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Massive MIMO Communications

Trinh Van Chien and Emil Björnson

Abstract Every new network generation needs to make a leap in area data through-

put, to manage the growing wireless data traffic. The Massive MIMO technology

can bring at least ten-fold improvements in area throughput by increasing the spec-

tral efficiency (bit/s/Hz/cell), while using the same bandwidth and density of base

stations as in current networks. These extraordinary gains are achieved by equipping

the base stations with arrays of a hundred antennas to enable spatial multiplexing

of tens of user terminals. This chapter explains the basic motivations and communi-

cation theory behind the Massive MIMO technology, and provides implementation-

related design guidelines.

1 Introduction

Much higher area data throughput is required in future cellular networks, since the

global demand for wireless data traffic is continuously growing. This goal can be

achieved without the need for more bandwidth or additional base stations if the spec-

tral efficiency (measured in bit/s/Hz/cell) is improved. This chapter explains why the

Massive MIMO (multiple-input multiple-output) communication technology, where

multi-antenna base stations spatially multiplex a multitude of user terminals over the

entire bandwidth, is well-suited for this purpose. The rationale behind the Massive

MIMO concept and its transmission protocol is explained from a historical perspec-

tive in Sect. 2. Next, Sect. 3 provides a basic communication theoretic performance

analysis. Closed-form spectral efficiency expressions are derived and the key prop-

erties and performance limitations of Massive MIMO are highlighted. The chapter
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Linköping University, Department of Electrical Engineering (ISY), SE-581 83 Linköping, Sweden
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2 Trinh Van Chien and Emil Björnson

is concluded by Sect. 4 where implementation-related design guidelines are given,

particularly regarding power allocation and the reuse of pilot sequences for effi-

cient channel estimation. Multi-cell simulations are provided to showcase that the

Massive MIMO technology can provide ten-fold or even 50-fold improvements in

spectral efficiency over contemporary technology, without the need for advanced

signal processing or network coordination. Finally, the full mathematical details are

provided in Appendix at the end of this chapter.

2 Importance of Improving the Spectral Efficiency

The wireless information traffic has doubled every two and a half years since the be-

ginning of wireless communications, as observed by Martin Cooper at ArrayComm

in the nineties. Different technologies and use cases have dominated in different

periods, but the exponential increase is currently driven by wireless data traffic in

cellular and local area networks. There are no indications that this trend will break

anytime soon; in fact, a slightly faster traffic growth is predicted in the well-reputed

Cisco Visual Networking Index and Ericsson Mobility Report.

To keep up with the rapid traffic growth, a key goal of the 5G technologies is to

improve the area throughput by orders of magnitude; 100× and even 1000× higher

throughput are regularly mentioned as 5G design goals. The area throughput of a

wireless network is measured in bit/s/km2 and can be modeled as follows:

Area throughput (bit/s/km2) =

Bandwidth (Hz)×Cell density (cells/km2)×Spectral efficiency (bit/s/Hz/cell).

This simple formula reveals that there are three main components that can be im-

proved to yield higher area throughput: (1) more bandwidth can be allocated for 5G

services; (2) the network can be densified by adding more cells with independently

operating access points; and (3) the efficiency of the data transmissions (per cell and

for a given amount of bandwidth) can be improved.

The improvements in area throughput in previous network generations have

greatly resulted from cell densification and allocation of more bandwidth. In urban

environments, where contemporary networks are facing the highest traffic demands,

cellular networks are nowadays deployed with a few hundred meters inter-site dis-

tances and wireless local area networks (WLANs) are available almost everywhere.

Further cell densification is certainly possible, but it appears that we are reaching

a saturation point. Moreover, the most valuable frequency bands are below 6 GHz

because these frequencies can provide good network coverage and service quality,

while higher bands might only work well under short-range line-of-sight conditions.

In a typical country like Sweden, the cellular and WLAN technologies have in total

been allocated more than 1 GHz of bandwidth in the interval below 6 GHz and thus

we cannot expect any major bandwidth improvements either.



Massive MIMO Communications 3

In contrast, the spectral efficiency (SE) has not seen any major improvements

in previous network generations. Hence, it might be a factor that can be greatly

improved in the future and possibly become the primary way to achieve high area

throughput in 5G networks. In this chapter, we describe the rationale and back-

ground of the physical-layer technology Massive multiple-input multiple-output

(MIMO), which provides the means to improve the SE of future networks by one or

two orders of magnitude.

2.1 Multi-User MIMO Communication

The SE of a single-input single-output (SISO) communication channel, from a

single-antenna transmitter to a single-antenna receiver, is upper bounded by the

Shannon capacity, which has the form log2(1+ SNR) bit/s/Hz for additive white

Gaussian noise (AWGN) channels. The SISO capacity is thus a logarithmic func-

tion of the signal-to-noise ratio (SNR), denoted here as SNR. To improve the SE we

need to increase the SNR, which corresponds to increasing the power of the trans-

mitted signal. For example, suppose we have a system that operates at 2 bit/s/Hz

and we would like to double its SE to 4 bit/s/Hz, then this corresponds to improv-

ing the SNR by a factor 5, from 3 to 15. The next doubling of the SE, from 4 to 8

bit/s/Hz, requires another 17 times more power. In other words, the logarithm of the

SE expression forces us to increase the transmit power exponentially fast to achieve

a linear increase in the SE of the SISO channel. This is clearly a very inefficient

and non-scalable way to improve the SE, and the approach also breaks down when

there are interfering transmissions in other cells that scale their transmit powers in

the same manner. We therefore need to identify another way to improve the SE of

cellular networks.

Each base station (BS) in a cellular network serves a multitude of user terminals.

Traditionally, the time/frequency resources have been divided into resource blocks

and only one of the user terminals was active per block. This terminal can then re-

ceive a single data stream with an SE quantified as log2(1+ SNR). The efficient

way to increase the SE of a cellular network is to have multiple parallel transmis-

sions. If there are G parallel and independent transmissions, the sum SE becomes

G log2(1+SNR) where G acts as a multiplicative pre-log factor. Parallel transmis-

sions can be realized by having multiple transmit antennas and multiple receive

antennas. There are two distinct cases:

1. Point-to-point MIMO [39], where a BS with multiple antennas communicates

with a single user terminal having multiple antennas.

2. Multi-user MIMO [34], where a BS with multiple antennas communicates with

multiple user terminals, each having one or multiple antennas.

There are many reasons why multi-user MIMO is the most scalable and attractive

solution [17]. Firstly, the wavelength is 5-30 cm in the frequency range of cellular

communication (1-6 GHz). This limits the number of antennas that can be deployed
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in a compact user terminal for point-to-point MIMO, while one can have almost any

number of spatially separated single-antenna terminals in multi-user MIMO. This is

an important distinction since the number of simultaneous data streams that can be

separated by MIMO processing equals the minimum of the number of transmit and

receive antennas. Secondly, the wireless propagation channel to a user terminal is

likely to have only a few dominating paths, which limits the ability to convey mul-

tiple parallel data streams to a terminal in point-to-point MIMO. The corresponding

restriction on multi-user MIMO is that the users need to be, say, a few meters apart

to have sufficiently different channel characteristics, which is a very loose restric-

tion that is true in most practical scenarios. Thirdly, advanced signal processing is

needed at the terminals in point-to-point MIMO to detect the multiple data streams,

while each terminal in multi-user MIMO only needs to detect a single data stream.

The canonical multi-user MIMO system consists of a BS with M antennas that

serves K single-antenna terminals; see Fig. 1 for a schematic illustration. The BS

multiplexes one data stream per user in the downlink and receives one stream per

user in the uplink. Simply speaking, the BS uses its antennas to direct each signal

towards its desired receiver in the downlink, and to separate the multiple signals

received in the uplink. If the terminal is equipped with multiple antennas, it is often

beneficial to use these extra antennas to mitigate interference and improve the SNR

rather than sending multiple data streams [6]. For the ease of exposition, this chap-

ter concentrates on single-antenna terminals. In this case, min(M,K) represents the

maximal number of data streams that can be simultaneously transmitted in the cell,

while still being separable in the spatial domain. The number min(M,K) is referred

to as the multiplexing gain of a multi-user MIMO system.

2.2 Lessons Learned

The research on multi-user MIMO, particularly with multi-antenna BSs, has been

going on for decades. Some notable early works are the array processing papers

[1, 38, 44, 47], the patent [36] on spatial division multiple access (SDMA), and

the seminal information-theoretic works [11, 18, 42, 43, 46] that characterized the

achievable multi-user capacity regions, assuming that perfect channel state infor-

mation (CSI) is available in the system. In this section, we summarize some of the

main design insights that have been obtained over the years.

Capacity-achieving transmission schemes for multi-user MIMO are based upon

non-linear signal processing; for example, the dirty-paper coding (DPC) scheme that

achieves the downlink capacity and the successive interference cancelation (SIC)

scheme that achieves the uplink capacity. The intuition behind these schemes is that

the inter-user interference needs to be suppressed, by interference-aware transmit

processing or iterative interference-aware receive processing, to achieve the optimal

performance. These non-linear schemes naturally require extensive computations

and accurate CSI, because otherwise the attempts to subtract interference cause

more harm than good.
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(a)

(b)

Fig. 1 Illustration of the downlink and uplink transmission in a multi-user MIMO system, where

the BS is equipped with M antennas and serves K user terminals simultaneously. This illustration

focuses on line-of-sight propagation where the downlink signals can be viewed as angular beams,

but multi-user MIMO works equally well in non-line-of-sight conditions. (a) Downlink in multi-

user MIMO. (b) Uplink in multi-user MIMO

How large are the gains of optimal non-linear processing (e.g., DPC and SIC)

over simplified linear processing schemes where each user terminal is treated sep-

arately? To investigate this, let us provide a numerical example where K = 10 user

terminals are simultaneously served by a BS with M antennas. For simplicity, each

user is assumed to have an average SNR of 5 dB, there is perfect CSI available

everywhere, and the channels are modeled as uncorrelated Rayleigh fading (this is

defined in detail in Sect. 3). Figure 2 shows the average sum SE, as a function of M,

achieved by sum capacity-achieving non-linear processing and a simplified linear

processing scheme called zero-forcing (ZF), which attempts to suppress all interfer-

ence. The results are representative for both uplink and downlink transmissions.

This simulation shows that the non-linear processing greatly outperforms linear

ZF when M ≈ K. The operating point M = K makes particular sense from a multi-

plexing perspective since the multiplexing gain min(M,K) does not improve if we

let M increase for a fixed K. Nevertheless, Fig. 2 shows that there are other rea-
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Fig. 2 Average spectral efficiency in a multi-user MIMO system with K = 10 users and varying

number of BS antennas. Each user has an average SNR of 5 dB and the channels are Rayleigh

fading. The sum capacity is compared with the performance of linear ZF processing and the upper

bound when neglecting all interference. The results are representative for both uplink and downlink

sons to consider M > K; the capacity increases and the performance with linear

ZF processing approaches the capacity. Already at M = 20 (i.e., M/K = 2) there

is only a small gap between optimal non-linear processing and linear ZF. In fact,

both schemes also approach the upper curve in Fig. 2 which represents the upper

bound where the interference between the users is neglected. This shows that we

can basically serve all the K users as if each one of them was alone in the cell.

