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Massive MIMO in Spectrum Sharing Networks:

Achievable Rate and Power Efficiency
Lifeng Wang, Hien Quoc Ngo, Student Member, IEEE, Maged Elkashlan, Member, IEEE,

Trung Q. Duong, Senior Member, IEEE, and Kai-Kit Wong, Senior Member, IEEE

Abstract—Massive multiple-input multiple-output (MIMO) is
one of the key technologies for 5G and can substantially improve
energy and spectrum efficiencies. This paper explores the poten-
tial benefits of massive MIMO in spectrum sharing networks. We
consider a multiuser MIMO primary network with NP-antenna
primary base station (PBS) and K single-antenna primary users
(PUs), and a multiple-input single-output (MISO) secondary
network with NS-antenna secondary base station (SBS) and a
single-antenna secondary user. Using the proposed model, we
derive a tight closed-form expression for the lower bound on the
average achievable rate, which is applicable to arbitrary system
parameters. By performing large-system analysis, we examine
the impact of large number of PBS antennas and large number
of PUs on the secondary network. It is shown that when NP

and K grow large, NS must be proportional to lnK or larger,
to enable successful secondary transmission. In addition, we
examine the impact of imperfect channel state information on
the secondary network. It is shown that the detrimental effect of
channel estimation errors is significantly mitigated as NS grows
large.

Index Terms—Cognitive radio, massive MIMO, average achiev-
able rate, power efficiency, imperfect channel state information
(CSI).

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,

where a base station (BS) equipped with very large (massive)

antenna arrays serves many users in the same time-frequency

resource, have attracted much research interest recently [1–4].

One of the key properties of Massive MIMO is that the chan-

nels become favorable for most propagation environments.

Under favorable propagation, with simple linear processing

(linear precoders in the downlink and linear decoders in the

uplink), the effects of interuser interference and uncorrelated

noise disappear, and hence, the linear processing is nearly

optimal. Owing to the mulplexing gain and array gain, huge

spectral efficiency and energy efficiency can be obtained. In

addition, [5] showed that Massive MIMO is a scalable tech-

nology, and with a simple power control algorithm, Massive
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MIMO can provide uniformly good service for all users.

Therefore, Massive MIMO is a promising candidate technol-

ogy for “fifth” generation (5G) of wireless systems.

On a parallel avenue, over the past decade, there has been a

great deal of interest in the cognitive radio technology, for

its ability to improve spectrum utilization [6–8]. Cognitive

radio refers to an opportunistic utilization of the spectrum

which enables unlicensed systems using the same spectrum

as the licensed systems, while avoiding contaminating the

licensed systems. Typically, there are three main cognitive

radio systems: interweave, overlay, and underlay cognitive

radio systems [9]. In interweave cognitive radio systems,

the secondary user first senses the licensed spectrum. If this

spectrum is not used by the primary users, the secondary user

will utilize this spectrum. In overlay cognitive radio systems,

the secondary user uses the same spectrum as the primary

user, and the secondary user has to deploy sophisticated signal

processing techniques to get rid of the interference inflicted on

the primary system. By contrast, in underlay cognitive radio

networks, the secondary user is allowed to use the spectrum

of the primary user under the condition that the interference

at the primary user caused by the secondary user is less

than a predefined interference threshold [8, 10]. The underlay

cognitive radio system has attracted much recent work on its

performance analysis and system design due to its operational

simplicity and capacity of high spectrum utilization.

Most of existing works in the literature consider the cog-

nitive radio systems that the transceivers deploy only few

antennas. The design and analysis of cognitive radio systems

with the use of very large (massive) antenna arrays at the

transceivers are of particular importance, especially in 5G

wireless systems where a very high user throughput is re-

quired. Despite its importance, there has been very little related

work in the literature [11, 12]. In [11], the authors considered

a cognitive radio system where both primary and secondary

networks consist of one massive-antenna BS and one single-

antenna user. The pilot decontamination algorithm, which aims

at maximizing the quality of the channel estimation for the sec-

ondary system, was proposed. A spatial interweave cognitive

ratio system, which consists of the multiuser massive MIMO

primary and the multiuser massive MIMO secondary networks,

was investigated in [12]. By contrast, in our work, we propose

and analyze the performance of an underlay cognitive radio

system which includes a multiuser massive MIMO primary

network and a multiple-input single-output (MISO) secondary

network. More precisely, the primary network includes a

primary base station (PBS) equipped with NP antennas and K
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single-antenna primary users (PUs). While, the secondary net-

work includes one NS-antenna secondary base station (SBS)

and one single-antenna secondary user (SU). All K PUs and

SU share the same time-frequency resource. We consider the

downlink transmsion, and both base stations use the low-

complexity maximum-ratio transmission (MRT) technique. We

focus on the performance of the secondary system. The main

contributions of this paper are summarized as follows:

• In contrast to [7, 8, 10], we first derive the distribution

of the signal-to-interference-plus-noise ratio (SINR) for

the downlink transmission in the secondary network,

considering the downlink multi-user MIMO transmission

in the primary network. This is a fundamental result not

found in the existing literature. Then, by using Jensen’s

inequality, we derive a closed-form expression for a lower

bound on the ergodic rate, with any finite numbers of

antennas and users. Numerical results verify the tightness

of our bound, especially when the number of base station

antennas is large.

