + S(1− y)8f(x)x

π

yS

]

=
2πα2S

Q4
f(x)x

[
y2 + 2(1− y)

]
=

2πα2S

Q4
f(x)x

[
1 + (1− y)2

]
.

(8.46)

With the definitions of the structure functions in Equation (8.35), we have

F1(x,Q2) =
W1

4π
=

1

2

∑
k

e2
k

[
qk(x) + q̄k(x)

]
,

F2(x,Q2) =
SyW2

8π
= 2xF1(x,Q2) = x

∑
k

e2
k

[
qk(x) + q̄k(x)

]
.

(8.47)

We can define the longitudinal component with the combination of F1 and F2 as

FL ≡ F2 − 2xF1. (8.48)

At the leading order O(αα0
s) that we are working, we have FL = 0.

We can express the structure functions in terms of PDFs for individual flavors:

F ep
2 (x,Q2) = x

{
4

9

[
u(x) + ū(x)

]
+

1

9

[
d(x) + d̄(x)

]}
+ · · · , (8.49)
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where the dots represent the contributions from heavy flavors. Partons inside of the proton

include both valence and sea quarks,

fu(x) = u(x) = uv(x) + usea(x), fū = ū(x) = usea(x), · · · (8.50)

Considering that a proton is made up of three valence quarks, sea (anti)quarks, and gluons,

the PDFs in the proton satisfy three sum rules reflecting the quantum numbers of the proton:

• isospin
1

2

∫
dx(u− ū− d+ d̄) =

1

2
; (8.51)

• strangeness ∫
dx(s− s̄) = 0; (8.52)

• electric charge
2

3

∫
dx(u− ū)− 1

3

∫
dx(d− d̄)− 1

3

∫
dx(s− s̄) = 1. (8.53)

Consequently, we can obtain the flavor sum rules∫
dx (u− ū) =

∫
dxuv = 2,

∫
dx (d− d̄) =

∫
dx dv = 1. (8.54)

For the charged current (CC) DIS, the basic scattering subprocesses are

W+ : νd→ µ−u, νū→ µ−d̄,

W− : ν̄u→ µ+d, ν̄d→ µ+u.
(8.55)

Following the same derivation, we get the structure function for CC DIS at LO as

F νp
2 = 2x (u+ d̄), F ν̄p

2 = 2x (d+ ū). (8.56)

Therefore, we obtain the Adler sum rule [119]∫
dx

x
(F νp

2 − F ν̄p
2 ) = 2

∫
dx (u− ū− d+ d̄) = 2. (8.57)

Similarly, we can derive the Gross-Llewellyn Smith (GLS) sum rule [120] as∫
dx(u+ d+ s− ū− d̄− s̄) = N(q)−N(q̄) = 3, (8.58)

which is also referred to as the baryon number sum rule. With the isospin symmetry between

the proton and neutron, we would expect the structure function of neutron to be

F en
2 = x

[
1

9
(u+ ū) +

4

9
(d+ d̄)

]
. (8.59)

Comparing with the proton structure function in Equation (8.49), we obtain the Gottfried

sum rule [121]

SG =

∫
dx

x
(F ep

2 − F en
2 ) =

1

3

∫
dx(u+ ū− d− d̄) =

1

3
+

2

3

∫
dx(ū− d̄). (8.60)
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If the quark sea were SU(2)flavor symmetric, we would have ū = d̄, and SG = 1/3. However,

the NMC experiment measured the value SG = 0.2281 ± 0.0065 at Q = 4 GeV for the

integration interval 0.004 ≤ x ≤ 0.8 [122, 123, 124], which implies a flavor-asymmetric sea.

Finally, the total momentum carried by quarks is given by

〈x〉q =

∫
dxx

∑
q

(q + q̄) = 1− ε, (8.61)

where the ε =
∫
xgdx = 〈x〉g indicates the gluon momentum. Experiment measurements

tell us that 〈x〉q = 0.465± 0.023 at Q = 15 GeV [125], indicating that a large fraction of the

proton’s momentum is carried by gluons.

8.2.3 QCD corrections

From the quantum field theory point of view, the quark fields in the electric charge

currents Jµ =
∑
q̄γµq were effectively free, which is justified by the asymptotic freedom

of QCD. However, the radiation of hard gluons from quarks or gluons splitting into quark

pairs breaks the naive picture of the parton model, leading to logarithmic violation of the

Bjorken scaling. For example, in Figure 8.5, an approximate scaling is observed in the

DIS data at x ≈ 0.1, but apparent scaling violation happens for the lower and higher x.

This scaling violation can be systematically explained by including the higher-order QCD

corrections. The diagrams of next-to leading order (NLO) correction are shown in Figure

8.6.

Starting at NLO, the DIS structure function is generalized as the convolution of the

coefficient functions and the corresponding PDFs,

F (x,Q2) =
∑
i

Ci ⊗ fi =
∑
i

∫ 1

x

dy

y
Ci(

x

y
,
Q2

µ2
F

)fi(y, µF ), (8.62)

where ⊗ denotes the convolution integral, and µF is the factorization scale. The structure

function, which is a physical observable, should be independent of the choice of factorization

scale µF when computing to all orders in αs. That is to say, F (x,Q2) is invariant when

varying µF ,

0 =
dF

d lnµ2
F

=
dCi

d lnµ2
F

⊗ fi + Ci ⊗
dfi

d lnµ2
F

. (8.63)
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Figure 8.5: The inclusive NC e+p and e−p cross section together with fixed-target experi-
ments, BCDMS [126, 127] and NMC [128], compared with the predictions of HERAPDF 2.0
NNLO [129].
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Figure 8.6: The next-to leading order (NLO) corrections to the DIS e−(k1)N(p)→ e−(k2)X.

We implicitly sum over the repeated index i = q, q̄, g. The factorization scale dependence of

PDFs is governed by the DGLAP evolution equations [109, 110, 111, 112],
dfi

d lnµ2
F

=
αs(µ

2
R)

2π
Pij ⊗ fj. (8.64)

Here we evaluate the QCD coupling strength αs at another “renormalization” scale µR that

is generally different from the factorization scale µF . When solving the DGLAP equations

numerically, we normally set the two scales to be the same, µR = µF . In the Wilson coefficient

function, both scales µF and µR are normally chosen to be of order of the hard scale Q, even

though they don’t need to be equal. The strong coupling αs evolves with the renormalization

scale according to the renormalization group equation (RGE),
dαs/4π

d lnµ2
= β(αs) = −β0

(αs
4π

)2

+ · · · , (8.65)

where β0 = 11− 2Nf/3.

If we use a shorthand notation,

L ≡ ln
Q2

µ2
, a(µ2) ≡ αs(µ

2)

4π
, a0 = a(Q2), (8.66)

we can expand the running strong coupling a, PDF f , splitting functions P and coefficient

functions in terms of strong couplings a0. Let us start with the running strong coupling a:

a = a0 + A1a
2
0 + A2a

3
0 + · · · . (8.67)

The RGE for αs can be rewritten as
da

dL
= a(β0a+ β1a

2 + · · · ). (8.68)
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Substituting Equation (8.67) into Equation (8.68), we could determine the expansion co-

efficients A1,2···. Therefore, we obtain the perturbative expansion for the scale-dependent

coupling as

a = a0 + β0La
2
0 + (β2

0 + β1)a3
0 + · · · . (8.69)

Similarly, we can expand the splitting function P and the PDF f in terms of a0,

fi = f
(0)
i + f

(1)
i a0 + f

(2)
i a2

0 + · · · ,

Pij = P
(0)
ij a+ P

(1)
ij a+ P

(2)
ij a

2 + · · ·

= P
(0)
ij a0 + (β0LP

(0)
ij + P

(1)
ij )a2

0 +
[
(β2

0L
2 + β1L)P

(0)
ij + 2β0LP

(1)
ij + P

(2)
ij

]
a3

0 + · · · ,
(8.70)

where we have substituted the result of Equation (8.69). Please be careful, the expansion

coefficients of splitting functions P
(0,1,··· )
ij are defined in terms of a, not a0. The DGLAP

equation can be written as
dfi
dL

= −2aPij ⊗ fj. (8.71)

Plugging in the expansion (8.70), we get the perturbative coefficients as

f
(0)
i = f

(0)
i,0 ,

f
(1)
i = −LP (0)

ij ⊗ f (0)
j,0 + f

(1)
i,0 ,

f
(2)
i =

1

2
(L2P

(0)
ij ⊗ P (0)

jk − 2LP
(1)
ik − β0L

2P
(0)
ik )⊗ f (0)

k,0 − LP
(0)
ij ⊗ f (1)

j,0 + f
(2)
i,0 .

(8.72)

Please note, f
(k)
i,0 is the PDF expansion coefficients at the initial scale µ2

0 = Q2, while f
(k)
i is

the coefficients at any scale µ. In our practical PDF parameterization, we have the freedom

to choose the initial conditions for DGLAP equation as f
(0)
i,0 = fi,0, and set f

(k>0)
i,0 = 0.

Now, with the scale invariance condition (8.63), we obtain the structure function at any

scale as

F (µ2) = F (µ2
0), i.e. C(µ2)⊗ f(µ2) = C(µ2

0)⊗ f(µ2
0). (8.73)

We can expand the coefficient function at any scale as

Ci(x, αs(µ
2), L) =

∑
k=0

ak

(
c

(k)
i +

k∑
m

c
(k,m)
i Lm

)
. (8.74)
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The c
(k)
i can be calculated perturbatively, such as c

(0)
q = δ(1 − x), while c

(0)
g = 0. The first

order corrections c
(1)
i are calculated in Ref. [130]. The coefficients of Lm are

c
(1,1)
i =c

(0)
j ⊗ P (0)

ji ,

c
(2,1)
i = c

(0)
j ⊗ P (1)

ji + c
(1)
j ⊗ (P

(0)
ji − β0δji),

c
(2,2)
i =

1

2
c

(1,1)
j ⊗ (P

(0)
ji − β0δji),

(8.75)

This way, we can get the coefficients at each αs order recursively. In the next chapter, we

will apply this recursive relation to the coefficient functions for heavy-flavor production in

the framework of the intermediate mass (IM) scheme up to N3LO.
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Chapter 9

Heavy-flavor production in deep inelastic scattering

As we mentioned before, DIS data play a crucial part in probing the parton structure,

which is described by parton distribution functions (PDFs). In the next two chapters,

we will focus on a practically important question of QCD theory: computation of radiative

contributions with massive quarks in deep-inelastic scattering, heavy-flavor hadroproduction,

and other such processes. The quark masses arise in perturbative QCD expressions as

additional mass scales: modern precise calculations must be based on a QCD factorization

formalism that properly accounts for relevant mass effects in the whole range of accessible

energies. In the asymptotic region where the physical energy scale Q (such as photon

virtuality) is much larger than the heavy-quark mass, Q� mq(q = c, b, t), the heavy quark

behaves effectively like a massless parton. The large logarithms αms logn(Q2/m2
q) spoil the

convergence of the perturbative expansion and, therefore, need to be resummed into heavy-

flavor PDFs. In the threshold region, Q ∼ mq, quark masses may be non-negligible both

in the phase space factor and scattering amplitudes. For instance, DIS at the ep collider

HERA has successfully probed the proton structure function at as low as x ∼ 10−5 [129].

Contribution from charm quark scattering can be as much as 20% of the total DIS cross

section, especially at small x. HERA collaborations have published combined measurements

of semi-inclusive charm production in DIS, ep → eCX, where C is a charmed meson such

as D0 [131]. For these processes, we have to correctly deal with the heavy-quark mass terms

in the DIS structure functions.

9.1 Fixed-flavor number scheme

When the mass of a heavy quark mq is of the same order or larger than the hard scale

Q, its radiative contributions may be included only in the hard cross section, in which the

heavy-quark mass is retained; but not in the running QCD coupling, MS masses, or PDFs.

That is to say, at such Q values, the heavy quark is included solely in the short-distance cross
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section, and does not contribute as an active parton flavor 1. This common theoretical

approach is referred to as the fixed-flavor number (FFN) scheme. When such a scheme

is applied to DIS, heavy quarks can be only produced through virtual photon-gluon fusion

into heavy-quark pairs (γ∗g → cc̄), which is also called flavor-creation (FC) process. The

active flavors are renormalized by MS subtraction, and inactive flavors by zero-momentum

subtraction. In the decoupling limit when masses of heavy quarks are much larger than

the physical scale of the process, mq � Q, graphs involving heavy quarks are suppressed by

a power of Q/mq, which can be safely dropped. The PQCD computations presented in the

previous chapters were done for particles whose masses were much smaller than the physical

energy, Q2 � m2, so that we could neglect the quark masses by introducing errors of order

O(m2/Q2), which corresponded to the zero-mass (ZM) Scheme.

However, neither the zero-mass nor the FFN scheme works perfectly in the region when

the physical energy is about the same as the quark mass, Q2 ∼ m2
q. In such a case, we

need a composite scheme composed of a sequence of subschemes, which transits from the

decoupling region, Q2 � m2
q to the asymptotic region Q2 � m2

q smoothly. A heavy-quark

scheme proposed by Collins, Wilczek, and Zee (CWZ) [132] realizes this idea. In the CWZ

scheme, heavy quarks are inactive when Q2 � m2
q, and become active when Q2 � m2

q. In

the threshold region Q2 ∼ m2
q, heavy quarks switch from inactive to active flavors when the

physical energy scale crosses the transition point Q2 = m2
q. In such a way, the CWZ scheme

realizes a smooth transition from the NF subscheme to the NF + 1 subscheme. Therefore, it

is a variable flavor number (VFN) scheme. This scheme has become a standard [133, 134]

and was extended to deal with the PDFs for massive quarks under the name of the ACOT

scheme [135, 136, 137, 138, 139]. In the subsequent subsection, we will take the charm-flavor

production in DIS to demonstrate the idea of the ACOT scheme explicitly.

9.1.1 Massive NF = 3 scheme vs. massless NF = 4 scheme

Q2 � m2
c . When the photon virtuality is much larger than the charm quark

mass, we can safely take the charm quark to be active, both in PDFs of proton and also

1Active flavors refer to the quarks that contribute as partons to scale dependence of the QCD coupling,
particle masses, and the parton distributions inside the hadrons. Light quarks with m � Q can be safely
treated as active, and heavy quarks with m � Q are inactive. Quarks with mass m ∼ Q can be treated
either active or inactive, depending on the specific scheme.
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c

c c

c̄

γ∗

g

g

g

Figure 9.1: The Feynman diagrams contribute to charm production in the massless 4 flavor
scheme.

in the running of αs (i.e., the αs and PDFs are evaluated with NF = 4 active flavors).