First lesson learned: Linear processing, such as ZF, provides a sum spectral

efficiency close to the sum capacity when M ≫ K.

The performance analysis and optimization of linear processing schemes have

received much attention from academic researchers. While non-linear schemes are

hard to implement but relatively easy to analyze and optimize, linear processing

schemes have proved to have the opposite characteristics. In particular, computing

the optimal downlink linear precoding is an NP-hard problem in many cases [27],

which requires monotonic optimization tools to solve; see for example [9]. Never-

theless, the suboptimal ZF curve in Fig. 2 was generated without any complicated

optimization, thus showing that the optimal linear processing obtained in [9] can

only bring noticable gains over simple ZF for M ≈ K, which is the regime where we

have learnt not to operate.

As mentioned earlier, the BS needs CSI in multi-user MIMO systems to sep-

arate the signals associated with the different users. Perfect CSI can typically not

be achieved in practice, since the channels are changing over time and frequency,

and thus must be estimated using limited resources. The channel estimation of a

frequency-selective channel can be handled by splitting the frequency resources into
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multiple independent frequency-flat subchannels that can be estimated separately.

A known pilot sequence is transmitted over each such subchannel and the received

signal is used to estimate the channel response. In order to explore all spatial chan-

nel dimensions, this sequence must at least have the same length as the number of

transmit antennas [8]. This means that a pilot sequence sent by the BS needs to have

the length M, while the combined pilot sequence sent by the single-antenna user

terminals needs to have the length K.

There are two ways of implementing the downlink and uplink transmission over

a given frequency band. In frequency division duplex (FDD) mode the bandwidth

is split into two separate parts: one for the uplink and one for the downlink. Pilot

sequences are needed in both the downlink and the uplink due to the frequency-

selective fading, giving an average pilot length of (M+K)/2 per subchannel. There

is an alternative time-division duplex (TDD) mode where the whole bandwidth is

used for both downlink and uplink transmission, but separated in time. If the system

switches between downlink and uplink faster than the channels are changing, then

it is sufficient to learn the channels in only one of the directions. This leads to an

average pilot length of min(M,K) per subchannel, if we send pilots only in the

most efficient direction. In the preferable operating regime of M ≫ K, we note that

TDD systems should send pilots only in the uplink and the pilot length becomes

min(M,K) = K. We conclude that TDD is the preferable mode since it not only

requires shorter pilots than FDD, but is also highly scalable since the pilot length is

independent of the number of BS antennas.

We give a concrete numerical example in Fig. 3 for downlink transmission with

K = 10 users, an SNR of 5 dB, and uncorrelated Rayleigh fading channels. Two

linear precoding schemes are considered; (a) maximum ratio (MR) and (b) zero-

forcing (ZF). These schemes are later defined mathematically in Sect. 3. This sim-

ulation compares the SE obtained when having perfect CSI with the performance

when having CSI estimated with pilot sequences of length τp. The SE is shown as

a function of the number of BS antennas, M, and we compare TDD mode using

τp = K = 10 with FDD mode using either τp = 10, τp = M, or τp = min(M,50),
where the latter models an arbitrarily chosen maximum pilot length of 50 (e.g., mo-

tivated by pilot overhead constraints).

In TDD mode there is a visible performance loss in Fig. 3 as compared to hav-

ing perfect CSI. The loss with MR precoding is very small, which shows that it is

robust to estimation errors. The performance loss is larger for ZF precoding, since

estimation errors make it harder to suppress interference, but we notice that ZF any-

way provide higher performance than MR for all considered M. We notice that the

performance losses are substantially constant irrespective of the number of BS an-

tennas, thus TDD systems always benefit from adding more antennas. In contrast,

FDD systems only benefits from adding more antennas if the pilot sequences are

also made longer, as in the case τp = M. With τp = 10 there is no benefit from hav-

ing more than 10 antennas, while the performance saturates at 50 antennas when

τp = min(M,50). In summary, TDD operation is fully scalable with respect to the

number of BS antennas, while FDD operation can only handle more antennas by

also increasing the pilot overhead. It is practically feasible to deploy FDD systems
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with many antennas, particularly for slowly varying channels where we can accept

a large pilot overhead, but TDD is always the better choice in this respect.

Second lesson learned: The channel estimation is simplified when operating

in TDD mode, since the pilot sequences only need to be of length K irrespec-

tive of the number of BS antennas M.

Note that the uplink works in the same way in the TDD and FDD modes, while

the distinct benefit of TDD in terms of scalability appears in the downlink.

2.2.1 Favorable Propagation

Recall from Fig. 2 that by adding more BS antennas, both the sum capacity-

achieving non-linear processing and the simplified linear ZF processing approached

the case without interference. This is not a coincidence but a fundamental property

that is referred to as favorable propagation.

Let h1,h2 ∈C
M represent the channel responses between a BS and two different

user terminals. If these vectors are non-zero and orthogonal in the sense that

hH
1 h2 = 0, (1)

where (·)H denotes the conjugate transpose, then the BS can completely separate the

signals s1,s2 transmitted by the users when it observes y = h1s1 +h2s2. By simply

computing the inner product between y and h1, the BS obtains

hH
1 y = hH

1 h1s1 +hH
1 h2s2 = ‖h1‖2s1 (2)

where the inter-user interference disappeared due to (1). The same thing can be done

for the second user: hH
2 y = ‖h2‖2s2. Note that the BS needs perfect knowledge of h1

and h2 to compute these inner products. The channel orthogonality in (1) is called

favorable propagation, since the two users can communicate with the BS without

affecting each other.

Is there a chance that practical channels offer favorable propagation? Probably

not according to the strict definition that hH
1 h2 = 0, but an approximate form of

favorable propagation is achieved in non-line-of-sight scenarios with rich scattering:

Lemma 1. Suppose that h1 ∈ C
M and h2 ∈ C

M have independent random entries

with zero mean, identical distribution, and bounded fourth-order moments, then

hH
1 h2

M
→ 0 (3)

almost surely as M → ∞.

Proof. This is a consequence of the law of large numbers. A direct proof is provided

along with Theorem 3.7 in [14]. �
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Fig. 3 Average downlink spectral efficiency, as a function of the number of BS antennas, with dif-

ferent processing schemes and different types of CSI available at the BS. (a) Downlink simulation

with maximum ratio precoding. (b) Downlink simulation with zero-forcing precoding
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This lemma shows that the inner product between h1 and h2, if normalized with

the number of BS antennas, goes asymptotically to zero as M increases. We refer

to this as asymptotic favorable propagation and note that this phenomenon explains

the behaviors in Fig. 2; the difference between having no inter-user interference and

suppressing the interference by ZF becomes smaller and smaller as the number of

antennas increases, because the loss in desired signal gain when using ZF reduces

when the user channels become more orthogonal.

One special case in which Lemma 1 holds is h1,h2 ∼ CN (0,IM), where

CN (·, ·) denotes a multi-variate circularly symmetric complex Gaussian distribu-

tion and IM is the M ×M identity matrix. This is known as uncorrelated Rayleigh

fading and in this case one can even prove that the variance of the inner product in

(3) is 1/M and thus decreases linearly with the number of antennas [31]. Many aca-

demic works on Massive MIMO systems consider Rayleigh fading channels, due

to the analytic tractability of Gaussian distributions. Nevertheless, Lemma 1 shows

that asymptotic favorable propagation holds for other random channel distributions

as well. This mathematical result can be extended to also include correlation be-

tween the elements in a channel vector. One can also derive similar analytic results

for line-of-sight propagation [31] and behaviors that resemble asymptotic favorable

propagation have been observed also in the real-world multi-user MIMO channel

measurements presented in [16, 20].

Third lesson learned: Most wireless channels seem to provide asymptotic

favorable propagation.

This lesson is yet another reason to design multi-user MIMO systems with

M ≫ K. It is, however, important to note that (hH
1 h2)/M → 0, as M → ∞, does

not imply that hH
1 h2 → 0. Strict favorable propagation is unlikely to appear in prac-

tical or theoretical channels. In fact, the inner product hH
1 h2 grows roughly as

√
M

for Rayleigh fading channels. The key point is that this correlation has a negligible

impact, since the SE depends on (hH
1 h2)/M which goes to zero roughly as 1/

√
M.

Moreover, the main suppression of inter-user interference appears already at rela-

tively small number of antennas due to the square root.

2.3 Massive MIMO Concept

The Massive MIMO concept was proposed in the seminal paper [28] and described

in the patent [29], both of which have received numerous scientific awards. Mas-

sive MIMO takes multi-user MIMO communications to a new level by designing a

highly scalable communication protocol that utilizes the three lessons described in

Sect. 2.2. The basic information and communication theoretic limits of this 5G tech-

nology were established in early works such as [3, 19, 21, 23, 30]. In this chapter

we define Massive MIMO as follows:



Massive MIMO Communications 11

Bc

Time

Frequency Tc

Downlink
data

Uplink
pilots and data

Fig. 4 Illustration of the basic Massive MIMO transmission protocol, where the time-frequency

resources are divided into coherence intervals, each containing τc = BcTc transmission symbols.

Each coherence interval contains uplink pilot sequences and can be used for both uplink and down-

link payload data transmission based on TDD operation

Massive MIMO is a multi-user MIMO system with M antennas and K users

per BS. The system is characterized by M ≫ K and operates in TDD mode

using linear uplink and downlink processing.

This definition does not manifest any particular ratio between M and K, or any

particular orders of magnitude that these parameters should have. One attractive

example is a system with M in the range of 100 to 200 antennas, serving between

K = 1 and K = 40 users depending on the data traffic variations. The first public real-

time implementation of Massive MIMO is the LuMaMi testbed described in [41],

which features M = 100 and K = 10. We stress that other definitions of Massive

MIMO are available in other works and can both be more restrictive (e.g., require

certain dimensionality of M and K) and looser (e.g., also include FDD mode), but

in this chapter we only consider the definition above.

The BS antenna array typically consists of M dipole antennas, each having an

effective size λ/2×λ/2, where λ is the wavelength. This means that an array area

of 1 m2 can fit 100 antennas at a 1.5 GHz carrier frequency and 400 antennas at 3

GHz. Each antenna is attached to a separate transceiver chain, so that the system can

access the individual received signal at each antenna and select the individual sig-

nals to be transmitted from each antenna. The array can have any geometry; linear,

rectangular, cylindrical, and distributed arrays are described in [25]. It is important

to note that no model of the array geometry is exploited in the Massive MIMO pro-

cessing, thus the antennas can be deployed arbitrarily without any geometrical array

calibration.

The basic Massive MIMO transmission protocol is illustrated in Fig. 4. The time-

frequency resources are divided into blocks of size Bc Hz and Tc s, with the purpose

of making each user channel approximately frequency-flat and static within a block.

