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Massive MIMO 1-Bit DAC Transmission: A

Low-Complexity Symbol Scaling Approach
Ang Li, Student Member, IEEE, Christos Masouros, Senior Member, IEEE, Fan Liu, Student Member, IEEE, and

A. Lee Swindlehurst, Fellow, IEEE

Abstract—We study multi-user massive multiple-input single-
output (MISO) systems and focus on downlink transmission,
where the base station (BS) employs a large antenna array with
low-cost 1-bit digital-to-analog converters (DACs). The direct
combination of existing beamforming schemes with 1-bit DACs is
shown to lead to an error floor at medium-to-high SNR regime,
due to the coarse quantization of the DACs with limited precision.
In this paper, based on the constructive interference we consider
both a quantized linear beamforming scheme where we analyti-
cally obtain the optimal beamforming matrix, and a non-linear
mapping scheme where we directly design the transmit signal
vector. Due to the 1-bit quantization, the formulated optimization
for the non-linear mapping scheme is shown to be non-convex. To
solve this problem, the non-convex constraints of the 1-bit DACs
are firstly relaxed, followed by an element-wise normalization to
satisfy the 1-bit DAC transmission. We further propose a low-
complexity symbol scaling scheme that consists of three stages, in
which the quantized transmit signal on each antenna element is
selected sequentially. Numerical results show that the proposed
symbol scaling scheme achieves a comparable performance to
the optimization-based non-linear mapping approach, while its
corresponding complexity is negligible compared to that of the
non-linear scheme.

Index Terms—Massive MIMO, 1-bit quantization, beam-
forming, constructive interference, Lagrangian, low-complexity
scheme.

I. INTRODUCTION

TOWARDS the fifth generation (5G) and future wire-

less communication systems, massive multiple-input

multiple-output (MIMO) systems [1] have received increasing

research attention in recent years as they are able to greatly im-

prove the spectral efficiency. It has also been shown that low-

complexity linear precoding approaches such as zero-forcing

(ZF) [2] and regularized ZF (RZF) [3] achieve close-to-optimal

performance in the massive MIMO regime. Nevertheless, with

a large number of antennas employed at the BS, the large

number of radio frequency (RF) chains and corresponding
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digital-to-analog converters (DACs) that need to be employed

at the BS pose a significant practical challenge. This increase

in the hardware complexity and resulting power consumption

hinders the practical implementation of massive MIMO. To

achieve a compromise between the performance, hardware

complexity and the consequent power consumption in practical

massive MIMO systems, hybrid analog digital beamforming

[4], [5] has attracted research interest as a means of reducing

the number of RF chains.

In addition to the hybrid structures, another potential ap-

proach, which is the focus of this paper, is to reduce the

cost and power consumption per RF chain by employing very

low-resolution digital-to-analog converters (DACs) instead of

high-precision DACs. It has been shown in [6] that DACs are

one of the dominant power-consuming hardware components

in the downlink, whose power consumption grows exponen-

tially with the resolution and linearly with the bandwidth.

In the traditional MIMO downlink, each transmit signal is

generated by a pair of high-resolution (usually more than

8-bit) DACs that are connected to the RF chain. However,

in the case of massive MIMO with hundreds of antennas

employed at the BS, a large number of DACs are required

and the resulting power consumption will be prohibitively

high. Therefore, employing low-resolution DACs, especially

1-bit DACs, can greatly reduce the power consumption per

RF chain and the resulting total power consumed at the BS.

When 1-bit DACs are employed, the output signal at each

antenna element is equivalent to the constant-envelope symbol

from a QPSK constellation, which enables the use of low-cost

power amplifiers (PAs) and can further reduce the hardware

complexity.

In the existing literature, most recent studies have focused

on the performance analysis for massive MIMO uplink with

low-resolution analog-to-digital converters (ADCs), especially

for the 1-bit case [7]-[9], where it is shown that the num-

ber of quantization bits can be reduced while a comparable

performance is still achievable. For the case of downlink

transmission with 1-bit DACs, there have been an increasing

number of studies due to the benefits mentioned above [10]-

[14]. In [10], a simple quantized ZF scheme is considered,

where the transmit signal vector is obtained by a direct

quantization on the ZF-precoded signals. The authors further

analyze the performance of the quantized ZF scheme, and

show that it outperforms the maximum likelihood (ML) en-

coder in the low-to-medium SNR regime. In [11], [12], the

quantized linear beamforming schemes based on minimum-

mean squared error (MMSE) are proposed, whose performance

http://arxiv.org/abs/1709.08278v3
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is shown to be superior to the quantized ZF scheme in [10]. In

[13], a non-linear symbol perturbation technique is introduced

in 1-bit massive MIMO downlink for QPSK modulation,

while in [14] an iterative non-linear beamforming scheme is

introduced via a biconvex relaxation approach, where the pro-

posed scheme directly designs the transmit signal vector based

on the MMSE criterion. Nevertheless, while operating on a

symbol-by-symbol basis, these MMSE-based schemes may be

sub-optimal as they ignore the fact that interference can be

exploited on an instantaneous basis in [15]-[20]. Moreover,

while there have been studies on the downlink beamforming

schemes with 1-bit DACs, most of the these existing schemes

either suffer a severe performance degradation in [10]-[12]

compared to the unquantized case, or require sophisticated

optimizations and iterative algorithms that are computationally

inefficient [14].

In this paper, we revisit the symbol-level operations required

for massive MIMO downlink transmission with 1-bit DACs

to exploit the formulation of constructive interference. The

symbol-by-symbol precoding operation allows us to observe

the interference from an instantaneous point of view, and

exploit it constructively [15]-[20]. We firstly consider a quan-

tized linear beamforming scheme by constructing a beam-

forming matrix before quantization. Based on the concept of

constructive interference, the optimization aims to maximize

the distance between the received symbols and the detec-

tion thresholds. By mathematically analyzing the optimization

problem with the Lagrangian approach, it is shown that the

optimality is achieved by applying a strict phase rotation

for the constructed problem in the case of massive MIMO.

Due to the operation of the 1-bit quantization, the above

quantized linear scheme is analytically shown to be equivalent

to the quantized ZF scheme, which suffers an error floor at

high SNR. To improve the performance, we then propose

a non-linear mapping scheme where we directly design the

quantized transmit signal vector. Nevertheless, due to the

constraint on the output signals of 1-bit DACs, the resulting

optimization problem is shown to be non-convex. To solve this

problem, we firstly apply a relaxation on the mathematical

constraint resulting from the use of 1-bit DACs, such that

the optimization problem becomes convex. Then, we apply

an element-wise normalization on the signal vector obtained

from the relaxed optimization to meet the constraint on the

output signals of 1-bit DACs.

Nevertheless, since the variable of the non-linear optimiza-

tion approach is the transmit signal vector, whose dimension

is equal to the number of transmit antennas, the computational

complexity of the resulting optimization is high in the case of

massive MIMO. Therefore, to enable the practical implemen-

tation of 1-bit DACs, we further propose a low-complexity

symbol scaling scheme based on a coordinate transformation

of the constructive interference problem, where we directly

select the 1-bit DAC output for each antenna element on

a sequential basis, and a relaxation-normalization process is

therefore no longer needed. The proposed symbol scaling

approach consists of three stages: an initialization stage where

we decide the output signals for some antenna elements whose

channel coefficients satisfy certain requirements, an allocation

stage where we sequentially select the output signals for the

residual antenna elements, and a refinement stage where we

check whether the performance with the obtained signal vector

can be further improved based on the greedy algorithm. Both

the ‘Sum-Max’ and the ‘Max-Min’ criteria are considered in

the allocation stage, and the output signal vector that returns

the best performance is then obtained within the above two cri-

teria. We further study the computational costs of the proposed

optimization-based and symbol scaling schemes in terms of the

floating operations required. Numerical results show that in

the case of small-scale MIMO systems, the proposed symbol

scaling scheme is shown to achieve the best performance.

In the case of massive MIMO, the optimization-based non-

linear scheme achieves an improved performance over existing

schemes and better approaches the unquantized scheme, while

the proposed symbol scaling scheme can achieve a comparable

performance. In terms of the computational complexity, it

is demonstrated that the complexity of the symbol scaling

scheme is negligible compared to that of the non-linear map-

ping approach, while the performance of the symbol scaling

scheme is superior to ‘Pokemon’ when their computational

costs are similar, which favours its usefulness in practice.

