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Massive marine methane emissions 
from near-shore shallow coastal 
areas
Alberto V. Borges1, Willy Champenois1, Nathalie Gypens2, Bruno Delille1 & Jérôme Harlay1

Methane is the second most important greenhouse gas contributing to climate warming. The open 

ocean is a minor source of methane to the atmosphere. We report intense methane emissions from 

the near-shore southern region of the North Sea characterized by the presence of extensive areas 

with gassy sediments. The average flux intensities (~130 µmol m−2 d−1) are one order of magnitude 

higher than values characteristic of continental shelves (~30 µmol m−2 d−1) and three orders of 

magnitude higher than values characteristic of the open ocean (~0.4 µmol m−2 d−1). The high methane 

concentrations (up to 1,128 nmol L−1) that sustain these fluxes are related to the shallow and well-
mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. 
This differs from deeper and stratified seep areas where there is a large decrease of methane between 
bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental 

shelves represent about 33% of the total continental shelf area, so that marine coastal methane 
emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane 

emission, and our data also suggest that emissions could increase in response to warming of surface 

waters.

Methane (CH4) is the second most important greenhouse gas (GHG) a�er CO2, accounting for 32% of the anthro-
pogenic global radiative forcing by well-mixed GHGs in 2011 relative to 17501. Yet, there remains an important 
uncertainty on estimates of the sources and sinks of CH4

2, and how their variations can a�ect the atmospheric 
CH4 growth rate and burden3. �e atmospheric CH4 increase (34 TgCH4 yr−1 for 1980–1989 and 6 TgCH4 yr−1 
for 2000–20091) is calculated from the measured increase of the CH4 concentration in the atmosphere, but results 
from the net balance between the sum of sources and of sinks which are one to two orders magnitude larger. 
�e open ocean is a very modest source of CH4 to the atmosphere (0.4–1.8 TgCH4 yr−1 4) compared to other 
natural (220–350 TgCH4 yr−1) and anthropogenic (330–335 TgCH4 yr−1) CH4 emissions2. Coastal regions are 
more intense sources of CH4 to the atmosphere than open oceanic waters5. Continental shelves emit about 13 
TgCH4 yr−1 5 and estuaries emit between 1 and 7 TgCH4 yr−1 5–8. �e high CH4 concentrations in surface waters 
of continental shelves are due to direct CH4 inputs from estuaries and from sediments where methanogenesis is 
sustained by high organic matter sedimentation5,6,9. Natural gas seeps from continental shelves contribute addi-
tionally between 16 and 48 TgCH4 yr−1 10,11. Biogenic or thermogenic CH4 can accumulate in large quantities in 
sub-surface seabed (gassy sediments) in deep and shallow areas, and can be released as bubbles (gas �ares) or by 
pore water di�usion. However, the estimates of CH4 “emission” from marine seeps10,11 correspond to CH4 release 
from sediments to bottom waters and not to the actual transfer from surface waters to the atmosphere, which is 
probably much lower12. Bubbles dissolve in water leading to high dissolved CH4 concentrations in bottom waters 
(from tens of nmol L−1 up to several µ mol L−1), but removal by microbial CH4 oxidation and lateral dispersion by 
physical transport leads usually to much lower CH4 concentrations in surface waters (5–20 nmol L−1) even in the 
shallow areas of continental slopes and shelves13–19.

In this study, we report a data-set of CH4 concentrations in surface waters of the Belgian coastal zone (BCZ) 
in spring, summer and fall 2010 and 2011 (Fig. S1). �is is a coastal area with multiple possible sources of CH4 
such as from rivers and gassy sediments. �e BCZ is also a site of important organic matter sedimentation and 
accumulation unlike the rest of the North Sea20.
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Results and Discussion
�e CH4 concentrations in surface waters of the BCZ in spring, summer and fall 2010 and 2011 (Fig. 1) were high, 
with about 43% of the observed values above 50 nmol L−1, and a maximum concentration of 1,128 nmol L−1 in 
July 2011. �e near-shore area (within 15 km of the coastline) was characterized by CH4 concentrations in surface 
waters between 3 and 13 times higher than the more o�-shore area (> 15 km away from the coastline). �e overall 
average CH4 concentration in the BCZ near-shore area (139 nmol L−1) was ~6 times higher than in the o�-shore 
area (24 nmol L−1), and in both areas distinctly above atmospheric equilibrium (~2 nmol L−1). �ese values are 
one to two orders of magnitude higher than the CH4 concentrations in surface waters of most of the North Sea 