The leading order (LO) process comes from flavor excitation (FE) of the initial charm

parton. The next-to-leading order (NLO) corrections involve virtual loops and the real

radiation of an extra gluon, and also the flavor creation (FC) of cc̄ pairs. We show the

representative Feynman diagrams of the LO and NLO charm production mechanisms in

Figure 9.1. Furthermore, we can work in the massless NF = 4 approximation by setting

mc = 0, which simplifies our calculations significantly. However, when the energy scale Q

goes down towards the threshold region Q ∼ mc, the zero-mass approximation becomes

unreliable, because the missing higher-order terms O(m2
c/Q

2) are no longer negligible. The

qualitative behavior of the applicability and uncertainty of structure-function F c
2 (x,Q) as a

function of Q, for moderate x, is illustrated in the left panel of Figure 9.2.

Q2

F
2
c(x,Q)

4-flavor O (α
s
) NLO

NLO

Q2

F
2
c(x,Q)

NLO

NLO

α
s
2 ln2( )

3-flavor O (α
s
2)

Figure 9.2: The expected reliable regions of the 4-flavor (left) and 3-flavor (right) schemes
(taken from Ref. [140]).
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Q2 ∼ m2
c . When the physical energy scale is of the same order as the charm quark

mass, the charm quark must be treated as a massive particle. As the charm PDF that

resums collinear logarithms ln(Q2/m2
c) in the limit of Q2 � m2

c does not carry real physics

near the charm production threshold, the hadronic cross section is best computed in the

massive NF = 3 scheme. The leading order of charm production comes from the flavor

creation (FC) of a cc̄ pair shown in the first diagram of Figure 9.3. In this massive NF = 3

scheme, we have to keep the charm mass mc explicitly through all the calculations, and we

use thick lines to denote propagators and external legs for particles with non-zero masses in

the Feynman diagrams. In comparison, the thin lines refer to the partons which are treated

as massless (i.e., quark masses are neglected in the respective quark wave functions and

propagators). The gluon is always massless. In the NF = 3 FFN scheme, the LO Feynman

diagram is order of ααs, and the NLO diagrams corresponds to O(αα2
s) (shown in Figure

9.3 as well). They are much more complicated due to charm mass, mc, dependence, as we

will see in following sections. We would expect this FFN scheme to apply when Q2 ∼ m2
c .

However, when the physical energy goes much larger than charm mass Q � mc, FFN

calculation becomes invalid because the omitted terms O(αms logn m2
c

Q2 ) become large and ruin

the convergence of perturbative expansions for the Wilson coefficient function. In the limit

mc → 0 or Q → ∞, these logarithmic terms are no longer infrared safe. As a result, we

would expect that the uncertainty expands in the NF = 3 scheme when the physical energy

increases to Q� mc, as demonstrated in the right panel of Figure 9.2.

c

c̄

q q

Figure 9.3: The representative Feynman diagrams contribute to charm production in 3 flavor
scheme.
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9.2 Variable Flavor Number scheme

As we discussed above, neither the zero-mass NF = 4 scheme (mainly FE) nor the massive

NF = 3 scheme (mainly FC) works perfectly across the full energy range. But either of them

individually works well in its own region of validity. Therefore, it is very natural to come

up with a composite scheme that reproduces the advantages of each scheme in its respective

kinematic limit. In this new scheme, the active flavor number varies when the energy goes

from low Q(∼ mc) up to high Q(� mc), and therefore, it is a variable flavor number

(VFN) scheme. A naive idea is to implement a hard switch from the massive NF = 3 scheme

to the massless NF = 4 scheme at some intermediate “switching scale”, Q, above mc. But

perturbative QCD does not predict the switch point Q0, and also this approach will create

a discontinuity in the hadronic cross section at the switching point.

In order to overcome this discontinuity of the “hard switch” approach, we need to come

up with asymptotic subtraction terms in order to get the massive NF = 4 scheme of the

ACOT family [135, 136, 137, 138, 139], which naturally switches from the massive NF = 3

scheme (mainly FC) to the massless NF = 4 scheme (mainly FE) when Q increases, in the

following way:

ACOT = FE− Subtraction + FC. (9.1)

Ideally, the subtraction terms will get close to the FE terms asymptotically in the low energy

limit (Q ∼ mc), and approach to the FC terms in the high-energy limit (Q� mc). In such

a way, we can realize the switching smoothly as

• Q ∼ mc, Subtraction ' FE, ACOT ' FC, massive NF = 3 scheme;

• Q� mc, Subtraction ' FC, ACOT ' FE, massless NF = 4 scheme.

This idea in Equation (9.1) is depicted in Figure 9.4. The first diagram represents the FE

terms, which are the main contribution in NF = 4 scheme. The third diagram stands for

the FC terms, in which we have to keep charm quark mass. The middle diagram represents

the subtraction terms, which come from the convolution of the gluon splitting function with

the Wilson coefficient functions of flavor-excitation terms.
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Figure 9.4: The realization of subtraction in VFN scheme. The thick lines indicate the
mc dependence, while think lines represent massless quark. The black point means the
convolution in ACOT scheme.

Note that all three terms on the right-hand side of Eq. (9.1) are evaluated by assuming

NF = 4, so that the scheme presented in Equation (9.1) is a general-mass NF = 4 scheme.

By its construction, its prediction reduces to the massive NF = 3 at Q ∼ mc.

To accommodate bottom quarks and even heavier flavors, the practical ACOT scheme

increments the number NF of active flavors as 3, 4, 5,... when Q crosses heavy-quark masses

mc, mb, ....
2 Therefore, the complete ACOT scheme is a general-mass variable-flavor-

number (GM-VFN) factorization scheme that consists of a series of subschemes with incre-

mented NF , and with the FE and Subtraction terms introduced like in Equation (9.1).

In the original version of ACOT scheme [135, 136, 137, 138, 139], the heavy quarks are

treated as massive in both the FE and the FC terms. Soon, it is realized that we can treat

the heavy quark as massless in the FE terms, which simplifies the calculation significantly

but without losing the accuracy, which is called Simplified-ACOT scheme [141, 142]. In such

a scheme, the FE terms in Equation (9.1) exactly correspond to the massless NF = 4 scheme.

Since the ACOT scheme was proposed as the first realization of GM-VFN scheme, many

other similar implementations have been developed for photo-[143], lepto-[144, 145, 146, 147,

148, 149] and hadroproduction [150] of charm as a heavy flavor. Different VFN implemen-

tations adopt different subtraction scheme, but the key underlying ideas are the same as

Equation (9.1).

2The switching from NF = i− 1 to NF = i need not to happen exactly when Q = mi.
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9.2.1 Subtraction term

Let us examine the the inclusive structure function for charm production in DIS to

demonstrate explicitly how the subtraction works in the (Simplified-)ACOT scheme. In

terms of the factorization theorem, we can write down the structure function as

F (x,Q) =

∫
dz

z
Ca(

x

z
,
Q2

µ2
,
m2
c

µ2
, αs)fa(x, µ) +O(αn+1

s ,
Λ2

Q2
,

Λ2

m2
c

). (9.2)

Here fa is the parton distribution function, and Ca is the corresponding coefficient function

which can be calculated perturbatively up to some order (such as n) of αs. For charm

production, we can write the leading order expression explicitly as

Fc(x,Q) = C(0)
c c(x,Q)− αs log

µ2

m2
c

∫ 1

x

dz

z
C(0)
c Pc←g

(x
z

)
g(z, µ)

+ αs

∫ 1

x

C(1)
g

(
x

z
,
mc

Q

)
g(z, µ),

(9.3)

where we have neglected the power suppressed terms proportional to Λ2 ∼ 1GeV2, and the

convolution is defined as

C ⊗ f =

∫ 1

x

dz

z
C
(x
z

)
f(z). (9.4)

We can shorten Equation (9.3) as

Fc = C(0)
c ⊗ c− αs log

µ2

m2
c

C(0)
c ⊗ Pc←g ⊗ g + αsC

(1)
g ⊗ g. (9.5)

The first term is the FE term. In the lowest order, its coefficient function can be written

as C
(0)
2,c (x) = e2

cδ(1 − x). The third term indicates the lowest order of the FC term, which

is the gluon fusion shown in the right panel of Figure 9.4. The second term corresponds

to the gluon splitting into the charm, which is counted twice both in the resummed charm

PDF and the hard cross section of cc̄ production shown in the right panel of Figure 9.4.

Therefore, we have to subtract it in order to avoid double-counting, which is the key point

of the (Simplified-)ACOT scheme.

In the Simplified-ACOT scheme, we have neglected the quark mass in the FE terms,

which destabilizes the numerical cancelation between the FE and the subtraction terms in

the threshold region, due to the divergence behavior of log(Q2/m2
c) when mc → 0. In order to

amend this numerical problem, Tung et. al. proposed a rescaling χ = x(1+4m2
c/Q

2) variable

[140], which captures the threshold effect, enforces the momentum-energy conservation in

production of the heavy final states, and, therefore, improves the perturbative convergence

of the ACOT scheme in the region close to the threshold, Q ∼ mc. It can be understood in
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terms of the DGLAP equation for the heavy-flavor PDF. In the first-order approximation, we

have P
(1)
c←q(x) = 0. Together with the initial conditions c(x,mc) = 0, the DGLAP equation

for charm PDF reduces to
dc

d lnµ2
=
αs
2π
Pc←g ⊗ g =⇒ c ∼ αs log

µ2

m2
c

Pc←g ⊗ g. (9.6)

In the region µ ∼ mc, we would naively expect the cancellation between flavor-excitation and

subtraction terms. However, in the small-x region, the gluon PDF diverges as x−p due to

the parameterization guided by Regge theory or ln(1/x) from BFKL resummation effect. It

spoils the cancelation between c(x, µF ) and Pc←g⊗g, because of the mismatch in the higher-

order collinear logarithms that they contain. The rescaling variable χ = x(1 + 4m2
c/Q

2)

pushes the small x up to the kinematic allowed region, which improves the perturbative

convergence.

9.2.2 Cancellation between the flavor-creation and subtraction terms

We have introduced a rescaling variable χ = x(1+4m2
c/Q

2) in the previous subsection. In

the large Q limit, this rescaling variable reduces to the Bjorken x variable, χ→ x(Q→∞).

Meanwhile, we would expect that the flavor-creation term is dominated by the subtraction

term asymptotically, since mc → 0. Let us demonstrate this behavior explicitly.

We follow the notations used in Ref. [151]. We consider the hadronic part of the DIS

cross section (i.e., the cross section for scattering of the virtual photon scattering on the

nucleon). So, for the heavy-quark production in DIS, we have

γ∗(q) + g(k1)→ Q(p1) + Q̄(p2). (9.7)

The corresponding Feynman diagram is shown in the right panel of Fig. 9.4. With k2
1 = 0

and p2
1 = p2

2 = m2, we can define the Mandelstam-like variables,

s′ = s− q2 = (q + k1)2 − q2 = 2q · k1,

t1 = t−m2 = (k1 − p2)2 −m2 = −2k1 · p2,

u1 = u−m2 = (q − p2)2 −m2 = −2q · p2 + q2,

(9.8)

which satisfy s′+ t1 +u1 = 0. In D = 4 + ε spacetime dimensions, the two-body phase space

is

dΦ2 =
dD−1p1

(2π)D−12p0
1

dD−1p2

(2π)D−12p0
2

(2π)Dδ(D)(q + k1 − p1 − p2). (9.9)
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Repeating what we have done before, we work in the center-of-mass frame of γ∗g system,

q + k1 = (M, 0) = (p0
1, ~p1) + (p0

2, ~p2) = (
√
m2 + p2, ~p) + (

√
m2 + p2,−~p). (9.10)

So, we have

p0
1 = p0

2 =
M

2
, p =

√
λ(M2,m2,m2)

2M
=
M

2

√
1− 4m2

M2
=
M

2
β. (9.11)

The 2-body phase space is

dΦ2 =
1

(2π)D−2

pD−2
1 dp1dΩD−1

2p0
12p0

2

δ(q0 + k0
1 − p0

1 − p0
2)

=
1

(2π)D−2

pD−2dp

4p0
1p

0
2

δ(p− p∗)
p
p01

+ p
p02

dΩD−1

=
1

(2π)D−2

pD−3

4(p0
1 + p0

2)
dΩD−1

=
1

(2π)D−2

1

4M

(M
2
β
)D−3

dΩD−1.

(9.12)

We can integrate it out to get the volume,

V D
2 =

∫
dΦ2 =

1

(2π)D−2

1

4M

(M
2
β
)D−3

ΩD−1
D=4−−−→ 1

(2π)2

π

2
β. (9.13)

Here dΩD−1 = dφ sinD−3 θdθ, where θ is the angle between ~p1 and ~q in the γ∗g center-of-mass

frame. We have

q = (q0, 0, 0, ~q), k1 = (k0
1, 0, 0,−~q) = |~q|(1, 0, 0,−1),

p1 =
M

2
(1, 0, β sin θ, β cos θ), p2 =

M

2
(1, 0,−β sin θ,−β cos θ),

(9.14)

where we have used k2
1 = (k0

1)2 − |~q|2 = 0. Therefore, we have

s = M2 = (q + k1)2 = (q0 + |~q|)2, q2 = (q0)2 − |~q|2 = −Q2. (9.15)

Solving these equations, we get

q0 =
M2 −Q2

2M
, |~q| = M2 +Q2

2M
. (9.16)

Previously, we obtained p = Mβ/2. Then, the Mandelstam-like variables take the form

s′ = 2q · k1 = 2|~q|(q0 + |~q|) = 2|~q|M = M2 +Q2,

t1 = −2k1 · p2 = −2
M

2
|~q|(1− β cos θ) = −s

′

2
(1− β cos θ),

u1 = −2q · p2 + q2 = −2
M

2
(q0 + |~q|β cos θ) + (q0)2 − |~q|2

= −M |~q|(1 + β cos θ) = −s
′

2
(1 + β cos θ);

(9.17)

and we can verify the relation s′ + t1 + u2 = 0.

In order to explore the infrared-divergent phase-space integral, we go back to Fig. 9.4.

