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Abstract—Massive multiple-input multiple-output (MIMO) is
a key technology to meet the user demands in performance
and quality of services (QoS) for next generation communication
systems. Due to a large number of antennas and radio frequency
(RF) chains, complexity of the symbol detectors increased rapidly
in a massive MIMO uplink receiver. Thus, the research to find
the perfect massive MIMO detection algorithm with optimal
performance and low complexity has gained a lot of attention
during the past decade. A plethora of massive MIMO detection
algorithms has been proposed in the literature. The aim of this
paper is to provide insights on such algorithms to a generalist
of wireless communications. We garner the massive MIMO
detection algorithms and classify them so that a reader can
find a distinction between different algorithms from a wider
range of solutions. We present optimal and near-optimal detection
principles specifically designed for the massive MIMO system
such as detectors based on a local search, belief propagation
and box detection. In addition, we cover detectors based on
approximate inversion, which has gained popularity among the
VLSI signal processing community due to their deterministic
dataflow and low complexity. We also briefly explore several
nonlinear small-scale MIMO (2-4 antenna receivers) detectors
and their applicability in the massive MIMO context. In addition,
we present recent advances of detection algorithms which are
mostly based on machine learning or sparsity based algorithms.
In each section, we also mention the related implementations of
the detectors. A discussion of the pros and cons of each detector
is provided.

Index Terms—5G, massive MIMO, detection, local search, be-
lief propagation, approximate matrix inversion, lattice reduction,
sparsity, machine learning, and compressive sensing.

I. INTRODUCTION

THE number of mobile users is dramatically increasing

every year. Users crave faster Internet access and instant

access to the multimedia services. In addition, the implementa-

tion of smart cities has reached stages wherein a dense and het-

erogeneous set of devices positioned over the urban area gen-

erates Exabytes of data to be exchanged [1]. Figure 1 shows

an exponential growth in the mobile data traffic in 2015–2021

[2][3]. This calls for higher data rates, larger network capacity,

higher spectral efficiency, higher energy efficiency, and better

mobility [4]. Therefore, researchers have proposed the 5G

networks to handle the above mentioned issues resulted from
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billions of wireless devices. A combination of well-known

Figure 1. Global mobile data traffic forecast by 2021

and efficient technologies will be deployed in 5G networks

such as the device-to-device (D2D) communication, the ultra

dense networks (UDNs), the spectrum sharing, the centimeter

wave (cmWave) or millimeter wave (mmWave), the internet of

things (IoT), and the massive multiple-input multiple-output

(MIMO) [5][6].

MIMO is a key technology that has been used since the third

generation (3G) wireless networks to enhance performance of

the wireless transceivers [7]. The idea is to use multiple anten-

nas in the transmitter and the receiver to increase the spectral

efficiency, the range and/or the link reliability. However, due to

multiple interfering messages being transmitted from different

antennas, the MIMO receiver is expected to use a detection

mechanism to separate the symbols which are corrupted by

interference and noise. The MIMO detector has been a topic of

great interest during the past 50 years. Massive MIMO systems

[8], [9] with a large number of antennas (up to hundreds) at

the base station (BS) or access point are a natural extension of

the conventional small-scale MIMO technology. The massive

MIMO BS can serve a large number of user terminals with

a single or few antennas in the same frequency band. The

key feature of the classical massive MIMO system operating

below 6 GHz carrier frequency is that the number of BS

antennas is clearly larger than the total number of antennas in

the user equipment within the cell or service area. Thereby the

multiuser interference averages out to appear just as increased

additive noise with the problems in channel estimation due to

the pilot contamination [10].

The classical massive MIMO technology has been adopted

for the fifth generation (5G) communication systems for below

6 GHz, wherein the scattering and multipath propagation in

radio channels is rich. Thereby the interference averaging

due to the large number of antenna elements makes the

conventional matched filter (MF) based receivers often approx-
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imately optimal. Very large antenna arrays are also needed at

higher carrier frequencies, i.e., cmWave or mmWave bands and

beyond toward the THz band. However, propagation channels

are therein much more directive making the interference condi-

tions rather different. Therefore, the term massive MIMO has

not classically been used for those communications concepts,

but this terminology varies from paper to paper. Large arrays

are easier to implement and pack in the higher frequencies

due to the smaller size of antennas. Therefore, the massive

MIMO detection techniques may have a role in the cmWave

or mmWave systems, although the propagation characteristics

of the channels make the multiuser interference scenario quite

different. We focus on the classical massive MIMO notion and

detectors for systems operating below 6 GHz carrier frequency

in this survey.

A. Relevant Prior Art

Massive MIMO has become a hot research topic in last few

years, and, hence, several survey papers related to massive

MIMO systems have been published [11], [12], [13], [14],

[15], [16]. While these papers review a number of key topics

of massive MIMO, none of them extensively discuss the

detection techniques. A comprehensive review, comparison

and discussion of the existing linear precoding mechanisms for

massive MIMO according to different cell scenarios have been

presented in [11]. It also discussed some standing challenges

which related to the design of precoding mechanisms and

practical implementations. Low complexity precoders suffered

from a considerable performance loss, while a complicated

precoder design is more difficult to implement practically. In

[12], importance of the pilot contamination in massive MIMO

is considered and hardware impairments are discussed. The

article reviewed possible sources of pilot contamination, which

include hardware impairments and non-reciprocal transceivers.

Different mitigation techniques for pilot contamination have

been categorized as pilot-based approach and subspace-based

approach. In [13], challenges and benefits of the mmWave

massive MIMO communication are reviewed. The paper dis-

cussed the enhancement in user throughput, spectral, energy

efficiency and capacity. The design of mmWave massive

MIMO communication system has to take into consideration

the choice of the modulation technique, the signal waveform,

the multiple access scheme, the user scheduling algorithm, the

fronthaul design, the architecture of antenna array, precoding

techniques, and health and safety issues. However, the holis-

tic performance and evaluation of mmWave massive MIMO

techniques in real-life scenarios and applications remains an

open issue. In [14], an extensive investigation of massive

MIMO propagation channels is presented and key differences

from the conventional MIMO are discussed. It also reviewed

the channel characteristics, measurements and models. Some

future directions of channel models for massive MIMO are

analyzed. It is concluded that the propagation channels will

remain a vibrant research area in the coming few years.

In [15], the combination of analog and digital beamforming

structures using average channel state information (CSI) are

reviewed. The hybrid beamforming structure keeps the number

Table I
ACRONYMS AND CORRESPONDING FULL MEANING

Acronyms Full Form

ADMM Alternating direction method of multipliers

ASIC Application specific integrated circuit

BP Belief propagation

BS Base station

BER Bit error rate

BB Branch and bound

CD Coordinate descent

CS Compressive sensing

CG Conjugate gradients

CDMA Code division multiple access

CSI Channel state information

CE Constant envelop

D2D Device-to-device

DFE Decision feedback equalization

DBNIIR Diagonal band Newton iteration with iterative refinement

EXIT Extrinsic information transfer

ELR Element-based lattice reduction

EVD Eigenvalue decomposition

EP Expectation propagation

GPU Graphics processing unit

GMRES Generalized minimal residual

GS Gauss-Seidel

ISI Inter-symbol interference

IoT Internet of things

ICI Inter-channel interference

IR Iteration refinement

KSD K-best sphere decoding

KL Kullback-Leibler

LLL Lenstra-Lenstra-Lovasz

LTE Long term evolution

LOS Line-of-sight

LLR Log-likelihood ratios

LDPC Low density parity check

LRA Lattice reduction aided

LAS Likelihood ascent search

MIMO Multiple-input multiple-output

MIC Multistage interference cancellation

MUD Multiuser detection

mmWave Millimeter wave

MMSE Minimum mean square error

MF Matched filter

MLSD Maximum-likelihood sequence detection

MUD Multiuser detector

mMTC Massive machine-type communications

MSE Mean-square error

MMP Multipath matching pursuit

MRC Maximum ratio combining

MEP Multi-envelop precoding

MC Multicell

NI Newton iterations

NS Neumann series

NIIR Newton iteration with iterative refinement

OSD Ordered sphere decoding

PAM Pulse amplitude modulation

PIC Parallel interference cancellation

PAPR Peak-to-average-power ratio

QoS Quality of service

QAM Quadrature amplitude modulation

QP Quadratic programming

RTS Reactive tabu search

RF Radio frequency

SOR Successive over relaxation

SUMF Single user matched filtering

SDM Space division multiplexing

SD Sphere decoding

SIMO Single-input multiple-output

SNR Signal-to-noise ratio

SIC Successive interference cancellation

SR Sequential Reduction

SLV Shortest Longest Vector

STBC Space-time block codes

SER Symbol error rate

SC-FDMA Single carrier frequency division multiple access

SC Single-cell

UDNs Ultra dense networks

VBLAST Vertical Bell laboratories layered space-time

VCM Virtual channel model

VLSI Very-large-scale integration

WSSOR Weighted symmetric successive over relaxation

ZF Zero-forcing

3G Third generation

4G Fourth generation

5G Fifth generation
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Figure 2. Outline of the article

of radio frequency (RF) chains within reasonable limits. It is

shown that the hybrid beamforming techniques are promising

for reducing the hardware cost and the training overhead.

However, a trade-off between complexity and performance has

to be considered in the design of different applications and

channel characteristics.

A survey dated on 2015 [16] presented a detailed clar-

ification of the MIMO detection fundamentals, and recited

the half-a-century history of MIMO detection. The authors

provided an extensive overview and milestones in the devel-

opment of optimal, linear, interference cancellation MIMO

detection. In addition, the tree-search detectors were reviewed

extensively and milestones in development of the depth-first,

the breadth-first and the best-first type were presented. The

lattice reduction, probabilistic data association and semidef-

inite relaxation detectors were also reviewed extensively. In

addition, relevant lessons were inferred from the rich heritage

of small- and medium-scale MIMO detection for the sake

of designing complexity-scalable MIMO detection algorithms

that are potentially viable to large-scale MIMO systems.

The authors briefly presented the recent advances of massive

MIMO detectors where it is divided into two types. The first

type corresponds to the case where the number of BS antennas

is much larger than the number of active users and the second

type corresponds to the case where the number of active users

is comparable to the number of BS antennas. It is concluded

that some conventional MIMO detectors might be infeasible

with a certain type of massive MIMO systems. For instance,

the family of tree-search based detectors will become less

feasible in the first type and it might be invoked in the second

type of massive MIMO systems.

B. Contribution and Outline

In this paper, an extensive survey on detection algorithms

related to massive MIMO system is presented. Our particular

focus is on performance and complexity trade-off as well as

the practical implementation of detection algorithms. Although

the survey in [16] is extensive, the primary focus of the

article was not on massive MIMO systems. For instance, the

effect of matrix inversion and approximate matrix inversion

methods in the detection process are not presented in [16].

