
Mon. Not. R. Astron. Soc. 317, 965±972 (2000)

Massive lossless data compression and multiple parameter estimation
from galaxy spectra

Alan F. Heavens,1w Raul Jimenez1 and Ofer Lahav2

1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ
2Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA

Accepted 2000 May 15. Received 2000 April 19; in original form 1999 December 10

A B S T R A C T

We present a method for radical linear compression of data sets where the data are

dependent on some number M of parameters. We show that, if the noise in the data is

independent of the parameters, we can form M linear combinations of the data which contain

as much information about all the parameters as the entire data set, in the sense that the

Fisher information matrices are identical; i.e. the method is lossless. We explore how these

compressed numbers fare when the noise is dependent on the parameters, and show that the

method, though not precisely lossless, increases errors by a very modest factor. The method

is general, but we illustrate it with a problem for which it is well-suited: galaxy spectra, the

data for which typically consist of ,103 fluxes, and the properties of which are set by a

handful of parameters such as age, and a parametrized star formation history. The spectra are

reduced to a small number of data, which are connected to the physical processes entering

the problem. This data compression offers the possibility of a large increase in the speed of

determining physical parameters. This is an important consideration as data sets of galaxy

spectra reach 106 in size, and the complexity of model spectra increases. In addition to this

practical advantage, the compressed data may offer a classification scheme for galaxy

spectra which is based rather directly on physical processes.

Key words: methods: data analysis ± methods: statistical ± galaxies: fundamental

parameters ± galaxies: statistics.

1 I N T R O D U C T I O N

There are many instances where objects consist of many data,

whose values are determined by a small number of parameters.

Often, it is only these parameters which are of interest. The aim of

this paper is to find linear combinations of the data which are

focused on estimating the physical parameters with as small an

error as possible. Such a problem is very general, and has been

attacked in the case of parameter estimation in large-scale

structure and the microwave background (e.g. Tegmark, Taylor

& Heavens 1997, hereafter TTH; Tegmark 1997a,b; Bond, Jaffe &

Knox 1998). Previous work has concentrated largely on the

estimation of a single parameter; the main advance of this paper is

that it sets out a method for the estimation of multiple parameters.

The method provides one projection per parameter, with the

consequent possibility of a massive data compression factor.

Furthermore, if the noise in the data is independent of the

parameters, then the method is entirely lossless, i.e. the com-

pressed data set contains as much information about the para-

meters as the full data set, in the sense that the Fisher information

matrix is the same for the compressed data set as the entire

original data set. An equivalent statement is that the mean

likelihood surface is at the peak locally identical when the full or

compressed data are used.

We illustrate the method with the case of galaxy spectra, for

which there are surveys underway which will provide ,106

objects. In this application, the noise is generally not independent

of the parameters, as there is a photon shot-noise component

which depends on how many photons are expected. We take a

spectrum with poor signal-to-noise ratio (S/N), the noise of which

is approximately from photon counting alone, and investigate how

the method fares. In this case, the method is not lossless, but the

increase in error bars is shown to be minimal, and superior in this

respect to an alternative compression system, Principal Compo-

nent Analysis (PCA).

One advantage that such radical compression offers is speed of

analysis. A major scientific goal of galaxy spectral surveys is to

determine physical parameters of the stellar component of the

galaxies, such as the age, star formation history, initial mass

function, and so on. Such a process can, in principle, be achieved

by generating model galaxy spectra by stellar population synthesis

techniques, and finding the best-fitting model by maximum-

likelihood techniques. This can be very time-consuming, and must

inevitably be automated for so many galaxies. In addition, one may

have a large parameter space to explore, so any method which can

speed up this process is worth investigation. One possible further
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application of the data compression method is that the handful of

numbers might provide the basis of a classification scheme which is

based on the physical properties one wants to measure.

The outline of the paper is as follows. In Section 2 we set out

the lossless compression method for noise which is independent of

the parameters; the proof appears in the appendix. In Section 3 we

discuss the more general case where the noise covariance matrix

and the mean signal both depend on the parameters. In Section 4

we show through a worked example of galaxy spectra that the

method, though not lossless, works very well in the general case.

2 M E T H O D

We represent our data by a vector xi, i � 1;¼;N (e.g., a set of

fluxes at different wavelengths). These measurements include a

signal part, which we denote by m, and noise, n:

x � m� n: �1�
Assuming that the noise has zero mean, kxl � m: The signal will

depend on a set of parameters {ua}, which we wish to determine.