We wish to demonstrate the collinear divergence only appear when m → 0, which can be
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also regulated by a finite quark mass m. First, let us consider the propagator
i

/k1 − /p2
−m+ iε

=
i(/k1 − /p2

+m)

(k1 − p2)−m2 + iε
=

i(/k1 − /p2
+m)

−2k1 · p2 + iε
∼ 1

t1 + iε
. (9.18)

Here, we used on-shell condition k2
1 = 0 and p2

2 = m2. We have the phase space factor∫
dΦ2|M|2 ∼

∫
1

(2π)D−2

1

4M

(M
2
β
)D−3

dΩD−1
1

(2k1 · p2)2

=

∫
1

(2π)D−2

1

4M

(M
2
β
)D−3

dφ sinD−3 θdθ
1

( s
′

2
)2(1− β cos θ)2

=
1

(2π)D−2

1

4M

(M
2
β
)D−3

2π
( 2

s′

)2

I(D, β),

(9.19)

where we define the factor I(D, β) as

I(D, β) =

∫ π

0

sinD−3 θdθ
1

(1− β cos θ)2

=

√
πΓ(D

2
− 1)

[
(D − 4)2F1(1, D−2

2
;D − 2; 2β

β+1
)− (β + 1)(D − 3)

]
(β − 1)(β + 1)2Γ(D−1

2
)

(9.20)

The hypergeometric function is defined as

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, where (q)n =

1, n = 0;

q(q + 1) · · · (q + n− 1) n > 0.

(9.21)

We expand this integral I(D, β) around D = 4,

I(D, β) = − 2

β2 − 1
+

(D − 4)
[
β(−2 + γ + ψ(0)(3

2
))− ln

(
1− 2β

β+1

)]
β(β2 − 1)

+O
(

(D− 4)2
)
, (9.22)

where ψ(0)(z) = Γ′(z)/Γ(z). We can easily to see that, when D = 4, the integral becomes

I(4, β) = − 2

β2 − 1
=

1

1− β +
1

2
+

1− β
4

+ · · · . (9.23)

For the massless particle m = 0, we have the threshold function β = 1, which results in

infrared (IR) divergence. In contrast, if we assign a small mass to the massless particles,

such as mγ for photon, which will serve as an infrared cutoff to regulate the IR divergence.

Similarly, if we impose a cutoff for the transverse momentum (pT ) of this massless particle,

which serves as an effective mass, and regulate the IR divergence in turn.

With the assumption m = 0, the integration becomes

I(D, 1) =

∫ π

0

sinD−3 θdθ
1

(1− cos θ)2
=

∫ π

0

sinD−4 θd cos θ
1

(1− cos θ)2

=

∫ 1

−1

(1− x2)εdx
1

(1− x)2
=

√
πΓ(ε+ 1)

(ε− 1)Γ(ε+ 1/2)
, (Re ε > 1)

(9.24)

where we have set D = 4 + 2ε. The condition Re ε > 1 means this integral only converges

when D > 6.
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Equipped with these results, we can write down the partonic structure tensor for γ∗(q) +

g(k1)→ c(p1) + c̄(p2) as

Wµν =
1

2s′
1

2(1 + ε)

1

N2
c − 1

MµM
∗
νdΦ2. (9.25)

We can decompose this structure tensor as

Wµν =dσT

(
−gµν +

qµqν
q2

)
+(

k1µ −
k1 · q
q2

qµ

)(
k1ν −

k1 · q
q2

qν

) −4q2

s′2
(dσT + dσL).

(9.26)

With projection operators gµν and kµ1k
ν
1 , we can decompose the partonic cross section as

dσG = − 1

2(1 + ε)
gµνWµν , dσL = −4q2

s′2
kµ1k

ν
1Wµν . (9.27)

The transverse partonic cross section can be obtained via

dσT = dσG +
1

2(1 + ε)
dσL. (9.28)

In the following, we write a universal expression for the cross section

dσi = Ci|M |2dΦ2, (9.29)

where i = G,L. The squared matrix elements are written in terms of

|MG|2 = −gµνMµ(γ∗g → cc̄)M∗
ν (γ∗g → cc̄),

|ML|2 = −4q2

s′2
kµ1k

ν
1Mµ(γ∗g → cc̄)M∗

ν (γ∗g → cc̄).
(9.30)

The constant prefactor is

Ci =
1

2(1 + ε)
ai

1

2s′
1

2(1 + ε)

1

N2
c − 1

, aG = 1, aL = 2(1 + ε). (9.31)

With the the algebraic calculations in FormCalc [78], we obtain the squared amplitudes as

|Mi|2 = 8g2(ece)
2NcCFBi, (9.32)

where

BG =
u1

t1
+
t1
u1

+
2q2s

t1u1

+
4m2s′

t1u1

(
1− m2s′

t1u1

)
+

2m2q2

t1u1

(
2− s′2

t1u1

)
+ ε

(
−1 +

s′2

t1u1

+
s′q2

t1u1

+
q4

t1u1

− m2q2s′2

t21u
2
1

)
+ ε2

s′2

4t1u1

BL = −4q2

s′2

(
s− m2s′2

t1u1

)
,

(9.33)

with ec = 2/3, and CF = (N2
c − 1)/2Nc = 4/3. Comparing the structure tensor (9.26) with

our old definitions for the structure functions in Equations (8.32) and (8.36), we can obtain

the structure functions written as

Fk =
Q2

4π2α
σk(k = 2, L), σ2 = σG + 3σL/2. (9.34)

We remind readers that the longitudinal structure function is defined as FL = F2 − 2xF1.
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At the lowest order, we have

Fk =
Q2αs

4π2m2

∫ 1

χ

dz

z
e2
cC

(1)
k,g(

x

z
,
Q2

m2
)g(z, µ2), χ = x(1 + 4m2/Q2), (9.35)

where the lower boundary χ arises from the threshold effect. In the asymptotic limit Q2 �
m2, we have χ→ x, and the coefficient functions become very simple,

C
(1)
L,g(z,

Q2

m2
) = TF [16z(1− z)],

C
(1)
2,g (z,

Q2

m2
) = TF

[
4(1− 2z + 2z2)

(
ln
Q2

m2
+ ln(1− z)− ln z

)
− 4 + 32z − 32z2

]
,

(9.36)

where TF = 1/2. We know that the splitting function is Pc←g(x) = TF (1 + 2x − 2x2), and

the leading order coefficient functions are

C
(0)
L,c = 0, C

(0)
2,c (x) = δ(1− x). (9.37)

Therefore, in the large Q limit, the subtraction term in Equation (9.1) can be written as

Subtraction = −αs ln
Q2

m2

∫ 1

x

dy

y
δ(1− x

y
)

∫ 1

y

dz

z
TF

[
1 + 2

y

z
− 2

(y
z

)2
]
g(z, µ)

= −αs ln
Q2

m2

∫ 1

x

dz

z
TF

[
1 + 2

x

z
− 2

(x
z

)2
]
g(z, µ),

(9.38)

which exactly cancels the large logarithm term in Equations (9.35) and (9.36).

9.2.3 The Intermediate-mass scheme

From the last subsection, we learn two lessons. First, we have demonstrated the complex-

ity of treatment of the mass-dependent coefficient functions of the flavor-creation terms. Sec-

ond, the threshold effect in the exact FC terms like Equation (9.35) inspires us to introduce

the rescaling variable in the S-ACOT-χ scheme [140] in the flavor-excitation and subtraction

terms as well. When the higher-order corrections to DIS with full mass dependence are not

available, we can combine the rescaling variable χ and the massless coefficient functions as

an intermediate step to approximate the full mass dependence that would be predicted in

the general mass (GM) scheme. This idea was first introduced as an intermediate-mass (IM)

scheme in Ref. [152], which employs the zero-mass coefficients and the rescaling variable to

approximate the quark mass dependence due to phase space in DIS at NLO and beyond.

Furthermore, we can generalize the rescaling χ to a more flexible variable ζ(λ) defined

as the solution of

x =
ζ

1 + ζλ4m2
c/Q

2
. (9.39)
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Factorization Mass dependence Mass dependence of the Introduce heavy-quark
schemes in the FC terms FE and subtraction terms PDFs at large Q

FFN Exact N/A no
ZM None None yes
IM Approximate Approximate yes
GM Exact Approximate yes

Table 9.1: Treatment of mass dependence in various heavy-quark factorization schemes.

As the purpose of the rescaling variable is to approximately reproduce in the FE and sub-

traction terms the kinematic constraint from integration over mass-dependent phase space

in the FE term, we introduce a new parameter λ, which allows us to tune this approximate

mass effect better, depending on the specific values of Bjorken x and Q. In the limit λ = 0,

the new variable becomes the traditional rescaling variable, χ = ζ(0). In the opposite limit

λ→∞, we have ζ(∞) = x, which corresponds to no rescaling in the plain S-ACOT scheme

[141, 142]. The practical numerical value of the λ parameter can be obtained by fitting the

full mass dependence in the general mass cross section, if available. Usually, the exact FE

and FC terms are very difficult to calculate, especially at high orders of αs. In the IM scheme,

we can extract the λ value from a lower-order calculation and apply it to approximate higher-

order coefficient functions using the zero-mass coefficients. Treatment of heavy-quark mass

dependence in the FFN, ZM, IM and GM factorization schemes is compared in Table 9.1.

9.3 Structure functions at N3LO in the IM scheme

The ACOT scheme was applied to compute inclusive and semi-inclusive DIS cross section

with massive quarks at NLO in Refs. [135, 136, 137]. Its simplified version [141, 142] that

uses the rescaling variable [140] was extended to compute these DIS cross sections at the

NNLO level [153]. Equipped with the techniques of the intermediate-mass scheme, we are

able to extend this calculation up to N3LO level O(αα3
s). Here we summarize the N3LO

calculation for DIS in the IM scheme performed together with Bowen Wang and previously

reported in [154].
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9.3.1 The flavor structure

Let us start with the solution to the DGLAP equations that govern the evolution of PDFs

with the factorization scale µ:
∂fi(x, µ

2)

∂ lnµ2
=
∑
j=q,q̄,g

∫ 1

x

dz

z
Pij

(x
z
, µ2
)
fj(z, µ

2). (9.40)

With the following definition of convolution,

[f ⊗ g](x) =

∫ 1

x

dz

z
f
(x
z

)
g(z) =

∫ 1

x

dz

z
f(z)g

(x
z

)
, (9.41)

we can write down the DGLAP equations as
∂fi

∂ lnµ2
=
∑
j=q,q̄,g

Pij ⊗ fj. (9.42)

The splitting functions have the following symmetry properties [155],

Pgqi = Pgq̄i = Pgq, Pqiqk = Pq̄iq̄k = δikP
v
qq + P s

qq,

Pqig = Pq̄ig =
1

2NF

Pqg, Pqiq̄k = Pq̄iqk = δikP
v
qq̄ + P s

qq̄.
(9.43)

Therefore, we can decompose the DGLAP equations (9.42) in terms of the singlet quark

PDF qs and the non-singlet quark PDFs qv, q
±
ij ,

qs =

NF∑
i=1

(qi + q̄i), qv =

NF∑
i=1

(qi − q̄i), q±ij = (qi ± q̄i)− (qj ± q̄j). (9.44)

Equation (9.42) becomes

∂

∂ lnµ2

qs
g

 =

Pqq Pqg

Pgq Pgg

⊗
qs
g

 ,
∂qv

∂ lnµ2
= Pv ⊗ qv,

∂q±ij
∂ lnµ2

= P± ⊗ q±ij , (9.45)

with the combination of splitting functions as

Pqq = P v
qq + Pqq̄ +NF (P s

qq + P s
qq̄), Pv = P v

qq − P v
qq̄ +NF (P s

qq − P s
qq̄), P± = P v

qq ± P v
qq̄. (9.46)

As a result, we get the non-singlet PDFs q±ij and qV evolve independently, and the singlet

PDF evolves together with the gluon PDF. For a specific flavor, we can introduce the linear

combinations as

q±i = qi ± q̄i, q+
i,ns = q+

i −
1

NF

qs. (9.47)

Then Equation (9.45) becomes
∂q+

i,ns

∂ lnµ2
= P+

ns ⊗ q+
i,ns,

∂q−i
∂ lnµ2

= P−ns ⊗ q−i . (9.48)

We do not consider the minus component q−i here, because it only arise in cross sections that

are asymmetric with respect to crossing symmetry, such as F νN+ν̄N
3 in neutrino scattering

through W -boson change. Therefore, we leave out the + sign in the non-singlet PDF and

denote them as qi,ns without causing any confusion.
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In this singlet and non-singlet basis, the structure functions need to be decomposed

accordingly as

Fk(x,Q
2) = x

{
NF∑
i

e2
i ck,ns ⊗ qi,ns +

1

NF

NF∑
i

e2
i [ck,s ⊗ qs + ck,g ⊗ g]

}
, k = 2, L. (9.49)

The ei is the electric charge of a quark flavor, i.e. +2/3 for up-type quarks, and -1/3 for

down-type quarks. With the definition of qi,ns = q+
i − qs

NF
, we have

Fk(x,Q
2(x) = x

{
NF∑
i

e2
i ck,ns ⊗ q+

i +
1

NF

NF∑
i

e2
i [(ck,s − ck,ns)⊗ qs + ck,g ⊗ g]

}
. (9.50)

Therefore, we can define the pure singlet [156, 157], with the coefficient functions as

ck,ps = ck,s − ck,ns, k = 2, L. (9.51)

9.3.2 Flavor classes

In Equation (9.49), scattering contributions for quarks of different flavors in DIS at

N3LO will be associated with Feynman diagrams of several topologies. Let us review the

topological classes of Feynman diagrams that will arise. We follow Refs. [156, 157] to

category the Feynman diagrams into 5 groups, and show the representative 3-loop diagrams

in Figure 9.5. Here, the handbag diagrams are the cut ones, corresponding to the terms in

squared amplitude MµMν∗.

We first define the electric charge matrix as

Q̂ = diag(−1

3
,
2

3
,−1

3
, · · · ), Tr Q̂ =

∑
i

ei, Tr Q̂2 =
∑
i

e2
i . (9.52)

The charge matrix Q̂ consists of vertex factors ei for the photon couplings eieAµq̄iγ
µqi to

quark flavors i. Q̂ arises in squared amplitudes with virtual quark loops. An internal quark

loop, with one or two external photon attached to it, runs over NF active quark flavors, and

therefore contributes with a factor Tr Q̂ or Tr Q̂2. If a virtual loop with a quark propagator

is attached only to the gluons, as in the gluon polarization diagram, all active contributes

equally, given rise to a prefactor NF in the contribution of this loop to |M|2.