For reasons of clarity, we summarize the contributions of

this paper as:

1) We propose downlink beamforming schemes for massive

MIMO with 1-bit DACs based on the constructive inter-

ference formulation. We firstly consider a quantized linear

beamforming scheme, where it is analytically proven that,

in the massive MIMO region, the optimality is achieved

by employing a strict phase rotation due to the favourable

propagation conditions.

2) We then consider a non-linear mapping scheme where we

directly optimize the transmit signal vector. The resulting

non-convex optimization is solved in two steps: we firstly

relax the non-convex constraints of 1-bit DACs, followed

by the normalization on the obtained signal vector to

satisfy the 1-bit DAC transmission.

3) Based on a coordinate transformation of the construc-

tive interference formulation, we further propose a low-

complexity symbol scaling scheme where we directly

select the quantized signal on each antenna element via

a three-stage process. It is shown that the symbol scaling

scheme can achieve a comparable performance to the

optimization-based non-linear mapping scheme.

4) We further study and compare the computational costs

of the optimization-based non-linear mapping scheme

and the symbol scaling schemes in terms of the floating

operations required, where it is shown mathematically

and numerically that compared to the non-linear mapping

approach, the complexity of the proposed symbol scaling

approach is negligible.

The remainder of this paper is organized as follows.

Section II introduces the system model. Both the proposed

optimization-based quantized linear beamforming scheme and

the non-linear mapping scheme that exploit the constructive

interference are presented in Section III. The low-complexity

three-stage symbol scaling method is presented in Section
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Fig. 1: Massive MIMO downlink system model with 1-bit DACs

IV. Section V includes the analysis of the computational

complexity for both schemes, and the numerical results are

shown in Section VI. Section VII concludes the paper.

Notations: a, a, and A denote scalar, vector and matrix,

respectively. (·)T and (·)H denote transposition and conjugate

transposition of a matrix, respectively. card (·) denotes the

cardinality of a set. j denotes the imaginary unit, and vec (·)
denotes the vectorization operation. a (k) denotes the k-th

entry in vector a. |·| denotes the modulus of a complex number

or the absolute value of a real number, ‖·‖F denotes the

Frobenius norm, and ‖·‖1 denotes the 1-norm. Cn×n represents

an n×n matrix in the complex set, and I denotes the identity

matrix. ℜ(·) and ℑ(·) denote the real and imaginary part of a

complex number, respectively.

II. SYSTEM MODEL

We consider a multi-user massive MIMO downlink, where

1-bit DACs are employed at the BS, as depicted in Fig. 1.

As we focus on the transmit-side processing, ideal ADCs

with infinite precision are assumed to be employed at each

receiver. The BS with Nt transmit antennas is communicating

with K single-antenna users simultaneously in the same time-

frequency resource, where K ≪ Nt. We focus on the transmit

beamforming designs and perfect CSI is assumed, while

we also numerically study the performance of the proposed

schemes with imperfect CSI in Section VI. Following the

closely-related literature [10]-[13], [21], the symbol vector is

assumed to be from a normalized PSK constellation. We de-

note the data symbol vector as s ∈ CK×1, and the unquantized

signal vector that is formed based on s as x̂T ∈ CNt×1. Then,

the unquantized signal vector x̂T can be expressed as

x̂T = B (s) , (1)

where B denotes a general linear or non-linear transformation.

With 1-bit DACs employed, the output signal vector is then

obtained as

xT = Q (x̂T ) . (2)

In (2), Q denotes the 1-bit quantization on both the real

and imaginary part of each entry in x̂T . We denote xn,

n ∈ {1, 2, · · · , Nt} as the n-th entry in xT , and in this paper

each xn is normalized to satisfy

xn ∈
{

± 1√
2Nt

± 1√
2Nt

· j
}

, ∀n ∈ N , (3)

where N = {1, 2, ..., Nt}. The above normalization guaran-

tees that ‖xT ‖2F = 1, and we can then express the received

signal vector as

y =
√
P ·HxT + n, (4)

where H ∈ CK×Nt denotes the flat-fading Rayleigh channel

with each entry following a standard complex Gaussian dis-

tribution. n ∈ CK×1 denotes the additive Gaussian distributed

noise vector with zero mean and covariance σ2 · I. P is the

total available transmit power per antenna, and for simplicity in

this paper we assume uniform power allocation for the antenna

array.

III. 1-BIT TRANSMISSION SCHEME BASED ON

CONSTRUCTIVE INTERFERENCE

A. Constructive Interference and Constructive Region

Constructive interference is defined as interference that

pushes the received signals away from the detection thresholds

of the modulation constellation [15]-[17]. The exploitation

of constructive interference was firstly introduced in [15] to

improve the performance of the ZF beamforming scheme, and

was more recently applied to optimization-based approaches

in [16], [17] and [20] based on the constructive region. To

illustrate the underlying concept intuitively, in Fig. 2 we depict

the constructive region for QPSK, where for simplicity and

without loss of generality we focus on one quarter of the

normalized QPSK constellation. As can be observed, as long

as the interfered signal (
→
OB in Fig. 2) is located in the

constructive region, the distance to the detection thresholds

is increased, and an improved performance can be expected.

The formulation of the optimization problem based on the

constructive region will be introduced in the following.

B. 1-Bit Transmission Scheme - Linear Beamforming

When a linear beamforming scheme is considered, the

unquantized transmit signal vector can be expressed as

x̂T = Ws. (5)
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Fig. 2: Constructive interference and constructive region for

QPSK

To introduce the proposed scheme, we firstly decompose the

channel matrix into

H =
[

hT
1 ,h

T
2 , · · · ,hT

K

]T
, (6)

where each hk ∈ C1×Nt denotes the channel vector of the

k-th user. Then, the received signal for user k can be obtained

as
yk =

√
P · hkxT + nk

=
√
P · hkQ (Ws) + nk,

(7)

where nk is the k-th entry in n. For the proposed quantized

linear approach in this paper, the unquantized beamforming

matrix W assuming infinite-precision DACs is firstly obtained,

followed by the 1-bit quantization on the resulting transmit

signal vector x̂T .

To formulate the desired optimization problem, let us firstly

study the analytical constructive interference conditions. In

Fig. 2, without loss of generality we denote
→
OA = t · sk and

t = |
→
OA | is the objective to be maximized. We assume the

node ‘B’ denotes the noiseless received signal (hkWs) that

is located in the constructive region, and we further denote
→
OB = λksk, where λk is an introduced complex variable

with |
→
OB | = |λk|. We can then obtain that

→
OB = hkWs = λksk. (8)

Based on the fact that
→
OC and

→
CB are perpendicular, we can

further obtain
→
OC and

→
CB, expressed as

→
OC = ℜ (λk) sk,

→
CB = j · ℑ (λk) sk, (9)

where geometrically the imaginary unit ‘j’ denotes a phase

rotation of 90o along the anti-clockwise direction. As the

nodes ‘O’, ‘A’, and ‘C’ are co-linear, we can then express
→
AC as →

AC = [ℜ (λk)− t] sk. (10)

Based on the expression of
→
AC and

→
CB, tan θAB is obtained

as

tan θAB =

→
|CB|
→
|AC|

=
|ℑ (λk) sk|

|[ℜ (λk)− t] sk|
=
|ℑ (λk)|
ℜ (λk)− t

. (11)

In Fig. 2, it is geometrically observed that to have node ‘B’

located in the constructive region is equivalent to the following

condition:

θAB ≤ θt

⇒ tan θAB ≤ tan θt

⇒ |ℑ (λk)|
ℜ (λk)− t

≤ tan θt

⇒ [ℜ (λk)− t] tan θt ≥ |ℑ (λk)| .