Hence, the bandwidth Bc is selected to be smaller or equal to the anticipated channel

coherence bandwidth among the users, while Tc is smaller or equal to the antici-

pated channel coherence time of the users. For this particular reason, each block is

referred to as a coherence interval. The number of transmission symbols that fit into
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a coherence interval is given by τc = BcTc, due to the Nyquist-Shannon sampling

theorem. The dimensionality of the coherence interval depends greatly on the antic-

ipated system application. For example, a coherence interval of τc = 200 symbols

can be obtained with Bc = 200 kHz and Tc = 1 ms, which supports highway user

velocities in urban environments at 2 GHz carrier frequencies. Much larger coher-

ence intervals (e.g., τc at the order of 103 or 104) can be obtained by limiting the

application to scenarios with low user mobility and short delay spread.

Each coherence interval is operated in TDD mode and can contain both downlink

and uplink payload transmissions. To enable channel estimation at the BS, τp of the

symbols in each coherence interval are allocated for uplink transmission of pilot

sequences (where τp ≥ K), while the remaining τc − τp symbols can be allocated

arbitrarily between uplink and downlink payload data transmissions.

We let γUL and γDL denote the fractions of uplink and downlink payload trans-

mission, respectively. This means that the uplink contains γUL(τc − τp) data sym-

bols and the downlink contains γDL(τc − τp) data symbols per coherence interval.

Naturally, these fractions satisfies γUL + γDL = 1 and γUL,γDL ≥ 0. Notice that no

downlink pilots are assumed in this protocol, since the effective precoded channels

converge to their mean values when the BS has many antennas (due to the law of

large numbers). It is certainly possible to also send a small amount of downlink pi-

lots, particularly for estimating the small fading variations of the effective precoded

channels, but the additional gains from doing this appears to be small in many rele-

vant Massive MIMO cases [33].

Based on this definition of Massive MIMO, the next sections analyze how large

SEs that the transmission protocol can offer in 5G cellular networks.

3 Performance Analysis

In this section, we describe the uplink detection and downlink precoding of a Mas-

sive MIMO network, and analyze the achievable system performance. We consider

a basic Massive MIMO network comprising L cells, each consisting of a BS with M

antennas and K single-antenna user terminals.

The channel response between the lth BS and user k in the ith cell is denoted

by hl
i,k = [hl

i,k,1 . . . hl
i,k,M]T ∈ C

M , where (·)T denotes the transpose. These channel

vectors are ergodic random variables that are assumed to take new independent re-

alizations in each coherence interval; recall the Massive MIMO protocol described

in Sect. 2.3. To show that the general concept of Massive MIMO is applicable in

any propagation environment, we keep the performance analysis general by only

defining the basic statistical channel properties: the mean value and variance of

each channel coefficient hl
i,k,m (note that m stands for the mth antenna at BS l, for

m = 1, . . . ,M). We let

h̄
l
i,k = E{hl

i,k}= [h̄l
i,k,1 . . . h̄l

i,k,M]T (4)



Massive MIMO Communications 13

denote the vector of mean values. The variance of the mth coefficient of hl
i,k is de-

noted by

β l
i,k = V{hl

i,k,m}, (5)

which is independent of the antenna index m (assuming that the large-scale fading

is stationary over the BS array). We also assume that each BS and user can keep

perfect track of these long-term statistical properties, and that the user channels are

statistically independent.

Using these channel properties, we now analyze the uplink and the downlink.

3.1 Uplink with Linear Detection

For each uplink symbol, the received baseband signal yl ∈C
M at the lth BS is mod-

eled as

yl =
L

∑
i=1

K

∑
k=1

hl
i,k
√

pi,kxi,k +nl , (6)

where xi,k is the normalized transmission symbol (with E{|xi,k|2}= 1) and pi,k is the

transmit power of user k in cell i. The receiver hardware at the BS is contaminated

by additive white noise, as modeled by the vector nl ∈ C
M which is zero-mean

circularly symmetric complex Gaussian distributed with variance σ2
UL; that is, nl ∼

CN (0,σ2
ULIM).

The matrix notations Hl
i = [hl

i,1 . . . hl
i,K ] ∈ C

M×K , Pi = diag(pi,1, . . . , pi,K) ∈
C

K×K , and xi = [xi,1 . . . xi,K ]
T ∈ C

K can be used to write the multi-cell multi-user

MIMO system model from (6) in a compact matrix form:

yl =
L

∑
i=1

Hl
iP

1/2
i xi +nl . (7)

The channels hl
i,k need to be estimated at BS l to perform good detection and this

is done in the uplink by letting each user transmit a sequence of τp pilot symbols;

see Fig. 4. We let τp = f K for some positive integer f (e.g., 1,2, . . .) which is called

the pilot reuse factor. This allows for linear independence between a total of τp

different pilot sequences. This is, by design, sufficient to allocate independent pilot

sequence to the K users in each cell and to also divide the L cells into f disjoint cell

groups having fully independent pilot sequences. The benefit of having multiple cell

groups is reduced interference during the pilot transmission and the corresponding

gains in estimation quality are quantified below.

The uplink received signal Y
pilot
l ∈C

M×τp at the lth BS during pilot transmission

is

Y
pilot
l =

L

∑
i=1

Hl
iP

1/2
i ΦΦΦH

i +Nl (8)
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and collects the received signal from (7) over the τp pilot symbols. Here, ΦΦΦi =
[φφφ i,1 . . .φφφ i,K ] ∈ C

τp×K denotes the pilot matrix used by the K users in the ith cell,

where φφφ i,k ∈ C
τp is the pilot sequence used by the kth user in that cell. The pilot

matrix satisfies ΦΦΦH
i ΦΦΦi = τpIK . Moreover, ΦΦΦH

l ΦΦΦi = τpIK if cell l and cell j belong to

the same cell group (i.e., use the same set of pilots), while ΦΦΦH
l ΦΦΦi = 0 if the two cells

belong to different cell groups. For notational convenience, we let Pl ⊂ {1, . . . ,L}
denote the set of cell indices that belong to the same cell group as cell l, including l

itself. Some particular examples are given later in Fig. 7.

By using the channel mean and variances, defined in the beginning of Sect. 3, we

can use the linear minimum mean square error (LMMSE) estimator to separately

acquire each element of hl
i,k from the received pilot signal (8), which was proposed

in [37] as a low-complexity estimation scheme. The channel estimate ĥ
l

i,k related to

the true channel response hl
i,k is given by the following lemma.

Lemma 2. Suppose that BS l estimates each channel coefficient separately from its

received signal (8) using an LMMSE estimator. BS l can then estimate the channel

to the kth user in the jth cell as

ĥ
l

j,k = h̄
l
j,k +

√
p j,kβ l

j,k

∑i∈P j
pi,kτpβ l

i,k +σ2
UL

(
Y

pilot
l φφφ j,k − ∑

i∈P j

√
pi,kτph̄

l
i,k

)
. (9)

Each element of the uncorrelated estimation error el
j,k = hl

j,k − ĥ
l

j,k has zero mean

and the variance

MSEl
j,k = β l

j,k

(
1−

p j,kτpβ l
j,k

∑i∈P j
pi,kτpβ l

i,k +σ2
UL

)
. (10)

Proof. The proof is available in Appendix at the end of this chapter. �

It is worth emphasizing that the estimation error variance in (10) is independent

of M, thus the estimation quality per channel coefficient is not affected by adding

more antennas at the BS. Note that Lemma 2 holds for any correlation between the

channel coefficients, since each coefficient is estimated separately. If the channel

coefficients are correlated, with a known correlation structure and distribution, the

estimation quality would improve with the number of antennas if the estimator is

modified appropriately [8]. We also stress that the estimation error is only affected

by noise and interference from the users in the same cell group that are allocated the

same pilot sequence. In addition, we notice that the estimate in (9) can be computed

using elementary linear algebra operations, with low computational complexity.

Using the channel estimates derived in Lemma 2, in this chapter, we analyze the

performance of a Massive MIMO network with non-cooperative BSs. During up-

link payload data transmission this means that the BS in cell l only utilizes its own

received signal yl in (6) and only targets to detect the signals sent by its own K

users. Signals coming from users in other cells are perceived as inter-cell interfer-

ence and eventually treated as additional noise. The BS in cell l discriminates the
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signal transmitted by its kth user from the interference by multiplying the received

signal in (6) with a linear detection vector vl,k ∈ C
M as follows:

vH
l,kyl =

L

∑
i=1

K

∑
t=1

vH
l,khl

i,t
√

pi,txi,t +vH
l,knl

= vH
l,khl

l,k
√

pl,kxl,k︸ ︷︷ ︸
Desired signal

+
K

∑
t=1
t 6=k

vH
l,khl

l,t
√

pl,txl,t

︸ ︷︷ ︸
Intra-cell interference

+
L

∑
i=1
i 6=l

K

∑
t=1

vH
l,khl

i,t
√

pi,txi,t

︸ ︷︷ ︸
Inter-cell interference

+ vH
l,knl︸ ︷︷ ︸

Residual noise

(11)

where xi,t is the transmitted data symbol from user t in cell i. As seen from (11),

the processed received signal is the superposition of four parts: the desired signal,

intra-cell interference, inter-cell interference, and residual noise. Since the linear

detection vector vl,k appears in all these terms, it can be used to amplify the desired

signal, suppress the interference, and/or suppress the noise. More precisely, by gath-

ering the detection vectors at BS l in matrix form as Vl = [vl,1 . . .vl,K ]∈C
M×K , there

are two main schemes being considered in the Massive MIMO literature: maximum

ratio (MR) and zero-forcing (ZF). These are given by

Vl =





Ĥ
l

l , for MR,

Ĥ
l

l

(
(Ĥ

l

l)
HĤ

l

l

)−1

, for ZF.
(12)

MR detection exploits the M observations in yl to maximize the ratio between the

average signal gain in (11) and the norm of the detection vector:

E

{
vH

l,khl
l,k

‖vl,k‖

}
=

vH
l,kĥ

l

l,k

‖vl,k‖
≤ ‖ĥ

l

l,k‖ (13)

where the expectation is computed with respect to the zero-mean channel estima-

tion error. The inequality in (13) is satisfied with equality by vl,k = ĥ
l

l,k (leading to

MR detection with Vl = Ĥ
l

l). In contrast, the ZF detection matrix utilizes the M ob-

servations over the antennas to minimize the average intra-cell interference, while

retaining the desired signals:

E{VH
l Hl

lP
1/2

l xl}= VH
l Ĥ

l

lP
1/2

l xl =
(
(Ĥ

l

l)
HĤ

l

l

)−1(
(Ĥ

l

l)
HĤ

l

l

)
P

1/2

l xl = P
1/2

l xl

(14)

where the expectation is computed with respect to the zero-mean channel estimation

error and the second equality follows from the ZF detection matrix definition. The

average processed signal becomes P
1/2

l xl = [
√

pl,1xl,1 . . .
√

pl,Kxl,K ]
T , which con-

tains no intra-cell interference. Note that the inverse of the K ×K matrix (Ĥ
l

l)
HĤ

l

l
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Fig. 5 Block diagram of the uplink transmission with linear detection in a multi-cell multi-user

MIMO network, where BS l receives a linear combination of the signals transmitted from all K

users in all L cells

only exists if M ≥ K. There are also multi-cell variants of ZF detection that can be

used to cancel out inter-cell interference; see for example [2] and [7].