With the help of charge matrix Q̂, we are able to classify all the Feynman diagrams with

massless quarks and up to three loops into 5 groups or flavor classes (FC). The first flavor

class, FC2, represents diagrams with both external photons attached to the same external

quark line, as shown in Figure 9.5a. After summation over all quark and antiquark flavors,

they contribute with an overall prefactor Q̂2. Classes FC02 contains Feynman diagrams in
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(a) FC2 : Q̂2 (b) FC11 : Q̂Tr Q̂ (c) FC02 : Tr Q̂2

(d) FCg2 : Tr Q̂2 (e) FCg11 : (Tr Q̂)2

Figure 9.5: Representative 3-loop diagrams for different flavor classes. The expressions after
the colon signs indicate the corresponding flavor factors.
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which both photons couple to one quark loop, as shown in Figure 9.5c. Their sum contributes

with a flavor prefactor Tr Q̂2. The FC11 flavor class contains Feynman diagrams in which

one photon is coupled to a closed quark loop while another photon is attached to the external

quark line. The corresponding flavor factor is Q̂Tr Q̂. The diagrams that have initial-state

gluon legs must contain a gluon splitting into quarks. The quark flavors in these gluon

diagrams are summed over. If both external photons are attached to the same quark loop,

as shown in Figure 9.5d, the flavor factor is Tr Q̂2, the respective flavor class is called as

FCg
2 . In contrast, the FCg

11 class stands for diagrams in which photons are attached to

different quark loops, and quarks need to be summed separately in each loop, as (Tr Q̂)2.

The non-singlet PDFs were defined as

qi,ns = (qi + q̄i)−
1

NF

qs = (qi + q̄i)−
1

NF

∑
j

(qj + q̄j). (9.53)

In terms of the vector ~q = (q1 + q̄1, · · · qi + q̄i, · · · qNF + q̄NF )T , we can express the i-th

component of non-singlet PDF as

qi,ns = λi · ~q, where λi = diag(− 1

NF

, · · · , NF − 1

NF

, · · · ,− 1

NF

). (9.54)

That is, the i-th diagonal element of diagonal matrix λi is (NF−1)/NF , while other diagonal

elements are −1/NF . When performing the sum over quark flavors (i.e. taking the trace

of the operators), the non-singlet coefficient function for FC02 class does not contribute to

the cross section, because its contribution is proportional to∑
i

qi,ns =
∑
i

[
(qi + q̄i)−

1

NF

qs

]
= qs − qs = 0, i.e. Trλi = 0. (9.55)

Therefore, the nonzero non-singlet contributions are only from flavor classes FC2 and FC11.

The traces of the FC2 and FC11 classes are, respectively,

Tr
(
Q̂2λi

)
, Tr

(
Q̂λi

)
Tr Q̂. (9.56)

A simple calculation shows that

Tr
(
Q̂λi

)
= 3 Tr

(
Q̂2λi

)
. (9.57)

Therefore, we can normalize all the flavor factors in terms of a reference factor Tr
(
Q̂2λi

)
as

∑
i

e2
iC

i
k,ns ⊗ qins =

ck,ns(FC2) +
Tr
(
Q̂λj

)
Tr Q̂

Tr
(
Q̂2λj

) Ck,ns(FC11)

⊗∑
i

Tr
(
Q̂2λi

)
qins

= ck,ns ⊗ q̃ns,

(9.58)
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Flavor class FC2 FC11 FC02 FCg
2 FCg

11
Flavor factor fl2 fl11 fl02 flg2 flg11

Flavor structure Q̂2 Q̂Tr Q̂ Î Tr Q̂2 Tr Q̂2 (Tr Q̂)2

Non-Singlet 1 3〈e〉 0 − −
Singlet 1 〈e〉2/〈e2〉 1 1 〈e〉2/〈e2〉

Table 9.2: The flavor factor values for 5 flavor classes.

Here we redefine the coefficient ck,ns which does not depend on the flavor index i, and

modified non-singlet PDF is q̃ns =
∑

i Tr
(
Q̂2λi

)
qins. With the standard normalization, we

have perturbative expansion Ck = 1 +
∑
cpa

p
s. We denote the prefactor as

fl11 =
Tr
(
Q̂λj

)
Tr Q̂

Tr
(
Q̂2λj

) =
3

NF

∑
ei = 3〈e〉. (9.59)

For the convolutions with the singlet PDF qS =
∑

i(qi+q̄i), we also extract the overall nor-

malization prefactor from the FC2 class. Summation of the flavor structure Q̂2 gives
∑

i e
2
i =

NF 〈e2〉. It is very easy to obtain all the corresponding flavor factors fl2, f l02, f l11, f l
g
2, f l

g
11

(respectively corresponding to flavor classes FC2, FC02, FC11, FC
g
2 , FC

g
11), listed in Table

9.2. We have normalized two of these factors to unity, flg2 = fl2 = 1. We choose this con-

vention of flavor factors in order to reduce the singlet flavor factor to unity when replacing

Q̂ matrix by the identity matrix diag(1, 1, · · · ).

9.3.3 Further classifications and rescaling variables

As we mentioned before, apart from the quark-photon couplings, we have another flavor

structure involving the quark-gluon vertex. In the cut diagrams MM∗, a virtual quark

loop in the gluon polarization diagrams will contribute a factor NF . If the loop is cut into

final states corresponding to the gluon splitting into a real qq̄ pair, we may end up with

flavor-dependent threshold effects in this subgraph. Specifically, the gluon splitting into

heavy quarks requires more threshold energy than that for light quarks. In the general

mass scheme, the light- and heavy-quark contributions are intrinsically different, as the

coefficients are fully mass-dependent. However, as we know, the mass-dependent coefficient

functions are very difficult to calculate, and we only have the 2-loop massive calculations up

to now. In contrast, we have the massless N3LO coefficients functions, obtained from Ref.

[156, 157, 158].
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In terms of the NF dependence, we can classify each flavor class into several different

types. The 3-loop component c
(3)
2,ns of the non-singlet massless coefficient function can be

written as

c
(3)
2,ns = c

(3)
2,ns(FC2, T1) +NF c

(3)
2,ns(FC2, T2) +N2

F c
(3)
2,ns(FC2, T3) + fl11,nsc

(3)
2,ns(FC11). (9.60)

Representative Feynman diagrams for T1,2,3 of the FC2 class are shown in Figure 9.6. The

coefficients for each type can be extracted from [156, 157, 158], and are explicitly tabulated

in Ref. [154].

(a) T1 (b) T2 (c) T3

Figure 9.6: Representative diagrams from FC2 class.

The DIS subprocesses of order O(α3
s) may produce up to two distinct quark flavors in

the final state, as can be seen in the diagrams of 9.6 and subsequent figures. We denote the

masses of two types of quarks as m1 and m2. The presence of two distinct masses at this order

modifies the kinematic dependence of key diagrams at N3LO, as compared to (N)NLO, and

it modifies the form of the rescaling variable χ = x(1 + 4m2/Q2) that was introduced in the

S-ACOT-χ scheme at (N)NLO [140, 153]. in order to capture the threshold effect in phase

space integration. A more general form than χ can be used for the rescaling variable, which

is denoted by ζ and is implicitly determined from the condition x = ζ/(1 + ζλ4m2/Q2). We

will now construct approximate flavor-creation and flavor-excitation coefficients for neutral-

current DIS up to N3LO using the approach of the intermediate-mass scheme [152] and the

individual 3-loop massless coefficient functions for five flavor classes that we identified in the

previous section.

To approximately reproduce the unknown mass effects, we estimate zero-mass coefficient

functions in the diagrams with heavy-quark lines using the appropriate kinematic variable

as the input. For the flavor class FC2, we have diagrams of 3 different types, corresponding
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to different final states, shown in Figure 9.6. We can see that in these cut diagrams, the

kinematic behavior varies with the quark’s mass, so that it depends on the quark’s flavor. For

example, for the T1-type diagrams, the threshold constraints give us the rescaling variable

as χ = x(1 + 4m2/Q2), while for T2,3-type diagrams, phase space integration is constrained

by

χ(
∑
fs

mi) = x

(
1 +

(2m1 + 2m2)2

Q2

)
= x

(
1 +

(
∑

fsmi)
2

Q2

)
, (9.61)

where fs indicates to sum over all the final states. Accordingly, the generalized rescaling

variable ζ should be written in an arbitrary scattering channel as

x =
ζ

1 + ζλ
(∑

fsmi

)2

/Q2

. (9.62)

We have introduced a parameter λ to tune the magnitude of the mass effect. The value

of λ can be fitted to reproduce kinematic dependence of the exact (massive) lower-order

calculations. When the parameter λ varies in the interval 0 < λ < ∞, ζ changes smoothly

from x to χ. We set the sum of a final state masses as a parameter to denote the generalized

rescaling variable in any channel by ζ(
∑

fsmi).

By approximating the mass effects using generalized rescaling variables, we can obtain

the intermediate-mass coefficient functions as

C
(3)
2,ns(FC2, T1) = c

(3)
2,ns(FC2, T1, ζ(2m1)),

C
(3)
2,ns(FC2, T2) = c

(3)
2,ns(FC2, T2, ζ(2m1 + 2m2)),

C
(3)
2,ns(FC2, T3) = N ′F c

(3)
2,ns(FC2, T3, ζ(2m1 + 2m2)).

(9.63)

Here, we use the capital letters to denote the coefficient functions with mass effects from the

generalized rescaling variable, and the N ′F is the number of the quark flavors in the uncut

quark loop in Figure 9.6c. The IM coefficient functions in this subsection, including Equation

(9.63) and subsequent equations, corresponding to the factorization scale µ = Q. In the next

subsection, we will show how to include the scale dependence in the IM coefficient functions.

The FC11 class is shown in Figure 9.7, The rescaling variable in this channel is of the

form ζ(2m1 + 2m2).

Returning to the singlet-quark coefficient function, we have to decompose it into a non-

singlet and a pure singlet parts, i.e. ck,s = ck,ns+ck,ps [156, 157]. Similarly to the non-singlet
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Figure 9.7: The representative diagram for FC11 class.

case, we can decompose the massless pure singlet functions as follows:

c2,ps = NF c
(3)
2,ps(FC02, T1) +N2

F c
(3)
2,ps(FC02, T2) + fl11,psNF c

(3)
2,ps(FC11). (9.64)

Two topologies of the Feynman graphs of the FC02 class are illustrated in Figure 9.8. The

IM coefficient functions can be written as

C
(3)
2,ps(FC02, T1) = c

(3)
2,ps(FC02, T1, ζ(2m1 + 2m2)),

C
(3)
2,ps(FC02, T2) = c

(3)
2,ps(FC02, T2, ζ(2m1 + 2m2)).

(9.65)

Their full expressions are presented in Ref. [154].

(a) T1 (b) T2

Figure 9.8: Representative diagrams from FC02 class.

The massless gluon coefficient function is

c
(3)
2,g = NF c

(3)
2,g(FC

g
2 , T1) +N2

F c
(3)
2,g(FC

g
2 , T2) + flg11N

2
F c

(3)
2,g(FC

g
11). (9.66)

The 3 types of Feynman diagrams of the FCg
2 class are depicted in Figure 9.9. The

corresponding generalized rescaling variables are ζ(2m1), ζ(2m1 + 2m2), ζ(2m1 + 2m2). A

representative FCg
11 diagram is are illustrated in Figure 9.10, and its respective rescaling

variable is ζ(2m1 + 2m2).

136



(a) T1 (b) T2 (c) T3

Figure 9.9: Representative diagrams from FCg
2 class.

Figure 9.10: The representative diagram for FCg
11 class.

We can repeat the same calculations for the structure function, FL. Decompositions of

its 3-loop coefficient functions is in the massless case are listed as follows:

c
(3)
L,ns = c

(3)
L,ns(FC2, T1) +NF c

(3)
L,ns(FC2, T2) +N2

FC
(3)
L,ns(FC2, T3) + flns11NF c

(3)
L,ns(FC11).

c
(3)
L,ps = NF c

(3)
L,ps(FC02, T1) +N2

F c
(3)
L,ps(FC02, T2) + flps11NF c

(3)
L,ps(FC11),

c
(3)
L,g = NF c

(3)
L,g(FC

g
2 , T1) +N2

F c
(3)
L,g(FC

g
2 , T2) + flg11N

2
F c

(3)
L,g(FC

g
11).

(9.67)

The representative Feynman diagrams and the rescaling variables for FL(x,Q2) are that for

F2(x,Q2). We summarize the subtypes of different flavor classes and the corresponding

generalized rescaling variables in Table 9.3.

FC2

cFC2,T1
a,ns (ζ̂(2m1))
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cFC2,T2
a,ns (ζ̂2((m1 +m2)))

cFC2,T3
a,ns (ζ̂2((m1 +m2)))

FC02

cFC02,T1
a,ps (ζ̂(2(m1 +m2)))

cFC02,T2
a,ps (ζ̂(2(m1 +m2)))

FC11 cFC11,T1
a,ns(ps) (ζ̂(2(m1 +m2)))

FCg
2

c
FCg2 ,T1
a,g (ζ̂(2m1))

c
FCg2 ,T2
a,g (ζ̂(2(m1 +m2)))
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c
FCg2 ,T3
a,g (ζ̂(2(m1 +m2)))

FCg
11 c

FCg11,T2
a,g (ζ̂(2(m1 +m2)))

Table 9.3: Summary of the generalized rescaling variables for different types of flavor classes.

9.3.4 Scale dependence of N3LO structure functions in the IM scheme

The previous subsection presented approximate IM expressions for the 3-loop coefficient

functions in neutral-current DIS at the factorization scale µ = Q. We will now derive

logarithmic contributions to these functions that arise when µ 6= Q.

We have introduced the perturbative expansion of the DGLAP equation in Section 8.2.3

and the singlet and non-singlet flavor basis in Section 9.3.1. Extending perturbative ex-

pansions for the PDFs and splitting functions in Equation (8.70) to N3LO, we obtain their

3-loop perturbative coefficients as

f
(3)
i =

[
−1

6
L3P

(0)
ij ⊗ P (0)

jk ⊗ P
(0)
kl +

1

2
β0L

3P
(0)
ij ⊗ P (0)

jl + L2P
(0)
ij ⊗ P (1)

jl

− (
1

3
β2

0L
3 +

1

2
β1L

2)P
(0)
il − β0L

2P
(1)
il − LP

(2)
il

]
⊗ f (0)

l,0

+

(
1

2
L2P

(0)
ij ⊗ P (0)

jk −
1

2
β0L

2P
(0)
jk − LP

(1)
ik

)
⊗ f (1)

k,0 − LP
(0)
ij ⊗ f (2)

j,0 + f
(3)
i,0 .