(12)

ForM-PSK modulation, based on the geometry of the modu-

lation constellation it is easy to obtain the threshold angle θt,
given by

θt =
π

M . (13)

We can then formulate the optimization for the unquantized

linear beamforming as

P1 : max
W

t

s.t. hkWs = λksk, ∀k ∈ K
[ℜ (λk)− t] tan θt ≥ |ℑ (λk)| , ∀k ∈ K
‖Ws‖F ≤

√
p0

t ≥ 0

(14)

where K = {1, 2, · · · ,K}, and ‖Ws‖F ≤ √
p0 is the

instantaneous power constraint on the beamformer as the

beamforming is dependent on the data symbols. Due to the

existence of the subsequent 1-bit quantization operation, p0
in P1 can be any positive value, and this will not have an

impact on the final obtained quantized signal vector xT . P1 is

a second-order cone programming (SOCP) optimization, and

we can further obtain the following proposition in the case of

massive MIMO.

Proposition: In the case of massive MIMO, the optimality

conditions for each λk and t of the optimization problem P1

are obtained as

1) ℑ (λ∗
k) = 0, ∀k ∈ K;

2) t∗ = λ∗
1 = λ∗

2 = · · · = λ∗
K =

√

Nt·p0

K
.

Proof : We prove the above proposition by analyzing the

optimization problem P1 with the Lagrangian approach. We

firstly transform P1 into a standard minimization problem,

given by

P2 : min
wi

− t

s.t. hk

K
∑

i=1

wisi − λksk = 0, ∀k ∈ K

|ℑ (λk)| − [ℜ (λk)− t] tan θt ≤ 0, ∀k ∈ K
K
∑

i=1

sHi wH
i wisi − p0 ≤ 0

(15)

where we note that the constraint on t in P1 can be omit-

ted in the above formulation, and we decompose W =
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[w1,w2, · · · ,wK ]. We can then express the Lagrangian of

P2 as [22]

L (wi, t, δk, µk, µ0) = −t+
K
∑

k=1

δk

(

hk

K
∑

i=1

wisi − λksk

)

+ µ0

(

K
∑

i=1

sHi wH
i wisi − p0

)

+

K
∑

k=1

µk [|ℑ (λk)| − ℜ (λk) tan θt + t · tan θt],

(16)

where µ0, δk and µk are the dual variables, and µ0 ≥ 0,

µk ≥ 0, ∀k ∈ K. Based on the Lagrangian in (16), the KKT

conditions for optimality are then obtained as

∂L
∂t

= −1 +
K
∑

k=1

µk = 0 (17a)

∂L
∂wi

=

(

K
∑

k=1

δk · hk

)

si + µ0 ·wH
i = 0 (17b)

µ0

(

K
∑

i=1

sHi wH
i wisi − p0

)

= 0 (17c)

δk

(

hk

K
∑

i=1

wisi − λksk

)

= 0, ∀k ∈ K (17d)

µk [|ℑ (λk)| − ℜ (λk) tan θt + t · tan θt] = 0, ∀k ∈ K (17e)

Based on (17b), firstly it is easily obtained that µ0 6= 0 which

with the fact that µ0 ≥ 0 further leads to µ0 > 0. Then, we

can obtain wH
i as

wH
i = − 1

µ0
·
(

K
∑

k=1

δkhk

)

si, ∀i ∈ K. (18)

By denoting

ak = −δHk
µ0

, ∀k ∈ K, (19)

wi can be obtained from (18) and expressed as

wi =

(

K
∑

k=1

akh
H
k

)

sHi , ∀i ∈ K. (20)

Then, with the expression of each wi, the beamforming matrix

W is obtained in a compact form as

W = [w1,w2, · · · ,wK ] =

(

K
∑

k=1

akh
H
k

)

·
[

sH1 , sH2 , · · · , sHK
]

=
[

hH
1 ,hH

2 , · · · ,hH
K

]

[a1, a2, · · · , aK ]T
[

sH1 , sH2 , · · · , sHK
]

= HHAsH .
(21)

In order to obtain A, we firstly rewrite (8) in a compact form,

which is expressed as

HWs = diag (λk) s. (22)

Then, by substituting (21) into (22), the matrix A can be

obtained based on λk, given by

HHHAsHs = diag (λk) s

⇒A =
1

K
·
(

HHH
)−1

diag (λk) s.
(23)

The beamforming matrix W is then obtained as

W =
1

K
·HH

(

HHH
)−1

diag (λk) ss
H . (24)

Based on the fact that µ0 6= 0, it is obtained from (17c) that

the power constraint of the optimization problem P1 is strictly

active, which further leads to

‖Ws‖F =
√
p0

⇒ tr
{

WssHWH
}

= p0

⇒ sHWHWs = p0.

(25)

Then, by substituting (24) into (25), we obtain that

sHdiag
(

λH
k

) (

HHH
)−1

diag (λk) s = p0

⇒ vecT
(

λH
k

)

diag
(

sH
) (

HHH
)−1

diag (s) vec (λk) = p0

⇒
[

λH
1 , λH

2 , ..., λH
K

]

·T · [λ1, λ2, ..., λK ]T = p0,
(26)

where T is defined as

T = diag
(

sH
) (

HHH
)−1

diag (s) . (27)

In the case of massive MIMO, as Nt →∞, the favourable

propagation property gives us that [1]

HHH ≈ Nt · I⇒
(

HHH
)−1 ≈ 1

Nt

· I, (28)

based on which T is further transformed into

T ≈ 1

Nt

· diag
(

sH
)

diag (s) =
1

Nt

· I. (29)

From the result in (29), (26) can be expanded and further

transformed into

1

Nt

·
(

|λ1|2 + |λ2|2 + · · ·+ |λK |2
)

= p0. (30)

To maximize t, as per (12) and (30) it is then easily obtained

that the optimality is achieved when each λ∗
k is real and

identical, given by

t∗ = λ∗
1 = · · · = λ∗

K =

√

Nt · p0
K

, (31)

which completes the proof. �

By substituting (31) into (24), the optimal beamforming

matrix W∗ can be expressed as

W∗ =

√

Nt · p0
K3

·HH
(

HHH
)−1

ssH . (32)

Then, with W∗ obtained, the output signal vector that satisfies

1-bit DAC transmission is given as

xT = Q (W∗s)

= Q
(

√

Nt · p0
K3

·HH
(

HHH
)−1

ssHs

)

= Q
(

√

Nt · p0
K

·HH
(

HHH
)−1

s

)

.

(33)
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The intuition from the above proposition and (33) is that the

quantized linear scheme based on the constructive interference

is equivalent to the conventional quantized ZF scheme in

the case of massive MIMO with 1-bit quantization, which

suffers an error floor at high SNR [10]. This then motivates

the proposed non-linear mapping scheme that achieves an

improved performance in the following.

C. 1-Bit Transmission Scheme - Non-linear Mapping

We proceed to introduce the optimization-based non-linear

mapping scheme for massive MIMO with 1-bit DACs. This

approach was first described in [21], and based on the con-

structive interference formulation in [19]. We employ this

approach, to further design our low-complexity techniques in

Section IV. The resulting optimization based on the construc-

tive interference can be formulated as

P3 : max
xT

t

s.t. hkxT = λksk, ∀k ∈ K
[ℜ (λk)− t] tan θt ≥ |ℑ (λk)| , ∀k ∈ K

xn ∈
{

± 1√
2Nt

± 1√
2Nt

j

}

, ∀n ∈ N

t ≥ 0

(34)

It is observed that the optimization problem P3 is non-convex

due to the output signal constraint for the 1-bit DACs in (34).

To solve the above non-convex optimization, we adopt a two-

step approach.

1) Relaxation: In the first step, we relax the strict modulus

constraint on each xn for both the real and imaginary part,

and the resulting relaxed constraint can be expressed as

|ℜ (xn)| ≤
1√
2Nt

, |ℑ (xn)| ≤
1√
2Nt

, ∀n ∈ N . (35)

The optimization problem P3 is then reformulated into a

relaxed version P4, given by

P4 : max
x̂T

t

s.t. hkx̂T = λksk, ∀k ∈ K
[ℜ (λk)− t] tan θt ≥ |ℑ (λk)| , ∀k ∈ K

|ℜ (x̂n)| ≤
1√
2Nt

, ∀n ∈ N

|ℑ (x̂n)| ≤
1√
2Nt

, ∀n ∈ N

t ≥ 0

(36)

where we denote x̂n as the n-th entry in the relaxed transmit

signal vector x̂T . The resulting P4 is convex and can be solved

with convex optimization tools.