There is also a paucity of reviews on advanced detectors

based on the local search, the belief propagation (BP), the

BOX-detection, sparsity and machine learning approaches. To

our best knowledge, this is the first survey to explore the

detection mechanisms that pertains to only massive MIMO

systems. A plethora of massive MIMO detection algorithms

has been proposed in the literature. The aim of this paper is to

provide insights on such algorithms to a generalist of wireless

communications. In this paper, we garner the massive MIMO

detection algorithms and present their performance-complexity

profile so that a reader can find a distinction between different

detection algorithms from a wider range of possible solutions.

It starts off with a dive into the history of detectors for a

small-scale MIMO. It then presents the concepts and ben-

efits of massive MIMO system. After that, it discusses the

signal detection challenge in massive MIMO system. Then,

it surveys the corresponding detection solutions for massive

MIMO systems starting with classical linear detectors with

approximate matrix inversion methods such as the Neumann

series (NS) method, the Newton iterations (NI) method, the

Gauss-Seidel (GS) method, the successive over relaxation

(SOR) method, the Jacobi method, the Richardson method, the
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Lanczos method, the residual method, the coordinate descent

(CD) method, and the conjugate gradients (CG) method. It

also presents detectors based on nonlinear methods such as the

successive interference cancellation (SIC), lattice reduction-

aided algorithms, and the sphere decoding (SD). Sequentially

this paper comprehensively reviews the detectors based on the

local search, the belief propagation, the box detection, machine

learning based detectors and sparsity based algorithms. One of

the key features of this article is presenting the pros and cons

of each detector based on the performance-complexity profile

as well as the implementation stiffness.

Section II describes the concept of massive MIMO systems.

Section IV presents the massive model and illustrates the

detection techniques for massive MIMO. Finally, Section VII

concludes the paper and presents the future directions in

massive MIMO systems. For smooth readability, the outline

of the article is depicted in Fig. 2 and the most used acronyms

are presented in full form in Table I.

II. MASSIVE MIMO

A. What is massive MIMO?

Massive MIMO is a scaled up version of the conventional

small scale MIMO systems [8], [9]. As shown in Fig. 3,

massive MIMO system is a multiuser communications solution

that employs a large number (practically some dozens or

hundreds, theoretically up to thousands) of antenna elements

to serve simultaneously multiple users with a flexibility to

opt what users to schedule for reception at any given time.

The most common massive MIMO concept assumes that

the user terminals have just a single antenna1 and that the

number of antennas at the BS is significantly larger than the

number of served users. The introduction of massive MIMO

had a tremendous impact on the research and development

community during past decade. As a result, many next gener-

ation communication technologies, such as 5G below 6 GHz

adopted massive MIMO as their key technology. Most of the

massive MIMO literature focuses on mobile broadband type

high rate problems with large data packets such that channel

estimation and training makes clearly sense. The other appli-

cation of interest is the massive machine-type communications

(mMTC) wherein large number of connected devices are only

sporadically active [17], [18].

B. Why massive MIMO?

Massive MIMO technology relies on increasing the spatial

multiplexing gain and the diversity gain by adding the number

of antennas at the BS to serve users with relatively simple

processing of signals from all the antennas [19][20]. The

potential benefits of massive MIMO can be summarized as

follows:

• Capacity and link reliability: Massive MIMO increases

the diversity gain, and hence, provides link robustness

1The massive MIMO is often in a way a misnomer, due to the single-
antenna terminal. The system is actually a multiuser single-input multiple-
output (SIMO) uplink or multiple-input single-output (MISO) downlink. As
is customary in the literature, we refer in this paper both single and multiple
antenna terminal case by massive MIMO system.

as it resists fading [21]. It is approved that the capacity

increases without a bound as the number of antenna

increases, even under a pilot contamination, when mul-

ticell minimum mean square error (MMSE) precoding/
combining and spatial channel correlation are used [22].

• Spectral efficiency: Massive MIMO improves the spec-

tral efficiency (SE) of the cellular network by spatial

multiplexing of a large number of user equipment’s per

cell [23]. Numerous antennas create more spatial data-

streams, more throughput, more multiplexing gain, and

hence achieve high spectral efficiency [24]. It is shown

that the overall spectral efficiency in the massive MIMO

can be ten times higher than in the conventional MIMO

where tens of users will be served simultaneously in the

same time-frequency resources [8].

• Energy efficiency: Due to coherent combining, the trans-

mitted power is inversely proportionate to the number

of transmit antennas [25]. As the number of transmit

antennas increases, the transmit power will be signifi-

cantly reduced. The power per antenna should be ∝ 1
nt

,

where nt is the number of antennas. Also, the throughput

could be increased by increasing the number of transmit

antennas and without increasing the transmit power [26].

Each antenna uses extremely low power, i.e., milliwatts

[10]. Therefore, the energy efficiency increases and equiv-

alently system reliability.

• Security enhancement and robustness improvement: Man-

made interference and intentional jamming are serious

concerns in modern wireless communication systems.

Massive number of antenna terminals [8] leads to a large

number of degrees of freedom which can be used to can-

cel the signals from intentional jammers [27]. In addition,

massive MIMO systems are also inherently robust against

passive eavesdropping attacks because of beamforming.

However, the eavesdropper can take countermeasures by

exploiting the high channel correlation in the vicinity of

the user or the weakness of channel estimation [28].

• Cost efficiency: Massive MIMO eliminates the need for

bulky items such as coaxial cables which used to con-

nect the BS components, and hence reduces the system

implementation cost [8]. In addition, massive MIMO uses

cheap milliwatts amplifier instead of a multiple expensive

high power amplifier [29]. Moreover, it has a potential to

reduce the radiated power 1000 times and at the same

time drastically maximize the data rates [8].

• Signal processing: A large number of antennas eliminates

the interference effects, fast fading, uncorrelated noise

and thermal noise, and hence simplifies the signal pro-

cessing [1][30]. In addition, it is favorable propagation

environment occurs when the channel responses from

the base station to user terminals are different (mutually

orthogonal, i.e., the inner products are zero). However,

non-orthogonal channel vectors lead to advanced signal

processing to suppress the interference.

One of the key properties of massive BS antenna arrays is so

called channel hardening. It refers to the phenomenon where

the massive MIMO channel matrix approaches their expected
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Figure 3. Massive MIMO architecture

values, when the number of antennas approaches infinity. In

other words, the effective channel approaches deterministic

and the off-diagonal components of the Gramian matrix be-

come weaker compared to diagonal terms as the size of the

channel gain matrix increases. This property can be exploited

in the detection technique and the channel estimation. The

simple matched filter (MF) approaches optimality in such

a case [31]. However, this is only true with rich scattering

and truly large antenna arrays. Therefore, advanced detection

techniques are of interest in the practical propagation scenarios

and correlated fading channels.

C. Challenges

Even though the numerous number of antennas benefits

the communication system, massive MIMO imposes new

challenges for the signal processing that can be categorized

as:

1) Channel estimation: Channel estimation plays a major

role in the overall performance of wireless systems. The base

station requires an accurate estimation of the channel state

information (CSI) to meet the potential advantages of the

massive MIMO in practice. However, it is difficult to obtain

the CSI for a large number of channels [32]. There is a

need to exchange the CSI across the transmitters on a fast

time scale and low-latency basis [33]. In addition, channel

estimation is known to be hampered by the pilot contamination

effect [34]. Channel information is obtained on the basis

of finite-length pilot sequences in the presence of inter-cell

interference. Hence, the pilot sequences from adjacent cells

would contaminate each other. Therefore, channel estimation

problems should be addressed in the massive MIMO to provide

a substantial improvement in performance.

2) Precoding: It is an important signal processing scheme

which uses the CSI at the transmitter to maximize the link

performance. The BS has to precode the downlink data to

focus the spatial data-streams at the users’ location [35].

In other words, the transmit precoding can be used in the

downlink to concentrate each signal at its intended receiver. In

a non-LOS environment, the concept of focusing the antenna

array toward a specific terminal becomes more complicated

where the geographical point of multipath components have

to be considered. In small-scale MIMO precoding schemes

such as zerof-forcing (ZF) precoding, the symbols are modified

in both amplitudes and phase at the baseband and supported

by a dedicated radio frequency (RF) transceivers. Therefore,

each antenna element requires a dedicated RF transceivers

for assistance which is too expensive in the case of massive

MIMO [36]. However, precoders with much less number

of transceivers than total number of antennas will be more

realistic and cost-effective to deploy [37]. In [38], constant

envelop (CE) precoding techniques have been proposed to

reduce the hardware costs. The transmitted signal is gener-

ated by varying only the phase of the constant amplitude

baseband symbols, therefore, the peak-to-average-power ratio

(PAPR) is significantly improved which makes utilizing cheap

power amplifiers viable at the BS circuitry. Unfortunately, the

hardware costs are reduced in an expenses of performance

loss. This algorithm has been exploited in [39] where a multi-

envelop precoding (MEP) technique has been proposed. The
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idea behind this technique is to utilize more than one but only

few envelop levels, which reduces the needed additional power

and increases the achievable data rates with respect to CE

precoding. A plethora of literature can be found on precoding

techniques such as the joint spatial division and multiplexing

(JSDM) [40], [41], iterative algorithms for precoder optimiza-

tion [42] and JSDM-finite alphabets [43].

3) Signal detection: Accurate and instantaneous CSI is

needed at the BS to perform precoding in a forward link

(downlink) and detection in a reverse link (uplink). Perfor-

mance of the MF detector can be reasonably good in rich

scattering channels with a small number of users. However,

in spatially correlated channels and to increase the spectral

efficiency, more advanced detectors are needed. Complexity

of massive MIMO detection algorithm is affected by systems’

size (number of antennas at both sides, transmitters and

receiver terminals), the matrix-by-matrix multiplication, and

the matrix inversion. However, a balance between performance

and complexity should be considered [44]. We cover these

aspects in this tutorial review.

III. FORMAL DEFINITION OF LINEAR MASSIVE MIMO

DETECTION

We provide a formal definition of the massive MIMO

system model in this section. The aim is to provide a relevant

background to the readers for subsequent sections. There have

been a reinvigorated interest in the traditional linear detectors

since the introduction of massive MIMO systems. Therefore,

we also present the linear detection mechanism in this section.

We assume massive multi-user MIMO base-station (BS) is

serving K single antenna users. The BS has a total N antennas

where K ≤ N. Assuming frequency-flat channel, the channel

coefficients between K users and N BS antennas forms a

matrix (H) which can be expressed as

H =




h11 h12 · · · h1 j

h21 h22 · · · h2 j

...
...