(9.68)

Also, the scale-dependent parts of Wilson coefficient functions in Equation (8.75) can be

extended to N3LO as

c
(3,1)
i = c

(0)
j ⊗ P (2)

ji + c
(1)
j ⊗ (P

(1)
ji − β1δji) + c

(2)
j ⊗ (P

(0)
ji − 2β0δji),

c
(3,2)
i =

1

2

{
c

(1,1)
j ⊗ (Pji − β1δji) + c

(2,1)
j ⊗ (P

(0)
ji − 2β0δji

}
,

c
(3,3)
i =

1

3
c

(2,2)
j ⊗ (P

(0)
ji − 2β0δji).

(9.69)

Next, we decompose the DGLAP equations in the singlet, non-singlet basis as in Equation

(9.45). From Equation (9.69), we can obtain all coefficients of the scale-dependent logarith-
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Figure 9.11: The µ dependence in the IM and GM scheme up to NNLO (left) and N3LO
(right).

mic terms at 3 loops, composed from non-singlet, pure singlet, and gluon components. Full

expressions of the 3-loop scale-dependent terms for µ 6= Q can be found in Ref. [154].

From the results presented in the last two subsections, we can construct full coefficient

functions with heavy-quark mass dependence in the intermediate-mass scheme up to N3LO.

The upside of the IM scheme is that allows to construct massive N3LO terms that exactly

coincide with the ZM-VFN result when Q2 � m2
q, and they retain a plausible (but not

exact) dependence on massive terms of order O(m2
q/Q

2) when Q2 ≈ m2
q. The downside

of the IM approach is that, since its mass-dependence expression for N3LO DIS structure

functions is still approximate, the dependence on the factorization scale and rescaling variable

at N3LO DIS is not reduced in the IM scheme compared to NNLO. In contrast, when

we construct S-ACOT-χ functions with the exact massive FC terms, by construction the

dependence on the factorization scale and the form of rescaling variable in the FE terms are

systematically reduced when higher-order terms in αs are included. See numerical examples

of such reduction in the S-ACOT-χ scheme at NNLO in Ref. [153].

Let us illustrate this discussion by showing numerical results for DIS structure functions

in the GM and IM schemes. In Figure 9.11, we first show the scale dependence of the NNLO

and N3LO predictions in the intermediate-mass scheme. We fix λ = 0.3 for this comparison,

and show predictions for the factorization scales µ2 = Q2, Q2 + 2m2
c , Q

2 + 4m2
c . We can see

the scale uncertainty is slightly reduced when increasing the perturbative order from the IM

NLO to N2LO and N3LO. But it converges much slower than the GM N2LO results, which

140



x

5
10 410

3
10 210 110

(x
,Q

)
2

F

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

dependence, Q=2.0 GeV

rescaling variable

2
c+4m

2
Q = IM

F
µ

 = QGM

F
µ

=0λ

=0.2λ

=0.6λ
2c

GM,N2LO,F

2h
GM,N2LO,F

2h
IM,N2LO,F

2h
IM,N3LO,F

Q/GeV
0 5 10 15 20 25 30

(x
,Q

)
2

h
F

0

0.05

0.1

0.15

0.2

0.25

0.3

FFNS Nf=3,N2LO

GM,N2LO

IM,N3LO
=0.2λ=1.36Q, 

F
µIM,N3LO, 

=0.2λZM,N3LO, 

x=0.01

Figure 9.12: The λ dependence in the IM scheme (left) and the Q dependence in the FFN,
ZM, IM and GM schemes (right).

means that the incomplete dependence on terms of order m2
c play an important role near

the threshold region. The strong coupling αs and the PDFs are only evolved up to NNLO,

introducing a mismatch in the N3LO coefficient functions.

In the left plots of Figure 9.12, we show the λ dependence in the IM scheme. The λ = 0

corresponds to the rescaling χ variable in the S-ACOT-χ scheme. We see that the NNLO

IM scheme with λ = 0.2 ∼ 0.3 reproduces the GM NNLO results. Knowing that the best

λ ' 0.2 value captures the missing mass effect in the IM scheme at NNLO, we use the

same λ value at N3LO, and we compare the structure functions in various schemes in the

right subfigure of Figure 9.12. We see that the FFN scheme underestimates the GM VFN

structure function at large Q, because the FFN structure function totally misses the higher-

order logarithmic terms resummed in the charm PDF in the GM VFN scheme. At small

Q values of a few GeV, the ZM scheme overestimates the massive predictions for F2(x,Q)

because it does have proper energy-momentum conservation in the heavy-quark threshold

production region. Our intermediate-mass scheme for the first time estimates the mass

effect on the heavy flavor structure function at the N3LO level.
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Chapter 10

Heavy-flavor production at hadron colliders

In Chapter 9, we reviewed factorization schemes for QCD processes with heavy quarks

and applied the S-ACOT-χ and intermediate-mass schemes to describe deep inelastic scat-

tering at NNLO and approximate N3LO, respectively. The massive factorization schemes

such as S-ACOT-χ have been most extensively studied in the context of charm and bottom

quark production in deep inelastic scattering, the process in which typical photon virtuality

Q accessible in the experiments are of the same order as heavy-quark masses, mc,b. In the

last few years, measurements of heavy-quark production at hadron-hadron colliders become

increasingly precise, and the relevant NNLO computations are anticipated in the near future.

As in the case of DIS, perturbative convergence of QCD calculations in the ACOT and other

GM-VFN schemes at small momenta comparable to mQ can be significantly improved by

physical treatment of kinematics in flavor-excitation and subtraction terms. This consider-

ation gives rise to the SACOT-MPS (SACOT with massive space) factorization framework

for heavy-quark scattering processes at hadron-hadron colliders. The SACOT-MPS scheme

is an equivalent of the SACOT-χ scheme, but applied to hadron-hadron, rather than lepton-

hadron kinematics. In this chapter, we will introduce the SACOT-MPS scheme on the

example of single-inclusive heavy-flavor production at the LHC.

10.1 Hadroproduction of heavy flavors

LHC measurements of heavy-flavor production, pp → QX, provide very interesting in-

formation to test various aspects of quantum chromodynamics (QCD). The cross section

for this process is perturbatively calculable due to the presence of heavy-quark mass (mQ)

which pushes the physical energy scale up to the perturbative region of QCD. In a typical

measurement of this kind, either a heavy meson or a hadronic jet containing a displaced

decay vertex is observed in the detector. Main features of experimentally observed cross

sections can be understood by computing heavy-quark production cross sections at the par-
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ton level, the approach that we will adopt in this paper. To obtain the observable cross

sections, the parton-level cross section must be combined with a fragmentation function of a

fragmentation model describing the decay of the heavy quark into the observed final state.

When the final-state heavy quark has a relatively small transverse momentum, (pT .

mQ), the pT distribution can be computed in the fixed-flavor number (FFN) scheme [159,

160, 161, 162], because the heavy quark can be treated as an inactive parton, and only

emerges in the final state, which means that the power terms (p2
T/m

2
Q)p can be treated

correctly in the perturbative series for the hard-scattering cross section. However, this FFN

scheme calculation becomes unreliable when pT � mQ, where terms of order αms logn(p2
T/m

2
Q)

need to be resummed to all orders to get the reliable predictions. In this case, the Zero-

Mass (ZM) Scheme [163] applies, in which the large logarithms of this kind are resummed

inside the initial-state parton distribution functions (PDFs) and final-state fragmentation

functions (FFs). In this kinematic region, the heavy quark is treated as an active parton

that contributes to the scale dependence of the running QCD coupling as well as the PDFs.

In the intermediate region (pT ∼ mQ), several composite schemes that retain key mass

dependence, resum collinear logarithms, and thus match the FFN and ZM schemes, were

developed, including the Fixed-Order plus Next-to-Leading Logarithms (FOFLL) [164, 165]

and an ACOT-like General-Mass Variable Flavor Number Scheme (GM-VFNS) [163, 166].

Recently, I. Helenuis and H. Paukkenen [167] introduced the SACOT-mT scheme to treat

the D-meson hadroproduction that follows the organizing principles of the Simplified-ACOT

scheme [141, 142] in DIS.

So far, the LHC Run I data on heavy-flavor production rates [168, 169, 170, 171] demon-

strate good agreement with theoretical predictions within the estimated systematic uncer-

tainties [165, 166, 172, 173]. Since a significant reduction of the statistical uncertainties is

expected as more data are accumulated in high-luminosity LHC runs, the theoretical uncer-

tainties gradually become a limiting factor both for precision tests of the Standard Model and

searches for new physics. Some theoretical uncertainties include dependence on the choices

of the renormalization and factorization scales, uncertainties in the heavy-quark mass and

PDFs, as well as (in the case of composite schemes) dependence on the matching prescription

between NF and NF + 1 flavors. Specifically, at a small transverse momentum (pT ∼ mQ,
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Q = c, b), the NLO scale uncertainties on c, b hadroproduction cross sections estimated with

FONLL may reach 100 (50)% [174]. At such pT , the QCD coupling is usually evaluated at

low renormalization scale such as µR ∼
√
p2
T +m2

Q, and varies rapidly when µR changes. In

traditional VFN scheme such as the ACOT, the NLO scale dependence remains sizable also

at p2
T � m2

Q.

Measurements of charm and bottom production cross sections in the regions of small

pT and large rapidity y of the heavy quark are sensitive to the PDFs at both small and

large momentum fractions (x1,2 ∼
√
p2T+m2

Q√
S

e±y), where the PDFs may not be covered well

by by other experiments. For example, the charm or bottom quark produced in the rapidity

range 4 < |y| < 4.5 in a pp collision at
√
s = 13 TeV can probe the momentum fraction

region x . 10−5, and, for pT & 40 GeV, this kind of data can probe x & 0.2. The preci-

sion measurement of heavy flavor production at pp collider can provide especially sensitive

constraints on the gluon PDF since the relevant production channels are dominated by gg

initial states. Ref. [173] recommends presenting heavy-flavor production data in the form of

normalized cross sections for purposes of PDF studies, since the absolute cross section suf-

fers large theoretical uncertainties due to the uncalculated higher-order corrections beyond

NLO. On the contrary, the normalized cross section can provide a significant cancellation

of the theoretical uncertainties. Another similar idea is to constrain the PDFs using the

ratios σ(X,E2)/σ(X,E1) of cross sections at different collision energies [175], which cancels

the luminosity uncertainties on the experimental side and some theoretical effects, such as

dependence on the fragmentation b→ B in bottom meson production. We can even take a

double ratio to normalize the 13-over-7 TeV cross section ratio to some fixed rapidity value,

combining the advantages of normalized cross sections and the ratio variables between 2 dif-

ferent center-of-mass energies. This idea is exploited in Ref. [174], which shows a significant

reduction of theoretical uncertainties in the ratio of LHC forward heavy quark production

cross sections at
√
s = 7 and 13 TeV. As a result of cancelation of QCD scale dependence in

the cross section ratios, the PDF uncertainty dominates above other unknown factors, which

provides a good chance to constrain the gluon PDF by including the experimental data on

the ratios into the global PDF fits. Now, B± production cross section in the format of cross

section ratios has become available, e.g., from LHCb collaboration [169].
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Heavy-quark-mass dependence is important at small pT and, in general, in kinematic

regions sensitive to mass-dependent modifications in phase space available for radiation of

QQ̄ pairs. In theoretical computations, threshold suppression of the phase space is controlled

by a factor β =
√

1− 4mQ2/ŝ. The FFNS presents the most economical theoretical approach

to describe these special regions. A viable GM-VFN scheme must be constructed so that

it reduces, in a robust way, to FFNS in these limits, it resums collinear logarithms away

from the threshold region, and any differences between the GM-VFN and FFN schemes are

systematically suppressed by including higher-order terms in αs.

In this chapter, we construct such a streamlined and systematic general-mass scheme for

heavy-flavor hadroproduction, called the S-ACOT with Massive Phase Space (SACOT-

MPS) scheme. We follow principles of the S-ACOT-χ method originally developed for deep

inelastic scattering [140, 153] but extend the consideration to the case of hadron-hadron

scattering kinematics. Then, we apply the SACOT-MPS formalism to make predictions for

the LHC. The results are presented at the next-to-leading order (NLO) in the QCD coupling

strength, but the extension to higher orders is straightforward.

b(m)
b(m) b(0)

b(0)

Figure 10.1: The representative Feynman diagrams for pp→ QX production: (a) LO Flavor
Creation (FC) terms; (b) NLO FC; (c) Flavor Excitation (FE); (d) subtraction (SB) terms.
The thick (thin) lines indicate massive (massless) propagators and external-state spinors for
heavy quarks. The black blob indicates a collinear splitting term for g → QQ̄.

In the ACOT approach, we classify the relevant Feynman diagrams into flavor creation

(FC) and flavor excitation (FE) contributions. The representative diagrams are shown in

Fig. 10.1. The overlapping heavy flavor-initial parton generated by the gluon splitting at

this order (NLO) is subtracted out in order to avoid double counting. In the Flavor Creation
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terms, the heavy quark only appears in the final state, which enables us to use the full

quark-mass dependence calculations both in the phase space and the matrix elements. The

hard cross sections can be simplified in the FE channels by neglecting the mQ dependence

without loss in precision, which corresponds to the approach of S-ACOT scheme [141, 142].

Similarly to the χ variable introduced in S-ACOT-χ scheme [140], we invoke the massive

phase space in the Flavor Excitation term to approximate suppression of the available phase

space near the heavy-quark production threshold. We dub this novel scheme as SACOT-

MPS scheme, in which MPS is short for Massive Phase Space. Here MPS plays a similar

role as mT in the SACOT-mT scheme [167].

At the NLO, the Feynman subgraphs of heavy flavor coming from the collinear gluon

splitting appear in the Flavor Creation terms, in which they are resummed as a part of the

heavy-quark PDF, and in the Subtraction (SB) terms, defined as the perturbative expansion

of the respective FE terms to the same order in αs as the FC terms. The full cross section

takes the generic form:

σ = FC + FE− SB. (10.1)

The SB term is subtracted from the sum of the FC and FE terms to eliminate double-

counting of collinear-splitting contributions. In the high-energy limit (ŝ� m2
Q or p2

T � m2
Q),

the SB term is expected to cancel enhanced collinear contributions in the Flavor Creation, in

order to reproduce the ZM scheme calculations in this region. Conversely, in the threshold

region (ŝ & 4m2
Q or pT . mQ), the FE terms that contain the initial heavy-flavor PDF

generated perturbatively by DGLAP equation will cancel the SB terms, so that the cross

section reduces to the FC contribution, which is equivalent to the FFNS cross section up to

a small higher-order correction.