For galaxy spectra, the parameters may be, for example, age,

magnitude of source, metallicity, and some parameters describing

the star formation history. Thus m is a noise-free spectrum of a

galaxy with certain age, metallicity, etc.

The noise properties are described by the noise covariance

matrix, C, with components Cij � kninjl: If the noise is Gaussian,

the statistical properties of the data are determined entirely by m
and C. In principle, the noise can also depend on the parameters.

For example, in galaxy spectra, one component of the noise will

come from photon counting statistics, and the contribution of this

to the noise will depend on the mean number of photons expected

from the source.

The aim is to derive the parameters from the data. If we assume

uniform priors for the parameters, then the a posteriori probability

for the parameters is the likelihood, which for Gaussian noise is

L �ua� � 1

�2p�N=2
�������������
det�C�p exp 2

1

2

X
i;j

�xi 2 mi�C21
ij �xj 2 mj�

" #
:

�2�
One approach is simply to find the (highest) peak in the

likelihood, by exploring all parameter space, and using all N

pixels. The position of the peak gives estimates of the parameters

which are asymptotically (low noise) the best unbiased estimators

(see TTH). This is therefore the best we can do. The maximum-

likelihood procedure can, however, be time-consuming if N is

large and the parameter space is large. The aim of this paper is to

see whether we can reduce the N numbers to a smaller number,

without increasing the uncertainties on the derived parameters ua .

To be specific, we try to find a number N 0 , N of linear combi-

nations of the spectral data x which encompass as much as possible

of the information about the physical parameters. We find that this

can be done losslessly in some circumstances; the spectra can be

reduced to a handful of numbers without loss of information. The

speed-up in parameter estimation is about a factor ,100.

In general, reducing the data set in this way will lead to larger

error bars in the parameters. To assess how well the compression

is doing, consider the behaviour of the (logarithm of the)

likelihood function near the peak. Performing a Taylor expansion

and truncating at the second-order terms,

lnL � lnL peak � 1

2

2 lnL
uaub

DuaDub: �3�

Truncating here assumes that the likelihood surface itself is

adequately approximated by a Gaussian everywhere, not just at

the maximum-likelihood point. The actual likelihood surface will

vary when different data are used; on average, though, the width is

set by the (inverse of the) Fisher information matrix:

Fab ; 2
2 lnL
uaub

� �
; �4�

where the average is over an ensemble with the same parameters

but different noise.

For a single parameter, the Fisher matrix F is a scalar F, and the

error on the parameter can be no smaller than F21/2. If the data

depend on more than one parameter, and all the parameters have to

be estimated from the data, then the error is larger. The error on one

parameter a (marginalized over the others) is at least ��F21�aa�1=2

(Kendall & Stuart 1969). There is a little more discussion of the

Fisher matrix in TTH. The Fisher matrix depends on the signal

and noise terms in the following way (TTH, equation 15):

Fab � 1
2

Tr�C21C;aC21C;b � C21�m;am
t
;b � m;bm

t
;a��; �5�

where the comma indicates derivative with respect to the

parameter. If we use the full data set x, then this Fisher matrix

represents the best that can possibly be done via likelihood

methods with the data.

In practice, some of the data may tell us very little about the

parameters, either through being very noisy, or through having no

sensitivity to the parameters. So, in principle we may be able to

throw some data away without losing very much information

about the parameters. Rather than throwing individual data away,

we can do better by forming linear combinations of the data, and

then throwing away the combinations which tell us least. To

proceed, we first consider a single linear combination of the data:

y ; btx �6�
for some weighting vector b (t indicates transpose). We will try to

find a weighting which captures as much information about a

particular parameter, ua . If we assume that we know all the other

parameters, this amounts to maximizing Faa. The data set (now

consisting of a single number) has a Fisher matrix, which is given

in TTH (equation 25) by

Fab � 1

2

btC;ab

btCb

� �
btC;bb

btCb

� �
� �b

tm;a��btm;b�
�btCb� : �7�

Note that the denominators are simply numbers. It is clear from

this expression that if we multiply b by a constant, we get the same

F. This makes sense: multiplying the data by a constant factor

does not change the information content. We can therefore fix the

normalization of b at our convenience. To simplify the denomi-

nators, we therefore maximize Faa subject to the constraint

btCb � 1: �8�
The most general problem has both the mean m and the

covariance matrix C depending on the parameters of the spectrum,

and the resulting maximization leads to an eigenvalue problem

which is non-linear in b. We are unable to solve this, so we

consider a case for which an analytic solution can be found. TTH

showed how to solve for the case of estimation of a single

parameter in two special cases: (1) when m is known, and (2)