...
...

hi1 hi2 · · · hi j


 , (1)

where hi j is the channel gain or loss from jth transmit

antenna to ith receive antenna. The channels are shown in

lines between the BS and users in Fig. 3. The elements

of the channel matrix H ∈ C
N×K are often assumed to be

independent and identically distributed (i.i.d) Gaussian random

variables with zero mean and unit variance. However, this

is not always the case in truly directive channels. The K

users transmit their symbols individually and we can form a

symbol vector x= [x1, x2, ....., xK ]
T transmitted by all the users

in the uplink or reverse direction. The BS receives a vector

y= [y1, y2, ....., yN ]
T which is corrupted by channel effects and

noise. The relationship between x and y can be characterized

as

y = Hx + n, (2)

where n is N × 1 additive white Gaussian noise (AWGN)

whose entries are i.i.d.. This model is generally adopted to

derive a detection algorithm, where the CSI and the synchro-

nization is assumed to be perfect at the BS.

The task of a MIMO detector is to determine the transmitted

vector x based on the received vector y. The maximum-

likelihood sequence detection (MLSD) is an optimal algorithm

to solve the MIMO detection problem. It performs an exhaus-

tive search and examines all possible signals as illustrated by

x̂ML = arg min
x∈OK

‖y−Hx‖2
2, (3)

where x̂ is the estimated received signal. The ML problem is

combinatorial in nature and the numerical standard algorithms

for the convex optimization are not applicable. Therefore, the

complexity of ML is exponential in the number of decision

variables OK [45]. The ML detector can be prohibitively

complex even for a small-scale MIMO detection. For instance,

a transmitter with four antennas supporting 64-QAM alphabet

requires a 16.7×106 candidate comparisons for the ML detec-

tion. The linear detectors relax the discrete set OK to a complex

set so that the problem 3 can be solved with convex opti-

mization methods and closed solution can be obtained. Linear

detectors can be represented as multiplying the received signal

y with the equalization matrix AH , x̂= S(AHy), followed by a

slicer S(.), which quantizes each entry to the nearest neighbor

in constellation [46]. The most conventional low complexity

linear detectors such as the MF, the ZF algorithm and the

MMSE algorithm are explained here.

A. MF detector

MF handles the interference from other sub-streams as

purely noise by making A = H. The estimated received signal

using MF is given by

x̂MF = S(HHy), (4)

which works properly when K is much smaller than N and

it provides a worse performance compared to more complex

detectors. MF, also called the maximum ratio combining

(MRC), aims to maximize the received SNR of each stream by

neglecting the effect of multiuser interference. If the channel is

ill-conditioned, performance is severely degraded for a square

MIMO system [47].

B. Linear ZF detector

ZF outperforms the MF detector and it aims to maximize

the received signal-to-interference ration (SINR). The ZF

mechanism is based on inverting the channel matrix H and

thus, removing the effect of the channel. The equalization

matrix of the ZF detector [48] is given by

AH
ZF = (HHH)−1HH = H+, (5)

where H+ is the Moore-Penrose pseudo-inverse of a matrix.

The pseudo-inverse is used because H is not always a square

matrix, i.e. the number of users is not equal to the number of

antennas at BS. The estimated signal can be shown as

x̂ZF = S(AH
ZF y). (6)

It is clear that the ZF detector neglects the effect of noise

and it works properly in interference-limited scenarios in
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expenses of higher computational complexity. However, the

ZF detector and the MF may produce a noise enhancement in

case of a small-valued coefficient channel. Therefore, MMSE

detector is proposed to take the effect of noise in the equal-

ization process.

C. Linear MMSE detector

The main idea of the MMSE detector is to minimize the

mean-square error (MSE) between the transmitted x and the

estimated signal HHy as given by

AH
MMSE = arg min

H∈CN×K
❊‖x−HHy‖2, (7)

where ❊ is the expectation operator. MMSE detector takes the

noise effect into consideration as

AH
MMSE =

(
HHH+

K

SNR
I

)−1

HH , (8)

where I is the identity matrix. The output of the MMSE

detector can be obtained by

x̂MMSE = S(AH
MMSEy). (9)

Unlike the ZF detector in (6), the MMSE in (8) depends on a

reduced noise enhancement and it requires a knowledge of the

SNR. Therefore, the MMSE detector is capable of achieving

a significantly better performance than the ZF detector when

the noise power is large.

IV. DETECTION TECHNIQUES FOR MASSIVE MIMO

The earliest massive MIMO detector dates back to 2008

when Vardhan et al. proposed a detection mechanism for

massive MIMO based on likelihood ascent search [49]. The

main issue with utilizing a large number of antennas is the

high complexity involved and the proposed detector achieves a

near-ML performance with low complexity. The next few years

researchers proposed near-ML detectors using local search

and belief propagation algorithms. As the number of antennas

increases, complexity of the matrix inversion required for

linear detectors also increase exponentially. In 2013, Wu et al.

proposed an approximate inversion method based uplink detec-

tor in [50] and initiated a new direction for the massive MIMO

detector research. This class of massive MIMO detectors are

designed for specific massive MIMO configurations, i.e. when

the number of antennas are high compared to the number

of users. The effect of a channel hardening is higher for

such massive MIMO configurations and thus, low complexity

detectors can achieve high performance. The approximate

inversion based detectors have been the most popular class of

detectors since its introduction in 2013. In addition, symbol

detectors utilizing the sparsity and the machine learning also

gained attraction for massive MIMO configurations. In this

section, we explore all the novel detectors which are proposed

for the massive MIMO.

A. Linear Detectors Based on the Approximate Matrix Inver-

sion

With a large number of transmit antennas, the channel

hardening phenomenon can be exploited to cancel the charac-

teristics of a small-scale fading [51] and it becomes dominant

when the number of served users (K) is much lower than

the number of receive antennas (N). This can be seen as a

diagonlisation of the entries in the Gram matrix or Gramian

G = HHH, where the non-diagonal components tend to zero

and diagonal terms become closer to N [44][52]. As shown

in (5), a matrix inversion of the Gramian matrix is required

to equalize the received signal. It exhibits high computational

complexity being one of the most complex operations in the

linear and simple non-linear MIMO detectors. For the massive

MIMO system, this problem becomes more severe as the

dimension of the Gramian G increases [53]. Several methods

have been proposed to reduce complexity by approximating

the inverse of a matrix, rather than computing it [54]. Besides

the cost of a matrix inversion, a challenge in matrix inver-

sion lies on when the channel matrix is nearly singular and

the system becomes ill-conditioned. In this case, the matrix

inversion will not equalize the received signal [55], [56]. In

order to overcome the inherent noise enhancement, modified

detectors with approximate matrix inversion methods will be

an essential. Therefore, detectors based on approximate matrix

inversion will be presented and discussed below.

1) Neumann Series: The Neumann series (NS) is a popular

method for approximating the matrix inversion which sub-

sequently reduces complexity of the linear detector [54]. G

can be decomposed into G = D+E, where D is the main

diagonal matrix and E is the non-diagonal matrix [57]. The

NS expansion of G is given by

G−1 =
∞

∑
n=0

(
−D−1E

)n
D−1. (10)

The polynomial expansion in (10) converges to the matrix

inverse G−1 if

lim
n→∞

(
−D−1E

)n
= 0. (11)

In practice, a finite number of terms is utilized, and, thus,

a fixed number of iterations of (10) is performed. As the

number of iterations n increases, high precision of the matrix

inverse will be achieved at the expense of extra complexity.

The NS based algorithm reduces the computational complexity

from O
(
K3
)

to O
(
K2
)

when the number of iterations n ≤ 2

[58][59]. However, the NS method recursion is slow, therefore,

high-order recursion method such as Schulz recursion can

be used to accelerate the NS recursion in expenses of extra

computational complexity [60].

In [61], a MMSE parallel interference cancellation (MMSE-

PIC) based algorithm is proposed to reduce the computational

complexity by exploiting the NS expansion to replace the

matrix-matrix multiplication of G with a matrix-vector multi-

plication. This method employed n ≤ 3 for a MIMO size of

16× 128. Compared to the ML detector, the computational

complexity has been reduced to O (nKN) with a marginal

performance loss when n = 3 compared to the MMSE per-

formance. Complexity can be reduced only when n is small.
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In [62], an iterative detector has been proposed to manage

complexity even for large n. The proposed algorithm exploits

the NS method to compute the LLR for the channel decoder.

The proposed algorithm has been tested at 12× 70 MIMO

system and it reduces the complexity from O
(
K3
)

to O
(
K2
)
.

In [63], performance and complexity of the NS based linear

detector has been investigated in the condition of Rician

channel model. High throughput application specific integrated

circuit (ASIC) is designed for the NS based detector in [64].

The ASIC achieves 3.8 Gbps for 128 antenna BS and 8

users for single carrier frequency division multiple access (SC-

FDMA). The NS based detector is also implemented on a

Xilinx Virtex-7 FPGA in [52]. The FPGA design achieves

600 Mbps for 128 antenna BS and 8 users.

It should be noted that the detection based on the NS method

suffers from a considerable performance loss when the ratio

between the number of BS antennas and user antennas, β, is

large (close to 1) [65].

2) Newton Iteration method: The Newton iteration (NI)

is also known as the Newton-Raphson method and it is an

iterative method for finding the approximation of the matrix

inverse [66]. For G, estimation of the matrix inversion at nth

iteration is given by

X−1
n = X−1

n−1

(
2I−GX−1

n−1

)
, (12)

which converges quadratically to the inverse matrix if

∥∥I−GX−1
0

∥∥< 1. (13)

High precision can be achieved using NI with quadratic

convergence [67]. Like the NS method, it only requires a sim-

ple computation to accelerate the detection process. Although

the NI requires one more matrix multiplication in each step,

the approximation converges faster in comparison to the NS

method. The NI requires only few iterations to approach a

matrix inverse with impressive precision while the NS method

requires more iterations for the same results [67]. In [68],

the NI based linear detector has been used in 16×16 MIMO

system. In [67][69], the NI with iterative refinement (NIIR)

and diagonal band NIIR (DBNIIR) have been employed for

a MIMO size of 16 × 128. The computational complexity

reduced from O
(
K3
)

to O
(
K2
)
.

In [70], NI and NS methods are exploited in the hybrid

detector’s design to achieve a fast convergence. The proposed

hybrid detector has been employed in a 32 × 256 MIMO

system where a faster convergence rate has been achieved

compared to conventional NI and NS, with almost the same

complexity when the iteration number is greater than or equal

to 2.