• We examine the potential of massive MIMO to reduce

the power levels, and it is shown that the use of large

antenna arrays can improve power efficiency in spectrum

sharing networks. We also examine the asymptotic per-

formances where SBS have massive antenna arrays for

both cases: perfect and imperfect CSI knowledge. These

results enable us to examine the effects of the use of

massive antenna arrays at the PBS or/and the SBS on

the performance of the secondary system. More precisely,

we show that the secondary system works well when the

number of PBS antennas is large. However, when both NP

and K grow large with the same rate, the performance of

the secondary system will be degraded significantly. To

overcome this problem, the SBS must add more antennas.

The number of SBS antennas must be proportional to

lnK or more. Interestingly, we show that the adverse

effect of channel estimation errors can be significantly

mitigated when the number of SBS antennas is large.

The notation of this paper is: † denotes the conjugate

transpose operator, CN (0,Λ) denotes the complex Gaussian

distribution with zero mean and covariance matrix Λ, ∥·∥
denotes the Euclidean norm, E {·} denotes the expectation

operator, 0M×N denotes the M ×N zero matrix, IM denotes

the M×M identity matrix, tr (·) denotes the trace,
d∼ denotes

the same distribution, and
d→ denotes the convergence in

distribution.

II. COGNITIVE RADIO NETWORK

We consider the downlink transmission in the underlay

spectrum sharing network. As shown in Fig. 1, the multiuser

MIMO primary network consists of a PBS equipped with NP

antennas and K single-antenna PUs (NP ≥ K). The secondary

network consists of a SBS equipped with NS antennas and

a SU with a single antenna. All channels are assumed to be

quasi-static fading channels where the channel coefficients are

constant for each transmission block but vary independently

between different blocks. In the primary network, the channel

coefficient from the nP-th PBS antenna to the k-th PU is
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Fig. 1. Downlink transmission in the underlay spectrum sharing network.

√

αP
khnP,k (nP = 1, . . . , NP and k = 1, · · · ,K), where αP

k

represents the large-scale fading coefficient modeling the path-

loss and shadow fading and is assumed to be constant over

the k-th PU, hnP,k ∼ CN (0, 1) is the complex Gaussian

random variable (RV) and represents the small-scale fading

coefficient. The interfering channel coefficient from the nS-th

SBS antenna to the k-th PU is
√

αS
kgnS,k with constant value

αS
k and gnS,k ∼ CN (0, 1) (nS = 1, . . . , NS). In the secondary

network, the channel coefficient from the nS-th SBS antenna to

the SU is
√
βSgnS

with constant value βS and gnS
∼ CN (0, 1),

and the interfering channel coefficient from the nP-th PBS

antenna to the SU is
√
βPhnP

with constant value βP and

hnP
∼ CN (0, 1).

We assume that PBS and SBS have perfect CSI, and the low-

complexity MRT transmit beamformer is used at the SBS and

MRT precoding is used at the PBS. The interference power at

all PUs inflicted by the SBS must not exceed the maximal

peak interference level IP, in order to prevent the primary

transmission from harmful interference. As such, the transmit

power at the SBS is given by

Pt = min

{
IP
Z1
, PS

}

, (1)

where Z1 = max
k

{∣
∣
∣
∣
gk

g
†
S

∥g†
S∥

∣
∣
∣
∣

2
}

, gk =
√

αS
k [g1,k · · · gNS,k] ∈

C1×NS , gS =
√
βS [g1 · · · gNS

] ∈ C1×NS , and PS is the SBS’s

maximum transmit power.