2) Normalization: The solution obtained from the relaxed

optimization P4 cannot always guarantee the equality on both

the real and imaginary part of x̂n. To force the constraint of

1-bit transmission, the elements of the 1-bit DAC output xT

are obtained as

xn =
ℜ (x̂n)√

2Nt · |ℜ (x̂n)|
+

ℑ (x̂n)√
2Nt · |ℑ (x̂n)|

· j, ∀n ∈ N . (37)

Antenna number Nt 16 32 48 64

Ratio η 20.52% 10.8% 7.28% 5.46%

Antenna number Nt 80 96 112 128

Ratio η 4.37% 3.65% 3.13% 2.73%

TABLE I: η with respect to the number of transmit antennas,

K = 4, 500 channel realizations

We further note that, while we perform a relaxation on the 1-bit

DAC constraint on each xn in P3, it turns out that most entries

of the obtained x̂T from the relaxed problem P4 already meet

the strict-equality requirement for 1-bit quantization, i.e. only

a few entries of x̂n need to be normalized. To evaluate the

deviation of the relaxed optimization P4 from the original

problem P3, we define nℜ and nℑ as the number of entries

in the obtained x̂T whose absolute values are smaller than
1√
2Nt

for the real and imaginary part, respectively. We further

introduce

η =
nℜ + nℑ

2Nt

(38)

as the ratio of the number of entries that do not satisfy the 1-bit

transmission to the total number of entries in x̂T , and this ratio

therefore represents the deviation of the solution obtained by

the relaxed problem from the original problem. We have 0 ≤
η ≤ 1, and P4 is equivalent to P3 if η = 0. It is also observed

that a smaller value of η means that the relaxed optimization

is closer to the original optimization.

To study this numerically, we present the value of η with

respect to the number of antennas in Table I, where we have

assumed a total number of K = 4 users in the downlink

system, and the result is based on 500 channel realizations.

It is observed that the ratio η decreases with the increase

in the number of transmit antennas, which means that the

solution obtained via the relaxed optimization problem P4

can be regarded as asymptotically optimal with an increasing

number of transmit antennas in the case of massive MIMO.

IV. PROPOSED LOW-COMPLEXITY SYMBOL SCALING

APPROACH

While the above non-linear mapping scheme can be re-

laxed into a convex optimization problem, the corresponding

computational complexity is still prohibitively high as the

variable dimension is equal to the number of transmit antennas.

We study this mathematically and numerically in Section V

and VI, respectively. Therefore in this section, we propose

a three-stage symbol scaling scheme, which requires much

reduced complexity for a comparable performance. It will

be shown in the numerical results that for the small-scale

MIMO systems, the low-complexity scheme even outperforms

the optimization-based non-linear mapping scheme in Section

III, since no relaxation or normalization is required for this

scheme.

A. A New Look at the Constructive Interference Criteria

To introduce the proposed symbol scaling scheme, we firstly

perform a coordinate transformation on the formulation of the

constructive interference constraint. To be specific, we firstly
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Fig. 3: Decomposition along the detection thresholds for 8-

PSK

decompose each data symbol sk along its two corresponding

detection thresholds of the modulation constellation, given by

sk =
→
sℜk +

→
sℑk , (39)

where
→
sℜk and

→
sℑk are both complex values, and denoted as the

two bases that are parallel to the two detection thresholds that

correspond to the constellation point sk. In the following, for

simplicity we shall use sℜk and sℑk to denote the two bases.

This is also shown geometrically in both Fig. 2 and Fig. 3

where we employ QPSK and 8-PSK modulation as examples,

respectively. As observed in both figures, we decompose

‘OA’ that represents the data symbol sk along its detection

thresholds into ‘OF’ and ‘OG’. For QPSK, based on Fig. 2

it is easy to observe that the real and imaginary axes are the

detection thresholds, which leads to

→
OF = sℜk =

1√
2
,

→
OG = sℑk =

1√
2
· j (40)

for the corresponding constellation point ‘A’. For 8-PSK,

‘OD’ and ‘OE’ in Fig. 3 are the detection thresholds for the

constellation point ‘A’. Then, with θt = π/8 for 8-PSK we can

obtain the bases sℜk and sℑk that correspond to the constellation

point ‘A’ as

→
OF = sℜk =

ej·
π

8

∣

∣

∣
ej·

π

8 + ej·
3π

8

∣

∣

∣

= ak + bk · j,

→
OG = sℑk =

ej·
3π

8

∣

∣

∣
ej·

π

8 + ej·
3π

8

∣

∣

∣

= ck + dk · j.
(41)

where (ak, bk) and (ck, dk) denote the coordinates of sℜk
and sℑk in the conventional real-imaginary complex plane,

respectively. The extension to other constellation points and

higher order PSK modulations can be easily obtained in a

similar way.

Then for each k, instead of employing a complex scaling

value λk that is multiplied by sk, with the above formulation

(39)-(41) we introduce a symbol scaling approach where

we decompose (8) along the two corresponding detection

thresholds of sk, given by

hkxT = αℜ
k s

ℜ
k + αℑ

k s
ℑ
k , (42)

where

αℜ
k ≥ 0, αℑ

k ≥ 0, ∀k ∈ K, (43)

are two introduced scaling factors that are multiplied to the

bases sℜk and sℑk , respectively. We can then observe that

a larger value of αℜ
k or αℑ

k therefore represents a larger

distance to the other detection threshold, and we further denote
(

αℜ
k , α

ℑ
k

)

as the coordinate of the node ‘B’ in the complex

plane expanded by the bases sℜk and sℑk . By expanding (42)

using the coordinate transformation, we can obtain the generic

expression of αℜ
k and αℑ

k as a function of the transmit signal

vector, given by (see Appendix)

αℜ
k =

dkℜ (hk)− ckℑ (hk)

akdk − bkck
xℜ
T −

dkℑ (hk) + ckℜ (hk)

akdk − bkck
xℑ
T ,

αℑ
k =

akℑ (hk)− bkℜ (hk)

akdk − bkck
xℜ
T +

akℜ (hk) + bkℑ (hk)

akdk − bkck
xℑ
T .

(44)

In (44), for simplicity we have employed the following deno-

tations

xℜ
T = ℜ (xT ) , x

ℑ
T = ℑ (xT ) . (45)

By further denoting

Ak =
dkℜ (hk)− ckℑ (hk)

akdk − bkck
, Bk = −dkℑ (hk) + ckℜ (hk)

akdk − bkck
,

Ck =
akℑ (hk)− bkℜ (hk)

akdk − bkck
, Dk =

akℜ (hk) + bkℑ (hk)

akdk − bkck
,

(46)

the formulation of (44) is simplified into

αℜ
k = Akx

ℜ
T +Bkx

ℑ
T ,

αℑ
k = Ckx

ℜ
T +Dkx

ℑ
T .

(47)

By defining

Rk =
[

Ak Bk

]

, Ik =
[

Ck Dk

]

, (48)

and

x =
[

(

xℜ
T

)T (

xℑ
T

)T
]T

, Λ =
[

αℜ
1 , ..., α

ℜ
K , αℑ

1 , ..., α
ℑ
K

]T
,

(49)

(47) can be further expressed in a compact form as

Λ = Mx, (50)

where M is given by

M =
[

RT
1 · · · RT

K IT1 · · · ITK
]T

. (51)

With the above formulation, we can then construct the opti-

mization problem as

P5 : max
x

min
l

αl

s.t. Λ = Mx

αl ≥ 0, ∀l ∈ L

xE
i ∈

{

1√
2Nt

,− 1√
2Nt

}

, ∀i ∈ I

(52)

where we have omitted ℜ and ℑ in the expression of the

entries of Λ, and simply denote αl as its l-th entry. In P5,

L = {1, 2, · · · , 2K}, xE
i denotes the i-th entry in x and

I = {1, 2, · · · , 2Nt}. The above optimization problem P5 is

interpreted as follows: we aim to maximize the minimum value
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of αl by selecting each xE
i as either 1√

2Nt

or − 1√
2Nt

. With

the above problem formulation, the relaxation-normalization

process on the transmit signals is no longer needed. The

above formulation motivates us to propose the following

low-complexity scheme, which consists of three stages: an

initialization stage, an allocation stage, and a refinement stage,

all presented in the following in detail.