Figure 1. Hot-spot of dissolved CH4 concentration in the near-shore North Sea (up to ~300 times higher 
than in the open ocean). Concentration of dissolved CH4 (nmol L−1) in surface waters of the Belgian coastal 
zone (BCZ) in spring, summer and fall 2010 and 2011. Note the di�erent color scale in July 2010 compared 
to the other cruises. Figure was produced by authors using Golden So�ware Surfer version 8.03 (http://www.
goldenso�ware.com/) and Ocean Data View version 4.6.3.1 (https://odv.awi.de/).

http://www.goldensoftware.com/
http://www.goldensoftware.com/
https://odv.awi.de/
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with values typically < 5 nmol L−1 5,9 that are mainly in�uenced by inputs of water from the North Atlantic, where 
CH4 is close to atmospheric equilibrium4. Values in the BCZ were also high compared to estuarine plumes of 
the North Sea where maximal CH4 concentrations in surface waters range between 60 and 90 nmol L−1, such as 
for the Elbe9 and the Rhine6,21. Our own CH4 data in the �ames river plume were below 25 nmol L−1 (Fig. S2), 
distinctly lower than values in the BCZ. Values in BCZ were consistent with the high values (up to 372 nmol L−1) 
reported22 further north along the Dutch coast in March 1989 in a near-shore area with similar settings (well 
mixed waters overlying peat-rich sediments). �e highest CH4 concentration in the BCZ (1,128 nmol L−1) was 
higher than any other previous report in (natural) surface waters of the North Sea, and nearly equals the value 
reported above an abandoned borehole in the Northern North Sea of 1,453 nmol L−1 9. �e highest CH4 concen-
tration in the BCZ is comparable to the maximal value in surface waters (~1,800 nmol L−1) in the Santa Barbara 
Channel (Coal Oil Point), one of the most intense marine seep area in the world13.

High CH4 concentrations in near-shore coastal areas have been frequently attributed to estuarine inputs of 
CH4

6,9,21,22. �is could explain the higher CH4 concentrations in the lower salinity region of the �ames river 
plume (Fig. S2). �e inputs from Scheldt estuary have been shown to in�uence a variety of biogeochemical varia-
bles in the BCZ, such as CO2 

23. However, during most cruises, maximal CH4 concentrations measured in the BCZ 
were not located at the mouth of the Scheldt estuary (Fig. 1), and were higher than in the freshwater region of the 
Scheldt estuary (Fig. 2). Also, the CH4 concentrations in the near-shore BCZ were above the theoretical dilution 
line between the lower Scheldt (salinity > 25) and the outer BCZ (Fig. 2), except for April and September 2010. 
�is indicates that a local additional source of CH4 contributes to the observed high values in the near-shore BCZ.

Extensive areas of the North Sea have sediments with seismic/acoustic characteristics indicative of shallow 
gas accumulation, that is assumed to be mainly CH4 

24. In the BCZ, a four to twelve km wide band parallel to 

Figure 2. Estuarine inputs do not explain the high CH4 concentrations in the near-shore North Sea. 
Concentration of dissolved CH4 in surface waters of the Scheldt estuary, the near-shore Belgian coastal zone 
(BCZ) (< 15 km from coastline) and o�-shore BCZ (> 15 km from coastline) in spring, summer and fall 2010 
and 2011. �e insert shows data at salinity > 25 and the linear regression between the lower Scheldt and the o�-
shore BCZ data. Note the di�erent Y-axis scale in July 2010 compared to the other cruises.
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the coastline contains sediments with shallow gas, associated to a peat-rich layer from the late Pleistocene25. �e 
high near-shore CH4 concentrations in surface waters were observed within this band of gassy sediments (Figs 1 
and S1) that was most probably the source of CH4. �e nearshore BCZ has similar sediment characteristics than 
Norton Sound (Alaska), an area of intense shallow submarine gas seepage26. However, occurrence of actual gas 
�aring has not been investigated in the BCZ in a systematic way, but there are some indications of local seepage of 
bubbles25. In the Scheldt estuary, an increase of CH4 was observed in the lower estuary (salinity > 25) compared 
to the mid estuary (salinity ~15) (Fig. 2) which has been attributed to the presence of extensive tidal �ats7, where 
gassy sediments also occur27. Hence, CH4 seepage from shallow gassy sediments could be the main reason for 
elevated CH4 concentrations in surface waters of both the nearshore BCZ and lower Scheldt.