A block diagram of the uplink transmission with linear detection is provided in

Fig. 5. The purpose of the detection is to make the detected signal x̃l,k at BS l equal to

the true signal xl,k, at least up to a scaling factor. Due to noise and estimation errors,

there is always a mismatch between the signals which is why the communication

link has a limited capacity. If the true signal xl,k originates from a discrete constella-

tion set X (e.g., a quadrature amplitude modulation (QAM)), x̃l,k is selected based

on vH
l,kyl by finding the minimum distance over all the candidates x ∈ X :

x̃l,k = min
x∈X

∣∣∣vH
l,kyl −vH

l,kĥ
l

l,k
√

pl,k x

∣∣∣
2

. (15)

This expression can be utilized to compute bit error rates and similar uncoded per-

formance metrics. Since modern communication systems apply channel coding over

relatively long data blocks, to protect against errors, the ergodic channel capacity is

a more appropriate performance metric in 5G networks. It merits to note that the

ergodic capacitites of the individual communication links are hard to characterize

exactly, particularly under imperfect channel knowledge, but tractable lower bounds

are obtained by the following theorem.
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Theorem 1. In the uplink, a lower bound on the ergodic capacity of an arbitrary

user k in cell l is

RUL
l,k = γUL

(
1− τp

τc

)
log2

(
1+SINRUL

l,k

)
, (16)

where the signal-to-interference-and-noise ratio (SINR) is

SINRUL
l,k =

pl,k

∣∣∣E
{

vH
l,khl

l,k

}∣∣∣
2

L

∑
i=1

K

∑
t=1

pi,tE

{
|vH

l,khl
i,t |2
}
− pl,k

∣∣∣E
{

vH
l,khl

l,k

}∣∣∣
2

+σ2
ULE

{
‖vl,k‖2

} . (17)

Proof. The proof is available in Appendix at the end of this chapter. �

Theorem 1 demonstrates that the achievable SE of an arbitrary user k in cell l in

a Massive MIMO network can be described by an SINR term SINRUL
l,k that contains

expectations with respect to the small-scale channel fading. The numerator contains

the gain of the desired signal, while the denominator contains three different terms.

The first term is the average power of all the signals, including both multi-user

interference and the desired signal, while the second term subtracts the part of the

desired signal power that is usable for decoding. The third term is the effective

noise power. The pre-log factor (1 − τp

τc
) compensates for the fact that τp/τc of

the transmission symbols contain pilots instead of payload data. The SE is also

multiplied by γUL, which was defined earlier as the fraction of uplink data. Clearly,

MR detection aims at maximizing the numerator of SINRUL
l,k , while ZF detection

tries to minimize the intra-cell interference.

The expectations in Theorem 1 can be computed numerically for any channel

distribution and any detection scheme. In the case of MR detection, the desired

signal gain |E{vH
l,khl

l,k}|2 grows as M2 for most channel distributions, while the

noise term σ2
ULE{‖vl,k‖2} only grows as M and thus becomes less significant the

more antennas are deployed at the BS. This property is known as the array gain

from coherent detection. The behavior of the multi-user interference terms greatly

depends on the channel distribution, but typically these terms will also have the

slower scaling of M [31], except for users that interfered with each other during

pilot transmission (i.e., appeared in each other’s expressions (10) for the estimation

error variance). The latter is a phenomenon called pilot contamination and is further

discussed later in this chapter.

To demonstrate these properties in detail, we now consider the special case in

which the channel between BS l and user k in cell i is uncorrelated Rayleigh fading:

hl
i,k ∼ CN

(
0,β l

i,kIM

)
. (18)

Hence, h̄
l
i,k = E{hl

i,k}= 0, which means that there is no line-of-sight channel com-

ponent. This special case is relevant in rich-scattering environments where the chan-

nel does not have any statistically dominating directivity.
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Subsequently, the LMMSE estimate in Lemma 2 simplifies to

ĥ
l

j,k =

√
p j,kβ l

j,k

∑
i∈P j

pi,kτpβ l
i,k +σ2

UL

Y
pilot
l φφφ j,k (19)

and becomes circularly-symmetric complex Gaussian distributed:

ĥ
l

j,k ∼ CN

(
0,(β l

j,k −MSEl
j,k)IM

)
. (20)

There is an important relationship between the two estimated channels ĥ
l

l,k and ĥ
l

i,k

for cell indices i and l such as i ∈ Pl expressed by

ĥ
l

i,k =

√
pi,kβ l

i,k√
pl,kβ l

l,k

ĥ
l

l,k. (21)

This equation shows that BS l cannot tell apart the channels of users that send the

same pilot sequence; the estimates are the same up to a scaling factor. This fact is

the cause of pilot contamination and will have a key impact on the performance, as

shown later.

Moreover, the LMMSE estimator in (19) is also the MMSE estimator in the spe-

cial case of Rayleigh fading, since the channels are Gaussian distributed [24]. By

using these key properties, the ergodic SE in Theorem 1 can be computed in closed

form for MR and ZF detection, as shown by the following corollary.

Corollary 1. In the uplink, if all channels are uncorrelated Rayleigh fading, the

lower bound on the ergodic capacity of user k in cell l stated in Theorem 1 becomes

RUL
l,k = γUL

(
1− τp

τc

)
log2

(
1+SINRUL

l,k

)
, (22)

where the SINR is

SINRUL
l,k =

Gpl,kβ l
l,k

pl,kτpβ l
l,k

∑i′∈Pl
pi′ ,kτpβ l

i′ ,k+σ2
UL

G ∑
i∈Pl\{l}

pi,kβ l
i,k

pi,kτpβ l
i,k

∑i′∈Pl
pi′ ,kτpβ l

i′ ,k+σ2
UL

+
L

∑
i=1

K

∑
t=1

pi,tz
l
i,t +σ2

UL

(23)

and the parameters G and zl
i,t depend on the choice of detection scheme. MR gives

G = M and zl
i,t = β l

i,t , while ZF gives G = M−K and

zl
i,t =

{
MSEl

i,t , for i ∈ Pl ,

β l
i,t , otherwise.

Proof. The proof is available in Appendix at the end of this chapter. �
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The closed-form achievable SE expressions in Corollary 1 provide many insights

on the advantages of spatial multi-user multiplexing and the effects of channel esti-

mation. Firstly, the desired signal term in the numerator of (23) scales with the num-

ber of BS antennas, proportionally to M and M −K with MR and ZF, respectively.

This array gain is multiplied with the average received signal power per antenna,

pl,kβ l
l,k, and the relative channel estimation quality

pl,kτpβ l
l,k

∑i′∈Pl
pi′,kτpβ l

i′,k +σ2
UL

, (24)

which is a number between 0 and 1 (where 1 is perfect CSI and 0 is no CSI).

Secondly, we notice that the first term of the denominator in (23) has a similar

structure as the desired signal and represents the coherent pilot contamination—

interference that is amplified along with the desired signals due the BS’s inability to

tell apart users that use the same pilot sequence. The pilot contamination degrades

the SINR by adding additional interference that scales as M or M−K, depending on

the detection scheme. However, since pilot contamination only arises at BS l from

the interfering user in cell i in Pl , the network can suppress pilot contamination by

increasing the pilot reuse factor f and by designing the cell groups appropriately. To

understand how to suppress pilot contamination, we have a look at the ratio between

the pilot contamination term and the signal term in (23):

G ∑
i∈Pl\{l}

pi,kβ l
i,k

pi,kτpβ l
i,k

∑i′∈Pl
pi′ ,kτpβ l

i′ ,k+σ2
UL

Gpl,kβ l
l,k

pl,kτpβ l
l,k

∑i′∈Pl
pi′ ,kτpβ l

i′ ,k+σ2
UL

= ∑
i∈Pl\{l}

(
pi,kβ l

i,k

pl,kβ l
l,k

)2

. (25)

This ratio represents the relative strength of the pilot contamination and (25) should

preferably be small. The pilot contamination caused by UE k in cell i is small when-

ever β l
i,k/β l

l,k is small, which occurs when either β l
l,k is large (i.e., the desired user

is close to its serving BS) or β l
i,k is small (i.e., the interfering cell is far away). The

cell groups should be designed based on these properties, and this issue is further

discussed in Sect. 4.2.

Thirdly, the performance in Corollary 1 is also affected by classical noise and

interference. Since MR focuses only on maximizing the SNR, the interference term

∑
L
i=1 ∑

K
t=1 pi,tβ

l
i,t is simply the average signal power received at any antenna of BS

l. In contrast, ZF pays attention to the intra-cell interference and takes no notice

of the noise. The interference suppression replaces the full channel variance β l
i,t

in the aforementioned interference summation with the estimation error variance

MSEl
i,t for cells i ∈ Pl . Due to the imperfect CSI (i.e., MSEl

i,t > 0) not all intra-cell

interference can be removed by ZF. However, the pilot contamination also has the

positive effect that not only intra-cell interference is suppressed, but also the inter-

cell interference coming from other users in the same cell group (which use the same

pilots as in cell l). The fact that the interference and noise terms are independent
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of M, while the desired signal scales with M, is a consequence of the asymptotic

favorable propagation that was described in Sect. 2.2.1.

If we limit the scope to a single-cell network, achievable SE expressions can be

obtained directly from Corollary 1 by simply setting Pl = {l} and removing the

interference from all other cells j ∈ {1, . . . ,L} \ {l}. For simplicity of exposition,

we leave out the cell index l in this special case.

Corollary 2. In the single-cell uplink, if all channels are uncorrelated Rayleigh fad-

ing, a lower bound on the ergodic SE of an arbitrary user k is given by

RUL
k = γUL

(
1− τp

τc

)
log2


1+

Gp2
kτpβ 2

k

(
pkτpβk +σ2

UL

)( K

∑
t=1

ptzt +σ2
UL

)


 . (26)

Here, the parameters G and zt depend on the detection scheme. MR gives G = M

and zt = βt , while ZF gives G = M−K and zt =
βt σ

2
UL

pt τpβt+σ2
UL

.