3) Gauss-Seidel method: The Gauss-Seidel (GS) method

is also known as the Liebmann method or the method of

successive displacement. It is used to solve the linear system

shown in (2). The Gramian matrix (G) can be decomposed

into G = D + L + U [71][72], where D, L and U are the

diagonal component, the strictly lower triangular component,

and the strictly upper triangular component, respectively. The

GS method can be used to estimate the transmitted signal

vector (x̂) [73] and its characterized by

x̂(n) = (D+L)−1
(

x̂MF −Ux̂(n−1)
)
, n = 1,2, · · · , (14)

where n is the number of iterations and x̂MF is shown in

(4). If there is no priori information about the initial solution

x̂(0), it can be considered as zero [72]. According to [71], the

GS iteration method outperforms the NS method with lower

complexity. In [73], a detector based on the GS method has

been proposed with initial solution based on the NS expansion

with two terms. The proposed detector is implemented in the

FPGA for 8 × 128 MIMO system. The parallel version of

the GS method is implemented in [72]. It outperforms the

implementation of [73] in terms of throughput for a 8× 128

system.

It has also shown that detectors based the GS method can

reduce the complexity to be O
(
K2
)

[59]. However, due to the

GS internal sequential iterations structure, it is not well suited

for parallel implementation [71], [74], [75].

4) Successive Over-Relaxation (SOR) method: The de-

tected signal using the SOR iteration is described by

x̂(n) =

(
1

ω
D+L

)−1(
x̂MF +

((
1

ω
−1

)
D−U

)
x̂(n−1)

)
, (15)

where n = 1,2, · · · , and ω represents the relaxation parameter

that plays a crucial role in the convergence rate. The GS

method is a special case of the SOR method [76] where we

can obtain (14) from (15) by setting ω= 1. For uplink massive

MIMO systems, the signal detection technique using the SOR

method is convergent when the relaxation parameter ω satisfies

0 < ω < 2 [77].

The SOR method outperforms the NS approximation

method in terms of performance and complexity reduction

[77]. However, the detection algorithm using the GS method

enjoys lower complexity than the SOR method [59]. In [78],

a detector based on the SOR method has been proposed with

iterative initial solution and an optimal relaxation parameter.

The proposed detector achieved a significant improvement

in detection performance when ratio of the number of BS

antennas to the number of user terminal antennas, β, is small.

The mathematical relationship between the antenna ratio β
and the optimal relaxation parameter is defined based on

Marchenko-Pastur law. The proposed detector employed in

16×80 MIMO system where the complexity has been reduced

from O
(
K3
)

to O
(
K2
)
. The SOR-based detector has been

implemented on Xilinx Virtex-7 FPGA for a 8× 128 system

and achieved a throughput of 22 Mbps after two iterations.

5) Jacobi method: The Jacobi method is another simple

iterative method for determining the solution of a diagonally

dominant system where the estimated signal is given by

x̂(n) = D−1
(

x̂MF +(D−A) x̂(n−1)
)
, (16)

which holds if

lim
n→∞

(
I−D−1A

)n
= 0. (17)

In the massive MIMO system, the condition in (17) can be

met in a very high probability [79][80]. The initial estimation

can be identified as

x̂(0) = D−1x̂MF . (18)
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The computational complexity of a detector using the Jacobi

method is lower than the computational complexity obtained

by the SOR method and the NS method [59]. In [79], a

detector based on the Jacobi method has been designed to

guarantee that the first iteration will be free of multiplication

and hence, reduce the complexity. The detector has been tested

in 8× 64, 8× 128, 16× 128, and 16× 256 MIMO systems.

For a small number of iterations (up to 2), the computation

complexity is O
(
K2
)

while it will be increased to O
(
K3
)

for

high iterations.

6) Richardson method: The Richardson method concept is

based on executing certain vector operations and multiplication

by the channel matrix H. It only utilizes symmetric matrices

defined as positive at their execution and can be slowed as it

approaches the exact solution over time. In order to achieve a

fast convergence, a relaxation parameter ω has been introduced

into iterative process and it satisfies 0 < ω < 2
λ

where λ is the

largest eigenvalue of the symmetric positive definite matrix H

[81]. The Richardson iterations can be described by

x(n+1) = x(n)+ω
(

y−Hx(n)
)

n = 0, 1,2, · · · . (19)

The initial solution x(0) can be identified as 2K × 1 zero

vector without loss of generality as no a priori knowledge of

the final solution is available [82]. The Richardson method

achieves a near-ML performance but it requires plenty itera-

tions [81][74].

Richardson method is a hardware friendly method and it can

reduce the computational complexity from O
(
K3
)

to O
(
K2
)

for a wide range of n [58][59]. In [58], a reformulation of a

Richardson method has been proposed for 16× 128 MIMO

hardware detector to reduce the computational complexity to

O (K). In [83], a graphics processing unit (GPU) friendly

detector based a scalable Richardson method as been proposed.

The proposed detector exploits the channel hardening gain

to reduce the number of iterations n in the soft Richardson

detector.

7) Conjugate Gradients method: Conjugate gradients (CG)

method is another effective method to solve the linear equa-

tions through nth iterations [84][85]. The estimated signal (x̂)

can be obtained using

x̂(n+1) = x̂(n)+α(n)p(n), (20)

where p(n) is the conjugate direction with respect to A, i.e.,

(
p(n)
)H

Ap( j) = 0, f or n 6= j, (21)

where α(n) is a scalar parameter.

The CG-based detection algorithm outperforms the NS-

based detection scheme in terms of performance and complex-

ity [85]. In [86], a detector based on the CG algorithm has been

proposed and achieved a significant complexity reduction. In

[75], a hybrid detector based on the CG algorithm and the

Jacobi method has been proposed to speed up the convergence

rate and improved performance. The CG-based detector is

implemented in Xilinx Virtex-7 FPGA for a 128×8 in [87].

The CG-based detector is also implemented using a GPU

platform in [88].

8) Lanczos method: Lanczos method is one of the Krylov

subspace methods used to solve large sparse linear equations.

It typically generates the orthogonal basis of the co-efficient

matrix and finds the solution whose residual is orthogonal

to Krylov subspace. The Lanczos method can be interpreted

as a subspace approximation of the exact solution. This

approximation converges quickly to the exact solution when

the number of basis is large. However, the steps of Lanczos

method can be divided into initialization and iterations. The

iterative process can be concluded in a relationship between

the estimated signal and received signal [89] as given by

x̂ = Q(n)F(n)−1Q(n)HGx+Q(n)F(n)−1Q(n)HHHn, (22)

where Q and F are the matrix formed by orthogonal basis, and

the tridiagonal matrix, respectively. For all iterative methods,

i.e. the GS method, the SOR method, the Jacobi method,

the Richardson method, and the Lanczos method, the initial

solution x̂(0) plays a major role in its convergence. A possible

selection of the initial solution [90] is given by

x̂(0) = D−1ŷ, (23)

where D denotes the diagonal entries of the Gram matrix G

and ŷ = H−1y.

Low complexity soft-output detection using the Lanczos

method is proposed in [89]. It is capable of outperforming the

existing NS approximation based detectors where the MMSE

performance has been achieved within few iterations. In [91],

the convergence speed of a Lanczos method based MU-MIMO

detector has been analyzed by Kaniel-Paige-Saad theory. The

storage requirement of the Lanczos method based detectors has

been reduced in [90]. However, the Lanczos method either has

low performance or requires high computational complexity

under the time-varying channel [92].

9) Residual method: Residual method is an iterative

method that concentrates on minimization of the residual norm

rather than approximating the exact solution. In [93], the

generalized minimal residual (GMRES) method has been used

for the symbol detection to compute the MMSE filter without a

matrix inversion. In the GMRES method, approximation of the

exact solution y = Hx can be considered by the vector xs ∈ τs

that minimizes the norm of the residual vector rs = Hxs−y =
where τs is given by

τs = span
{

y,Hy, · · · ,Hs−1y
}
, (24)

where y,Hy, · · · ,Hs−1y are almost linearly independent vec-

tors and span{} denotes the set containing of all linear

combinations of the vectors.

As mentioned earlier, the CG method has been utilized for

the massive MIMO detection. A further improvement of the

BER performance can be achieved by taking out a matrix-

vector multiplication of the CG method, called the conjugate

residual (CR) method. In addition, Cholesky factorization is

utilized as a pre-condition algorithm to improve performance

of the CR method. The proposed detectors have been em-

ployed for 32× 128, 16× 128, and 8× 128 MIMO systems.

The hardware architecture of the proposed methods is also

proposed [94].
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10) Coordinate Descent method: Coordinate descent (CD)

is an iterative method that invert the high-dimensional linear

system at low complexity. It obtains an approximate solution

of a large number of the convex optimization using series of

simple, coordinate-wise updates. The estimated solution can

be concluded as

x̂k =
(
‖hk‖

2 +N0

)−1

hH
k

(
y− ∑

j 6=k

h jx j

)
, (25)

where No is the noise variance. (25) is computed sequentially

for each user k = 1, · · · ,K, where the new result will be

used immediately for the kth user in subsequent steps. These

procedures will be repeated for a total number of K iterations.

In [95], [96], low complexity optimized CD has been pro-

posed with a corresponding high-throughput FPGA design for

large-MIMO systems. The proposed FPGA reference design

outperforms the existing approximate linear detectors in terms

of hardware efficiency and BER performance. The proposed

algorithm can support tens of users with hundreds of BS

antennas.

As mentioned earlier, the above-mentioned methods can

be utilized to avoid a direct matrix inversion, and hence,

achieve complexity reduction. Meanwhile, complexity and

performance will be influenced by the initial values, the

number of iterations, and the relaxation parameter. By avoiding

the cons shown in Table II, a balance between complexity and

performance will be achieved.

B. Detectors Based on Local Search

Linear and nonlinear detectors become noncompetitive

when used to serve massive MIMO systems because they

require a matrix inverse calculation or QR-decomposition in

which complexity is proportional to the number of antenna

elements [97]. In order to achieve a satisfactory performance-

complexity profile, detectors based on the local search have

been proposed [98]. In the local search, the search focuses

on a local region (neighborhood around it) one at a time and

gradually approximates the best solution among the neighbor-

ing vectors. This process is continued for a certain number of

iterations where the initial solution should be provided and it

can be a random point from a suboptimal MIMO detector such

as the ZF algorithm or the MMSE algorithm. After that the

algorithm is terminated and the solution with a minimum cost

function in the subset that called as the local optimum will be

selected. The process can be iterated several times by changing

the initial solution, the stopping criteria and escape strategies.

The vector with the highest likelihood in the explored space

will be identified as the solution [99].

This subsection reviews two local neighborhood search

based algorithms, namely the likelihood ascent search (LAS)

algorithm and the reactive tabu search (RTS) algorithm.