when C is known (i.e. does not depend on the parameters). We

will concentrate on the latter case, but generalize to the problem of
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estimating many parameters at once. For a single parameter, TTH

showed that the entire data set could be reduced to a single

number, with no loss of information about the parameter. We show

below that, if we have M parameters to estimate, then we can

reduce the data set to M numbers. These M numbers contain just

as much information as the original data set; i.e. the data

compression is lossless.

We consider the parameters in turn. With C independent of the

parameters, F simplifies, and maximizing F11 subject to the

constraint requires



bi

�bjm;1jbkm;1k 2 lbjCjkbk� � 0; �9�

where l is a Lagrange multiplier, and we assume the summation

convention �j; k [ �1;N��: This leads to

m;1�btm;1� � lCb �10�
with solution, properly normalized,

b1 �
C21m;1���������������������
mt
;1C21m;1

q ; �11�

and our compressed datum is the single number y1� bt
1x: This

solution makes sense ± ignoring the unimportant denominator, the

method weights high those data which are parameter-sensitive,

and low those data which are noisy.

To see whether the compression is lossless, we compare the

Fisher matrix element before and after the compression. Substitu-

tion of b1 into (7) gives

F11 � mt
;1C21m;1; �12�

which is identical to the Fisher matrix element using the full data

(equation 5) if C is independent of u1. Hence, as claimed by TTH,

the compression from the entire data set to the single number y1

loses no information about u1. For example, if m / u; then y1 �P
ixi=
P

imi and is simply an estimate of the parameter itself.

2.0.1 Fiducial model

It is important to note that y1 contains as much information about

u1 only if all other parameters are known, and also provided that

the covariance matrix and the derivative of the mean in (11) are

those at the maximum-likelihood point. We turn to the first of

these restrictions in the next section, and discuss the second one

here.

In practice, one does not know beforehand what the true

solution is, so one has to make an initial guess for the parameters.

This guess we refer to as the fiducial model. We compute the

covariance matrix C and the gradient of the mean (m ,a) for this

fiducial model, to construct b1. The Fisher matrix for the com-

pressed datum is (12), but with the fiducial values inserted. In

general, this is not the same as Fisher matrix at the true solution.

In practice, one can iterate: choose a fiducial model; use it to

estimate the parameters, and then repeat, using the estimate as the

estimated parameters as the fiducial model. As our example in

Section 4 shows, such iteration may be completely unnecessary.

2.1 Estimation of many parameters

The problem of estimating a single parameter from a set of data is

unusual in practice. Normally one has several parameters to

estimate simultaneously, and this introduces substantial complica-

tions into the analysis. How can we generalize the single-

parameter estimate above to the case of many parameters? We

proceed by finding a second number y2 ; bt
2x by the following

requirements:

(1) y2 is uncorrelated with y1. This demands that bt
2Cb1 � 0:

(2) y2 captures as much information as possible about the

second parameter u2.

This requires two Lagrange multipliers (we normalize b2 by

demanding that bt
2Cb2 � 1 as before). Maximizing and applying

the constraints gives the solution

b2 �
C21m;2 2 �mt

;2b1�b1�������������������������������������������
m;2C21m;2 2 �mt

;2b1�2
q : �13�

This is readily generalized to any number M of parameters. There

are then M orthogonal vectors bm, m � 1;¼M; each ym capturing

as much information about parameter am which is not already

contained in yq; q , m: The constrained maximization gives

bm �
C21m;m 2

Pm21

q�1

�mt
;mbq�bq����������������������������������������������������

m;mC21m;m 2
Pm21

q�1

�mt
;mbq�2

s : �14�

This procedure is analogous to Gram±Schmidt orthogonalization

with a curved metric, with C playing the role of the metric tensor.

Note that the procedure gives precisely M eigenvectors and hence

M numbers, so the data set has been compressed from the original

N data down to the number of parameters M.