Concentrations of CH4 between 15 to 300 nmol L−1 have been reported in bottom waters at Tommeliten, 
a prominent CH4 macro-seep area in the Central North Sea17, yet, in surface waters, CH4 concentrations were 
below 5 nmol L−1. �is was attributed to removal by microbial CH4 oxidation and lateral dispersion by physical 
transport, favored by thermal strati�cation17. Similarly, in another gas seepage area in the North Sea, south of the 
Dogger Bank, surface waters were characterized by lower concentrations (4–518 nmol L−1) than bottom waters 
(40–1,628 nmol L−1)14.

Due to the shallowness (< 30 m) and strong tidal currents, thermal or haline strati�cation never occurs in the 
BCZ (Fig. S3). Due to the strong tidal currents, dissolved O2 values remain close to atmospheric equilibrium (Fig. S4),  
with no gradients between surface and bottom. The O2 and CH4 concentrations were uncorrelated. While 
CH4 in bottom waters was statistically higher than in surface waters (Wilcoxon matched-pairs signed rank test 
p =  0.0002, n =  48), the di�erence was very small (on average ~14%) (Fig. S3). Hence, due to the shallowness and 
well-mixed water column there is little loss of CH4 between bottom and surface waters unlike deeper and strati-
�ed areas such as Tommeliten and south of the Dogger Bank. Indeed, summertime average CH4 concentration in 
surface waters showed a regular decreasing pattern across the North Sea as a function of depth, from the vertically 
mixed BCZ towards the strati�ed and deeper regions south of the Dogger Bank and Tommeliten (Fig. 3).

�e dissolved CH4 concentration in the BCZ showed distinct seasonal variations with higher values in sum-
mer than spring and fall. Inter-annual variations were also observed with higher values in summer 2010 than 
2011, but conversely lower values in spring and fall 2010 than 2011 in the near-shore area (Fig. 1; Table 1). In the 
near-shore BCZ, the lower CH4 concentrations were associated with lower water temperatures (April 2010) and 
the highest CH4 concentrations were associated with the higher water temperatures (June 2010) (Fig. 4). �e rela-
tionship between CH4 concentration and temperature was non-linear with distinctly di�erent slopes of the linear 
regressions for data above and below 19 °C. We interpret the positive relationship between dissolved CH4 and 
water temperature as resulting from enhanced CH4 release from the sea�oor in response to warming. Due to the 
well-mixed nature of the water column in the BCZ, the amplitude of the seasonal variation of temperature in bot-
tom waters was very large (~15 °C)23 compared to bottom waters in seasonally thermally strati�ed regions (~1 °C). 
In Cape Lookout Bight, enhanced bubble accumulation in sediments as well as CH4 di�usion and ebullition 
were observed in summer28. Increase in temperature stimulates microbial CH4 production29 and decreases CH4 
solubility30, both processes contributing to releasing CH4 from sediments to the water column. Hence, increasing 
temperature could enhance a passive release of CH4 from gassy sediments due to the decrease of gas solubility, 

Figure 3. Depth controls strati�cation and dissolved CH4 levels across the North Sea. Median CH4 in 
surface waters in summer at the near-shore and o�-shore Belgian coastal zone (BCZ) (< 15 km and > 15 km 
from coastline, respectively), south of the Dogger Bank14 and Tommeliten17 as a function of bottom depth. �e 
water column is vertically homogeneous (mixed) in the BCZ and seasonally thermally strati�ed in the other two 
North Sea sites. Solid line corresponds to �t CH4 =  341* exp(− 0.06* depth) (r2 =  0.996).
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but this does not exclude an increase of CH4 production by methanogens also in response to higher temperature, 
and organic matter availability. Indeed, the maximal CH4 concentrations were observed in summer, when the 
sediment was enriched in organic matter produced by spring phytoplankton bloom.

�e air-sea CH4 emissions ranged seasonally between 1 and 160 µ mol m−2 d−1 in the o�-shore BCZ and 
between 2 and 426 µ mol m−2 d−1 in the near-shore BCZ (Table 1). Wind speed was lower during summer than 
during the other two seasons, yet, seasonal variations of the air-sea CH4 emissions were mainly driven by var-
iations in CH4 concentrations rather than wind speed (Fig. S5). Annual air-sea CH4 emissions in the o�-shore 
BCZ were 14 and 30 µ mol m−2 d−1 in 2010 and 2011, respectively. �ese values are similar to the range of global 
average �ux values in continental shelves of 22 to 37 µ mol m−2 d−1 5. However, the annual air-sea CH4 emissions 
in the near-shore BCZ of 126–134 µ mol m−2 d−1 are ~4 times higher than the global average of continental shelves 
(22–37 µ mol m−2 d−1)5 and ~370 times higher than the global average of open oceanic waters (0.2–0.5 µ mol m−2 
d−1) 4. Annual air-sea CH4 emissions in the near-shore BCZ nearly equal the CH4 emission of 180 µ mol m−2 d−1 
in Santa Barbara Channel (Coal Oil Point), one of the most intense marine seep area in the world13.