The remainder of this chapter is organized as follows. In Sec. 10.2, we describe the

framework of our theoretical calculations and compare it with the other available calculations,

such as FFNS, FONLL, GM-VFM, and NLO+PS approaches. Our theoretical predictions for

LHCb B± production are presented in Sec. 10.3. We will also discuss the potential impact of

experimental heavy-flavor production data on the PDF global fitting in this section. Finally,

we conclude in Sec. 10.4.
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10.2 Theoretical calculations

The fixed-flavor-number scheme (FFNS) calculation of heavy quark pair production was

first achieved at the Next-to-Leading Order in Refs. [159, 160] and repeated in Refs. [161,

162]. As its name indicates, the FFNS assumes a fixed number NF of active parton flavors.

The heavy-quark species of our interest is consistently treated in the FFNS as an inactive

flavor in the running coupling, masses of active partons, initial-state PDFs, and final-state

fragmentation functions. Take pp → bX as an example. The inactive b-quark means

no b-quark PDF in the initial proton at all. Meanwhile, the strong coupling should be

renormalized in the NF = 4 MS scheme. As discussed in Sec. 10.1, this calculation for

the pT distribution is reliable only when pT . mQ. In the Feynman graphs like the one in

Figure 10.2, the b quark that runs in a virtual loop contributes to the hard partonic cross

section in the NLO NF = 4 FFNS calculations. In such a calculation, both the αs(µ)

b

b̄b

Figure 10.2: The heavy quark running the virtual loops whose contribution should be added
back to the hard partonic cross section in the NLO NF = 4 FFNS calculations.

and PDFs fa/p(x, µ) are consistently evolved using NF = 4 active flavors. However, some

of the available calculations in literature were performed by taking αs(NF = 5) while using

NF = 4 PDFs. This mismatch creates a conceptual inconsistency between the Nf values of

the strong coupling used in the hard cross section, on one hand, and in the DGLAP evolution

of PDFs, on the other. As already mentioned in the Sec. 10.1, the FFNS is only valid when

p2
T . m2

b .

To predict cross sections at all pT values, including the p2
T � m2

b region where FFNS

eventually becomes inadequate, several general-mass VFN schemes are available on the mar-

ket. In FONLL [164, 165], the NLO massive and massless calculations are matched in terms
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of

FONLL = FO + (RS− FOM0)×G(m, pT ). (10.2)

Here FO is the Fixed-Order calculation in the massive scheme. FOM0 represents the Fixed-

Order results in massless limit, which is analogous to the subtraction term in SACOT. RS

is resummed cross section by using the formalism of “perturbative” fragmentation functions

(PFFs), Di→Q(x, µ) [176, 177], which describe a light parton i goes into the heavy quark.

The behavior at intermediate pT is determined, in part, by a matching function, which is

chosen to be

G(m, pT ) =
p2
T

p2
T + c2m2

Q

, (10.3)

with c = 5 in order to suppress RS-FOM0 for pT < 5mQ. G(m, pT ) approaches 1 at large

pT and 0 at small pT . Here, FO differs from the FFNS in that its running couplings and

gluon evolution are computed assuming NF = 5 rather than NF = 4 consistently for bottom

production.

Differently from FONLL, the GM-VFNS is designed to resum large logarithms as heavy-

flavor PDFs. The general structure of the GM-VFNS cross section from Refs. [163, 166] can

be expressed as

σ = σm + σ0 − σ∆
0 , or σ = σm + σ0 − σ∆

m. (10.4)

Here σm is the massive FFN calculation, while σ0 is the same cross-section in the limit

m→ 0, in which m is kept in the logarithmic terms. The σ∆
0 (σ∆

m) are the massless (massive)

subtraction terms deduced by a comparison between the heavy flavor hadroproduction and

massless QCD jet production at the same order. The original version of GM-VFNS [163],

which should have been called ZM-VFNS at that time, performs the calculations of subtrac-

tion terms σ∆
0 in the massless limit, which is valid at high pT . Subsequently, it was extended

to include the finite mass effect by evaluating the massive subtraction term σ∆
m [166]. In ad-

dition, the GM-VFNS has embedded fragmentation functions, such as fb→B±(z, µ), in order

to deal with cross sections for hadronic final states.

In contrast to the GM-VFN and FONLL’s resummation calculations for the inclusive

production of heavy quarks and mesons, Monte Carlo generators based on Parton Showers
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(PS) and string (PYTHIA [178]) or cluster (HERWIG [179]) hadronization models can describe

completely exclusive final states. The NLO calculation with showering effects was performed

with MC@NLO [180] by combining the NLO QCD corrections in the hard part with the im-

proved leading-logarithmic parton shower in HERWIG and subtracting the double-counted

terms properly. This approach was further developed in POWHEG [181], which simplifies the

subtraction terms, avoids the negative-weight events possible in MC@NLO, and allows one to

match to the PYTHIA parton shower as an option. However, both MC@NLO and POWHEG are

based on massive NF = 4 NLO calculations, which treats heavy quark as an inactive parton

in the PDFs. But both codes adopt NF = 5 in the running of strong coupling, which gives a

mismatch, similarly to the FFNS, as we discussed above. As a result, this approach can be

only applied to the small and moderate pT ranges, since it is inconsistent in computing the

large logarithms when pT � mQ.

In this work, following the idea of Simplified-ACOT-χ scheme in DIS case [140, 153], we

develop the S-ACOT-MPS scheme for the heavy flavor production in the hadron collisions,

which is closely similar to GM-VFN calculations [166]. A similar scheme has been proposed

under the name of the SACOT-mT scheme [167], but our MPS scheme differs in two aspects.

Firstly, we take a massive phase space for the flavor excitation and subtraction terms in order

to closely capture the threshold behavior of massive heavy-flavor production. In contrast,

SACOT-mT scheme just substitutes pT with mT in the x1,2 integration limits and scaling

variables τ1,2 [167]. By its construction, the SACOT-MPS cross section smoothly approaches

the FFNS calculation in the pT → 0 limit. The SACOT-mT calculation is undefined in the

pT → 0 limit and takes a hard cut for σFE(pT < mQ

√
1/ξ2 − 1) = 0, by setting the heavy-

flavor PDF to be zero when µF = ξ
√
p2
T +m2

Q < mQ. Needless to say, SACOT-mT scheme

only works for the choice of the scale factor to be ξ < 1. Secondly, we introduce the concept

of a residual PDF as the difference between the heavy-flavor PDF and the convolution of a

light-flavor PDF with the corresponding splitting function, which simplifies the calculation

of the Flavor Excitation and subtraction terms.
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For the inclusive hadronic heavy flavor production pp → QX, we can write the cross

section in a factorized form,

σ(pp→ QX) =
∑
i,j

∫
dx1dx2fi(x1, µF )fj(x2, µF )σ̂ij(ŝ, t̂, û, αs(Nf , µ

2
R),mQ). (10.5)

Here fi(x, µF ) is a PDF for flavor i = g, q, Q. σ̂ij(ŝ, t̂, û, αs(Nf , µ
2
R),mQ) is the partonic cross

section, where αs(Nf , µR) depends on the active flavor number Nf and renormalization scale

µR. Here we take Q = b as an example to illustrate. The SACOT-MPS is applicable to the

charm-flavor production as well. We can expand the partonic cross section and the PDF in

terms of the strong couplings αs/2π as

σ(pp→ bX) =
∑
i,j

∑
n=0

(
αs
2π

)n+2 ∫
dx1dx2fi(x1, µ

2
F )fj(x2, µF )σ̂

(n)
ij (ŝ, t̂, û,mQ). (10.6)

Representative Feynman diagrams are shown in Fig. 10.1. The thick (thin) propagators and

external legs indicate the massive (massless) quarks, which will be calculated with (without)

mass dependence in our approximation. The leading order only contains Flavor Creation

term gg → QQ̄ shown in Fig. 10.1(a). It can be written as

σ(0) =

∫
dx1dx2g(x1, µF )g(x2, µF )σ̂(0)

gg (ŝ, t̂, û, αs(Nf , µ
2
R),mQ). (10.7)

At the next-to-leading order, the Flavor Excitation diagrams involving the heavy flavor

as initial partons begin to show up, such as Fig. 10.1(c). In the FE diagrams, the heavy-

flavor PDF generated from evolution of DGLAP equation resums the (αms logn µ2
F/m

2
Q) terms

to all order in αs. At a specific fixed order, overlap terms, such as Fig. 10.1(d), which are

included both in the FC terms, such as Fig. 10.1(b), and the Flavor Excitation terms, such

as Fig. 10.1(c), should be subtracted in order to avoid double counting. The full contribution

of order O(α3
s)

1 can be written as

σ(1) =

∫
dx1dx2g(x1, µF )fi(x2, µF )σ̂

(1)
gi (ŝ, t̂, û, αs(Nf , µ

2
R),mb)

+

∫
dx1dx2

b(x1, µF )

αs/2π
fi(x2, µF )σ̂

(0)
bi (ŝ, t̂, û, αs(Nf , µ

2
R),mb = 0)

−
∫

dx1dx2 log
µ2
F

m2
b

[Pb←g ⊗ g](x1, µF )fi(x2, µF )σ̂
(0)
bi (ŝ, t̂, û, αs(Nf , µ

2
R),mb = 0)

+ (1↔ 2),

(10.8)

where fi(x, µF ) can be the PDF for gluon or light quarks. The real and virtual corrections

to the partonic cross section are included in the σ̂(1) term. The convolution is defined as

1The LO cross section of pp→ bX is order of O(α2
s).
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[P ⊗ f ](x) =
∫ 1

x
dξ
ξ
P (x

ξ
)f(ξ). Pb←g(x) = 1

2
[x2 + (1 − x)2] is the leading order Altarelli-

Parisi splitting function for g → bb̄. The denominator αs/2π results from the prefactor that

has been factored out in front of Eq. (10.6). The partonic cross section σ̂
(0)
gg and σ̂

(1)
gi for

Flavor Creation terms retain full mb dependence, which is known from in the NLO FFNS

calculations [162, 159, 160, 161].

In the hard matrix elements of the Flavor Excitation terms, the heavy quark is treated as

massless; but the full mass dependence is retained in the phase space of the FE terms. This

setup resolves the technical difficulty that the total cross section of Flavor Excitation terms

over the full phase space is diverging due to the forward-backward collinear divergence,

which is regulated by fiducial cuts, such as transverse momentum pT > 20 GeV or the

pseudorapidity 2.0 < η < 4.5, in the experimental measurement. Following the philosophy

of the χ variable introduced in the S-ACOT-χ scheme [140], we adopt the massive phase

space of QQ̄ production to capture the threshold effect. As a result, we obtain a finite cross

section at all pT . The details of our implementation and the comparison of massless and

massive phase space results can be found in Sec. B.1.

At each order of αs, the Subtraction (SB) terms and the corresponding FE terms share

the same hard-scattering cross section, with the heavy-quark mass ignored in both. In light

of this feature, at NLO, we define the subtraction heavy-flavor PDF as

b̃(x, µ) =
αs(µ)

2π
log

µ2

m2
b

∫ 1

x

dξ

ξ
Pb←g(

x

ξ
)g(ξ, µ). (10.9)

With the DGLAP evolution code HOPPET [182], we perform this convolution and save b̃(x, µ)

as an LHAPDF [183] format table. Afterwards, the SB terms can be written in a similar way

as the corresponding FE terms,

σFE = b(x1, µ)fi(x2, µ)⊗ σ̂(0)
bi + (1↔ 2),

σSB = b̃(x1, µ)fi(x2, µ)⊗ σ̂(0)
bi + (1↔ 2).

(10.10)

The subtraction terms are now calculated in the same way as Flavor Excitation terms, just

by replacing the heavy flavor PDF by the subtraction PDF. Using this subtraction PDF,

we compute the subtraction terms much faster than by the standalone computation of the

convolution integrals. In fact, we can now compute the FE-SB difference in one step, by

convoluting the FE hard cross section with the residual PDF b(x, µ)− b̃(x, µ), also provided
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Figure 10.3: The Flavor Excitation (FE) terms, subtracted double counting terms (SB) and
Flavor Creation (FC) terms in the forward (2.0 < |y| < 4.5) b production at LHCb 7 and 13
TeV [169] and the respectively ratios to the SACOT-MPS calculation values. We corrected
the B±-meson back to b-quark with f(b → B±) = 0.407 [184]. Here we take CT14 NNLO
central PDF, mb = 4.75 GeV, and scale choice as µR = µF =

√
m2
b + p2

T .

in the form of an LHAPDF table. As an illustration, the FC, FE and SB terms for b production

at LHCb 7 TeV can be viewed in Figure 10.3.

So far, our SACOT-MPS calculations have been performed for the inclusive b-quark

production. In order to perform a fast computation in our global PDF fitting, we generate

look-up tables called APPLgrid [185] with an interface package mcfm-bridge, which allows

us a posteriori variations of PDFs, strong couplings, renormalization, and factorization scale

and center-of-mass energies. Within the same framework, our calculations can be applied

to charm production as well. Equipped with the subtracted PDFs, we can easily extend

our calculations to other heavy flavor production processes, such as W/Z or Higgs boson

associated with heavy flavor production, which is left to the future work. Another future

direction is to extend our calculations to the Next-to-Next-to Leading order, whenever the
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public code for NNLO calculations of the fully differential cross section in heavy flavor

production is available.

10.3 A phenomenological application to LHCb B± production

The first b-flavored hadron measurement performed by LHCb Collaboration is the cross

section of pp → HbX at 7 TeV reconstructed with events containing a D0 meson and a

muon in the final states [186]. Afterward, LHCb published the 7 TeV B± production cross

section reconstructed exclusively with the decay mode B± → J/ψK± and J/ψ → µ+µ−

[187]. These measured total and differential cross sections show good agreement with the

FFNS [159, 160] (implemented in the MCFM code [188]) and FONLL [189] predictions, within

the systematic uncertainties. As we already mentioned, and as is seen in Ref. [174, 165], the

theoretical uncertainties are large (about 50%) for both for the total and differential cross

sections, mostly reflecting large scale uncertainties. PROSA Collaboration suggests to use

a normalized differential cross section for the global QCD analysis [173], in which the large

scale dependence is absorbed by the normalization. Another similar idea is to cancel the

scale uncertainties by computing cross section ratios between different CM energies [175],

or between different rapidity bins [173]. These ideas are implemented in Ref. [174], which

projected, based on an analysis using the FONLL program, that the ratio of forwarding

heavy quark production at LHCb
√
s = 7 and 13 TeV would provide good sensitivity to the

gluon distribution function. Recently, the B± → Jψ(→ µ+µ−)K± analysis at LHCb at

13 TeV [169] becomes available, so that the data on the 13-to-7 ratios can now indeed be

compared to theoretical predictions.