This corollary shows that the spatial multi-user multiplexing capability is even

greater in isolated single-cell networks. The most notable difference compared to a

multi-cell network is the lack of inter-cell interference, both during data and pilot

transmission. In other words, the interference only originates from users within the

own cell, while pilot contamination vanishes thanks to the orthogonality of all pilot

sequences in the cell. The SE per cell is therefore higher in single-cell networks than

in the multi-cell networks—at least if the cell geometry is the same and we only

neglect inter-cell interference. The motivation of having multiple cells is, of course,

to cover a larger area and thereby achieve much higher total SE. The scenarios when

the interference suppression of ZF is beneficial as compared to MR can be identified

from Corollary 2 as the cases when

M−K

K

∑
t=1

pt βt σ2
UL

pt τpβt+σ2
UL

+σ2
UL

>
M

K

∑
t=1

ptβt +σ2
UL

. (27)

To summarize, we have derived uplink SE expressions for Massive MIMO net-

works, for general channel distributions in Theorem 1 and for Rayleigh fading in

Corollary 1. In the latter case, the expressions are in closed form and can thus be

computed and analyzed directly, without having to simulate any channel fading re-

alizations. These expressions are used in Sect. 4 to illustrate the anticipated perfor-

mance of Massive MIMO networks.
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3.2 Downlink with Linear Precoding

Next, we consider the downlink of a Massive MIMO network where the BSs are

transmitting signals to their users. For an arbitrary BS l, we let xl ∈ C
M denote

the transmitted signal vector intended for its K users. We consider linear precoding

where this vector is computed as

xl =
K

∑
t=1

√
ρl,twl,tsl,t , (28)

where the payload symbol sl,t intended for user t in cell l has unit transmit power

E{|sl,t |2}= 1 and ρl,t represents the transmit power allocated to this particular user.

Moreover, wl,t ∈C
M , for t = 1, . . . ,K, are the corresponding linear precoding vectors

that determine the spatial directivity of the signal sent to each user.

The received signal yl,k ∈ C at user k in cell l is modeled as

yl,k =
L

∑
i=1

(hi
l,k)

Hxi +nl,k, (29)

where nl,k ∼ CN (0,σ2
DL) is the additive white noise with variance σ2

DL. Notice

that hi
l,k is the same channel response as in the uplink, due to the reciprocity of

physical propagation channels (within a coherence interval).1 A block diagram of

the downlink transmission is provided in Fig. 6. Since there are no downlink pilots

in the Massive MIMO protocol described in Sect. 2.3, the users are assumed to only

know the channel statistics. The lack of instantaneous CSI would greatly reduce the

performance of small MIMO systems, but Massive MIMO works well without it

since the effective precoded channels quickly approach their mean as more antennas

are added. Hence, coherent downlink reception is possible using only statistical CSI.

This leads to a low-complexity communication solution where all the intelligence

is placed at the BS. Since the ergodic capacity is hard to characterize in this case,

the following theorem derives a lower bound on the capacity between user k in cell

l and its serving BS.

Theorem 2. In the downlink, a lower bound on the ergodic rate an arbitrary user k

in cell l is

RDL
l,k = γDL

(
1− τp

τc

)
log2

(
1+SINRDL

l,k

)
, (30)

where the SINR is

1 In fact, the reciprocal channel is (hi
l,k)

T , using the regular transpose instead of the conjugate

transpose as in (29), but since the only difference is a complex conjugation we can characterize

the performance using (29) without loss of generality. The reason to use the conjugate transpose is

that the notation becomes easier and the relation to the uplink is clearer.



22 Trinh Van Chien and Emil Björnson

Cell 1
1,1w

1,Kw

1,1 1,1 s

1, 1,
K K

s

Cell i
,1i

w

,i K
w

,1 ,1
i i

s

, ,
i K i K

s

Cell L
,1L

w

,L K
w

,1 ,1
L L

s

, ,
L K L K

s

1( )H

l,k
h

,l k
y

,l k
n

( )i H

l,k
h

)L H

l,K
(h

User k, Cell l

Fig. 6 Block diagram of the downlink transmission with linear precoding in a multi-cell MIMO

system, where BSs equipped with M antennas are transmitting signals that reach user k in cell l

SINRDL
l,k =

ρl,k

∣∣∣E
{
(hl

l,k)
Hwl,k

}∣∣∣
2

L

∑
i=1

K

∑
t=1

ρi,tE

{
|(hi

l,k)
Hwi,t |2

}
−ρl,k

∣∣∣E
{
(hl

l,k)
Hwl

l,k

}∣∣∣
2

+σ2
DL

. (31)

Proof. The proof is available in Appendix at the end of this chapter. �

The downlink achievable SE provided in Theorem 2 holds for any channel dis-

tributions and choice of precoding vectors. Since the uplink and downlink channels

are reciprocal, it would make sense if the uplink and downlink performance were

also somehow connected. The downlink achievable SE in Theorem 2 indeed bears

much similarity with the corresponding uplink expression in Theorem 1. The de-

sired signal terms are the same, except for the potentially different transmit power

parameters and the fact that the detection vector is replaced by the corresponding

precoding vector. The interference terms have a similar structure, but the indices

are swapped between the channel vector and the processing vector. This is because

the uplink interference arrives through different channels for different users while

all the downlink interference from a particular cell comes through the same chan-

nel from the BS. These observations lead to the following uplink-downlink duality

[7, 10]:

Lemma 3. Suppose that the downlink precoding vectors are selected as
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wl,k =
vl,k√

E
{
‖vl,k‖2

} (32)

based on the uplink detection vectors vl,k, for all l and k. For any given uplink

powers pi,t (for i = 1, . . . ,L and t = 1, . . . ,K), there exist a corresponding set of

downlink powers ρi,t (for i = 1, . . . ,L and t = 1, . . . ,K) such that

SINRUL
l,k = SINRDL

l,k (33)

for all l and k, and

∑
L
i=1 ∑

K
t=1 pi,t

σ2
UL

=
∑

L
i=1 ∑

K
t=1 ρi,t

σ2
DL

. (34)

Proof. The proof is available in Appendix at the end of this chapter. �

This lemma shows that the same performance can be achieved in both the uplink

and the downlink, if the downlink power is allocated in a particular way based on

the uplink powers and the precoding vectors are selected based on the detection

vectors as in (32). The downlink powers are computed according to (72), which is

given in Appendix at the end of this chapter since the important thing for now is that

there exist a collection of downlink powers that give exactly the same performance

in both directions. If σ2
UL = σ2

DL, then the same total transmit power is used in both

directions of the Massive MIMO network; however, the power will generally be

distributed differently over the users.

Motivated by the uplink-downlink duality, it makes sense to consider MR and ZF

precoding as the main downlink precoding schemes. These are defined as

wl,k =





ĥ
l
l,k√

E

{
‖ĥ

l
l,k‖2

} , for MR,

Ĥ
l
lrl,k√

E

{
‖Ĥ

l
lrl,k‖2

} , for ZF,

(35)

where rl,k denotes the kth column of ((Ĥ
l

l)
HĤ

l

l)
−1.

Similar to the uplink performance analysis, we now compute the downlink SE in

closed form for uncorrelated Rayleigh fading channels, as defined in (18). Because

of the channel reciprocity, the channel estimates obtained at the BSs in the uplink

can also be used in the downlink. In particular, the channel estimates ĥ
i

i,k and ĥ
i

l,k

for cell indices i and l with l ∈ Pi are still related as

ĥ
i

l,k =

√
pl,kβ i

l,k√
pi,kβ i

i,k

ĥ
i

i,k, (36)

thus showing that pilot contamination exists also in the downlink; that is, BS i cannot

precode signals toward its user k without also precode the signal towards user k in

cell i ∈Pl . The next corollary specializes Theorem 2 for Rayleigh fading channels.



24 Trinh Van Chien and Emil Björnson

Corollary 3. In the downlink, if all channels are uncorrelated Rayleigh fading, the

lower bound on the ergodic capacity of user k stated in Theorem 2 becomes

RDL
l,k = γDL

(
1− τp

τc

)
log2

(
1+SINRDL

l,k

)
, (37)

where the SINR is

SINRDL
l,k =

Gρl,kβ l
l,k

pl,kτpβ l
l,k

∑i′∈Pl
pi′ ,kτpβ l

i′ ,k+σ2
UL

G ∑
i∈Pl\{l}

ρi,kβ i
l,k

pl,kτpβ i
l,k

∑i′∈Pl
pi′ ,kτpβ i

i′ ,k+σ2
UL

+
L

∑
i=1

K

∑
t=1

ρi,tz
i
l,k +σ2

DL

. (38)

The parameters G and zi
l,k are specified by the precoding scheme. MR precoding

gives G = M and zi
l,k = β i

l,k, while ZF precoding gives G = M−K and

zi
l,k =

{
MSEi

l,k, for i ∈ Pl ,

β i
l,k, otherwise.

Proof. The proof is available in Appendix at the end of this chapter. �

For Rayleigh fading channels, Corollary 3 shows that the array gain, pilot con-

tamination, and all other attributes of MR and ZF precoding are very similar to the

uplink counterparts. Hence, the same kind of observations can be made from Corol-

lary 3 as previously done for Corollary 1.

In the single-cell scenario, the SE expression in Corollary 3 simplifies to the

following result.

Corollary 4. In the single-cell downlink, if all channels are uncorrelated Rayleigh

fading, a lower bound on the ergodic SE of an arbitrary user k is given by

RDL
k = γDL

(
1− τp

τc

)
log2

(
1+

Gρk pkτpβ 2
k(

pkτpβk +σ2
UL

)(
zk ∑

K
t=1 ρt +σ2

DL

)
)
. (39)

The parameters G and zk depend on the precoding scheme. MR gives G = M and

zk = βk, while ZF obtains G = M−K and zk =
βkσ2

UL

pkτpβk+σ2
UL

.

We conclude the analytical part of this chapter by recalling that the uplink and

downlink spectral efficiencies with Massive MIMO can be easily computed from

Theorem 1 and Theorem 2 for any channel distributions and processing schemes. In

the uncorrelated Rayleigh fading case there are even closed-form expressions. The

same SINR performance can be achieved in the uplink and downlink, based on what

is known as uplink-downlink duality. The intuition is that the downlink precoding

and uplink detection vectors should be the same, but that the power allocation needs

to be adapted differently in the two cases.
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4 Design Guidelines and Anticipated Spectral Efficiency Gains

In this section, we provide some basic design guidelines for Massive MIMO net-

works and showcase the SEs that the technology can deliver to 5G networks ac-

cording to the theory developed in Sect. 3. For illustrative purposes, we consider a

classic cellular network topology with hexagonal cells, where each cell can be il-

lustrated as in Fig. 1. In other words, the BS is deployed in the center of the cell,

while the K users are distributed over the cell area. When many cells of this type

are placed next to each other, the cellular network has the shape showed in Fig. 7.

While conventional cellular networks use sectorization to split each cell into, say,

three static sectors, this is not assumed here. This is because the spatial transceiver

processing at the BS in Massive MIMO basically creates K virtual sectors, adapted

dynamically to the positions of the current set of users.

4.1 Power Allocation

The average transmit power of user k in cell j is denoted by p j,k in the uplink and

by ρ j,k in the downlink. These are important design parameters that determine the

SEs of the users; see Theorem 1 (for the uplink) and Theorem 2 (for the downlink).

Since inter-user interference is an important factor in any multi-user MIMO system,

each transmit power coefficient affects not only the strength of the desired signal

at the desired user, but also the amount of interference caused to all the other users

in the network (although the interference is most severe within a cell and between

neighboring cells). The selection of these transmit power coefficients is referred to

as power allocation and needs to be addressed properly.