To envisage the impact of our �ndings on the marine CH4 emission budget, it is necessary to evaluate the 
representativeness of our study site for coastal areas in general. �is is not an easy task since there are no global 
spatial datasets of gassy sediments and of submerged peat deposits. Regions corresponding to drowned coastlines 
(drowned forests and peatland) have been identi�ed among the coastal environments most likely to have gas-rich 
sediments, in addition to estuaries, bays, rias and deltas31. Due to the global sea-level rise of the past 20,000 yr, 
it is probable that most near-shore coastal areas are drowned former land and that most of the Quaternary peat 
layers are now inundated and situated on the continental shelf, buried under marine sediments32. Yet, extensive 
or global spatial data-sets of submerged peat deposits are unavailable because it is di�cult to identify them from 
seismic data alone and veri�cation is required with coring32. In continental shelves where the presence of gassy 
sediments and seepage sites have been systematically investigated, such as around the United Kingdom, very 
extensive areas of gassy sediments associated with Quaternary peat deposits have been mapped33. In addition, 
permanently well-mixed water columns could represent a large fraction of continental selves. By analogy with the 
European continental shelf, if we assume that regions shallower than 35 m are permanently well-mixed by tidal 
action34, they would represent 33% of the total surface area of continental shelves (< 200 m, that is 26,400 km2)35. 

Wind 
speed

Near-shore air-
sea CH4 �ux

O�-shore air-sea 
CH4 �ux

(m s−1) (µmol m−2 d−1) (µmol m−2 d−1)

2010

Spring 4.8 ±  2.3 13.9 ±  9.6 2.1 ±  1.8

Summer 3.3 ±  2.2 426.0 ±  230.8 52.0 ±  46.7

Fall 6.1 ±  2.1 65.7 ±  50.1 0.9 ±  3.5

Annual – 126.4 ±  236.4 13.7 ±  46.8

2011

Spring 5.4 ±  2.3 83.3 ±  49.6 10.6 ±  10.3

Summer 5.2 ±  2.5 283.3 ± 141.4 100.1 ±  61.2

Fall 5.8 ±  3.0 169.6 ± 158.4 8.5 ±  11.5

Annual – 134.1 ± 218.0 29.8 ±  63.1

Table 1.  Wind speed and air-sea CH4 �uxes in the near-shore (<15 km from coastline) and o�-
shore (>15 km from coastline) Belgian coastal zone (BCZ) in spring, summer and fall 2010 and 2011 
(mean ± standard deviation). Annual �uxes were calculated assuming a zero �ux in winter (based on the very 
low CH4 concentrations measured at low temperature, Fig. 4).

Figure 4. Increasing temperature enhances dissolved CH4 levels in the near-shore North Sea. Concentration 
of dissolved CH4 in surface waters of the near-shore Belgian coastal zone (BCZ) as a function of temperature in 
spring, summer and fall 2010 and 2011. Solid lines indicate the linear regressions for data <  and > 19 °C.
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�e distinctly di�erent CH4 concentrations in well-mixed and seasonally strati�ed continental shelves (Fig. 3) 
should then be accounted when budgeting CH4 emissions.

�ese emission estimates for the near-shore BCZ are most likely underestimated since they only account for 
di�usive CH4 �uxes, although there are some indications of local seepage of bubbles25. While in deeper conti-
nental shelf areas CH4 bubbles dissolve as they rise, and dissolved CH4 is removed by microbial oxidation and by 
horizontal physical transport17, in very shallow areas such as the BCZ (< 30 m) bubbles from seepages could avoid 
dissolution36 and be directly emitted to the atmosphere. While the emissions from seeps should be considered as 
natural sources in the global CH4 budget, our data (Fig. 4) suggest that further warming of surface waters could 
increase CH4 emissions and provide a positive feedback on warming climate. �is feedback will be expected to be 
acute in shallow gassy areas such as the BCZ since they are natural hotspots of CH4 emission, and the well-mixed 
water column will allow an e�cient propagation of additional heat to the sediment that will be bu�ered by sea-
sonal thermal strati�cation in deeper seep areas. �e increase of temperature will stimulate the biogenic CH4 
production, as well as, decrease Henry’s constant promoting bubbling from sediments.