B. Initialization Stage

In the initialization stage, we directly select the value of xE
i

for some i by simple observation. To achieve this, we firstly

decompose (50) into

Λ =

2Nt
∑

i=1

Mix
E
i , (53)

where we decompose M into

M =
[

M1 M2 · · · M2Nt

]

, (54)

with each Mi ∈ C2K×1. Then, we have the following

observation.

Observation: As long as all the entries of Mi share

the same sign, then it is optimal to set the sign of the

corresponding xE
i equal to that of Mi, as in this case the

values of each entry in Λ are guaranteed to increase.

Then, the corresponding xE
i is obtained as

xE
i =

sgn (Mi)√
2Nt

, ∀i ∈ S, (55)

where sgn (a) defines a vector sign function and is only valid

when each entry in the vector a has the same sign. S denotes

the set that consists of the column indices of M that satisfy the

sign-identity condition. We further introduce a column vector

t that represents a temporary value of Λ, given by

t =
∑

i∈V
Mix

E
i , (56)

where the set V consists of the column indices of M whose

corresponding xE
i have been allocated a value. We note that

when card (V) = 2Nt, we have t = Λ.

In the case that no column in M satisfies the sign-identity

condition, in the initialization stage we select only one column,

i.e. card (S) = 1, with the following criterion:

i = argmax
i∈I

‖Mi‖1, (57)

which selects the column that has the maximum effect on the

value of Λ. Then, the value of the corresponding xE
i is set as

xE
i =

sgn (‖Mi‖1)√
2Nt

. (58)

In the initialization stage, we have V = S or card (V) =
1. We summarize the algorithm for the initialization stage in

Algorithm 1.

Algorithm 1 Initialization Stage

input : s, H

output : t, V
Decompose each sk = sℜk + sℑk based on modulation type;

Obtain M based on (42)-(51);

Find Mi that satisfies the sign-identity condition;

Obtain S;

if S 6= ∅ then

xE
i = sgn(Mi)√

2Nt

, ∀i ∈ S;

V = S;

else

Obtain i based on (57), xE
i =

sgn(‖Mi‖1)√
2Nt

;

V = {i};
end if

Calculate t based on (56).

C. Allocation Stage

At this stage we allocate the value of each xE
i for the

residual i that belongs to W , where we define the set W as

W = {i | i ∈ I and i /∈ V} . (59)

W consists of those xE
i whose values have not been allocated

in the initialization stage. In the following allocation stage, we

consider both a ‘Sum-Max’ and a ‘Max-Min’ criteria for the

allocation scheme.

1) Sum-Max: For the allocation scheme based on the ‘Sum-

Max’ criterion, instead of considering a max-min optimization

as in P5, we consider a sum-max optimization where the

objective function is constructed as

F (x) = sum (Λ) , (60)

where sum (a) returns the sum of the entries in a column

vector a. Then, based on (50) the objective can be further

transformed into

F (x) = mx =

2Nt
∑

i=1

m (i)xE
i , (61)

where m ∈ C1×2Nt is the sum of the entries in each row of

M. Each m (i) denotes the i-th entry in m, given by

m (i) =

2K
∑

l=1

Mi (l). (62)

It is then easy to observe that F (x) is maximized when the

sign of each xE
i is the same as that of m (i), and therefore

the optimal xE
i for the ‘Sum-Max’ criterion is given by

xE
i =

sgn [m (i)]√
2Nt

, ∀i ∈ W . (63)

While the above solution guarantees that the sum of αl is

maximized, it does not specifically consider each value of αl,

which may lead to performance loss. Indeed, it is possible that

the value of one αl can be very small or even negative. This

is the reason why the refinement in Section IV-D is further

introduced. The algorithm for the allocation stage based on

‘Sum-Max’ is summarized in Algorithm 2.
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Algorithm 2 Allocation Stage - ‘Sum-Max’

input : V , M

output : xsum−max

Calculate W based on (59);

Calculate m and each m (i) based on (61), (62);

Allocate xE
i = sgn[m(i)]√

2Nt

, ∀i ∈ W ;

Obtain x, denoted as xsum−max.

2) Max-Min: For the ‘Max-Min’ allocation criterion, in

each step we aim to improve the minimum value in Λ as much

as possible. Denoting q as the row index of the minimum entry

in t obtained in the initialization stage, we have

t (q) = min (t) , (64)

where min (t) returns the minimum value in t. Subsequently,

we iteratively select Mi with the largest absolute value in the

q-th row, given by

i = argmax
i∈W

|Mi (q)| , (65)

and the corresponding xE
i is then obtained as

xE
i =

sgn [Mi (q)]√
2Nt

. (66)

Then, we update V and t, and based on the updated t we repeat

the above procedure until V = I. This means that each entry

in x has been allocated, and the algorithm for the allocation

stage based on ‘Max-Min’ is summarized in Algorithm 3.

Algorithm 3 Allocation Stage - ‘Max-Min’

input : V , M, t

output : xmax−min

while V 6= I do

Calculate W based on (59);

Obtain q that satisfies t (q) = min (t);
Find i = argmax

i∈W
|Mi (q)|;

Allocate xE
i = sgn[Mi(q)]√

2Nt

;

Update V and t;

end while

Obtain x, denoted as xmax−min.

D. Refinement Stage

In the refinement stage, we check whether the performance

based on the obtained signal vector in the allocation stage can

be further improved based on a greedy algorithm. To introduce

the refinement process, we denote the obtained expanded 1-bit

signal vector after the allocation stage as x (obtained based on

either the ‘Sum-Max’ or the ‘Max-Min’ criterion). First, we

sequentially change the sign of one entry (for example xE
i ) in

x at a time while fixing the signs of other entries in x, and

denote the modified signal vector as x(i). We then compare

the minimum value in Λ obtained by the modified x(i) with

the minimum value in the original Λ obtained by x(0). The

sign of xE
i is selected as the one that returns a larger minimum

value in Λ. The refinement process is sequentially performed

for each entry in x(0). The algorithm for the refinement stage

is then shown in Algorithm 4.

Algorithm 4 Refinement Stage

input : xsum−max (or xmax−min)

output : xT

Denote x(0) = xsum−max (or xmax−min);

for i = 1 : 2Nt do

Calculate Λ(0) = Mx(0);

Obtain x(i) =
[

xE
1 , ..., x

E
i−1,−xE

i , x
E
i+1, ..., x

E
2Nt

]T
;

Calculate Λ(i) = Mx(i);

if min
(

Λ(i)

)

> min
(

Λ(0)

)

then

xE
i ← −xE

i ;

Update x(0);

end if

end for

Obtain xT based on the updated x(0).

The refinement stage is performed for the signal vectors

obtained by both the ‘Sum-Max’ and ‘Max-Min’ criteria

independently. The final output signal vector of the proposed

symbol scaling scheme that generates the best performance is

then selected between the signal vectors obtained with these

two criteria.

E. Algorithm

Based on the above description, the algorithm for the three-

stage symbol scaling scheme is summarized in Algorithm 5,

where the final output signal vector of the proposed symbol

scaling scheme that generates the best performance is selected

within the signal vectors obtained by the ‘Sum-Max’ and

‘Max-Min’ criteria.

Algorithm 5 The Proposed Symbol Scaling Scheme

input : s, H

output : xT

Initialization Stage

Obtain V , M, and t with Algorithm 1;

Allocation Stage

1.‘Sum−Max′ :
Obtain xsum−max with Algorithm 2;

2.‘Max−Min′ :
Obtain xmax−min with Algorithm 3;

Refinement Stage

Update both xsum−max and xmax−min with Algorithm 4;

Calculate Λs = Mxsum−max and Λm = Mxmax−min;

if min (Λs) > min (Λm) then

x = xsum−max;

else

x = xmax−min;

end if

Decompose x =
[

(

xℜ
T

)T (

xℑ
T

)T
]T

;

Output xT = xℜ
T + xℑ

T · j.
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Antenna Number
Schemes

Exhaustive Search Proposed Non-linear Mapping P4 Proposed Symbol Scaling Non-linear Pokemon, nmax = 20

64 O
{

1.39× 10
42
}

O
{

2.83× 10
7
}

O
{

7.9× 10
4
}

O
{

6.6× 10
5
}

96 O
{

3.86× 1061
}

O
{

1.11× 108
}

O
{

1.74× 105
}

O
{

1.48× 106
}

128 O
{

9.49× 1080
}

O
{

2.94× 108
}

O
{

3.05× 105
}

O
{

2.63× 106
}

256 O
{

2.20× 10158
}

O
{

3.18× 109
}

O
{

1.2× 106
}

O
{

1.05× 107
}

TABLE II: Comparison of the computational costs of different schemes, K = 8

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we study the computational costs of the

proposed schemes in terms of the floating-point operations

required. As a reference, we also study the complexity of

the exhaustive search scheme and the non-linear ‘Pokemon’

scheme in [14]. The computational costs of all considered

approaches are calculated based on real multiplications and

additions.