We will now present the differential cross section dσ/dpbT of pp→ bX and its correspond-

ing ratio between
√
s = 7 and 13 TeV, and compare it to the LHCb measurements. The

central renormalization and factorization scales are set to be the transverse mass of b quark,

µ = mb
T =

√
m2
b + p2

T . The scale uncertainty is estimated by varying the renormalization

and factorization scale independently up and down by a factor of two from the central values,

that is, by computing an envelope of a 7-point scale variation:

(µR, µF ) =
{

(
1

2
,
1

2
), (

1

2
, 1), (1,

1

2
), (1, 1), (1, 2), (2, 1), (2, 2)

}
×mb

T . (10.11)
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We drop two points (µR, µF ) = {(1
2
, 2), (2, 1

2
)} to eliminate particularly large logarithmic

variations that may still be present at NLO. We take CT14 NNLO [190] as our PDF set,

and estimate the PDF uncertainties with the symmetrical Hessian method [191, 192],

δHPDF(X) =
1

2

√√√√Neig∑
i=1

(X+
i −X−i )2. (10.12)

The CT14 NNLO PDFs generate a nonzero b-quark parton distribution function perturba-

tively via DGLAP evolution that switches from NF = 4 to NF = 5 at scale µ = mb = 4.75

GeV. We use the b quark pole mass with mb = 4.75 GeV as the central value and vary it

within the mb ∈ [4.5, 5.0] GeV range to estimate the quark-mass dependence. Note that,

in principle, the variation of mb in the Flavor Creation terms σ̂gi(mb) and subtraction terms

log
µ2F
m2
b
Pb←gσ̂bi(mb = 0) is not fully consistent with the perturbative b-quark PDF in CT14

NNLO due to this discrepancy. However, as our numerical results will show, this mass de-

pendence can be ignored, when compared to the scale uncertainties, and practically cancels

out in the cross section ratios.

LHCb measured the B± meson production over the range 0 < pT < 40 GeV and 2.0 <

y < 4.5 at 7 and 13 TeV [169]. With the fragmentation fraction f(b → B±) = 0.407

[184], we obtain the b-quark cross sections and compare against our theoretical predictions.

The central values of the SACOT-MPS calculations of the FC, FE and SB contributions to

the transverse momentum distribution, dσ/dpbT , are displayed in Fig. 10.3. As shown in

Fig. 10.3, the Flavor Creation terms make up 60 ∼ 80% of the experimental data over the

full pT range. In comparison, the Flavor Excitation terms make a big contribution in the

high-pT region (pT � mb), while its low-pT (pT . mb) contribution is negligible because of

mass-dependent phase space suppression. When subtracting the overlapping contribution,

we get the total theoretical prediction in a good agreement with data. As we expected,

when pT � mb, the b-quark mass can be ignored, and the massive FC terms approach their

massless limit. The SB terms cancel the mass logarithms in the FC terms. The FE terms

dominate in this region, while the difference FC-SB contributes a smaller finite correction

that is effectively one high-order compared to the FE terms. Conversely, when pT . mb, we

obtain a good cancellation between the Flavor Excitation terms and Subtraction terms.
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Figure 10.4: The SACOT-MPS calculations for forward (2.0 < |y| < 4.5) partonic b-jet
production at LHCb

√
s = 7 (left) and 13 (right) TeV [169]. The experimental data for

B± meson were corrected back to the b-quark level with the fragmentation fraction f(b →
B±) = 0.407 [174].

The total theoretical predictions (FC+FE-SB) with various theoretical uncertainties are

compared against the experimental data in Fig. 10.4. We see that the experimental data

fits fully within the theoretical error bands. As we expected, the dominant theoretical

uncertainties come from scale variations. In the moderate transverse momentum region

(pT ∼ mb), the scale uncertainty can even exceed 50%, while at even higher pT , it stabilizes

around 20 ∼ 30%, which is consistent with the observations in Ref. [174]. It means the

unknown NNLO corrections are non-negligible for pp → bX process at the LHC collision

energy. The PDF uncertainty is about 15% at moderate pT , while it is a few percent at

high pT . The quark-mass dependence is 10% at low pT , i.e., slightly smaller than the PDF

uncertainty, but it is damped much faster with increasing pT due to the suppression of mass-

dependent terms in the cross section. In comparison, the experimental uncertainties stay

below 10% for the whole pT range.
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Figure 10.5: Left: the ratio of LHCb pT distributions at two different collider energies,
dσ/dpT (13TeV)
dσ/dpT (7TeV)

. Right: the PDF, scale, mb, and total uncertainties of the cross section ratio.

As suggested in Ref. [175], the ratios of cross sections at different collision energies

can cancel the correlated theoretical uncertainties to a large degree, which may improve

sensitivity to detailed dynamics in the Standard Model and beyond. Here we consider the

ratios of pT distributions at
√
s = 7 and 13 TeV for B-meson production at LHCb,

R(pT ) =
dσ/dpT (13TeV)

dσ/dpT (7TeV)
, (10.13)

which is shown in Fig. 10.5. As we expected, the scale uncertainties cancel to a large extent

in the ratio, down to within 10%. The b-quark-mass dependence is almost cancelled out, with

less than 2% left. As a result, the PDF uncertainties turn out to be about the the same size

as the scale uncertainties for this ratio observable. The big reduction of the scale uncertainty

reflects the assumption that the scale uncertainties are highly correlated at different collider

energy. In comparison, the mild cancellation of PDF uncertainties implies that the ratio is

sensitivity to the PDFs, especially the gluon PDF that is constrained in different x ranges

in this process.

We repeat our calculation for the double differential cross section d2σ/(dpTdy), shown in

Fig. 10.6, and the corresponding cross section ratio between
√
s = 7 and 13 TeV, shown in

Fig. 10.7. The theoretical uncertainties for this double differential cross section are larger

than the experimental uncertainties throughout the whole pT . In the cross section ration
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Figure 10.6: Left: the double differential cross section d2σ
dpT dy

for b-meson production. The
dashed lines with yellow error bands indicate SACOT-MPS NLO theoretical predictions,
while the solid lines with error bars represent experimental data corrected back to parton
level [169]. Right: ratios (R = T/D) of experimental data (D) to theory calculations (T ).
Here theoretical errors are given the quadrature sum of PDF, scale, and mb uncertainties.
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Figure 10.7: The cross section ratio of double differential cross section d2σ/(dpT dy)(13TeV)
d2σ/(dpT dy)(7TeV)

.
Same as Fig. 10.6, the dashed lines with yellow error bands are SACOT-MPS NLO theory
predictions while the solid lines with error bars represent data. Here the experimental errors
are calculated with δR/R =

√
(δX13/X13)2 + (δX7/X7)2, with X13(X7) and δX13(δX7) as

the experimental measured value and the corresponding uncertainty for 13 (7) TeV.
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in Figure 10.7, the theoretical uncertainties are reduced compared to the cross sections

themselves in Figure 10.6. On the other hand, the experimental uncertainties has increased,

rather than decreased. We propagate the experimental uncertainties into the cross section

ration R according to the formula

δR

R
=

√(
δX13

X13

)2

+

(
δX7

X7

)2

, with R =
X13

X7

, (10.14)

where X stands for the double differential cross section d2σ/(dpTdy). It means the ex-

perimental uncertainties are accumulated in Fig. 10.7, while the theoretical uncertainties

cancel.

With the typical momentum fractions estimated to be roughly x1,2 =

√
m2+p2T√
s

e±y, we

know that the data at high pT (such as pT = 40 GeV) and high rapidity (such as y = 4.5)

can probe the gluon PDF at a large momentum fraction (x ∼
√

52+402

7000
e4.5 ' 0.5). On the

contrary, the low pT with high rapidity can probe the small momentum fraction down to

x ∼
√

52+52

13000
e−4.5 ' 6 × 10−6. These extremely large and extremely small x domains are out

of reach of other measurements.

10.4 Conclusions

In this chapter, we propose a heavy-flavor general-mass factorization scheme SACOT-

MPS of the ACOT family [193, 141, 140, 153] for a broad class of processes involving massive

quark production and scattering at hadron colliders. This scheme reduces to the fixed-

flavor-number scheme near the kinematical threshold for heavy quark production, and it

resums heavy-quark mass logarithms in the regions where the quark masses are negligible. We

systematically classify the radiative contributions into Flavor Creation (FC) and Flavor

Excitation (FE) categories, then consistently subtract the double-counted terms, dubbed

as Subtraction (SB) terms. Following the insights from using a rescaling χ-variable in the

S-ACOT-χ scheme, the SACOT-MPS scheme evaluates integrals of the Flavor Excitation

and Subtraction terms using massless hard-scattering matrix elements combined with the

mass-dependent, rather than massless, phase space. This prescription results in a smooth,

stable matching of the full SACOT-MPS cross section onto the FFNS result in the regions

where the threshold kinematics is important. To demonstrate the potential of the SACOT-

MPS scheme, we apply our theoretical calculations at NLO to the (double) differential cross

159



section dependent on the transverse momentum (pT ) and rapidity y of the B± meson in

LHCb measurement at
√
s = 7 and 13 TeV [169].

The SACOT-MPS calculation demonstrates clockwork cancellations among its constituent

parts (between the FE and SB terms at small pT , and between the SB and logarithmically-

enhanced FC terms at large pT ) that lead to stable predictions across the full pT range and

guarantee systematic improvement in the theoretical accuracy from including even higher-

order perturbative QCD corrections.

We investigate the renormalization and factorization uncertainties by varying the central

scale value µR = µF =
√
m2
b + p2

T up and down by a factor of 2, computing the PDF

uncertainties with the symmetric Hessian method, and varying the b-quark mass. The

SACOT-MPS NLO theoretical predictions agree well with the experimental data within

the uncertainties. The scale uncertainty is a dominant resource that limits the predictivity

power of the NLO QCD theory. By taking the ratios of cross sections at different center-

of-mass energies, we may obtain some reduction of theoretical uncertainties, especially the

cancellation of the QCD scale dependence, if the variations of the renormalization and fac-

torization scales are assumed to be correlated in the numerator and denominator. More

precise experimental measurements of these ratios, combined with the envisioned NNLO

calculations for the respective theoretical predictions, open the possibility to constrain the

gluon PDF in both the high- and low-x regions, thanks to the forward configuration of the

LHCb detector, and it can offer valuable inputs for future global PDF analyses.
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Chapter 11

Summary

11.1 The SGM model

In this dissertation, we started with the discussion of the electroweak sector in the Stan-

dard Model in Chapter 2. Motivated by neutrino masses, we discussed several possible

solutions, known as the seesaw mechanism, in Chapter 3. We reviewed three types of seesaw

mechanism, based on different particle fields to be added into the Standard Model. Type I

seesaw mechanism corresponds to right-handed Majorana neutrinos. Alternatively, we con-

sidered scalar triplets ∆ to realize the Type-II seesaw mechanism. If a hypercharge Y = 2

is assigned to the triplet, we can couple it to the leptonic doublet, lL = (νL, eL)T (Y = −1),

in the Yukawa way ylTLCiτ2∆lL. After this triplet develops a VEV in the SSB (or induced

by the VEV of the SM Higgs), the left-handed neutrinos acquire Majorana masses.

However, there is no such thing as a free lunch. The triplet VEVs have a contribution

to electroweak symmetry breaking (EWSB), which is strongly constrained by precision mea-

surements. The ρ parameter [44] is one of the strongest constraints. The Standard Model

predicts ρ = 1 at the tree level, and the current precision measurements constrain the devi-

ation within ∆ρ . 10−3 [23]. This small number implies a fine-tuning on the triplet VEVs.

We introduce a custodial symmetry, which strongly weakens the ρ parameter constraint.

The custodial symmetry requires at least 2 triplets: a complex (Y = ±2) one, χ, and a

real (Y = 0) one, η. This is the well-known Georgi-Machacek (GM) Model. Under the

custodial symmetry, the triplet VEVs are aligned, i.e., vχ = vη. As a result, ∆ρ = 0 is

recovered at the tree level.

But situations are not so simple when we go one step further. We have to keep it in

mind that the custodial symmetry is not a priori requirement of the Standard Model or its

extension. It is an accidental symmetry that the SM Higgs potential automatically satisfies.
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Moreover, the custodial symmetry is only approximate, which is violated already in the

Standard Model, due to two sources: nonzero hypercharge gauge interaction and unequal

Yukawa couplings between up- and down-type fermions. First, the nonzero hypercharge

gauge introduces mass splitting between the neutral and charged weak gauge bosons, that

is, MZ 6= MW . We saw this mass splitting happened twice in the supersymmetric custodial

triplet model in Chapter 5. It is not a big issue, at least at the tree level, as it is compensated

by the Weinberg angle θW in the ρ parameter definition. However, the situation changes

because of quantum corrections. The nonzero hypercharge interaction introduces a quadratic

divergence in the ρ parameter, starting at the one-loop level [60]. A similar divergence occurs

in the mass splitting of the up- and down-type fermions. Numerically, the big difference

between the top and bottom quarks contributes to the biggest part of nonzero ∆ρ. A lesson

here is that the custodial symmetry will be recovered in the limit of zero hypercharge, gY → 0,

and equal Yukawa couplings, yt → yb.

This the hierarchy problem associated with the quadratic divergence in the loop cor-

rections to the squared masses of scalars fields, can be solved by supersymmetry (SUSY).

Therefore, we introduced the supersymmetry to obtain the Supersymmetric Custodial Triplet

Model (SCTM), which eliminated both quadratic divergences simultaneously. We first re-

viewed the basic ingredients of supersymmetry and its extension of the Standard Model in

Chapter 4. We limited ourselves to the Minimal Supersymmetric Standard Model (MSSM).

We focused on the Higgs sector as one specific example of the Two-Higgs-Doublet Model

(2HDM), which was also briefly discussed there.

Afterward, we moved forward to the SCTM in Chapter 5. We derived the F- and D-

term potentials of the SCTM. So far, no supersymmetric particles have been discovered yet,

which means the SUSY must be broken. People have come up with several mechanisms

to break the SUSY, mediated by gravity [84], gauge [194], gaugino [195], or anomaly [85].