1) Likelihood Ascent Search: The concept of LAS is based

on starting with an initial solution and keeps searching the

neighborhood for a better solution. Usually, the initial solution

vector is given by the linear ZF or the MMSE detector. An

example of the neighborhood around the initial solution is

the set of all vectors which differ from the initial solution

in one coordinate [100]. The LAS algorithm includes sev-

eral substages and each substage may consists more than

one iteration. The iterations continue till the local optimum

is reached in a substage. Afterwards, the second substage

iterations start where two symbols update is applied. If the

likelihood increases, the algorithm returns to the one symbol

update stage. Otherwise, the algorithm moves on to a three

symbol update and so on until the neighborhood fails to

increase the likelihood. LAS can achieve a near-ML detection

with a linear computational complexity [101]. The earliest

near-optimal massive MIMO detector can be found in [49]

where the LAS detector searched a sequence of bit vectors

with a monotonic likelihood ascent.

LAS detector has been adopted to decode 16 × 16 and

32 × 32 space-time block codes (STBC) and reported in-

teresting results that potentially enable the implementation

of massive MIMO systems in [102]. In [103], a hardware

implementation of a concatenated detector based on the LAS

algorithm and turbo codes has been tested on 32×32 MIMO

system after getting the initial solution using the ZF detector.

It achieves more than 170 Mbps with 64 QAM with BER

10−1.5 - 10−2. The work in [49] has been extended in [104]

for several stages on 20×20 and 100×100 MIMO systems.

The initial solution has been obtained from the output of the

MF. Simulations show that the BER performance has been

improved with complexity of O
(
K2
)
. It is well known that

not every vector in neighborhood search reduces the ML cost

and some of them may cause an increase in ML cost. In order

to reduce the size of the neighborhood search, a selection

rule has been proposed in [105] which minimizes the ML

cost. The simulation results on 32×32 MIMO system show a

significant reduction in complexity while maintaining the BER

performance. Motivated by the research in [106], researchers

in [107] generalized the selection metric to reduce the size of

the neighborhood, hence, complexity is reduced. Simulation

results on 32× 32 and 64× 64 MIMO systems show a BER

improvement and complexity reduction.

Simplicity is the key advantage of LAS detectors. In turn,

the LAS algorithm suffers from the local minima that it first

encounters and considers this minima to be the final solution

vector. Performance of LAS detectors is also deteriorated when

the modulation order increases. In addition, LAS detectors

require a very large number of antennas to achieve the optimal

performance. This number of antennas increases as the mod-

ulation order increases [108]. Moreover, the initial solution

computation (which includes a matrix inversion in the ZF

method and the MMSE method) increases the computational

complexity.

2) Reactive Tabu Search: Reactive tabu search (RTS) is

a more competitive local neighborhood search which adds

additional restrictions to avoid an early termination. The RTS

algorithm also starts with an initial solution vector. It imposes

the search to visit several neighborhood solutions to achieve

a satisfactory performance. In defining the neighborhood in

a given iteration, the RTS algorithm seeks to avoid cycling

by making moves to solution vectors of past few iterations as

”tabu”. In other words, the RTS algorithm is banning certain

vectors from being included in the neighborhood list. Due to
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the escaping strategy, RTS can find better minimas. Unlike the

LAS algorithm, the RTS algorithm involves several parameters

such as the stopping criteria parameters, initial tabu period,

maximum number of iterations [100]. Therefore, the RTS

algorithm is capable of outperforming the LAS detector at

complexity overhead. In [109], the RTS based decoding of

12×12 STBC has been proposed. In [110], the RTS detector

depends on running multiple tabu searches where each search

starts with a random initial vector and selects the best vector

among solution vectors. The RTS algorithm based on multiple

random restarts and threshold stopping criterion for under-

determined MIMO systems has been proposed [111]. In [105],

the RTS algorithm with a selection metric has been proposed

for generating a reduced neighborhood set. Compared to the

ML detector, simulation results for 32× 32 MIMO systems

show a significant complexity reduction with a satisfactory

BER performance.

Although the RTS based detector achieves a near-ML per-

formance and lower complexity than the ML technique, and

the LAS algorithm, it suffers high computational complexity

and performance degradation when the modulation order in-

creases.

C. Detectors Based on Belief Propagation

Detectors based on the local search is usually need to

compute an initial solution vector which increases complexity

which is not required in belief propagation (BP). In addition,

the LAS algorithm gets trapped in the local minima problem.

In turn, detectors based on the BP algorithm are less likely

suffer from the local minimum problem and achieve a better

performance in general [98].

The BP algorithm is a tree search based algorithm which

recursively searches for the optimal solution in a reduced

search space. In signal processing, large variety of algorithms

can be viewed as examples of the probability / belief prop-

agation, which work by passing the message in a graphical

model. For instance, the Baysian belief networks and Markov

random fields, the turbo codes, the low density parity check

(LDPC) codes [112], [113] and the message passing are

popular examples of utilizing BP in CDMA [114] and MIMO

detection [115], [116].

In the BP algorithm, the channel between the transmit and

receive antennas are presented by channel response (hi j) as

illustrated in Fig. 4 where j and i denote the transmit and

receive antennas, respectively. Each transmit antenna transmits

individually an independent symbol. The transmitted symbols

are summed at the receive antenna with different weights ac-

cording to gains of the channel. It is clear that the transmitted

symbols and received signals are mutually dependent. This

property can be exploited to model the MIMO system by a

factor graph (Tanner graph) [117] as presented in Fig. 4(b).

Factor graph can be utilized to remove the interference be-

tween the transmitted symbols. At the transmitter side, symbol

nodes have information on transmitted symbols independently.

Sequentially, the signal observed at the receiver will be stored

in the observation node. Therefore, reliability messages δi j

and βi j are iteratively exchanged and transferred between

both symbol node and observation node as shown in Fig.

4(b). The channel response will be utilized to determine the

coupling strength and the number of major connections. The

nodes in Tanner graph are connected to each other, thus, the

graph contains many loops where many of them could cause

performance degradation in the message passing. The number

of major connections will not become so large with high

number of antenna elements. Therefore, the effective number

of loops with high impact is a few which suits the detection

in massive MIMO systems to achieve low complexity [118].

The transmitted signals are detected at each observation node

and the result is passed as a message (extrinsic information) to

each symbol node. The extrinsic information (priori values for

the jth node are summed, and a posteriori log-likelihood ratios

(LLR) of each bit is calculated and utilized for a decision

output after a certain number of iterations. In other words,

the MIMO channel can be illustrated as a certain graphical

model, while detection of the channel input is equivalent to

performing inference in corresponding graph [119]. The pos-

teriori probability of each transmitted symbol is approximated

by passing messages that marginalize over other symbols in a

factor graph. This process will be repeated until achieving the

convergence. The BP based detectors achieved a near-optimal

performance when the number of antennas is large and the

channel correlation is reasonably low [98]. On the other hand,

the convergence degrades in a bad conditioned factor graph.

Figure 4. Example of a Tanner graph for a MIMO channel [98]

In [120], an analysis of the message passing detector based

on BP is provided with several parameters, such as the number

of users, the number of antennas, and the damping factor. The

proposed detector achieved performance gain over a factor
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graph BP algorithm without extra expenses of computational

complexity.

In [121], a detector based on the BP algorithm and message

passing on Markov random field presentation has been pro-

posed for non-orthogonal STBC 16×16 and 24×24 systems.

This work has been extended in [122] using factor graphs.

A Gaussian approximation based on BP has employed in

16 × 16 MIMO system to significantly reduce complexity

[123], [124]. In [125], the Markov random field, the mes-

sage damping and the Gaussian approximation of interference

methods have been utilized with a local neighborhood search

algorithm to enhance the performance of 16×16, 24×24, and

32×32 MIMO systems. The proposed detector has achieved

a significant complexity reduction. In [126], the extrinsic

information transfer (EXIT) of a factor graph based on a

message passing algorithm has been utilized for a detection

in 16×16, 64×64 and 256×256 MIMO systems. A detector

based on the EXIT and the BP has been implemented in

[118] using 100×100 MIMO system. Another detector based

on the BP has been implemented using an antenna array of

100 elements with second-order calculations [98]. In [127], a

hardware architecture with a parallel pipline and a simple logic

structure has been presented for the 32× 32 MIMO system

with 4-QAM.

Minimum Kullback-Leibler (KL) divergence criteria has

been exploited to approximate the original discrete messages

with continuous messages [128], [115]. This detector achieved

a near-optimal performance for a 64 × 64 MIMO system.

Channel hardening has been exploited for the detection pur-

poses using the MF, the MMSE, the message passing, the low

density parity check (LDPC) and the exit chart matching for

128× 128 and 128× 32 MIMO systems [31], [129], [130].

Also, BP and LDPC based detectors have been addressed

in [131] for large MIMO systems. In addition, a generalized

approximate message passing detection with EXIT has been

proposed in [132].

A hybrid RTS and BP has been proposed for 16× 16 and

32×32 MIMO systems [133]. The output of the BP algorithm

is fed back to the RTS algorithm for the next iteration. The

hybrid algorithm performed better than the RTS algorithm at

the expense of an extra complexity.

D. BOX Detection

Infinity norm or a BOX-constrained detection is a convex

relaxation of the ML decoder where the signal can be recov-

ered through the efficient convex optimization followed by a

hard thresholding [134], [135]. As shown in Fig. 5, it relaxes

the constraint x ∈CK to a convex hull around the constellation

set [134], [136].

In [96], a CD based BOX equalization has been imple-

mented for a 128 BS antenna and 8 users system. It shows

a satisfactory hardware efficiency with low hardware com-

plexity. In [136], a detector based on a BOX-constrained

equalization and alternating direction method of multipliers

(ADMM) has been proposed. In addition, an implementation

of the VLSI architecture for 16 × 16 massive MU-MIMO

system is provided. In order to outperform performance of

Figure 5. Idea of BOX-constrained detection

linear detectors, the ratio between the number of user terminals

and the number of BS terminals is small (less than two). A

derivation of the symbol error rate (SER) for the BOX-decoder

in the large system is provided in [135]. The proposed BOX

decoder significantly outperforms the linear ZF and MMSE

decoder.

Table II presents the pros and cons of several detection

algorithms in massive MIMO systems.

E. Sparsity based Algorithms

In the massive MIMO model, a large number of antennas

increases the degree of freedom and hence, the magnitude of

some of channel coefficients becomes zero or a small enough

to be neglected [142]. The linear transformation of H to be a

sparse is given by

H = T Hs B, (26)

where T and B are unitary matrices to perform a linear

transformation of H to get a sparse matrix Hs. Using the

compressive sensing (CS), a channel matrix H can be esti-

mated by exploiting the sparse structure of Hs [143]. The main

idea behind the CS relies on the fact that the sparse signals z

can be reconstructed from compressed measurements y = Φ z

through a convex programming provided that the signal to be

recovered is a sparse (i.e., the number of zero elements in the

vector is large) [144]. It can be used even when the length

of measurement vectors (y) is less than the length of z [145]

where the model is shown as

y = Φ z+n, (27)

where Φ is the measurement process and it should be a full

rank matrix and n is a noise vector.