Given that W is the precoding matrix at the PBS, the

received signal at the SU is

y =
√

PtgS
g
†
S∥

∥
∥g

†
S

∥
∥
∥

x+
√

PPhPWzT + n0, (2)

where x is the transmit symbol from the SBS with E {x} = 0

and E

{

|x|2
}

= 1, z = [z1 · · · zk · · · zK ] is the interfering

symbol vector from the PBS with E {z} = 01×K and
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E
{
z†z

}
= IK , the interfering channel vector is hP =√

βP [h1 · · ·hNP
] ∈ C1×NP , the MRT precoding matrix at the

PBS is W =
√
εH with H =

[

h
†
1 · · ·h†

k · · ·h
†
K

]

∈ CNP×K ,

h
†
k =

√

αP
k[h1,k · · ·hNP,k]

† ∈ CNP×1, and ε = 1
E{tr(W†W)}

,

PP is the PBS’s average transmit power, and n0 is the additive

white Gaussian noise (AWGN) with zero mean and unit

variance. Based on (2), the receive SINR at the SU is given

by

γ1 =
Pt∥gS∥2

εPP∥hPH∥2 + 1
. (3)

In light of the SBS’s transmit power Pt shown in (1), we

re-express (3) as

γ1 =
min

{
IP
Z1
, PS

}

∥gS∥2

εPP∥hPH∥2 + 1
. (4)

III. AVERAGE ACHIEVABLE RATE

In this section, we derive a tight lower bound on the average

achievable rate, which can be used to examine the secondary

network’s performance behavior. The result accurately cap-

tures the impact of arbitrary antennas and channel parameters

on the average achievable rate. With this in mind, we first

present some useful statistical properties in the following

Proposition.

Proposition 1: The SINR of the downlink transmission

from the SBS to the SU can be written as

γ1
d∼ X1

εPPY1 + 1
, (5)

where X1 = min
{

IP
Z1
, PS

}

Z2 with Z2 = ∥gS∥2, and Y1 =

∥hP∥2
∥
∥
∥

hP

∥hP∥
H

∥
∥
∥

2

= ∥hP∥2
K∑

k=1

|Υk|2 with Υk = hP

∥hP∥
h
†
k. The

probability density function (PDF) of X1 is given by

fX1
(x) =FZ1

(
IP
PS

)
xNS−1e−

x
PSβS

(NS − 1)!(PSβS)
NS

+
K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

αS
xNS−1

(
x

IPβS
+ αS

)−(NS+1)

(NS − 1)!(IPβS)
NS

× Γ

(

NS + 1,
x

PSβS
+
IPα

S

PS

)

, (6)

where FZ1

(
IP
PS

)

= 1 +
K∑

k=1

(−1)k

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

e−αS IP
PS ,

|n1
∪ · · ·∪nk| denotes the cardinality of the union of k

indices, αS ∆
=

(
k∑

t=1

(
αS
nt

)−1
)

, and Γ (·, ·) is the incomplete

gamma function [13, (8.350.2)]. The PDF of Y1 is given by

fY1
(x) =

ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
2µ−h

j x(NP+h)/2−1

(h− 1)! (NP − 1)!

× (µj/βP)
−(NP−h)/2

(βP)
NP

KNP−h

(

2

√
x

βPµj

)

(7)

where A = diag
{
αP
1 , . . . , α

P
K

}
is a K ×K diagonal matrix,

ρ (A) is the number of distinct diagonal elements of A,

µ1, . . . , µρ(A) are the distinct diagonal elements in decreasing

order, θj (A) is the multiplicity of µj , χj,h (A) is the (j,h)-

th characteristic coefficient of A which is defined in [14,

Definition 4], and Kν (·) is the modified Bessel function of

the second kind [13, (8.432.6)].

Proof: Please refer to Appendix A.

With the help of Proposition 1, the exact average achievable

rate can be readily obtained as R̄= E {log2 (1+γ1)}.

Corollary 1: Using Jensen’s inequality, we derive a tight

lower bound on the average achievable rate as

R̄L= log2
(
1+e∆

)
, (8)

where ∆ = E {ln γ1}=E

{

ln
(

X1

εPPY1+1

)}

, and the closed-

form expression for ∆ is derived as (9) at the top of next

page. In (9), ψ (·) is the digamma function [24], Ei (·) is the

exponential integral function [13, (8.211.1)], νh,1 = NP − h,

νh,2 = (NP + h) /2−1 and Gm,n
p,q

[

x

∣
∣
∣
∣
∣

a1, · · · , ap
b1, · · · , bq

]

denotes

the Meijer’s-G function [13, (9.301)].

Proof: The proof for (9) is provided in Appendix B.

For large NS, ψ (NS) ≈ lnNS [15], thus we get a tight

approximation for the average achievable rate, which is given

by

R̄1
L ≈log2

(

1 +NSe
∆̃
)

≈log2NS + ∆̃log2e, (10)

where ∆̃ = ∆ − ψ (NS). From (10), we find that the

average achievable rate scales as log2NS. Accordingly, the

performance difference for different numbers of antennas at

the SBS can be easily evaluated using (10).

IV. MASSIVE MIMO ANALYSIS

In this section, we examine the asymptotic performance of

the system where the PBS and SBS are equipped with massive

antenna arrays. Some interesting insights will be presented.