We parameterized the soft SUSY breaking in an effective way, which breaks SUSY explic-

itly. With F-, D- and soft breaking terms, we fully determined the mass spectrum of the

SCTM. We focused on the electroweak sector, including scalars and their fermionic super-

partners (gauginos and higgsinos). When comparing the SCTM spectrum with the GM one,

we obtained a decoupling limit when the dimensionful parameters, B-terms, become large
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(|Bµ,∆| → ∞). In such a limit, all the GM-like particles in the SGM and GM models share

the same masses at the energies in the TeV range, while all the mirror -GM particles become

heavy, and therefore, are decoupled. We dubbed this decoupling limit of the SCTM as the

Supersymmetric GM (SGM) model. It gives a weakly coupled origin for the ordinary GM

model at the EW scale.

The next natural question is whether we can distinguish the SGM from the GM models,

even though the GM-like spectrum is the same. In Chapter 6, we realized that the key

was to observe the superpartners, especially higgsinos. When the Lightest Supersymmetric

Particle (LSP) becomes light, the GM-like particles can decay into the LSP or other light

superpartners, which lowers down the branching ratios of the GM-like particles into the SM

particles, such as diboson (WW,ZZ) or diphoton. In contrast, if the LSP is heavy, all the

superpartners are decoupled from the GM sector, which leaves the SGM model the same

as the GM model. In Chapter 7, we took the GM and SGM models as examples to show

how light exotic Higgs bosons could escape the current experimental constraints, through

the cancellation of different loops and via the invisible decays.

11.2 Heavy-particle production

The most powerful machines to produce the massive particles predicted by the GM and

SGM models are hadron colliders. The physics at hadron colliders is based on our under-

standing of Quantum Chromodynamics (QCD). In Chapter 8, we started with the Higgs pro-

duction through gluon fusion as an example to demonstrate the QCD factorization theorem.

Then, we generalized the factorization formalism and discussed the higher-order corrections.

We applied the factorization to the Drell-Yan process and deep inelastic scattering.

In Chapter 9, we discussed the heavy-flavor production in DIS. First, we compared two

heavy-flavor treatments: the fixed-flavor-number (FFN) and zero-mass (ZM) schemes.

When the physical energy scale characterized by the photon virtuality (Q2 = −q2) is not

so high compared to the heavy-quark mass (Q2 ∼ m2
q), the heavy quark can be treated as

inactive. The heavy quark can be only produced through flavor creation (FC), in which

the heavy quark must be treated as massive. In contrast, when the physical energy becomes

much larger than the heavy-quark mass (Q2 � m2
q), the heavy quark can be treated as
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massless in hard scattering processes. We have to resum large logarithms, αms logn(Q2/m2
q),

into the heavy-flavor PDF. In such a case, the dominant contribution to the heavy-flavor

production comes from the flavor excitation (FE) term.

When the physical energy Q spans both the low and the high energy regions, we need a

composite scheme to encompass the merits of the FFN and ZM schemes in their own valid

ranges. That is the idea of the general-mass variable-flavor-number (GM-VFN) scheme.

However, the subprocesses corresponding to the diagrams of gluon splitting into heavy quark

are counted twice, both in the FC and FE channels. We need to subtract the double-counted

terms systematically, which is the key point of the ACOT scheme [135, 136, 137, 138, 139].

The ACOT scheme allows us to deal with the heavy-quark mass consistently. In the FC

terms, the heavy-quark mass is kept. In the FE and subtraction terms, we can take the

zero-mass approximation to simplify the calculation significantly, which is the idea of the

simplified-ACOT (S-ACOT) scheme [141, 142]. In the high-energy limit, the subtraction

terms are expected to cancel the FC terms, which leaves the FE terms to remain. That is,

the S-ACOT scheme then coincides the ZM scheme in this region. In the low-energy limit,

the subtraction terms cancel the FE terms, leaving the S-ACOT scheme to be equivalent to

the FFN scheme. However, in the threshold region, the cancellation between the FE and

subtraction terms is unstable due to the divergence behavior of the zero-mass approximation.

Wu-Ki Tung et al. proposed the S-ACOT-χ scheme [140], in which the momentum fraction

x was replaced by a rescaling variable χ = x(1 + 4m2
q/Q

2). It enforces the momentum

conservation and stabilizes the cancellation between FE and subtraction terms when Q2 ∼
m2
q.

However, when extending the S-ACOT-χ scheme to a higher order, we face difficulty

in calculating the full mass-dependent coefficient functions. In contrast, the zero-mass co-

efficient functions are much easier to obtain. Inspired by the χ variable, Pavel Nadolsky

and Wu-Ki Tung introduced the intermediate-mass (IM) scheme [152] to approximate the

mass-dependence of the full GM scheme. In the IM scheme, we introduce a more general

rescaling variable ζ(λ) with a free parameter λ. We can extract λ from the exact mass

dependence at a lower order and apply it to higher orders. Equipped with the tools of the

IM scheme, we extended the calculation of DIS heavy-flavor structure functions to N3LO.
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In Chapter 10, we applied the idea of the S-ACOT scheme to heavy-flavor production

at hadron colliders. Similarly to the χ prescription in SACOT-χ scheme, we introduced

the massive phase space (MPS) for the FE and subtraction terms to capture the mass

dependence, and we dubbed it as the SACOT-MPS scheme. Furthermore, we constructed

the subtraction and residual PDFs which simplify the calculation of the FE and subtraction

terms. We also proposed to do QCD calculations with the subtracted and residual PDFs,

which simplify the computations for the FE and subtraction terms. When describing the

data of B± meson production at LHCb, we found large theoretical uncertainties, especially

the scale uncertainties. Therefore, we took a ratio variable, defined as the ratio of cross

sections at different collision energies. The theoretical uncertainties on this ratio variable

cancel significantly. In such a way, the SACOT-MPS calculation provides a good prescription

for the LHCb data.

165



Appendix A

Dimensional regularization

A.1 One-Loop Integrals

Considering a general one-loop diagram shown Figure A.1, we have the corresponding

loop integral tensor written as

TNµ1···µP =
µ4−D

iπD/2rΓ

∫
dDq

qµ1 · · · qµP
[q1 −m2

1][(q + k1)2 −m2
2] · · · [(q + kN−1)2 −m2

N ]
, (A.1)

where

rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
, D = 4− 2ε. (A.2)

where the momentum ki is defined as Figure A.1,

p1 = k1, p2 = k2 − k1, · · · pN = kN − kN−1,

k1 = p1, k2 = p1 + p2, · · · kN =
N∑
i

pi.
(A.3)

These integral tensor can be reduced to linear combinations of Lorentz covariant tensors,

which can be constructed from gµν and kiµkjν , etc [196]. This reduction procedure is not

unique, and we following the conventions in LoopTools [78]. The tensor integrals showing

up in this dissertation reads explicitly as

Bµ = k1µB1,

Bµν = gµνB00 + k1µk1νB11,

Cµ = k1µC1 + k2µC2 =
2∑
i=1

kiµCi

Cµν = gµνC00 +
2∑

i,j=1

kiµkjνCij,

Cµνρ =
2∑
i=1

(gµνkiρ+ gνρkiµ + gµρkiν)C00i +
2∑

i,j,l=1

kiµkjνklρCijl.

(A.4)
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Figure A.1: A general loop integral tensor, and the A,B,C functions.

We have use the following conventions for momenta inside of the parentheses,

A(a) : a = m2,

B(a) : a = p2,m2
1,m

2
2,

C(a) : a = p2
1, p

2
2, (p1 + p2)2,m2

1,m
2
2,m

2
3.

(A.5)
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Appendix B

Massless partonic cross sections

B.1 Flavor Excitation terms

When heavy quarks are treated as active partons inside the proton, the cross section for

pp→ QX contains nonzero Flavor Excitation (FE) terms – Feynman graphs with initial-state

heavy quarks. The FE terms and respective SB terms are approximate and are introduced

to resum large logarithms in the limit when p2
T � m2

Q. The coefficient functions and phase

space for the FE and SB terms are not unique and may include mass-dependent terms that

always cancel up to one higher-order in αs [153]. This flexibility can be put to advantage to

simplify the functional form of the FE and SB coefficient functions, and at the same time to

improve the cancellation of the FE and SB near the threshold for heavy-quark production,

where both terms become unphysical. The SACOT-MPS scheme builds on these principles

by evaluating the FE and SB terms using massless hard-scattering cross sections and exact

phase space with full mass dependence. As a result, the SACOT-MPS cross sections are easy

to implement and demonstrate fast perturbative convergence at all pT .

In our specific application to inclusive b-meson hadroproduction, the O(αs) matrix ele-

ments for the FE and SB terms in the SACOT-MPS scheme are exactly the same as the

leading order of bg → bg and bq → bq in dijet production, shown in Fig. B.1. By summing

over 3 channels of b(k1)g(k2)→ b(k3)g(k4), we obtain the squared amplitude as

|Mbg→bg|2 =
64π2

9
α2
s(t

2 + u2)(− 1

ut
+

9

4s2
). (B.1)

The partonic Mandelstam variables 1 are defined as

s = (k1 + k2)2 = 2k1 · k2, t = (k1 − k3)2 = −2k1 · k2, u = (k1 − k4)2 = −2k1 · k4, (B.2)

1Typically, the partonic parameter is denoted with a hat above, such as ŝ, t̂, û. But we leave out the hat
here for simplicity.
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and satisfy s+ t+ u = 0. The tree-level diagram b(k1)q(k2)→ b(k3)q(k4) renders a squared

amplitude

|Mbq→bq|2 =
64π2

9
α2
s

s2 + u2

t2
. (B.3)

In these diagrams, spins and colors are averaged for the initial states and summed over for

the final states.

q

b
b

b

b

bb

b

Figure B.1: Feynman diagrams for scattering processes bg → bg, (a) s-channel, (b) t-channel,
(c) u-channel, and (d) bq → bq.

In the center-of-mass frame, partonic momenta take the form

k1 =
Q

2
(1, 0, 0, 1), k2 =

Q

2
(1, 0, 0,−1),

k3 =
Q

2
(1, sin θ, 0, cos θ), k4 =

Q

2
(1,− sin θ, 0,− cos θ),

(B.4)

if the momenta of the final-state particles are in the O-xz plane. The Mandelstam variables

become

s = Q2, t = −Q
2

(1− cos θ), u = −Q
2

2
(1 + cos θ). (B.5)

The two-body phase space can be written as

dΦ2 = (2π)4δ(4)(k1 + k2 − k3 − k4)
d3k3

(2π)3k0
3

d3k4

(2π)32k0
4

=
dΩ

32π2
. (B.6)

Therefore, we get the total partonic cross section for gb→ gb as

σ̂(gb→ gb) =
1

2s

∫
dΦ2|Mgb→gb|2

=
4π

3Q2
α2
s

[
10 +

72

1− x + x(11 + x) + 36 log(1− x) + 8 log(1 + x)

]∣∣∣1−δ
−1+δ

,

(B.7)

where x = cos θ ∈ [−1+δ, 1−δ]. Similarly, we get the bq → bq cross section in the full phase

space as

σ̂(bq → bq) =
2π

9Q2
α2
s

[
8

1− x + x+ 4 log(−1 + x)

]∣∣∣1−δ
−1+δ

. (B.8)

We can see clearly that the full phase space cross section is divergent in the forward collinear

limit δ → 0 and soft limit Q2 → 0, which is regulated by the fiducial cuts such as pT > pcut
T

169



or |η| < ηcut in the practical experimental measurements. Let us consider the differential

cross section dσ/dpT in the pT → 0 limit. In the partonic center-of-mass frame at LO, the

pT = Q
2

sin θ =
√
x1x2S

2
sin θ. Therefore, two limits ŝ = x1x2S → 0 and θ → 0, π will lead to

pT → 0. As we discussed above, the θ → 0, π limit leads to a collinear divergence, which

is regulated by the experimental rapidity cut. The limit x1x2S → 0 violates the threshold

constraint, which invalidates the massless assumption. In other words, the Flavor Excitation

calculations break down when ŝ = x1x2S < 4m2
Q. Together with the threshold constraint

x1x2S > 4m2
b and the rapidity cut |y| < ycut, we will get an effective cut for in the FE and

SB terms,

4m2
b < x1x2S = 2p2

T (1 + cosh ∆y) < 2p2
T (1 + cosh 2ycut)

=⇒ pT >

√
2m2

b

1 + cosh 2ycut
≈ 2mbe

−ycut ,
(B.9)

where x1,2 = pT√
S

(e±y1 + e±y2). For the typical LHCb measurement, the fiducial volume

satisfies |y| < 4.5, which gives pbT > 2 · 4.75 · e−4.5 ≈ 0.1 GeV, and avoids the pbT → 0 limit.

In order to implement this threshold constraint naturally, the SACOT-MPS approach

evaluates all three types of terms (FC, FE, and SB) using the massive phase space. The

difference between the cancellations of the FE and SB terms in the region p2
T ∼ m2

b , when

those are evaluated using the massless and massive phase spaces, is illustrated in the example

of the LHCb forward (2.0 < y < 4.5) B± production at 7 TeV [169], shown in Figure B.2.

In the high-pT region, the massive phase space approaches its massless limit. At p2
T � m2

b ,

the FE and SB terms computed with the massive phase space (indicated by mFE and mSB)

are essentially identical to their counterparts computed with the zero-mass space, 0FE and

0SB. Besides, the SB term approaches and nearly cancels the full FC term (or rather, it

exactly cancels the logarithmically enhanced part of the FC term). In the same region, the

FE term is somewhat larger than the FC term, indicating that the higher-order contributions

introduced as a part of the b-quark PDF in the FE term, but missing in the FC term, cannot

be omitted in this case.

Conversely, in the low-pT limit, the Flavor Creation contribution to the differential cross

section dσ/dpT converges well, since the heavy quark mass mb serves a natural regulator. In

sharp contrast, the 0FE and 0SB with massless phase space diverge in this limit, because
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Figure B.2: The massive and massless phase space results for Flavor Excitation and Subtrac-
tion terms when compared to the Flavor Creation terms. Here we take the fiducial volume
of the LHCb 7 TeV measurement of B± production [169] as an example to demonstrate.

of the collinear and soft singularities present at pT → 0. Ideally, we expect the 0FE and

the 0SB to cancel in the pT → 0 limit. But the divergence destabilizes this cancellation.

However, after adopting the massive phase space, the divergent behavior gets tamed by the

phase space suppression. We get a stable good cancellation between the mFE and mSB

terms in this region, which leaves the FC terms to dominate.
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