A key property of Massive MIMO is that the small-scale fading in time and

the frequency-selective fading variations are negligible, since they essentially aver-

age out over the many antennas at each BS. For example, the SE expressions for

Rayleigh fading channels in Corollaries 1–4 only depend on the channel variances

β l
i,k and not on the instantaneous realizations of the corresponding channel vectors

hl
i,k. Therefore, there is no need to change the power allocation between each co-

herence interval, but only over the longer time frame where the channel variances

change, due to modifications in the large-scale propagation behaviors (e.g., caused

by user mobility). This is a substantial increase of the time frame in which power

allocation decisions are to be made, from milliseconds to seconds. This fact makes

it possible to optimize and coordinate the power allocation across cells, in ways that

have not been possible in the past due computational or delay limitations.

A structured approach to power allocation is to find the transmit powers that

jointly maximize the network utility functions UUL({RUL
l,k }) and UDL({RDL

l,k }) in the

uplink and downlink, respectively. These utilities are increasing functions of the

users’ SEs, where {RUL
l,k } and {RDL

l,k } denote the sets of all SEs. Some particular

examples of network utility functions are [5]
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U({Rl,k}) =





∑
L
l=1 ∑

K
k=1 Rl,k, Sum utility,

∏
L
l=1 ∏

K
k=1 Rl,k, Proportional fairness,

minl∈{1,...,L},k∈{1,...,K} Rl,k, Max-min fairness,

(40)

where we have omitted the uplink/downlink superscripts since the same type of

utility function can be utilized in both cases. These utilities are often maximized

with respect to a given power budget per user (in the uplink) and per BS (in the

downlink). For brevity, we will not provide any further mathematical details, but

briefly outline what is known around power allocation for Massive MIMO.

Maximization of the sum utility (SU) provides high SEs to users with good aver-

age channel conditions, at the expense of low SE for users with bad average channel

conditions. In contrast, max-min fairness (MMF) enforces that each user should get

equal SE, which effectively means that users with good channels reduce their SEs

to cause less interference to the users with bad channels. Proportional fairness (PF)

can be shown to lie in between these extremes. The SU achieves the highest sum

SE, since this is really what is optimized by this utility function, while MMF trades

some of the sum SE to obtain a uniform user experience. The choice of network

utility function is a matter of subjective taste, since there is no objectively optimal

utility function [5]. Nevertheless, there seems to be a trend towards more fairness-

emphasizing utilities in the Massive MIMO literature [7, 32, 45], motivated by the

fact that contemporary networks are designed to provide high peak rates, while the

cell edge performance is modest and needs to be improved in 5G. In the uplink,

another important aspect to consider in the power allocation is the fact that a BS

cannot simultaneously receive desired user signals of very different power levels,

since then the weak signals will then drown in the quantization noise caused by the

analog-to-digital conversion. Hence, even if the channel attenuation might differ by

50 dB within a cell, these variations need to be brought down to, say, 10 dB by the

uplink power allocation.

From a numerical optimization perspective, the downlink power allocation prob-

lem (for fixed uplink power allocation) has the same mathematical structure as the

seemingly different scenario of single-antenna multi-cell communications with per-

fect CSI. The downlink utility optimization can therefore be solved using the tech-

niques described in [4, 27, 35] and references therein. In general, the PF and MMF

utilities give rise to convex optimization problems that can be solved efficiently

with guaranteed convergence to the global optimum. These algorithms can also be

implemented in a distributed fashion [4]. The SU problem is, in contrast, provable

non-convex and hard to solve [27], which means that the optimal solution cannot be

found under any practical constraints on complexity.

The uplink power allocation is more complicated than power allocation in the

downlink; for example, because the SE expression in Corollary 1 contains both

p j,k and p2
j,k (while the downlink SE expressions only contain the linear term ρ j,k).

Nevertheless, there are several efficient algorithms that maximize the MMF utility

[13, 45, 12], and the approach in [12] can also maximize the SU and PF utilities

with MR and ZF detection. The work [26] provides an alternative methodology to

maximize an approximation of the SU metric for other detection methods.
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f = 4 f = 4

f = 3f = 1

Fig. 7 Illustration of potential symmetric reuse patterns created by three different pilot reuse fac-

tors, f , in a cellular network with hexagonal cells. In the lower right case, each cell is divided

into two sub-cells with different sets of pilots. If j is the index of a particular cell, then P j is the

index set of all cells having the same color. Only the cells with the same color use the same pilot

sequences, and thereby degrade each other’s CSI estimation quality and cause pilot contaminated

interference

In summary, power allocation is used in Massive MIMO to distribute the sum SE

over the individual users. There are plenty of algorithms that can be used to optimize

the power allocation, depending on the utility function that is used in the system.

4.2 Non-Universal Pilot Reuse

An important insight from the theoretical analysis in Sect. 3 is that the SE of a partic-

ular cell j is influenced by the pilot signaling carried out in other cells. The degrada-

tions in CSI estimation quality and pilot contaminated interference are caused only

by the interfering cells in P j that use the same pilot sequences as cell j. Since the

channel attenuation of the interference increases with distance, one would like these

interfering cells to be as far away from cell j as possible—and the same is desirable

for all cells in P j.

Recall that the pilot reuse factor f = τp/K was assumed to be an integer in

Sect. 3, which leads to a division of the L cells into f disjoint cell groups. The

case f = 1 is known as universal pilot reuse and f > 1 is called non-universal pi-
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Fig. 8 Average spectral efficiency, as a function of the number of users, with different processing

schemes and pilot reuse factors. Two different SNR levels are considered: δ/σ2
BS = 0 dB or 20 dB
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lot reuse. Since the hexagonal cell topology has a multiple of six cells in each tier

of interfering cells, the smallest pilot reuse factors that give rise to symmetric pilot

reuse patterns are f = 1, f = 3, and f = 4 [15]. Examples of such reuse patterns are

given in Fig. 7, where cells with different colors use different subsets of the pilot

sequences. The cells with the same color use exactly the same subset of pilots and

therefore cause pilot contamination to each other, while there is no contamination

between cells with different colors. If the center cell in Fig. 7 has index j, then P j is

the set of all cells having the same color. By increasing the pilot reuse factor, there

are more colors and therefore fewer interfering cells in each group. We note that

with a pilot reuse factor of f = 4, one can either divide the cells into four different

disjoint groups (as in the lower left example in Fig. 7) or divide each cell into two

subcells: cell edge and cell center (as in the lower right example in Fig. 7). The latter

is known as fractional pilot reuse and can be used to have less frequent pilot reuse

at the cell edges than in the cell centers [2], because it is users at the cell edges that

are most sensitive to pilot contamination.

To give a concrete example, consider a Massive MIMO scenario with M = 200

BS antennas and a coherence interval of τc = 400 symbols. The users are assumed to

be uniformly distributed in the cell, except for the 10% cell center, and the channels

are modeled as uncorrelated Rayleigh fading with a distant-dependent channel atten-

uation with pathloss exponent 3.7. We consider the pilot reuse factors f ∈ {1, 3, 4},

but not the fractional pilot reuse case. Recall from the uplink-downlink duality in

Lemma 3 that the same SE is achievable in the uplink and the downlink, thus it is

sufficient to study the uplink. We assume a simple power allocation policy

p j,k =
δ

β
j

j,k

j = 1, . . . ,L, k = 1, . . . ,K, (41)

where δ ≥ 0 is a design parameter that determines the SNR achieved at each BS

antenna: p j,kβ
j

j,k/σ2
BS = δ/σ2

BS.2 This is called statistical channel inversion power

allocation.

Fig. 8 shows the average SE for different number of users, for both MR and ZF

detection. The first observation from Fig. 8 is that the two SNR levels, δ/σ2
BS = 0

dB and 20 dB, give essentially the same performance. This shows that Massive

MIMO works equally well at high and low SNRs, since the array gain makes the

SE interference-limited and not noise-limited. Next, we notice that different pilot

reuse factors are desirable at different user loads (i.e., number of users K). A pilot

reuse of f = 3 is desired at low load, while f = 1 is needed to reduce the prelog

factor (1− f K/τc) when K is large. By selecting f properly, one can always operate

on the top curve in Fig. 8 and then Massive MIMO can provide a high SE over a

wide range of different number of users. In fact, the technology provides a relatively

stable SE for any K > 10. This removes the need for intricate scheduling in Massive

MIMO networks, because all active users can basically be served simultaneously in

every coherence interval (or at least up to τc/2 users, to leave half of the coherence

2 This explicit uplink power allocation policy is very similar to what the uplink MMF utility would

give [4], but has the benefit of not requiring any numerical optimization.
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Fig. 9 Average spectral efficiency, as a function of the number of BS antennas, with ZF processing,

a pilot reuse factor f = 3, and an SNR of 0 dB. The number of users is optimized for each antenna

number to yield the highest SE, and the corresponding number of users is also shown

interval for data, which is a number that is typically more than a hundred [7]); the

high sum SE is then shared between all the users.

Another observation is that the difference in SE between ZF and MR is rela-

tively small in Fig. 8; ZF only gives a performance gain of between 3% and 45%,

depending on the number of users. This should be compared with the single-cell

simulation in Fig. 3, where ZF provided more than twice the SEs as MR. The rea-

son for the more modest performance gap is that also ZF suffers from interference

in the multi-cell case, since the pilot contamination and many inter-cell interferers

make it impossible to cancel all interference.

In summary, the pilot reuse factor is an important design parameter in Massive

MIMO networks and the best choice depends on the user load. As shown in [4], it

also depends on the propagation environment and the number of BS antennas.

4.3 How High Spectral Efficiency can Massive MIMO Deliver?

We conclude this chapter by showcasing the SE that the Massive MIMO technology

can deliver in the uplink and downlink of 5G networks—which is the same due

to the uplink-downlink duality. We continue the previous simulation example from

Fig. 8, but focus on ZF processing with pilot reuse f = 3 and a power allocation

policy that gives an SNR of 0 dB to everyone. Note that these design choices are

motivated by the previous simulation results.
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Fig. 9 shows the SE as a function of the number of BS antennas M. The number

of active users is optimized for each M to get the highest SE, and the optimal user

numbers are also shown in the figure. A reasonable performance baseline is the IMT-

Advanced requirements for 4G networks, provided in [22]. This document specifies

spectral efficiencies in the range of 2-3 bit/s/Hz/cell, depending on the simulation

scenario. In comparison, the Massive MIMO network considered in Fig. 9 achieves

52 bit/s/Hz/cell using M = 100 antennas, which is a 17× to 26× improvement over

IMT-Advanced. With M = 400 antennas the Massive MIMO system achieves 114

bit/s/Hz/cell, which is an incredible 38× to 57× improvement over IMT-Advanced.

These improvements are between one and two orders of magnitude!

It is important to notice that the number of active users increase alongside the

SE in Fig. 9. If one divides the top curve with the bottom curve, this gives the SE

per user. Interestingly, the SE per user lies in the modest range of 1 to 2.5 bit/s/Hz.

Such spectral efficiencies can be achieved in practice using conventional modulation

schemes, such as 16-QAM with appropriate channel coding.