Since, by construction, the numbers ym are uncorrelated, the

likelihood of the parameters is obtained by multiplication of the

likelihoods obtained from each statistic ym. The ym have mean

kyml � bt
mm and unit variance, so the likelihood from the

compressed data is simply

lnL �ua� � constant 2
XM
m�1

�ym 2 kyml�2
2

; �15�

and the Fisher matrix of the combined numbers is just the sum of

the individual Fisher matrices. Note once again the role of the

fiducial model in setting the weightings bm: the orthonormality of

the new numbers holds only if the fiducial model is correct.

Multiplication of the likelihoods is thus only approximately

correct, but iteration could be used if desired.

2.1.1 Proof that the method can be lossless for many parameters

Under the assumption that the covariance matrix is independent

of the parameters, reduction of the original data to the M

numbers ym results in no loss of information about the M

parameters at all. In fact, the set {ym} produces, on average, a

likelihood surface which is locally identical to that from the

entire data set ± no information about the parameters is lost in

the compression process. With the restriction that the informa-

tion is defined locally by the Fisher matrix, the set {ym} is a set

of sufficient statistics for the parameters {ua} (e.g. Koch 1999).

A proof of this for an arbitrary number of parameters is given in

the appendix.
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3 T H E G E N E R A L C A S E

In general, the covariance matrix does depend on the parameters,

and this is the case for galaxy spectra, where at least one

component of the noise is parameter-dependent. This is the photon

counting noise, for which Cii � mi: TTH argued that it is better to

treat this case by using the n eigenvectors which arise from

assuming the mean is known, rather than the single number (for

one parameter) which arises if we assume that the covariance

matrix is known, as above. We find that, on the contrary, the small

number of eigenvectors bm allow a much greater degree of

compression than the known-mean eigenvectors (which in this

case are simply individual pixels, ordered by jm;a=mj�: For data

signal-to-noise ratios of around 2, the latter allow a data com-

pression by about a factor of 2 before the errors on the parameters

increase substantially, whereas the method here allows drastic

compression from thousands of numbers to a handful. To show

what can be achieved, we use a set of simulated galaxy spectra to

constrain a few parameters characterizing the galaxy star

formation history.

3.1 Parameter eigenvectors

In the case when the covariance matrix is independent of the

parameters, it does not matter which parameter we choose to form

y1, y2, etc., as the likelihood surface from the compressed numbers

is, on average, locally identical to that from the full data set.

However, in the general case, the procedure does lose information,

and the amount of information lost could depend on the order of

assignment of parameters to m. If the parameter estimates are

correlated, as we will see in Fig. 2, the error in both parameters is

dominated by the length of the likelihood contours along the

`ridge'. It makes sense then to diagonalize the matrix of second

derivatives of ln L at the fiducial model, and use these as the

parameters (temporarily), as proposed by Ballinger et al. (in

preparation) for galaxy surveys. The parameter eigenvalues would

order the importance of the parameter combinations to the

likelihood. The procedure would be to take the smallest eigen-

value (with eigenvector lying along the ridge), and make the

likelihood surface as narrow as possible in that direction. One then

repeats along the parameter eigenvectors in increasing order of

eigenvalue.

Specifically, diagonalize Fab in (5), to form a diagonal

covariance matrix L � StFS: The orthogonal parameter combina-

tions are c � Stu; where S has the normalized eigenvectors of F as

its columns. The weighting vectors bm are then computed from

(14) by replacing m ,ap by Sprm ,a r.

4 A W O R K E D E X A M P L E : G A L A X Y S P E C T R A

We start by investigating a two-parameter model. We have run a

grid of stellar evolution models, with a burst of star formation at

time 2t, where t � 0 is the present day. The star formation rate is

SFR�t 0� � Ad�t 0 � t�; where d is a Dirac delta function. The two

parameters to determine are age t and normalization A. Fig. 1

shows some spectra with fixed normalization (1 M( of stars

produced) and different age. There are n � 352 pixels between

300 and 1000 nm. Real data will be more complicated (variable

transmission, instrumental noise, etc.), but this system is

sufficiently complex to test the methods in essential respects.