In [146], a multipath matching pursuit (MMP) detector

using the SD technique has been proposed. It depends on

identifying the location of errors in the low complexity initial

solution and then a residual update strategy is applied to

improve the localization accuracy by using a thresholding

function. Finally, the SD-MMP algorithm will be applied to

reduce the variation in the number of errors. The detector

has been examined in 32 × 32, 64 × 64 and 128 × 128 4-

QAM and 16-QAM MIMO systems where the complexity

is O
(
NK2

)
. In [137], a hidden sparsity resulting from the

decision feedback equalization has been exploited to iteratively

boost the detection with the computational complexity equals

to O
(
K3
)
. The CS technique has been correcting the symbol

error from the output of linear detectors [147]. Figure 6
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Table II
PROS AND CONS OF DETECTION ALGORITHMS IN MASSIVE MIMO SYSTEMS

Algorithm Pros Cons

MF
• Low complexity.
• It Works properly if columns of the propagation matrix are nearly orthogonal.

• It achieves low performance in the ill-conditioned environment.

ZF

• Low complexity.
• It has a satisfactory performance in interference-limited environments and

impose noise enhancement.
• Perform better than the MF.

• Low performance in the ill-conditioned channel matrix.
• In a square massive MIMO, it does not improve either the diversity gain or

the computational complexity.

MMSE

• Low complexity.
• It reduces the noise enhancement.
• In a medium and high SNR, it outperforms the ZF algorithm.

• Low performance in the ill-conditioned channel matrix.
• In a square massive MIMO, it does not improve either the diversity gain or

the computational complexity.

SIC
• It outperforms the ZF method and the MMSE method.

• Performance is influenced by the first detected signal.
• Compared with the ZF method and the MMSE method, it has high compu-

tational complexity.

LRA
• It modifies the ill-conditioned channel matrix to be more orthogonal.
• Good performance.

• High computational complexity.

SD
• ML performance can be achieved. The K-best variant of the list size LSD can

be configured to maintain a balance between complexity and performance.
• High computational complexity when the list size is not fixed.

BP
• The ML performance can be achieved when the channel correlation is low.

• It is difficult to find the optimal damping factor.
• Performance degrades in a bad conditioned factor graph.
• In general, the convergence is not always guaranteed in this iterative method.

Local search
• It minimizes the ML cost in a fixed neighborhood.

• Complexity depends on the size of the neighborhood.
• Not every vector in the neighborhood causes reduction in complexity.

BOX Detection
• A satisfactory hardware efficiency with low hardware complexity [96].

• Poor performance when the ratio of the number of user terminals to the
number of BS antennas is close to one.

Sparsity based
algorithms

• The ML performance can be achieved.
• Complexity is lower than local search algorithms [137].

• In the CS, the number of local minima which produces convergence errors
would be increased by highly sparse constraints [138].

• Methods such as a sparse Baysian learning (SBL) are well suited for handling
local minima at the expense of high complexity [138].

The NS method
• Low complexity.

• It suffers from a considerable performance loss when the ratio between BS
antennas and user antennas is large (close to 1).

• Approximation converges slower in comparison with the Newton iteration
[52][86][78].

NI
• A fast convergence can be achieved if the condition in (13) satisfied. • It requires more calculations to obtain the initial estimation [67], [139].

The GS method
• It achieves a near-optimal performance even when the ratio between BS

antennas and user antennas is close to one.
• Due to an internal sequential iterations structure, the GS method is hard for

a parallel implementation [71], [74], [75].

The SOR method

• It achieves a near-optimal performance even when the ratio between BS
antennas and user antennas is large.

• On a Xilinx Virtex-7 FPGA, the SOR based detector can achieve more
than 3x throughput per slice compared with the NS based detector and 2x
throughput per slice with the CG-based detectors [76].

• The Gram matrix should be pre-computed and provided as an input which
increases the computational complexity [61].

• It has an uncertain relaxation parameter 0 < ω < 2.

The Jacobi
method

• It achieves a near-optimal performance when the ratio between BS antennas
and user antennas is small.

• It can be implemented in a parallel manner [79].

• It converges slowly, and hence, implying higher latency [75].
• Performance is not improved over iterations when the ratio of user terminals

to BS antennas is close to one.

The Richardson
method

• It has a hardware friendly approach with a reasonable performance [83].

• It requires a large number of iterations to converge [81], [140].
• It needs a stability to ensure convergence and the spectral radius of the matrix

should be less than 1 [83].
• It has an uncertain relaxation parameter 0 < ω < 2

λ
where λ is the largest

eigenvalue of the H [70], [83].

The CG method
• It achieves a near-optimal performance when the ratio between BS antennas

and user antennas is large [85].
• It requires a large number of iterations [85][70].
• It includes many division operations [85][70].

The Lanczos
method

• It converges to performance of the MMSE method within few iterations
[141].

• It suits a parallelism-optimized hardware architecture [141].

• It has low BER performance or require high computational complexity under
time-varying channels [92].

The residual
method

• It achieve a satisfactory performance even when the ratio between BS
antennas and user antennas is large.

• It requires a pre-conditioning algorithm for a satisfactory BER performance
[94].

The CD method
• It achieves a satisfactory performance even when the ratio between BS

antennas and user antennas is large.
• As shown in (25), the estimated solution has an inverse component that

increases complexity [95], [96].

The Lanczos
method

• It converges to performance of the MMSE within few iterations [141].
• It suits a parallelism-optimized hardware architecture [141].

• It has low BER performance or require high computational complexity under
time-varying channels [92].
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shows an example of the post detection sparse error recovery

technique. It includes a conventional detector followed by a

slicer as well as a sparse error recovery algorithm such as the

orthogonal matching pursuit or MMP.

Figure 6. Example of overall structure of the post detection sparse error
recovery technique [147]

F. Machine learning for massive MIMO detection

Machine learning uses algorithms to build analytical mod-

els, assisting computers learn from data. In last decade,

machine learning has success stories in the big data, the speech

recognition, the natural language processing, the computer

vision, and so on. There are interesting applications of machine

learning in communication system such as the detector design

for the MIMO transmission [148], [149], [150], [151], the

channel estimation based massive MIMO [152], [153], and

the pilot allocation for the massive MIMO [154]. A survey

of machine learning techniques utilized in communication

systems can be found in [155].

In signal detection, the classical detection theory tries to

choose the best estimate of the unknown symbols while ma-

chine learning tries to select the best algorithm to be applied.

In machine learning, detection rules are very crucial in learning

process whereas the key hypotheses in classical detection are

the unknown symbols [148]. In machine learning, ”learning”

the algorithm is the most computationally expensive stage and

it can be completed off line. Once the optimal rule algorithm

is found, it can be implemented in real time systems with

low computational complexity. However, the computational

complexity will be increased once we get a new observation.

In last few years, the ”deep” revolution has been witnessed

which is associated with the use of complicated and significant

classes of algorithms (also known as architectures) such as the

neural networks with many non-linear operations and layers.

A comprehensive overview of machine learning and deep

learning can be found in [156]. In a standard neural network

(NN), many simple processors (neurons) are connected to

produce a sequence of real-valued activations. Input neurons

get activated through sensors recognize the environment while

other neurons get activated through weighted connections from

formally active neurons. Learning is about finding weights

that make the NN achieve the desired behavior. It depends

on the number of neurons, therefore, the desired behavior

may require long chains of computational stages, where each

stage transforms the aggregate activation of the network. Deep

learning is about precisely specifying credit across many such

stages [156].

Although, deep learning is a promising approach, it is not

yet well-investigated in the massive MIMO detector design.

However, there is a limited work in this field. In [157],

an investigation on how techniques from deep learning can

be utilized to train a detection algorithm from samples of

transmitted and received signals is conducted. In [148], a deep

learning network for 30× 60 MIMO detection is proposed.

The results show that the proposed deep networks can achieve

high accuracy and low complexity even in the ill-conditioned

channels. In [158], a deep learning detector integrated with the

BP algorithm has been proposed for 8×16 MIMO system to

further improve the detection performance of BP algorithms.

Compared with the BP detector, the proposed detector has

achieved performance improvement with low complexity.

Table III presents the chronology of detection algorithms in

massive MIMO systems. To our best knowledge, the earliest

detector in the context of massive MIMO has been proposed

in 2008.

V. APPLICATION OF SMALL-SCALE MIMO DETECTORS

FOR MASSIVE MIMO

A plethora of small-scale MIMO detectors exists in the

literature and many of their application for massive MIMO has

not been explored. In this section, we explore few nonlinear

small-scale MIMO detectors briefly which have been used for

massive MIMO systems.

A. Successive interference cancellation

It is a nonlinear detector based on the linear detector such

as ZF and MMSE [211]. It cancels the interference caused by

multiple antennas. The detection and canceling are performed

in a serial fashion. First, a signal will be selected and detected

using the linear ZF or MMSE detector. The interference of the

detected signal is canceled. Then, the second signal is detected

and canceled from the remaining signals set, and so on. This

process will be repeated until all signals are detected [212].

Figure 7 presents an example of a SIC detector.

Figure 7. Example of a SIC detector

Performance of the SIC detector will be influenced by the

first detected signal, thereby, the signal with the highest signal-

to-noise-plus-interference (SINR) is detected first to achieve

the best possible error rate performance [213]. Then, the

second strongest signal will be detected and canceled from the

remaining signals set. The process is iterated until all signals

are detected. This method is often called ordered-SIC (OSIC)

or V-BLAST which improves the diversity gain in low and

moderate SNR [214] where (28) shows the bias removal in

MMSE filter.