In conclusion, Massive MIMO can theoretically provide ten-fold or even 50-fold

improvements in SE over IMT-Advanced. These huge improvements are mainly

achieved by serving many users simultaneously, while the SE per user is in the con-

ventional range. Huge gains are achieved already at M = 100 or fewer BS antennas.

These are indeed very encouraging results indicating that the Massive MIMO tech-

nology is key to not only improve the SE, but can also be the driving force towards

achieving orders of magnitude higher area throughput in 5G technologies.
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Appendix

Proof of Lemma 2

Recall that φφφ j,k ∈ C
τp is the pilot sequence used by the kth user in the jth cell, where ΦΦΦ j =

[φφφ j,1 . . .φφφ j,K ]. Since the desired channel hl
j,k only appears as hl

j,kφφφ
H
j,k in (8), a sufficient statistic for

estimating this channel is given by

Y
pilot
l φφφ j,k =

L

∑
i=1

Hl
iPiΦΦΦ

H
i φφφ j,k +Nlφφφ j,k

= ∑
i∈P j

√
pi,kτphl

i,k + ñl, j,k

(42)

where ñl, j,k = Nlφφφ j,k = [ñl, j,k,1 . . . ñl, j,k,M ]T ∼ CN (0,τpσ2
ULIM). The second equality follows

from the assumed orthogonality of the pilot sequences.
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Based on (42), we compute a separate LMMSE estimate of each element of hl
j,k. If yl, j,k,m ∈ C

denotes the mth row of the vector in (42), then

yl, j,k,m = ∑
i∈P j

√
pi,kτphl

i,k,m + ñl, j,k,m. (43)

By the definition of LMMSE estimation [24], the LMMSE estimate of hl
j,k,m is given by

ĥl
j,k,m = E

{
hl

j,k,m

}
+

Cov
{

hl
j,k,m,yl, j,k,m

}

V
{

yl, j,k,m

} (
yl, j,k,m −E

{
yl, j,k,m

})
(44)

where we recall that E
{

hl
j,k,m

}
= h̄l

j,k,m by definition and Cov{·, ·} stands for covariance. More-

over, we have

E
{

yl, j,k,m

}
= ∑

i∈P j

√
pi,kτph̄l

i,k,m, (45)

Cov
{

hl
j,k,m,yl, j,k,m

}
=
√

p j,kτpβ l
j,k, (46)

V
{

yl, j,k,m

}
= ∑

i∈P j

pi,kτ2
pβ l

i,k + τpσ2
UL. (47)

The estimation expression in (9) is obtained by substituting (45)–(47) into (44) and writing the

result in vector form. The variance of the estimate is then given by

V

{
ĥl

j,k,m

}
=

∣∣∣Cov
{

hl
j,k,m,yl, j,k,m

}∣∣∣
2

V
{

yl, j,k,m

} =
p j,kτp(β

l
j,k)

2

∑i∈P j
pi,kτpβ l

i,k +σ2
UL

, (48)

while the estimation error variance in (10) is obtained as β l
j,k −V

{
ĥl

j,k,m

}
since the LMMSE

estimate and its error are uncorrelated [24].

Proof of Theorem 1

The ergodic capacity CUL
l,k with linear detection and pilot-based channel estimation is the supremum

of the mutual information between the input signal xl,k and the output signal vH
l,kyl in (11). The

supremum is taken over the distribution of the unit-variance input signal xl,k, thus a lower bound

is obtained by assuming that xl,k ∼ CN (0,1). Let Ĥ denote the channel estimates available as

side-information at the receiver. We then have that

CUL
l,k ≥ γUL

(
1− τp

τc

)
I(xl,k;vH

l,kyl ,Ĥ )

= γUL

(
1− τp

τc

)(
h(xl,k)−h(xl,k|vH

l,kyl ,Ĥ )
)

= γUL

(
1− τp

τc

)(
log2(πe)−h(xl,k|vH

l,kyl ,Ĥ )
)

(49)

where I(·; ·) denotes the mutual information under the suboptimally assumed Gaussian signal dis-

tribution and h(·) is the differential entropy function. The first equality follows from the definition

of mutual information and the second equality uses the entropy expression for complex Gaussian
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random variables. The factor γUL(1− τp

τc
) is the fraction of transmission symbols used for up-

link data in each coherence interval. It remains to characterize h(xl,k|vH
l,kyl ,Ĥ ), which is done by

finding a tractable upper bound on this term:

h(xl,k|vH
l,kyl ,Ĥ ) = h(xl,k −αvH

l,kyl |vH
l,kyl ,Ĥ )

≤ h(xl,k −αvH
l,kyl)

≤ log2

(
πeE{|xl,k −αvH

l,kyl |2}
)

(50)

where the equality follows from the fact that subtracting a known variable αvH
l,kyl , for some de-

terministic scalar α , does not change the entropy. The first inequality follows from dropping the

knowledge of vH
l,kyl and Ĥ which increases the entropy, while the second inequality follows from

exploiting the fact that the highest entropy is obtained when xl,k −αvH
l,kyl is a zero-mean complex

Gaussian random variable with the same second-order moment as the original variable has.

The last step of the proof is to select α to get the tightest upper bound in (50), which corresponds

to the minimization problem

min
α

E
{
|xl,k −αvH

l,kyl |2
}
=

1

1+SINRUL
l,k

, (51)

which is solved by first computing the expectation with respect to the independent signals xi,t , for

all i and t, then finding the optimal α by equating the first derivative of the expression (with respect

to α) to zero, and substituting it back into the expression. From (49)–(51) we now have

CUL
l,k ≥ γUL

(
1− τp

τc

)(
log2(πe)− log2

(
πe

1

1+SINRUL
l,k

))

= γUL

(
1− τp

τc

)
log2

(
1+SINRUL

l,k

)
,

(52)

which is the result stated in the theorem.

Proof of Corollary 1

Before computing the SINR expression in (23) for Rayleigh fading channels, we recall that

V

{
hl

i,t,m

}
= β l

i,t , (53)

V

{
ĥl

i,t,m

}
=

pi,t τp(β
l
i,t)

2

∑i′∈Pl
pi′,t τpβ l

i′,t +σ2
UL

, (54)

MSEl
i,t = β l

i,t

(
1−

pi,t τpβ l
i,t

∑i′∈Pl
pi′,t τpβ l

i′,t +σ2
UL

)
, (55)

for the channel between an arbitrary user t in cell i (i = 1, . . . ,L) and BS l. Note that m is used as

an arbitrary antenna index since the channel variance is the same for all antennas. The corollary is

first proved in the case of MR detection, where vl,k = ĥ
l

l,k, in which case SINRUL
l,k in Theorem 1

becomes
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SINR
MR,UL
l,k =

pl,k

∣∣∣E
{
(ĥ

l

l,k)
H hl

l,k

}∣∣∣
2

L

∑
i=1

K

∑
t=1

pi,tE

{
|(ĥl

l,k)
H hl

i,t |2
}
− pl,k

∣∣∣E
{
(ĥ

l

l,k)
H hl

l,k

}∣∣∣
2

+σ2
ULE

{
‖ĥ

l

l,k‖2
} . (56)

It remains to compute the expectations in the numerator and denominator of (56). Since hl
l,k =

ĥ
l

l,k + el
l,k, as stated in Lemma 2, the numerator is computed as

pl,k

∣∣∣E
{
(ĥ

l

l,k)
H hl

l,k

}∣∣∣
2

= M2 pl,k

(
V

{
ĥl

l,k,m

})2

. (57)

When computing the denominator, we decompose its first term into three parts based on the pilot

reuse; the first two parts contain the cells that use the same pilot sequences as cell l (i.e., all cells

in Pl) and the third part contains the remaining cells. We then observe that

L

∑
i=1

K

∑
t=1

pi,tE

{
|(ĥl

l,k)
H hl

i,t |2
}
− pl,k

∣∣∣E
{
(ĥ

l

l,k)
H hl

l,k

}∣∣∣
2

+σ2
ULE

{
‖ĥ

l

l,k‖2
}

= ∑
i∈Pl

pi,kE

{
|(ĥl

l,k)
H hl

i,k|2
}
+ ∑

i∈Pl

K

∑
t=1
t 6=k

pi,tE

{
|(ĥl

l,k)
H hl

i,t |2
}

+ ∑
i/∈Pl

K

∑
t=1

pi,tE

{
|(ĥl

l,k)
H hl

i,t |2
}
− pl,k

∣∣∣E
{
(ĥ

l

l,k)
H hl

l,k

}∣∣∣
2

+σ2
ULE

{
‖ĥ

l

l,k‖2
}

= M2
V

{
ĥl

l,k,m

}
∑

i∈Pl\{l}
pi,kV

{
ĥl

i,k,m

}
+MV

{
ĥl

l,k,m

}
∑

i∈Pl

K

∑
t=1

pi,tV

{
hl

i,t,m

}

+MV

{
ĥl

l,k,m

}
∑

i/∈Pl

K

∑
t=1

pi,tV

{
hl

i,t,m

}
+MV

{
ĥl

l,k,m

}
σ2

UL.

(58)

The first term in the second expression of (58) demonstrates the effect of pilot contamination and is

computed by using (21) and the independence between the MMSE estimate and its estimation error.

Besides, we handle the expectation E{‖ĥ
l

l,k‖4} by virtue of Lemma 2.9 in [40], since ĥ
l

l,k(ĥ
l

l,k)
H is

an M×M central complex Wishart matrix with one degree of freedom:

E

{
‖ĥ

l

l,k‖4
}
= E

{
tr2
(

ĥ
l

l,k(ĥ
l

l,k)
H
)}

= M(M+1)
(
V

{
ĥl

l,k,m

})2

, (59)

where tr(·) stands for the trace of a matrix. In contrast, the second term of the middle expression of

(58) is computed by the fact that the remaining users in Pl use pilot sequences that are orthogonal

to the pilot sequence of user k. The third term in (58) is computed based on the independence

between the channel estimates in cell l and the channels in other cells not belong to Pl , while the

last term follows from the fact that E
{
‖ĥ

l

l,k‖2
}
= MV

{
ĥl

l,k,m

}
.

Substituting (57) and (58) into (56), the SINR expression with MR detection becomes

SINR
MR,UL
l,k =

Mpl,kV

{
ĥl

l,k,m

}

M ∑
i∈Pl\{l}

pi,kV

{
ĥl

i,k,m

}
+ ∑

i∈Pl

K

∑
t=1

pi,tV

{
hl

i,t,m

}
+σ2

UL

(60)

which equals the expression in the corollary by further substituting (53)–(55) into (60).

In case of ZF detection, the channel inversion structure yields the property

E

{
vH

l,khl
l,k

}
= 1. (61)
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Additionally, the noise term in (17) is computed as

σ2
ULE

{
‖vl,k‖2

}
= σ2

ULE

{
tr

[(
(Ĥ

l

l)
H Ĥ

l

l

)−1
]

k,k

}
=

σ2
UL

(M−K)V
{

ĥl
l,k,m

} (62)

by utilizing the fact that (Ĥ
l

l)
H Ĥ

l

l is a K ×K central complex Wishart matrix with M degrees of

freedom and applying Lemma 2.10 in [40] to compute the trace of the inverse. Note that [·]k,k is

used here to denote the kth diagonal element of a matrix.