For simplicity, we assume that the noise is Gaussian, with a

variance given by the mean, C � diag�m1;¼�: This is appropriate

for photon number counts when the number is large. We assume

the same behaviour, even with small numbers, for illustration, but

there is no reason why a more complicated noise model cannot be

treated. It should be stressed that this is a more severe test of the

model than a typical galaxy spectrum, where the noise is likely to

be dominated by sources independent of the galaxy, such as CCD

read-out noise or sky background counts. In the latter case, the

compression method will do even better than the example here.

The simulated galaxy spectrum is one of the galaxy spectra (age

3.95 Gyr, model number 100), and the maximum signal-to-noise

ratio per bin is taken to be 2. Noise is added, approximately

photon noise, with a Gaussian distribution with variance equal to

the number of photons in each channel (Fig. 1). Hence C �
diag�m1;m2;¼�:

The most probable values for the age and normalization

(assuming uniform priors) is given by maximizing the likelihood:

L �age; norm� � 1

�2p�n=2
�����������Q

imi

p exp 2
1

2

X
i

�xi 2 mi�2=mi

" #
;

�16�
where m depends on age and normalization. The natural logarithm

lnL is shown in Fig. 2. Since this uses all the data, and all the

approximations hold, this is the best that can be done, given the S/N

of the spectrum. To solve the eigenvalue problem for b requires an

Figure 1. Top panel: example model spectra, with age increasing

downwards. Bottom panel: simulated galaxy spectrum (including noise),

whose properties we wish to determine, superimposed on noise-free

spectrum of a galaxy with the same age.

Figure 2. Full likelihood solution using all pixels. There are six contours

running down from the peak value in steps of 0.5 (in lnL), and three outer

contours at 2100, 21000 and 210 000. The triangle in the upper-right

corner marks the fiducial model which determines the eigenvectors b1,2.
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initial guess for the spectrum. This `fiducial model' was chosen

to have an age of 8.98 Gyr, i.e. very different from the true

solution (model number 150 rather than 100). This allows us to

compute the eigenvector b1 from (11). This gives the single

number y1 � bt
1x: With this as the datum, the likelihood for age

and normalization is

L �age; norm� � 1������
2p
p exp 2

�y1 2 ky1l�2
2

� �
; �17�

where ky1l � bt
1m: Note that the mean and ky1l here depends on

the parameters ± i.e. it is not from the fiducial model. The

resultant likelihood is shown in Fig. 4. Clearly, it does less well

than the full solution, but it does constrain the parameters to a

narrow ridge, on which the true solution (age model � 100;
log�normalization� � 0 lies.The second eigenvector b2 is obtained

by taking the normalization as the second parameter. The vector is

shown in the lower panel of Fig. 3. The normalization parameter is

rather a special case, which results in b2 differing from b1 only by

a constant offset in the weights. [For this parameter m;a � m and

so C21m;a � �1; 1;¼; 1�t:� The likelihood for the parameters with

y2 as the single datum is shown in Fig. 5. On its own, it does not

tightly constrain the parameters, but when combined with y1, it

does remarkably well (Fig. 6).

4.1 Three-parameter estimation

We complicate the situation now to a three-parameter star

formation rate SFR�t� � A exp�2t=t�; and estimate A, t and t .

Chemical evolution is included by using a simple closed-box

model (with instantaneous recycling; Pagel 1997). This affects the

depths of the absorption lines. If we follow the same procedure as

before, choosing (t,A,t) as the order for computing b1, b2 and b3,

then the product of the likelihoods from y1, y2 and y3 is as shown

Figure 3. Eigenvectors 2b1 (age) and 2b2 (normalization). Wavelength l
is in AÊ ngstroÈms. Note that the weights in b1 are negative, which is why the

sign has been changed for plotting: the blue (left) end of the spectrum

which is weighted most heavily for y1. This is expected as this part of the

spectrum changes most rapidly with age. Note that these weightings differ

by a constant; this feature is special to the amplitude parameter, and is

explained in the text.

Figure 4. Likelihood solution for the age datum y1. Contours are as in

Fig. 2.

Figure 5. Likelihood solution for the normalization datum y2. Contours are

as in Fig. 2.

Figure 6. Likelihood solution for the age datum y1 and the normalization

datum y2. Contours are as in Fig. 2.

Figure 7. (Left) likelihood solution for the full data set of 1000 numbers

for a single galaxy, as a function of t/Gyr, t /Gyr and amplitude. (Middle)

Likelihood for three compressed numbers, from parameter eigenvectors.