A. Exhaustive Search

For massive MIMO transmission with 1-bit quantization, the

output signal on each antenna element has 4 potential values,

and for each signal combination it takes 4KNt multiplications

and 4KNt additions to compute Λ based on (50) as M ∈
C2K×2Nt . Therefore, the complexity of the exhaustive search

scheme is obtained as

CE = O
{

8KNt · 4Nt

}

= O
{

8KNt · 22Nt

}

. (67)

It is easy to conclude that in the case of massive MIMO,

the exhaustive search scheme is inapplicable due to the over-

whelmingly high computational cost.

B. Optimization-based Non-linear Mapping P4

For the proposed non-linear mapping scheme, in the re-

laxation stage the complexity is dominated from solving the

relaxed convex problem P5 via the interior-point method [22].

It has been shown in [23] that the arithmetic complexity of

the interior-point method is given by

CI = O
{

(M +N)
1.5

M2
}

, (68)

where M is the dimension of the variable, and N is the number

of constraints. Based on the real representation P5, we obtain

M = 2Nt and N = 2K , which leads to

C1
N = O

{

(2K + 2Nt)
1.5

(2Nt)
2
}

= O
{

8
√
2(K +Nt)

1.5
N2

t

}

.
(69)

In the normalization stage, the dominant complexity comes

from the search for the signals that do not satisfy the output

constraint for the 1-bit transmission. There are a total number

of 2Nt entries in x̂T including both the real and imaginary

part, and therefore a one-dimensional search of 2Nt entries is

required. Then, the resulting complexity is obtained as

C2
N = O {2Nt} , (70)

which leads to the total computational cost for the

optimization-based non-linear mapping scheme as

CN = C1
N +C2

N = O
{

8
√
2(K +Nt)

1.5
N2

t

}

+O{2Nt} .
(71)

In the case of massive MIMO where Nt is large, we have the

following approximation:

CN ≈ O
{

8
√
2(K +Nt)

1.5
N2

t

}

. (72)

C. Symbol Scaling Scheme

For the proposed symbol scaling approach, in the follow-

ing we calculate its computational cost for each stage. For

both allocation criteria, the main computational cost in the

initialization and allocation stage comes from the calculation

of t ∈ C2Nt×1 based on (56). While the calculation of t is

not necessary for the ‘Sum-Max’ criterion, we note that t

is required in the refinement stage. Each additional
(

Mix
E
i

)

term that is added to t requires 2Nt multiplications and 2Nt

additions, and t is updated 2K times after the allocation stage,

where we note M ∈ C2K×2Nt . The resulting computation cost

is

C1
L = O {2K (2Nt + 2Nt)} = O{8KNt} . (73)

Moreover, for the ‘Max-Min’ allocation criterion, we need

to iteratively allocate the value for the residual xE
i , which

introduces an additional computational cost for ‘Max-Min’

in the allocation stage. Since card (V) is difficult to obtain

analytically in the initialization stage, we consider a worst-

case complexity where card (V) = 1, and in each iteration

obtaining q and i in Algorithm 3 requires 2K and 2Nt

operations, respectively. The required number of computations

is thus

C2
L = O{(2Nt − 1) (2K + 2Nt)} ≈ O

{

4N2
t + 4KNt

}

(74)

in the case of massive MIMO. In the refinement stage, it is

easy to observe that the initial Λ(0) = t. Then, in each iteration

of Algorithm 4 we only need to calculate the corresponding

Mi ·
(

−xE
i

)

and include it in Λ(i). For each xE
i this takes

2Nt multiplications and 2Nt additions, and therefore the

computational cost for the refinement stage is

C3
L = O {2Nt (2Nt + 2Nt)} = O

{

8N2
t

}

. (75)
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Based on Algorithm 5, both xsum−max and xmax−min should

be refined. Accordingly, we can obtain the total computational

cost for the proposed symbol scaling approach as

CL = C1
L + C2

L + 2C3
L

= O{8KNt}+O
{

4N2
t + 4KNt

}

+O
{

2
(

8N2
t

)}

= O
{

20N2
t + 12KNt

}

.
(76)

D. Pokemon

As a comparison, we also include the complexity of the non-

linear ‘Pokemon’ scheme proposed in [14]. The ‘Pokemon’

approach is based on biconvex relaxation, whose performance

is dependent on the number of required iterations. Based on

[14], in each iteration we need to first calculate a vector

q ∈ C2Nt×1 based on q = Ux where U ∈ C2Nt×2Nt , and

then update the signal vector x ∈ C2Nt×1 with a projection

function. The calculation of q requires a total of 4N2
t multipli-

cations and 4N2
t additions, while the update of x requires 4Nt

multiplications. Assuming a maximum number of iterations

nmax, this leads to the total computational cost for ‘Pokemon’

as
CP = O

{

nmax

(

4N2
t + 4N2

t + 4Nt

)}

= O
{

nmax

(

8N2
t + 4Nt

)}

.
(77)

Comparing the computational cost of ‘Pokemon’ with the

proposed symbol scaling method, we have

CL

CP
=
O
{

20N2
t + 12KNt

}

O{nmax (8N2
t + 4Nt)}

= O
{

5Nt + 3K

nmax (2Nt + 1)

}

.

(78)

In the case of massive MIMO where K is finite while the

antenna number Nt →∞, (78) is further transformed into

CL

CP
= O







5 + 3K
Nt

nmax

(

2 + 1
Nt

)







≈ O
{

2.5

nmax

}

. (79)

To numerically study the complexity gains of the proposed

symbol scaling method, in Table II we show the number of

floating-point operations required as the number of transmit

antennas increases, where for ‘Pokemon’ we employ nmax =
20 following [14]. As can be seen, the computational cost of

the proposed non-linear mapping scheme is higher than that

of the proposed symbol scaling approach and the ‘Pokemon’

method, while the number of operations required for the

proposed symbol scaling approach is approximately 12% of

the number of operations for ‘Pokemon’.

VI. NUMERICAL RESULTS

In this section we present the numerical results of the

proposed approaches based on Monte Carlo simulations. In

each plot, the transmit SNR is defined as ρ = P
/

σ2. Both

QPSK and 8-PSK modulations are considered in the numerical

results. We compare our proposed methods with both the quan-

tized linear approaches and the non-linear mapping algorithms,

and for clarity the following abbreviations are used throughout

this section:
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Fig. 4: BER v.s. transmit SNR, Nt = 8, K = 2, nmax = 20,

QPSK

1) ‘ZF-FD’: Unquantized ZF beamforming with infinite-

precision DACs;

2) ‘ZF 1-Bit’: Quantized ZF approach with 1-bit DACs

introduced in [10];

3) ‘MMSE’: MMSE-based quantized linear scheme in [11];

4) ‘Pokemon, nmax = K’: Non-linear Pokemon algorithm

proposed in [14] with K iterations;

5) ‘Constructive’: Proposed non-linear mapping scheme P4

in Section III-B;

6) ‘sum-max’: Proposed symbol scaling approach based on

the ‘sum-max’ allocation scheme with Algorithm 1, 2 and

4;

7) ‘max-min’: Proposed symbol scaling approach based on

the ‘max-min’ allocation scheme with Algorithm 1, 3 and

4;

8) ‘Symbol Scaling’: Proposed symbol scaling method ob-

tained via Algorithm 5 where we select the best signal

vector out of ‘sum-max’ or ‘max-min’ criteria.