Substituting (61) and (62) into (17), we achieve the SINR expression

SINR
ZF,UL
l,k =

pl,k

L

∑
i=1

K

∑
t=1

pi,tE

{
|vH

l,khl
i,t |2
}
− pl,k +

σ2
UL

(M−K)V
{

ĥl
l,k,m

}
. (63)

To compute the remaining expectations, we utilize the pilot reuse patterns together with the ZF

properties to decompose the expectation term in (63) into three terms:

L

∑
i=1

K

∑
t=1

pi,tE

{
|vH

l,khl
i,t |2
}

= ∑
i∈Pl

pi,kE

{
|vH

l,kĥ
l

i,k|2
}
+ ∑

i∈Pl

K

∑
t=1

pi,tE

{
|vH

l,kel
i,t |2
}
+ ∑

i/∈Pl

K

∑
t=1

pi,tE

{
|vH

l,khl
i,t |2
}

= ∑
i∈Pl

p2
i,k(β

l
i,k)

2

pl,k(β
l
l,k)

2
+ ∑

i∈Pl

K

∑
t=1

pi,t MSE l
i,t

(M−K)V
{

ĥl
l,k,m

} + ∑
i/∈Pl

K

∑
t=1

pi,tV

{
hl

i,t,m

}

(M−K)V
{

ĥl
l,k,m

} .

(64)

In the last equality of (64), the first term is obtained by utilizing the relationship between user

channels for cells in Pl as stated in (21). The second and third terms follow directly from the

independence between the ZF detection vector, the estimation errors for channels in Pl and the

complete channels for cells not in Pl . Moreover, Lemma 2.10 in [40] is again used to compute the

expectation of the inverse of the central complex Wishart matrix (Ĥ
l

l)
H Ĥ

l

l . Substituting (64) back

into (63) and utilizing the properties in (53)–(55), the final SINR expression for ZF is obtained.

Proof of Theorem 2

Substituting (28) into (29), the received signal at user k in cell l is

yl,k =
L

∑
i=1

(hi
l,k)

H
K

∑
t=1

√
ρi,t wi,t si,t +nl,k

=
√

ρl,k(h
l
l,k)

H wl,ksl,k︸ ︷︷ ︸
Desired signal

+
K

∑
t=1
t 6=k

√
ρl,t(h

l
l,k)

H wl,t sl,t

︸ ︷︷ ︸
Intra-cell interference

+
L

∑
i=1
i6=l

K

∑
t=1

√
ρi,t(h

i
l,k)

H wi,t si,t

︸ ︷︷ ︸
Inter-cell interference

+ nl,k︸︷︷︸
Noise

. (65)

The last row of (65) shows that sl,k is the desired signal that we want to detect, under additive

noise, intra-cell, and inter-cell interference. Similar to Theorem 1, if CDL
l,k is the ergodic capacity

with linear precoding, then we compute a lower bound on the mutual information between sl,k and

yl,k by considering a potentially suboptimal Gaussian signal distribution, sl,k ∼ C N (0,1), and
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bounding the corresponding conditional mutual information I(sl,k;yl,k) as follows:

CDL
l,k ≥ γDL

(
1− τp

τc

)
I(sl,k;yl,k)

≥ γDL

(
1− τp

τc

)(
log2(πe)−h(sl,k|yl,k)

)

≥ log2

(
1+SINRDL

l,k

)

(66)

where the inequalities follow from the same procedures as in (50)–(52). The lower bound on the

ergodic capacity RDL
l,k in (30) is then obtained. Note that in contrast to the proof of Theorem 1, the

receiver does not have any side-information with channel estimates in the downlink.

Proof of Lemma 3

Let ξl,1, . . . ,ξl,K be the uplink SINRs of the K users in cell l that are achieved by Theorem 1 for

the given detection vectors and uplink power coefficients, such that the equations SINRUL
l,k = ξl,k

hold for l = 1, . . . ,L and k = 1, . . . ,K. From this condition we get

ξl,k
E
{
‖vl,k‖2

}
∣∣∣E
{

vH
l,khl

l,k

}∣∣∣
2
=

pl,k

L

∑
i=1

K

∑
t=1

pi,t

E

{
|vH

l,khl
i,t |2
}

E{‖vl,k‖2} − pl,k

∣∣∣E
{

vH
l,khl

l,k

}∣∣∣
2

E{‖vl,k‖2} +σ2
UL

, (67)

by multiplying each side of the equation SINRUL
l,k = ξl,k with E

{
‖vl,k‖2

}
/|E{vH

l,khl
l,k}|2.

The goal is to prove that also SINRDL
l,k = ξl,k holds if the downlink precoding vectors in (32)

are used and the downlink transmit power coefficients are selected appropriately. According to the

definition of the downlink precoding vectors, the equation SINRDL
l,k = ξl,k can be written as

ξl,k
E
{
‖vl,k‖2

}
∣∣∣E
{
(hl

l,k)
H vl,k

}∣∣∣
2
=

ρl,k

L

∑
i=1

K

∑
t=1

ρi,t

E

{
|(hi

l,k)
H vi,t |2

}

E{‖vi,t‖2} −ρk

∣∣∣E
{
(hl

l,k)
H vl,k

}∣∣∣
2

E{‖vl,k‖2} +σ2
DL

, (68)

by multiplying each side of the equation with E
{
‖vl,k‖2

}
/|E{(hl

l,k)
H vl,k}|2.

Let us define a diagonal matrix D and a matrix ΨΨΨ, both of size KL×KL. Let Dl ∈ C
K×K be

the lth diagonal block of D and let ΨΨΨl,i ∈ C
K×K be the (l, i)th block of ΨΨΨ. The elements of these

blocks are defined as

[Dl ]k,k =
ξl,kE

{
‖vl,k‖2

}
∣∣∣E
{
(hl

l,k)
H vl,k

}∣∣∣
2
, (69)

[
ΨΨΨl,i

]
k,t

=





E

{
|(hi

l,k)
H vi,t |2

}

E{‖vi,t‖2} −
∣∣∣E
{
(hl

l,k)
H vl,k

}∣∣∣
2

E{‖vl,k‖2} , for l = i and t = k,

E

{
|(hi

l,k)
H vi,t |2

}

E{‖vi,t‖2} , otherwise.

(70)

Using this notation, the KL equations in (67) and (68) respectively become
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p

σ2
UL

=
(
IKL −DΨΨΨT

)−1
D1KL, (71)

ρρρ

σ2
DL

= (IKL −DΨΨΨ)−1
D1KL, (72)

where p= [pT
1 . . . pT

L ]
T and pi = [pi,1 . . . pi,K ]

T contain the uplink transmit powers, ρρρ = [ρρρT
1 . . . ρρρT

L ]
T

and ρρρ i = [ρi,1 . . . ρi,K ]
T contain the downlink transmit powers, 1KL is a KL× 1 vector with only

ones, and IKL is the KL×KL identity matrix. These equations give the uplink and downlink trans-

mit powers that provide the SINRs ξl,1, . . . ,ξl,K in cell l, but only if the inverses (IKL −DΨΨΨT )−1

and (IKL −DΨΨΨ)−1 exist.

Since IKL −DΨΨΨT and IKL −DΨΨΨ have the same eigenvalues, either both or none of the inverses

exist. Recall that we have selected ξl,k (for l = 1, . . . ,L, k = 1, . . . ,K) as the SINRs that were

actually achieved in the uplink, thus the inverses must exist and (72) gives the downlink transmit

powers that achieves the same SINRs in the downlink as in the uplink. It is also straightforward to

show that
1T

KLp

σ2
UL

=
ρρρT 1KL

σ2
DL

, (73)

which corresponds to the relationship between the total transmit power in the uplink and downlink

stated in the lemma.

Proof of Corollary 3

The proof follows along the same lines as the proof of Corollary 1, because the same expectations

are involved, thus the variances summarized in (53)–(55) are still useful. We briefly summarize the

proof of Corollary 3 as follows.

We need to compute all the expectations in (31). MR precoding gives the desired signal power

ρl,k

∣∣∣E
{
(hl

l,k)
H wl,k

}∣∣∣
2

=
ρl,k

MV

{
ĥl

l,k,m

}
∣∣∣E
{
‖ĥ

l

l,k‖2
}∣∣∣

2

= Mρl,kV

{
ĥl

l,k,m

}
(74)

and the denominator is computed as

L

∑
i=1

K

∑
t=1

ρi,tE
{
|(hi

l,k)
H wi,t |2

}
−ρl,k

∣∣∣E
{
(hl

l,k)
H wl

l,k

}∣∣∣
2

+σ2
DL

= ∑
i∈Pl

ρi,kE
{
|(hi

l,k)
H wi,k|2

}
+ ∑

i∈Pl

K

∑
t=1
t 6=k

ρi,tE
{
|(hi

l,k)
H wi,t |2

}

+ ∑
i/∈Pl

K

∑
t=1

ρi,tE
{
|(hi

l,k)
H wi,t |2

}
−ρl,k

∣∣∣E
{
(hl

l,k)
H wl

l,k

}∣∣∣
2

+σ2
DL

= M ∑
i∈Pl\{l}

ρi,kV
{

ĥi
i,k,m

}
+

L

∑
i=1

K

∑
t=1

ρi,tV
{

hi
l,k,m

}
+σ2

DL.

(75)

Substituting (74) and (75) into (31), yields the SINR expression stated for MR in the corollary.

Next, we consider ZF precoding for which we notice that

E

{∥∥∥Ĥ
i

iri,t

∥∥∥
2
}
= E

{[(
(Ĥ

i

i)
H Ĥ

i

i

)−1
]

t,t

}
=

1

(M−K)V
{

ĥi
i,t,m

} (76)
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by utilizing the fact that (Ĥ
i

i)
H Ĥ

i

i is a central complex Wishart matrix with M degrees of freedom.

Hence, the ZF precoding vector becomes

wi,t =

√
(M−K)V

{
ĥi

i,t,m

}
Ĥ

i

iri,t . (77)

Using this precoding vector, we compute the numerator and denominator of (31) as follows:

ρl,k

∣∣∣E
{
(hl

l,k)
H wl

l,k

}∣∣∣
2

= (M−K)ρl,kV

{
ĥl

l,k,m

}
, (78)

L

∑
i=1

K

∑
t=1

ρi,tE
{
|(hi

l,k)
H wi,t |2

}
−ρl,k

∣∣∣E
{
(hl

l,k)
H wl,k

}∣∣∣
2

+σ2
DL

= (M−K) ∑
i∈Pl\{l}

ρi,kV
{

ĥi
l,k,m

}
+ ∑

i∈Pl

K

∑
t=1

ρi,t MSEi
l,k + ∑

i/∈Pl

K

∑
t=1

ρi,tV{hi,t,m}+σ2
DL.

(79)

Substituting (78) and (79) into (31), yields the SINR expression stated for ZF in the corollary.
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