(Right) likelihood surface from three compressed numbers (age, normal-

ization and t eigenvectors). All contours shown are 3.13 below the peak in

ln L; the irregularities in the surface are artefacts of the surface-drawing

routine.
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in the right-hand panel of Fig. 7. The left-hand panel shows the

likelihood from the full data set of 1000 numbers, which does little

better than the three compressed numbers. It is interesting to

explore how the parameter eigenvector method fares in this case.

Here we follow the procedure in Section 2, and maximize the

curvature along the ridge first. The resulting three numbers

constrain the parameters as in the middle panel; in this case there

is no apparent improvement over using eigenvectors from (t, A, t ),

but it may be advantageous in other applications.

4.2 Estimate of increase in errors

For the noise model we have adopted, we can readily compute the

increase in the conditional error for one of the parameters ± the

normalization of the spectrum. This serves as an illustration of

how much information is lost in the compression process. In this

case, C � diagm; and C;a � diagm;a � diagm; and the Fisher

matrix (a single element) can be written in terms of the total

number of photons and the number of spectral pixels. From (5),

the original FO � Nphotons � Npixels=2: The compressed data, on

the other hand, have a Fisher matrix F � Nphotons � 1=2; so the

error bar on the normalization is increased by a factor

Fractional error increase .
��������������
1� 1

2s

r
�18�

for Nphotons @ 1; and s ; Nphotons=Npixels is the average number of

photons per pixel. Even if s is as low as 2, we see that the error bar

is increased only by around 12 per cent.

4.3 Computational issues

We have reduced the likelihood problem in this case by a factor of

more than 100. The eigenproblem is trivial to solve. The work to

be done is in reducing a whole suite of model spectra to M

numbers, and by forming scalar products of them with the vectors

bm. This is a one-shot task, and trivial in comparison with the job

of generating the models.

4.4 Role of fiducial model

The fiducial model sets the weightings bm. After this step, the

likelihood analysis is correct for each ym, even if the fiducial

model is wrong. The only place where there is an approximation is

in the multiplication of the likelihoods from all ym to estimate

finally the parameters. The ym are strictly uncorrelated only if the

fiducial model coincides with the true model. This approximation

can be dropped, if desired, by computing the correlations of the ym

for each model tested. We have explored how the fiducial model

affects the recovered parameters, and an example result from the

two-parameter problem is shown in Fig. 8. Here the ages and

normalizations of a set of `true' galaxies with S=N & 2 are

estimated, using a common (9-Gyr) galaxy as the fiducial model.

We see that the method is successful at recovering the age, even if

the fiducial model is very badly wrong. There are errors, of

course, but the important aspect is whether the compressed data do

significantly worse than the full data set of 352 numbers. Fig. 8

shows that this is not the case.

Although it appears from this example to be unnecessary, if one

wants to improve the solution, then it is permissible to iterate,

using the first estimate as the fiducial model. This adds to the

computational task, but not significantly; assuming that the first

iteration gives a reasonable parameter estimate, one does not have

to explore the entire parameter space in subsequent iterations.

5 C O M PA R I S O N W I T H P R I N C I PA L

C O M P O N E N T A N A LY S I S

It is interesting to compare with other data compression and

parameter estimation methods. For example, Principal Component

Analysis is another linear method (e.g. Murtagh & Heck 1987;

Francis et al. 1992; Connolly et al. 1995; Folkes, Lahav &

Maddox 1996; SodrÂe & Cuevas 1997; Bromley et al. 1998; Galaz

& deLapparent 1998; Glazebrook, Offer & Deeley 1998; Singh,

Gulati & Gupta 1998; Connolly & Szalay 1999; Folkes et al.

1999; Ronen, Aragon-Salamanca & Lahav 1999); this projects the

data on to eigenvectors of the covariance matrix, which is

determined empirically from the scatter between flux measure-

ments of different galaxies. Part of the covariance matrix in PCA

is therefore determined by differences in the models, whereas in

our case C refers to the noise alone. PCA then finds uncorrelated

projections which contribute in decreasing amounts to the

variance between galaxies in the sample.