Methods
Data were collected during 6 cruises in the BCZ on the RV Belgica during spring, summer and fall in 2010 
and 2011 (BE2010/11 – 19-23/04/2010, BE2010/18 – 05-08/07/2010, BE2010/23 – 13-16/09/2010, BE2011/13 
– 02-05/05/2011, BE2011/19 – 04-07/07/2011, BE2011/24 – 12-15/09/2011) (Fig. S1). Near simultaneous data 
were also collected in the Scheldt estuary on the RV Luctor (06-07/04/2010, 12-13/07/2010, 20-21/09/2010, 
09-10/05/2011, 20/06-21/06/2011, 12-13/09/2011) (Fig. S1). Sampling was carried out with a 10L Niskin bottle 
coupled to a conductivity-temperature-depth (CTD) probe (Sea-bird SBE19 on the Belgica and YSI 6600 on the 
Luctor), in surface waters (1 m depth) and on some occasions ~3 m above the sea�oor. When CTD data were una-
vailable on the Belgica, we used salinity and temperature measurements from an underway instrument (Sea-bird 
SBE21) connected to a seawater supply (pumped at 2.5 m). Water samples were collected in borosilicate serum 
bottles (50 ml) with a tubing, le� to over�ow, poisoned with a saturated solution of HgCl2 (100 µ l), sealed with 
a butyl stopper, crimped with an aluminum cap, and stored at ambient temperature in the dark until analysis. 
Dissolved oxygen was measured by titration with the Winkler method37.

�e concentration of CH4 was determined with the headspace equilibration technique (20 ml N2 headspace in 
50 ml serum bottles and overnight equilibration in a thermostated bath a�er initial manual vigorous shaking) and 
a gas chromatograph38 equipped with a �ame ionization detector (SRI 8610C) calibrated with CH4:CO2:N2O:N2 
mixtures (Air Liquide Belgium) of 1, 10 and 30 ppm CH4. Each of the three standards was analyzed in triplicate 
at the start and the end of the daily batch of samples (typically 30) and the calibration curve was computed by 
linear regression forced through zero (r2 ≥  0.999). �e slope of the calibration regression line was interpolated 
linearly from initial and �nal values for the whole batch of samples, although no statistical di�erence was ever 
observed between the start and end calibrations. About 10 ml of the headspace (or standard) was injected through 
a 6-way valve from which a 2 ml subsample (loop) was injected into a 2 ml column of magnesium perchlorate 
(water vapor trap), and then into a packed column (Hayesep D, 5.0 m length, mesh 80/100) kept at 50 °C, using 
N2 as carrier gas. �e 10 ml volume of headspace was sampled with a plastic syringe with a steel needle through 
the septum, and the retrieved gas volume was replaced by a hyper-saline solution (about 60 g NaCl L−1) injected 
with another syringe in the bottom of the serum bottle, in order to keep the sampled gas sample at atmospheric 
pressure. Chromatographic peak areas were integrated and logged using the Peaksimple so�ware (version 4.44 
for WindowsTM XP). �e in-situ CH4 concentration was computed39 from the volume of water and headspace 
(determined from the weight of bottles empty, and before and a�er making the headspace), the measured partial 
pressure of CH4 and Henry’s constant40. Precision estimated from multiple injections of gas standards was better 
than ± 3.0% for the 1 ppm standard and better than ± 0.5% for the other two standards. �e precision estimated 
from duplicated samples was ± 3.9%.

�e air-sea CH4 �ux (F) was computed according to:

= ∆F k CH4

where k is the gas transfer velocity and ∆ CH4 is the air-sea CH4 concentration gradient computed from the meas-
ured dissolved CH4 concentration in seawater and the concentration at equilibrium with an atmospheric CH4 
partial pressure value of 1.8 ppm, computed with Henry’s constant40.

�e k values were computed from the parameterization as a function of wind speed based on dual deliberate 
tracer (3He/SF6) experiments in the Southern Bight of the North Sea41, and the Schmidt number of CH4 in seawa-
ter computed from temperature42. Wind speed data were obtained from the National Centers for Environmental 
Prediction reanalysis daily averages surface �ux (http://www.cdc.noaa.gov/) at 2 grid points covering the sampled 
region (3.7500°E 52.3799°N; 0.0000°E 50.4752°N). F was computed using daily wind speed values (average of the 
2 grid points) for a time interval of 30 days centered on the date of the middle of the cruises.
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