In Fig. 4, we firstly consider a moderate scale MIMO with

a total number of Nt = 8 transmit antennas at the BS and

K = 2 single-antenna users in the system. For approaches

with 1-bit quantization, we observe that the proposed symbol

scaling scheme based on Algorithm 5 achieves the best BER

performance, while both the proposed non-linear mapping

scheme and ‘Pokemon’ achieve an inferior performance. This

is because both the non-linear mapping method and the ‘Poke-

mon’ approach involve the relaxation-normalization process.

For small-scale MIMO systems, based on Table I we can infer

that η will be large in this case, which means that the devi-

ation of the solution obtained by the relaxation-normalization

process from the solution of the original 1-bit optimization

problem is large, and the normalization process may lead

to further detection errors. For the proposed symbol scaling

scheme, the performance is promising since we directly select

the quantized signal for each antenna element and therefore

no relaxation or quantization is needed.

We then consider a massive MIMO system with Nt = 128
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transmit antennas and K = 16 users in Fig. 5. In the case

of massive MIMO, all the schemes can achieve a lower

BER thanks to the large number of antennas at the BS, and

generally non-linear schemes outperform linear schemes. For

approaches with 1-bit DACs, the proposed non-linear mapping

method outperforms the non-linear ‘Pokemon’ algorithm and

achieves the best BER performance. As for the proposed

low-complexity symbol scaling scheme, by comparing Fig. 4

and Fig. 5, we can observe that the ‘Max-Min’ criterion is

most suitable for small-scale MIMO systems, while the ‘Sum-

Max’ criterion is more favourable for massive MIMO systems.

Moreover, while we have observed around a 2dB SNR loss

compared to the ‘Pokemon’ algorithm in the case of massive

MIMO, its computational cost is approximately 12% of that

for Pokemon in this scenario, which is shown mathematically

in Table II and will be shown numerically in Fig. 7.

In Fig. 6, we show the performance of different schemes

for 8-PSK modulation with Nt = 128 and K = 8. For 1-
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Fig. 7: Execution time for each scheme per 10 channel

realizations, K = 4, nmax = 20, QPSK

bit quantized beamforming approaches, it is observed that the

proposed optimization-based non-linear scheme achieves the

best BER performance. For the symbol scaling approach, it

is observed that in the case of 8-PSK, only a 1dB SNR loss

is observed compared to the non-linear iterative ‘Pokemon’

algorithm, and therefore the proposed low-complexity symbol

scaling approach is more favourable in terms of the perfor-

mance and complexity tradeoff.

In Fig. 7, we compare the computational complexity of

each approach in terms of the execution time required per

10 channel realizations. It is not surprising to observe that

the computational cost of the proposed non-linear scheme is

the highest. Compared to the non-linear ‘Pokemon’ algorithm,

the execution time required for the proposed symbol scaling

method is much less, especially for the ‘sum-max’ case. For

‘Symbol Scaling’ that returns the best performance based on

Algorithm 5, the execution time required is similar to that of

the ‘max-min’, which validates our analysis in Section V-C

that most of the computational cost in the allocation stage

comes from the ‘Max-Min’ criterion. Moreover, it is observed

that the execution time of ‘Symbol Scaling’ is approximately

12% of that of the ‘Pokemon’ scheme in Fig. 7. This matches

our analysis in (79) (CL

CP

≈ 0.12 when nmax = 20), and

the above complexity gains of the proposed symbol scaling

approach therefore favour its practical application.

To further compare the proposed schemes with ‘Pokemon’,

in Fig. 8 we present the BER performance with different

number of iterations for Pokemon. The number of iterations

does not have an effect on other methods and therefore the

BER for the other methods remains constant. It is observed

that the performance of Pokemon improves as nmax increases.

Nevertheless, we note that the improvement becomes less

significant with a larger nmax and Pokemon achieves its

best performance when nmax is around 25. An important

observation is when nmax = 2, 3, where the computational

cost of Pokemon and our proposed scheme is similar, as

shown by (79), and our proposed symbol scaling approach is
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Fig. 8: BER v.s. Pokemon iteration number nmax, Nt = 128,

K = 8, ρ = 10dB, 8-PSK

shown to achieve an improved performance, which validates

the superiority of the proposed approach.

To demonstrate the performance-complexity tradeoff di-

rectly, in Fig. 9 we depict the BER with respect to the number

of floating-point operations required for a range of transmit

antennas from Nt = 32 to Nt = 128, where the number of

users is fixed as K = 8. It can be observed that the proposed

optimization-based method achieves the best performance at

the cost of the highest complexity. An important comparison

is between the proposed ‘Symbol Scaling’ approach and the

‘Pokemon’ scheme with nmax = 2, where we observe a

significant performance gain of our proposed algorithm for the

same computational complexity, especially when the number

of antennas is large. Moreover, while the performance of

the proposed low-complexity method based on ‘sum-max’

achieves an inferior performance to the ‘Symbol Scaling’

approach when Nt is large, it indeed achieves a better BER

performance with a lower computational cost compared to

Pokemon with nmax = 2. Both of the above observations

reveal the superiority of the proposed scheme based on symbol

scaling.

All the above results are based on the assumption of

perfect CSI. In the following, we numerically investigate the

performance of the proposed approaches with imperfect CSI.

The channel estimation techniques for massive MIMO with

1-bit quantization is an ongoing topic of research [9], [24],

and an exact model for the imperfect CSI for this scenario

is still not known. Therefore, in the following we employ a

generic CSI model, where the BS only has knowledge of a

noisy version of H, given by

Ĥ = H+Q. (80)

In (80), Ĥ is the obtained CSI at the BS. Q denotes an error

matrix with Q ∼ CN (0, δ · I), where δ denotes the variance

of the channel error. δ is modelled as inversely proportional

to the transmit SNR and is expressed as δ = β/ρ, where

β denotes the error coefficient [16]. The BER result with

imperfect CSI is depicted in Fig. 10, where a similar trend
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20, QPSK, Imperfect CSI, β = 2.5

can be observed. We can further observe that the proposed

non-linear mapping method still achieves the best performance

among the schemes with 1-bit quantization in the case of

imperfect CSI, while the proposed low-complexity symbol

scaling approach can achieve a comparable performance with

a greatly reduced computational cost.

VII. CONCLUSION

In this paper, we propose several transmit beamforming

schemes for the massive MIMO downlink with 1-bit DACs

based on the formulation of constructive interference, and we

consider both a quantized linear method and a non-linear map-

ping approach. With the analysis of the Lagrangian and KKT

conditions, the quantized linear scheme is mathematically

proven to be equivalent to the quantized ZF beamforming.

For the proposed non-linear mapping scheme, it is shown to be

non-convex and solved by firstly relaxing the 1-bit quantization

constraint, followed by a normalization. We further propose a
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low-complexity symbol scaling approach, where the quantized

transmit signals are directly obtained. Numerical results reveal

the superiority of the proposed symbol scaling scheme in

small-scale MIMO systems. In the case of massive MIMO,

the performance advantage of the proposed non-linear map-

ping method is validated, while the proposed symbol scaling

scheme achieves a better performance-complexity tradeoff,

which favours its usefulness in practical systems.

APPENDIX

COORDINATE TRANSFORMATION

We employ 8-PSK modulation in Fig. 3 as the example to

demonstrate the coordinate transformation, where we focus on

the constellation point ‘A’ in Fig. 3. Then, in the conventional

real-imaginary complex plane, for node ‘B’ in Fig. 3, we have

→
OB = hkxT = Br · 1 +Bi · j, (81)

where 1 and j are the bases, and we denote (Br, Bi) as

the corresponding coordinates. Based on (8), Br and Bi are

obtained as

Br = ℜ (hkxT ) = ℜ (hk)x
ℜ
T −ℑ (hk)x

ℑ
T ,

Bi = ℑ (hkxT ) = ℑ (hk)x
ℜ
T + ℜ (hk)x

ℑ
T .