One finds that the first principal component is correlated with

the galaxy age (Ronen et al. 1999). Fig. 9 shows the PCA

eigenvectors obtained from a set of 20 burst model galaxies which

differ only in age, and Fig. 10 shows the resultant likelihood from

the first two principal components. In the language of this paper,

the principal components are correlated, so the 2 � 2 covariance

matrix is used to determine the likelihood. We see that the

components do not do nearly as well as the parameter

eigenvectors; they do about as well as y1 on its own. For interest,

we plot the first principal component and y1 versus age in Fig. 11.

In the presence of noise �S=N , 2 per bin), y1 is almost monotonic

with age, whereas PC1 is not. Since PCA is not optimized for

parameter estimation, it is not lossless, and it should be no surprise

that it fares less well than the tailored eigenfunctions of Section 3.

Figure 8. The effect of the fiducial model on recovery of the parameters.

Here a single fiducial model is chosen (with age 9 Gyr), and ages

recovered from many true galaxy spectra with ages between zero and

14 Gyr. The left-hand panel shows the recovered age from the two numbers

y1 and y2 (with age and normalization weightings), plotted against the true

model age. The middle panel shows how well the full data set (with

S=N & 2� can recover the parameters. The right-hand panel shows the

estimated age from the y1 and y2 plotted against the age recovered from the

full data set, showing that the compression adds very little to the error,

even if the fiducial model is very wrong. Note also that the scatter

increases with age; old galaxies are more difficult to date accurately.
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If one cannot model the effect of the parameters a priori, then this

method cannot be used, whereas PCA might still be an effective

tool.

6 D I S C U S S I O N

We have presented a linear data compression algorithm for

estimation of multiple parameters from an arbitrary data set. If

there are M parameters, the method reduces the data to a

compressed data set with M members. In the case where the noise

is independent of the parameters, the compression is lossless; i.e.

the M data contain as much information about the parameters as

the entire data set. Specifically, this means the mean likelihood

surface around the peak is locally identical whichever of the full

or compressed data set is used as the data. It is worth emphasising

the power of this method: it is well known that, in the low-noise

limit, the maximum-likelihood parameter estimates are the best

unbiased estimates. Hence if we do as well with the compressed

data set as with the full data set, there is no other method, linear or

otherwise, which can improve upon our results. The method can

result in a massive compression, with the degree of compression

given by the ratio of the size of the data set to the number of

parameters. Parameter estimation is speeded up by the same

factor.

Although the method is lossless in certain circumstances, we

believe that the data compression can still be very effective when

the noise does depend on the model parameters. We have

illustrated this using simulated galaxy spectra as the data, where

the noise comes from photon counting (in practice, other sources

of noise will also be present, and possibly dominant); we find that

the algorithm is still almost lossless, with errors on the parameters

increasing typically by a factor ,
���������������������
1� 1=�2s�p

; where s is the

average number of photons per spectral channel. The example we

have chosen is a more severe test of the algorithm than real galaxy

spectra; in reality the noise may well be dominated by factors

external to the galaxy, such as detector read-out noise, sky

background counts (for ground-based measurements) or zodiacal

light counts (for space telescopes). In this case, the noise is indeed

independent of the galaxy parameters, and the method is lossless.

The compression method requires prior choice of a fiducial

model, which determines the projection vectors b. The choice of

fiducial model will not bias the solution, and the likelihood given

the ym individually can be computed without approximation.

Combining the likelihoods by multiplication from the individual

ym is approximate, as their independence is guaranteed only if the

fiducial model is correct. However, in our examples, we find that

the method correctly recovers the true solution, even if the fiducial

model is very different. If one is cautious, one could always

iterate. There are circumstances where the choice of a good

fiducial model may be more important, if the eigenvectors depend

very sensitively on the model parameters. An example of this is

the determination of the redshift z of the galaxy, whose observed

wavelengths are increased by a factor 1� z by the expansion of

the Universe. If the main signal for z comes from spectral lines,

then the method will give great weight to certain discrete

wavelengths, determined by the fiducial z. If the true redshift is

different, these wavelengths will not coincide with the spectral

lines. It should be stressed that the method will still allow an

estimate of the parameters, including z, but the error bars will not

be optimal. This may be one case where applying the method

iteratively may be of great value.