WSIC = B AH
MMSE . (28)

where B is a diagonal matrix and AH
MMSE is shown in

(8). The OSIC algorithm outperforms the ZF method and
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Table III
CHRONOLOGY OF DETECTION TECHNIQUES FOR MASSIVE MIMO

Year Summary of work performed Reference

2008 Proposed a multistage LAS rooted in Hopefield neural networks. [159]

2008 The LAS detector has been proposed for large-scale MIMO systems. [49], [102]

2008 A detector based on LAS and turbo codes has been implemented. [103]

2009 Updated-based LAS algorithm has been proposed by utilizing the multistage multi-symbol update based strategy. [160]

2009 A detector based on the MCMC Gibbs Sampling method has been proposed. [161]

2009 A detector based on the RTS algorithm has been proposed for non-orthogonal space-time block codes with large MIMO. [109]

2009 A detector based on the BP algorithm for non-orthogonal STBCs with large dimensions has been proposed. [121]

2010 A detector based on the LAS algorithm has been proposed. [162]

2010 A detector based on the RTS algorithm has been proposed. [110]

2010 A detector based on the RTS algorithm has been proposed. [107]

2010 A detector based on the BP algorithm, Markov random fields, and factor graphs has been proposed. [122]

2011 A hybrid detector based on the RTS and the BP has been proposed. [133]

2011 Proposed a layered local neighborhood search based on lower bound on the ML bit performance. [163]

2011 A class of the BP based detector has been proposed using message passing on graphical models. [125]

2011 A particle swarm optimization (CPSO) and factor-graph have been utilized in the detection scheme. [164]

2011 A detector based on tree approximation of the Gaussian distribution has been proposed. [165]

2012 A detector based on the ML detection and genetic optimization has been proposed [166]

2012 A detector based on the RTC algorithm for underdetermined massive MIMO has been proposed. [111]

2013 Monte-Carlo-Sampling based massive MIMO detection algorithm has been proposed. [167]

2013 Proposed an element-based lattice reduction algorithms based on minimizing the diagonal elements in the noise covariance matrix. [168]

2013 Decision feedback (DF) detection algorithm has been proposed. [169]

2013 An improved lattice reduction aided algorithm has been proposed. [170]

2013 A detector based on the ML algorithm and a heuristic programming method has been proposed. [171]

2013 A detector based on extrinsic information transfer (EXIT) and message passing algorithm has been proposed. [126]

2013 A detector based on extrinsic information transfer (EXIT) has been proposed. [118]

2014 Exploit the sparsity produced by the output of the conventional linear detectors and employ the compressed sensing techniques to correct
the errors.

[147]

2014 Message passing algorithm through factor graph has been proposed. [128]

2014 Proposed a receiver based on message passing detector by exploiting a Gaussian approximation on the off-diagonal terms of the channel
matrix.

[129], [31]

2014 A detector based on the MMSE method and the SOR algorithm has been proposed. [77]

2014 A detector based on the MMSE method and the Richardson method has been proposed. [172]

2014 A sequential decoder based on the Fano algorithm has been proposed. [173]

2014 A detector based on convex optimization has been proposed. [174]

2014 A detector based on non-binary the BP algorithm and Gaussian approximation has been proposed. [131]

2015 The proposed algorithm depends on leveraging the hidden sparsity produced from the decision feedback equalization to iteratively boost
the detection.

[137]

2015 Proposed iterative neighbourhood search algorithms such as the LAS algorithm and RTS algorithm. [105]

2015 Proposed a half sparse decomposition of the data signal vector to relax the ML problem into another minimization problem. [175]

2015 Proposed an iterative decoding strategy by exploiting the fact that the transmit constellation is discrete, and hence, re-model the channel
with a sparse input belonging to the binary set (0,1).

[176]

2015 Used the CG method to transform the MIMO detection into minimizing the quadratic function. [177]

2015 The proposed algorithm exploits advantages of the MMSE method property and the relaxation iteration (RI) method to avoid a matrix
inversion.

[178]

2015 Proposed an iterative NS expansion algorithm for the MMSE method to avoid the direction computation of the matrix inversion. [62]

2015 Proposed a two stages multi-branch linear minimum output energy (MOE) receiver to collect symbols from different paths and then, selects
the less samples.

[179]

2015 Detection scheme based on adaptive reduced rank receive processing has been proposed. [180]

2015 Analyzed the effects of the ratio of the number of massive MIMO antennas to the number of users based on the approximation of the
ZF-Matrix inversion method.

[181]

2015 MMSE with the GS method have been proposed to perform a detection process. [71]

2015 A two stage quadratic programming (QP) detector has been proposed [182]

2015 A detector based on quadratic minimization and convex constraints has been proposed [183]

2015 A detector based on the MF and the LAS algorithm has been proposed. [104]

2015 A detector based on the Gaussian approximate BP (GABP) has been proposed. [123]

2016 Proposed an approximate matrix inverse suffices for finding linear and nonlinear detector solutions such as the ZF method, the MMSE
method and the SD algorithm.

[68]

2016 A detector using Markov chain Monte CArlo (MCMC) strategy has been proposed for the massive MIMO system. [184]

2016 Proposed a concatenation based improved error localization (CBIEL) detector which exploits the sparsity characteristics offered by the
MMSE output vector.

[185]

2016 Quadratic programming (QP) and branch and bound (BB) are developed to achieve low-complexity and high performance detectors. [108]

2016 A scalable soft detection method is proposed based on the Richardson method. [83]

2016 Proposed a sorted-decision-feedback differential detection (DFDD) in combination with noncoherent decision-feedback (nDFE). [186]

2016 This article discussed the feasibility of an online failure detection algorithm for massive MIMO applications. [187]

2016 Proposed ML detection scheme with the assistance of a two stage ranking mechanism for massive MIMO systems. [188]

2016 Proposed an adjustable SD partitioning to the transmission channel with low latency overhead. [189]

2016 The NS expansion method based on the MMSE detection algorithm is proposed. A direct matrix inversion method has been replaced by
matrix-vector multiplications.

[61]

2016 The MAP estimation-based error recovery method is proposed. It is based on the fact that the error vector is not only sparse but also
discrete.

[190]
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2016 Exploits the Jacobi method in the linear detection to reduce the intensive matrix inversion and also proposed a multiplication-free initial
estimate for the Jacobi method to reduce complexity.

[79]

2016 Proposed a turbo detection scheme and used an outer forward error correcting (FEC) code feeded by sparse vector. [191]

2016 Proposed a block iterative support detection (block-ISD) that exploits the block sparsity inherent in the block-sparse equivalent channel
response (CIR) generated by considering the spatial correlations of the MIMO channels.

[192]

2016 Proposed a joint channel estimation and data detection algorithm to achieve optimality in generalized likelihood ratio test (GLRT). [193]

2016 Proposed a detection method based on GS method. The NS method is also employed for initialization. [73]

2016 Proposed a polynomial expansion (PE) method for matrix inversion based on a diagonal band NI. [67]

2016 A detector based on Element-based lattice reduction and the K-Best algorithm has been proposed. [194]

2016 A detector based on the MMSE method and the CD algorithm has been proposed. [95]

2016 A detector based on the BP algorithm has been proposed. [127]

2016 A detector based on semidefinite relaxations, convex and concave quadratic has been proposed. [195]

2016 A detector based on the local search has been proposed. [99]

2016 A detector based on multiple feedback SIC and shadow area constraint (SAC) has been proposed. [195]

2016 A detector based on the normalized MF belief in Gaussian BP has been proposed. [124]

2016 A detector based on Gaussian message passing iterative technique has been proposed. [196]

2017 Proposed an iterative sequential detection algorithm. In every iteration, symbol transmitted from each user is detected and updated sequentially
while nulling the interference from all other users.

[197]

2017 Proposed a SD multipath matching pursuit (SD-MMP) algorithm. [146]

2017 Proposed a parallel detection with QR decomposition and a M-Algorithm (QRM-MLD). [198]

2017 Proposed a hardware architectures of the Richardson method based massive MIMO detectors. [58]

2017 Reduced the number of required quadratic programs (QPs) by using a likelihood based branching criteria and a node selection strategy. [199]

2017 Proposed a kernel Hilber space (RKHS) based block symbol detector that works on decomposed blocks of the observations, and selectively
decides the use of an incoming observation.

[200]

2017 In order to avoid more redundant visited nodes in the tree search, ordered sphere decoding (OSD) is divided into multiple OSDs. [201]

2017 Exploits the channel sparsity to directly factorizing the received signal matrix. [202]

2017 Investigated performance of linear detectors for uplink scenario over correlated Rician fading. [63]

2017 Two methods are proposed. In the first method, channel matrices are pre-processed by the BP prior to the normal BP algorithms. In the
second method, channel matrices are pre-processed by a de-correlation matrix, then followed by normal BP algorithms.

[115]

2017 Proposed an approximate detection method based on the NI, and also proposed upgrade methods named the NI with iterative refinement
(NIIR) and diagonal band NIIR (DBNIIR) which combine the NI and the DBNI method with the iterative refinement (IR).

[69]

2017 Proposed an improved convex semidefinite relaxation detector (RFRD) based on the LAS algorithm for detecting high-order modulation
signals in the massive MIMO system.

[203]

2017 A detector based on the MMSE algorithm and the symmetric SOR has been proposed. [204]

2017 A detector based on the MMSE method and the GS method has been proposed. [205]

2017 A detector based on multiple feedback and ordered SIC has been proposed. [206]

2017 A detector based on the MCMC layered Gipps sampling (GS) algorithm has been proposed. [139]

2017 A detector based on the K-best SIC has been proposed. [207]

2017 A detector based on a generalized approximate message passing (GAMP) has been proposed. [132]

2017 A detector based on the MCMC and Gibbs sampling algorithm has been proposed. [139]

2017 A detector based on message passing and BP has been analyzed. [120]

2017 A detector based on deep learning network has been proposed and examined in ill-conditioned channels. [148]

2018 Utilized the stair matrix instead of the diagonal matrix in the detection scheme. [208]

2018 Proposed a new iterative method using the stair matrix to achieve the symbol estimation close to the linear MMSE estimation. [209]

2018 Message passing detection algorithm with no division or exponential operations is proposed. [130]

2018 A feasibility study on various linear and non linear detectors including lattice reduction techniques have been conducted. [210]

2018 Deep learning has been utilized to train the detection algorithm from samples of transmitted and received signals. [157]

2018 A deep learning detector integrated with the BP algorithm has been proposed. [158]

the MMSE method but also it suffers from a considerable

computational complexity [108] [188]. In [108], two stages of

the quadratic programming (QP) detector with a SIC algorithm

are proposed and examined in different square massive MIMO

configurations.

B. Lattice reduction-aided algorithms

Performance of linear detectors can be improved by modi-

fying the ill-conditioned channel matrix to be more orthogonal

using LRA methods [215], [216]. Figure 8 shows the decision

regions before and after the LRA. The decision regions gen-

erated by non-orthogonal basis vectors are less immune than

the decision regions generated by orthogonal basis vectors.

The new channel matrix (H̃) is given by

H̃ = H T, (29)

where T is a unimodular matrix [217]. Hence, (2) can be

written as

y = H̃z+w where z = T−1x. (30)

The aim of LRA algorithms is to find the vector of shortest

length, which results in lower orthogonality deficiency and

hence, it achieves a considerable performance. Many LRA

algorithms have been proposed such as the Minkowski re-

duction, the Hermite-Korkin-Zolotarev (HKZ) reduction, the

Lenstra-Lenstra-Lovasz (LLL) and its complex counterparts

[218], the Seysen’s algorithms (SA) [219] and an element-

based lattice reduction (ELR) [220]. Linear or SIC detectors

can be preprocessed using lattice reduction algorithms to

achieve a significant performance gain and the computational

complexity will be increased [215][217][221]. Complexity of

LRA based detectors is independent of the employed signal

constellation, hence, LRA detectors are hardware-friendly

[222].