(82)

In the plane expanded by the two detection thresholds that

correspond to the constellation point ‘A’, following (42)
→
OB

is decomposed into

→
OB = hkxT = αℜ

k s
ℜ
k + αℑ

k s
ℑ
k . (83)

Based on (41) and the fact that αℜ
k and αℑ

k are real numbers,

(83) is further transformed into

hkxT = αℜ
k (ak + bk · j) + αℑ

k (ck + dk · j)
=
(

akα
ℜ
k + ckα

ℑ
k

)

+
(

bkα
ℜ
k + dkα

ℑ
k

)

· j.
(84)

By substituting (82) into (84), we obtain

Br = ℜ (hk)x
ℜ
T −ℑ (hk)x

ℑ
T = akα

ℜ
k + ckα

ℑ
k ,

Bi = ℑ (hk)x
ℜ
T + ℜ (hk)x

ℑ
T = bkα

ℜ
k + dkα

ℑ
k ,

(85)

which leads to the expression of αℜ
k and αℑ

k , given by

αℜ
k =

dkBr − ckBi

akdk − bkck

=
dk
[

ℜ (hk)x
ℜ
T −ℑ (hk)x

ℑ
T

]

− ck
[

ℑ (hk)x
ℜ
T + ℜ (hk)x

ℑ
T

]

akdk − bkck

=
dkℜ (hk)− ckℑ (hk)

akdk − bkck
xℜ
T −

dkℑ (hk) + ckℜ (hk)

akdk − bkck
xℑ
T ,

(86)

and

αℑ
k =

akBi − bkBr

akdk − bkck

=
ak
[

ℑ (hk)x
ℜ
T + ℜ (hk)x

ℑ
T

]

− bk
[

ℜ (hk)x
ℜ
T −ℑ (hk)x

ℑ
T

]

akdk − bkck

=
akℑ (hk)− bkℜ (hk)

akdk − bkck
xℜ
T +

akℜ (hk) + bkℑ (hk)

akdk − bkck
xℑ
T .

(87)

The extension to the constellation points of other PSK modu-

lations can be similarly obtained and is omitted for brevity.

REFERENCES

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling Up MIMO: Opportunities and
Challenges with Very Large Arrays,” IEEE Sig. Process. Mag., vol. 13,
no. 3, pp. 1499–1513, Mar. 2014.

[2] T. Haustein, C. von Helmolt, E. Jorswieck, V. Jungnickel, and V. Pohl,
“Performance of MIMO Systems with Channel Inversion,” in Vehicular

Technology Conference. IEEE 55th Vehicular Technology Conference.

VTC Spring 2002 (Cat. No.02CH37367), vol. 1, 2002, pp. 35–39.

[3] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A Vector-
Perturbation Technique for Near-Capacity Multiantenna Multiuser
Communication-part I: Channel Inversion and Regularization,” IEEE

Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.

[4] S. Han, C. I. I, and C. Rowell, “Large-Scale Antenna Systems with
Hybrid Analog and Digital Beamforming for Millimeter Wave 5G,”
IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, Jan. 2015.

[5] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li,
and K. Haneda, “Hybrid Beamforming for Massive MIMO: A Survey,”
IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, 2017.

[6] R. H. Walden, “Analog-to-Digital Converter Survey and Analysis,” IEEE

J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, April 1999.

[7] C. Mollen, J. Choi, E. G. Larsson, and R. W. Heath, “Uplink Perfor-
mance of Wideband Massive MIMO with One-Bit ADCs,” IEEE Trans.

Wireless Commun., vol. 16, no. 1, pp. 87–100, Oct. 2016.

[8] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“Throughput Analysis of Massive MIMO Uplink with Low-Resolution
ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 4038–4051,
June 2017.

[9] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst,
and L. Liu, “Channel Estimation and Performance Analysis of One-Bit
Massive MIMO Systems,” IEEE Trans. Sig. Process., vol. 65, no. 15,
pp. 4075–4089, Aug. 2017.

[10] A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, “Analysis of One-
Bit Quantized Precoding for the Multiuser Massive MIMO Downlink,”
IEEE Trans. Sig. Process., vol. 65, no. 17, pp. 4624–4634, Sept. 2017.

[11] A. Mezghani, R. Ghiat, and J. A. Nossek, “Transmit Processing with
Low Resolution D/A-Converters,” in 2009 16th IEEE International

Conference on Electronics, Circuits and Systems - (ICECS 2009),
Yasmine Hammamet, 2009, pp. 683–686.

[12] O. B. Usman, H. Jedda, A. Mezghani, and J. A. Nossek, “MMSE
Precoder for Massive MIMO Using 1-Bit Quantization,” in 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Shanghai, 2016, pp. 3381–3385.

[13] A. L. Swindlehurst, A. K. Saxena, A. Mezghani, and I. Fijalkow,
“Minimum Probability-of-Error Perturbation Precoding for the One-Bit
Massive MIMO Downlink,” in 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
2017, pp. 6483–6487.

[14] O. Castaneda, T. Goldstein, and C. Studer, “POKEMON: A Non-Linear
Beamforming Algorithm for 1-Bit Massive MIMO,” in 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), New Orleans, LA, 2017, pp. 3464–3468.

[15] C. Masouros, “Correlation Rotation Linear Precoding for MIMO Broad-
cast Communications,” IEEE Trans. Sig. Process., vol. 59, no. 1, pp.
252–262, Jan. 2011.

[16] C. Masouros, M. Sellathurai, and T. Ratnarajah, “Vector Perturbation
based on Symbol Scaling for Limited Feedback MISO Downlinks,”
IEEE Trans. Sig. Process., vol. 62, no. 3, pp. 562–571, Feb. 2014.

[17] C. Masouros and G. Zheng, “Exploiting Known Interference as Green
Signal Power for Downlink Beamforming Optimization,” IEEE Trans.

Sig. Process., vol. 63, no. 14, pp. 3628–3640, July 2015.

[18] G. Zheng, I. Krikidis, C. Masouros, S. Timotheou, D. A. Toumpakaris,
and Z. Ding, “Rethinking the Role of Interference in Wireless Net-
works,” IEEE Commun. Mag., vol. 52, no. 11, pp. 152–158, Nov. 2014.

[19] C. Masouros, T. Ratnarajah, M. Sellathurai, C. B. Papadias, and A. K.
Shukla, “Known Interference in the Cellular Downlink: A Performance
Limiting Factor or a Source of Green Signal Power?” IEEE Commun.

Mag., vol. 51, no. 10, pp. 162–171, Oct. 2013.

[20] M. Alodeh, S. Chatzinotas, and B. Ottersten, “Constructive Multiuser
Interference in Symbol Level Precoding for the MISO Downlink Chan-
nel,” IEEE Trans. Sig. Process., vol. 63, no. 9, pp. 2239–2252, May
2015.

[21] H. Jedda, A. Mezghani, J. A. Nossek, and A. L. Swindle-
hurst, “Massive MIMO Downlink 1-Bit Precoding with Linear Pro-
gramming for PSK Signaling,” arXiv preprint, Available online:
https://arxiv.org/abs/1704.06426, 2017.



15

[22] L. Vandenberghe and S. Boyd, Convex Optimization. Cambridge
University Press, 2004.

[23] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-

tion: Analysis, Algorithms, and Engineering Applications. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2001.

[24] C. Stockle, J. Munir, A. Mezghani, and J. A. Nossek, “Channel Esti-
mation in Massive MIMO Systems Using 1-Bit Quantization,” in 2016

IEEE 17th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), Edinburgh, 2016, pp. 1–6.


	I Introduction
	II System Model
	III 1-Bit Transmission Scheme based on Constructive Interference
	III-A Constructive Interference and Constructive Region
	III-B 1-Bit Transmission Scheme - Linear Beamforming
	III-C 1-Bit Transmission Scheme - Non-linear Mapping
	III-C1 Relaxation
	III-C2 Normalization


	IV Proposed Low-Complexity Symbol Scaling Approach
	IV-A A New Look at the Constructive Interference Criteria
	IV-B Initialization Stage
	IV-C Allocation Stage
	IV-C1 Sum-Max
	IV-C2 Max-Min

	IV-D Refinement Stage
	IV-E Algorithm

	V Computational Complexity Analysis
	V-A Exhaustive Search
	V-B Optimization-based Non-linear Mapping P4
	V-C Symbol Scaling Scheme
	V-D Pokemon

	VI Numerical Results
	VII Conclusion
	Appendix: Coordinate Transformation
	References