We have compared the parameter estimation method with

another linear compression algorithm, Principal Component

Analysis. PCA is not lossless unless all principal components

are used, and compares unfavourably in this respect for parameter

estimation. However, one requires a theoretical model for the

methods in this paper; PCA does not require one, needing instead

a representative ensemble for effective use. Other, more ad hoc,

schemes consider particular features in the spectrum, such as

broad-band colours, or equivalent widths of lines (Worthey 1994).

Each of these is a ratio of linear projections, with weightings given

by the filter response or sharp filters concentrated at the line.

There may well be merit in the way the weightings are con-

structed, but they will not in general do as well as the optimum

weightings presented here. It is worth remarking on the ability of

Figure 9. The first two principal component eigenvectors, from a system

of model spectra consisting of a burst at different times.

Figure 10. Likelihood solution for the first two principal components, PC1

(top) and PC2. Contours are as in Fig. 2.

Figure 11. First principal component (PC1) and y1 versus age. One in

every 10 models was used to do the PCA. In the presence of noise, at a

level of S=N , 2 per bin, y1 is almost monotonic with age, whereas PC1,

although correlated with age, is not a good age estimator.
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the method to separate parameters such as age and metallicity,

which often appear degenerately in some methods. In the `external

noise' case, then provided the degeneracy can be lifted by

maximum-likelihood methods using every pixel in the spectrum,

then it can also be lifted by using the reduced data. Of course, if

the modelling is not adequate to estimate the parameters using all

the data, then compression is not going to help at all, and one

needs to think again. For example, a complication which may

arise in a real galaxy spectrum is the presence of features not in

the model, such as emission lines from hot gas. These can be

included if the model is extended by inclusion of extra parameters.

This problem exists whether the full or compressed data are used.

Of course, we can use standard goodness-of-fit tests to determine

whether the data are consistent with the model as specified, or

whether more parameters are required.

The data compression to a handful of numbers offers the

possibility of a classification scheme for galaxy spectra. This is

attractive as the numbers are connected closely with the physical

processes which determine the spectrum, and will be explored in a

later paper. An additional realistic aim is to determine the star

formation history of each individual galaxy, without making

specific assumptions about the form of the star formation rate. The

method in this paper provides the means to achieve this.
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A P P E N D I X A

In this appendix, we prove that the linear compression algorithm

for estimation of an arbitrary number M of parameters is lossless,

provided the noise is independent of the parameters, C;a � 0:

Specifically, loss-free means that the Fisher matrix for the set of M

numbers ym � bt
mx is identical to the Fisher matrix of the original

data set x:

FO
ab � kajbl ; mt

;aCm;b: �A1�
By construction, the ym are uncorrelated, so the likelihoods

multiply and the Fisher matrix for the set {ym} is the sum of the

derivatives of the log-likelihoods from the individual ym:

Fab �
X

m

Fab�m�: �A2�

From (7),

Fab�m� � �bt
mm;a��bt

mm;b�: �A3�
With (14), we can write

bt
m �

mt
;mC21 2

Pm21

q�1

�bt
qm

t
;m�bq������������������������������������������

kmjml 2
Pm21

q�1

�bt
qm

t
;m�2

s : �A4�

Hence

Fab�m� � kajml 2
Xm21

q�1

Fam�q�
" # kbjml 2

Pm21

q�1

Fbm�q�
" #

kmjml 2
Pm21

q�1

Fmm�q�
" # �A5�

Consider first b � m :

Fam�m� � kajml 2
Xm21

q�1

Fam�q�

l FaM �
XM
q�1

FaM�q� � kajMl � FO
aM �A6�

proving that these terms are unchanged after compression. We

therefore need to consider Fab (m) for a or b , m: First we note

that

Fab�m� � Fam�m�Fmb�m�
Fmm�m� �A7�

and, from (A6),

Xb
q�1

Fab�q� � kajbl: �A8�

We want the sum to extend to M. However, the terms from b� 1

to M are all zero. This can be shown as follows: (A7) shows that it

is sufficient to show that Fam�m� � 0 if m . a: Setting b � m in

(A8), and reversing a and m, we getXm

a�1

Fam�q� � 0: �A9�

Now, the contribution from q does not depend on derivatives wrt

higher-numbered parameters, so we can evaluate Fam�a� 1� by

setting m � a� 1: The sum (A9) implies that this term is zero.

Increasing m successively by one up to M, and using (A9), proves

that all the terms are zero, and hence that the compression is lossless.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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