In order to enhance the asymptotic performance of linear

detectors, two element-based lattice reduction (ELR) algo-

rithms have been proposed to reduce the diagonal elements



1553-877X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2019.2935810, IEEE

Communications Surveys & Tutorials

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 17

Figure 8. Idea of lattice reduction aided algorithms (a) before LRA (b) after
LRA

of the noise covariance matrix of linear detectors [168]. The

first algorithm is the shortest longest vector (SLV) reduction

and the second algorithm is the shortest longest basis (SLB)

reduction. Due to high complexity of the SLV algorithm and

the SLB algorithm, two hybrid methods are proposed to find

the sub-optimal solutions to the SLV and SLB reductions,

namely, ELR-SLV and ELR-SLB reductions. The proposed

detectors employed in 64 × 64 MIMO system with 256-

QAMELR-SLB achieved better error performance than ELR-

SLV at the cost of higher complexity [168].

In [223], a sequential reduction (SR) scheme has been

proposed to emphasize reducing one lattice vector with another

”close” vector generated from a subspace spanned by other

basis vectors, and there is a freedom to choose this ”close”

vector. The proposed algorithm employed in a 50×50 MIMO

system with 64QAM modulations. In [210], the LRA algo-

rithm has been utilized with linear and non linear detectors

for 128×128 MIMO system with 64QAM modulation and a

near-ML performance has been achieved without an expense

of higher complexity.

C. Sphere decoder

The main idea behind the sphere decoder (SD) algorithm

is to search only through the constellation points that are

confined within a sphere with a predetermined radius ”d”

[224][225]. Figure 9 shows the geometrical representation

of the SD algorithm where the small blue nodes represent

all possible transmitted symbols. By visiting all these nodes,

the ML solution is achieved. In order to reduce complexity,

the SD restricts the search within the sphere with a prede-

termined radius ”d”. SD algorithm is also considered as a

tree research where the visited branches are dependent on the

channel characteristics and the noise variance. Therefore, ML

performance can be achieved an complexity can be reduced

by eliminating the lattice points that lay inside the sphere

as long as d is properly selected [226]. The channel matrix

(H) can be factorized by the QR decomposition to a unitary

matrix (Q) and an upper triangular matrix (R). Therefore, the

mathematical representation of the SD search [227] is given

by

x̂SD = arg min
x∈CK

{
‖ŷ−Rx‖2 ≤ d2

}
. (31)

Figure 9. Idea of Sphere Decoder [228]

Several SD detectors have been proposed to improve the

BER performance and to reduce the complexity [229], [230],

[231], [232], [233]. Although SD avoids the exponential

complexity of the ML detection [234], its average complexity

is exponential in the number of transmit antennas. It is also not

very hardware-friendly due to a variable complexity with dif-

ferent signals and channels. This leads to a non-fixed detection

throughput which is not desirable in real time applications. In

turn, the K-best SD algorithm is well appreciated in hardware

implementation due to its fixed throughput and complexity.

The K-best algorithm is also known as the M-algorithm or

a beam search in the artificial intelligence literature. Unlike

the conventional SD algorithm, which recursively explores all

candidates within the initial radius, the K-best SD algorithm

maintains only the best K branches for the next research

level and other nodes are neglected [235], [236], [237]. This

reduces the computational complexity at each level. The K-

best is a sub-optimal algorithm and it does not pledge the ML

performance because not all branches that satisfy the radius

constraint are kept. It needs a large K value to achieve the ML

performance, which increases the complexity and the power

consumption. It also has performance degradation in general

[238]. Therefore, a modified branch and bound (BB) algo-

rithms have been proposed. In [108], another BB search tree

algorithm is proposed to improve performance of an iterative

QP detection. The proposed detector examined in 16 × 16,

32 × 32 and 64 × 64 MIMO systems with the complexity

of O
(
nNK3

)
. In this algorithm, reduced and controlled BB

algorithm is proposed where the width and the depth of the

BB tree are reduced. In [199], a likelihood based branching

criteria to reduce the number of QPs required is proposed
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and tested in 32× 32 and 64× 64 16-QAM MIMO systems.

In general, in large-scale MIMO, the SD algorithm and its

variants, the K-best SD algorithm, and the BB demonstrate a

poor performance.

VI. THE IMPACT OF CHANNEL ESTIMATION AND

PRECODING ON MASSIVE MIMO DETECTION

A. Channel Estimation

The detectors presented in Section IV assumes a perfect CSI

is available at the receiver. In practical systems, it is not pos-

sible to obtain a perfect CSI due to imperfections of a channel

estimation and quantization errors [239]. This imperfection is

more severe in case of massive MIMO detection due to a pilot

contamination. In [240], [241], [239], several symbol detection

techniques whereby CSI is estimated from orthogonal pilot

sequences. As the MIMO size becomes large, acquiring CSI

through pilot sequences transmission is impractical because of

a large overhead and the time required for a pilot transmission

may exceed the channel coherence time. The CSI acquisition

overhead can be compensated by the potential gain due to

the sparsity of the massive MIMO channel in a transformed

domain [202]. In [242], a channel estimation based on the

eigenvalue decomposition (EVD) of the correlation matrix of

received vectors has been proposed. This technique is sensitive

to the accuracy of the sample correlation matrix as well as the

size of the antenna array. This technique has been exploited

in [243] where a blind channel estimation has been performed

followed by a symbol detection based on the expectation

propagation (EP) algorithm. Briefly, EP aims to find the closest

approximation for the conditional marginal distribution of a

required variable in an iterative refinement procedure. The

link performance will be maximized using reliable CSI and

precoding.

ML decoder is formulated under imperfect CSI and re-

cursive tree search algorithms [244]. The authors proposed

a recursive search algorithm which is similar to the sphere

decoding. The proposed decoder results in a near-ML per-

formance with a significant complexity reduction. In [239],

performance of the EP detector in practical situations in which

imperfect CSI is available has been investigated. Results show

that the lack of perfect CSI produces a significant performance

loss of the EP detector. In addition, the EP detector shows

high sensitivity to the channel estimation error at high SNR.

In order to avoid the mentioned problem, a modified EP

detector with utilization of a correlation matrix of the channel

estimation error has been proposed. The modified EP detector

produced a significant improve in performance. A massive

MMSE detector is proposed for a 1-bit quantization and a

channel estimation error in [245]. A closed form expression

is presented for the uplink achievable rate and the total

system throughput is compared against conventional MIMO

configurations with higher order modulation.

B. Precoding

The precoding techniques can be applied to simplify the

receivers in multiuser MIMO. The interference of the trans-

mission can be removed in the transmitter if the CSI is

available at the transmitter side. This process is sometimes

referred to as pre-equalization. Due to their similar operations,

the linear MIMO pre-equalization methods can be viewed

as a dual of MIMO detection. A comprehensive overview

and comparison between different linear precoding techniques

under both single-cell (SC) and multicell (MC) can be found in

[11]. The survey presents linear methods such as MF, ZF and

MMSE precoding which are counterpart of linear detection

methods. In addition, advanced precoding schemes such as

the H-infinity, the max-SINR and the multilayer precoding are

also presented in [11].

In [246], approximate algorithms such as the polynomial ex-

pansion method, the conjugate gradient (CG), the Gauss-Seidel

(GS) method, the Jacobi method and the Newton iterations

have been utilized in detection and precoding purposes. The

algorithms supposed to obtain enough precision within few

iterations (1 or 2). In order to improve the precision with little

complexity cost, the approximate algorithms have been com-

bined with the iteration refinement (IR). In [85], a precoder

using the CG method is proposed to be utilized with realistic

antenna configurations. The SOR based precoding scheme has

been proposed in [247] and it shows faster convergence rate

than the Neumann-based precoding. The SOR based precoding

scheme is very sensitive to the relaxation parameter selection.

Therefore, a precoder based on weighted symmetric successive

over relaxation (WSSOR) has been proposed to reduce the

complexity of the matrix inversion [248]. It also has a simple

method to select the relaxation parameter and weighting factor

based on the configuration parameters. Similar to the detection

problems, the precoding methods are typically reliant CSI at

the transmitter side.

VII. SUMMARY AND CONCLUSIONS

Massive MIMO is destined to provide great and improved

user experience, delivery of new revenue generated exciting

mobile services. Consequently, massive MIMO would remain

a strong competitor in the next decade for both developed

and emerging markets. A significant research dedicated to the

receiver’s design has been proposed. In this paper, a review

of various detection techniques for massive MIMO systems

is provided. Although linear detectors suffer from mediocre

performance, the ZF method and the MMSE method are found

to play a crucial role in the receiver design due to their relative

simplicity. They are also used in the initialization and pre-

processing for other detectors. Local search and BP based de-

tectors may achieve a promising balance between performance

and complexity. In addition, non linear detectors achieved a

near-optimal ML performance but with high computational

complexity.

A sparse representation of the physical channels, e.g., via

the virtual channel model (VCM), is a potential direction of

new innovation for decoding in massive MIMO. By employing

the VCM for a uniform linear antenna arrays and under a flat

fading produces, a large number of zero components will be

obtained. Precoding for massive MIMO systems using VCM

sparsity has been presented in [43]. Additionally, machine

learning based massive MIMO detectors are at an early stage
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[148]. Instead of the classical detection theory which tries

to find the best estimate of the unknowns, machine learning

could choose the best algorithm to be applied. The learning

stage is computationally expensive but it can be performed

off-line to find the optimal algorithm. In addition, the K-

best SD (KSD) and the ordered SD (OSD) are not yet

investigated in the context of massive MIMO. Although the

complex-valued modulation constellations are often employed

in digital communications, performance of several detectors

have not been explored yet for different constellations such as

performance of the BOX detector for 256-QAM. Besides that,

detectors are using the diagonal matrix. However, utilization of

the stair matrix2 in NS expansion has been proposed in [208]

and it shows a promising complexity-performance trade-off in

the context of massive MIMO. By using the diagonal matrix,

the normalized MSE is always higher than that of utilizing

the stair matrix in the same system configuration. In addition,

a detector based on the stair matrix requires less iterations

to achieve the same level of the MSE in using the diagonal

matrix. As a result, the detector with a stair matrix requires

less computational complexity in implementation. Therefore,

the work in [208] can be extended to test the efficiency of the

stair matrix in all existing detectors. Concurrently, proposed

detectors can be extended to the frequency selective channel

considering their possible use in mmWave massive MIMO

systems. The possible extended detectors may also exploit

channel statistics such as temporal and spatial correlation to

reduce complexity overhead.
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