For simplicity, we consider the case where the large-scale

fading effect is neglected, i.e., αS
k = αP

k = βS = βP = 1, ∀k.1

Under this assumption and from Proposition 1, the receive

SINR at the SU is rewritten as

γ1
d∼
min

{
IP
Z1
, PS

}

Z2

1
KNP

PPY1 + 1
. (11)

1Same insights shown in this section can be obtained for the case where
the large-scale fading is taken into account.
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∆ =ψ (NS) + ln IPβS − FZ1

(
IP
PS

)

ln
IP
PS

+

K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

[

Ei

(

−α
SIP
PS

)

− e−αSIP/PS ln
IP
PS

]

−
ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
µ−h
j (µj/βP)

−(NP−h)/2

(h− 1)! (NP − 1)!(βP)
NP

(εPP)
−(NP+h)/2

G4,1
2,4

[

(εPPβPµj)
−1

∣
∣
∣
∣
∣

−1− νh,2,−νh,2
− νh,1

2 ,
νh,1

2 ,−1− νh,2,−1− νh,2

]

. (9)

A. Effects of Massive MIMO at Primary Systems on Secondary

Network

In this part, we analyze the effects of using massive antenna

arrays at the primary network on the secondary network.

1) K, NS are Fixed, and NP → ∞: Intuitively, with a

massive array, the PBS can focus its emitted energy into the

spatial directions where the PUs are located. At the same time,

the PBS can purposefully avoid transmitting into directions

where the SU is located and hence, the interference from the

PBS is bounded as NP → ∞. More precisely, by using the

law of large numbers, we have

1

KNP

PPY1 =
PP

K

∥hP∥2
NP

K∑

k=1

|Υk|2
d→ PP

K

K∑

k=1

|Υk|2 . (12)

As a result, the receive SINR at the SU converges to a non-

zero value when the number of PBS antennas goes to infinity,

i.e.,

γ1
d→

min
{

IP
Z1
, PS

}

Z2

PP

K

∑K
k=1 |Υk|2 + 1

. (13)

In this case, a tight lower bound on the average achievable

rate is R̄L→log2
(
1+e∆1

)
, where

∆1 =ψ (NS) + lnPS +
K∑

k=1

(
K

k

)

(−1)
k+1

Ei

(

−kIP
PS

)

−

K−1∑

j=0

(−1)
K−j−2

(K − 1− j)!
(K/PP)

K−1−j
eK/PPEi (−K/PP)−

K−1∑

j=0

(−K/PP)
K−1−j

(K − 1− j)!

K−1−j
∑

m=1

(m− 1)!(−K/PP)
−m

.

(14)

The proof for (14) is provided in Appendix C. From (14),

we find that adding more number of PBS antennas on the

SU’s average achievable rate has no impact on the average

achievable rate.

We next present the large-system analysis, in order to

examine the effect of large number of PUs on the performance

of the secondary link.

2) NS and κ1 = NP/K are Fixed, and NP → ∞: This

case corresponds to the scenario where the number of PBS

antennas is large but may not be much greater than the number

of PUs. When K is large, the SBS transmit power has to be

reduced such that the received interference at all the PUs is

smaller than a given threshold IP. Thus, the performance of

the secondary link is significantly degraded when K is large.

This observation is confirmed by the following analysis.

Since Z1 is the maximum of K independent and identically

distributed (i.i.d.) exponential RVs, the distribution of Z1 is

asymptotically normal, as K → ∞. More precisely, from [16,

Proposition 1], as K → ∞, we have

Z1
d→ 1 + lnK + Z̄1, (15)

where Z̄1 ∼ N (0, 2). By using (15) together with the law of

large numbers, we obtain

γ1 → 0, as NP → ∞, NP/K = κ1. (16)

The performance of the secondary link is affected by the

number of PUs via the interference and the constraint on the

transmit power of SBS. As we can see from (16), when K
grows large, the power constraint effect causes a significant

degradation on the secondary system performance. In this case,

SBS cannot be permitted to share the spectrum and transmit

the signal to SU.

3) κ1 = NP/K and κ2 = NS/ lnK are Fixed, and

NP → ∞: As discussed in the previous case, when the number

of PBS antennas and the number of PUs go to infinity, the

receive SINR at the SU converges to zero. One possible way

to overcome this problem is adding more SBS antennas. An

interesting question is: how many antennas do we need at the

SBS? From (15), we can see that Z1 scales as lnK, as K
is large, while Z2 in (11) scales as NS. Therefore, when the

number of PUs grows large, the number of SBS antennas has

to grow with the same speed as lnK. As NP → ∞ together

with fixed κ1 = NP/K and κ2 = NS/ lnK, we have

γ1
d∼

min
{

IP
Z1
, PS

}

Z2

PP
∥hP∥

2

NP

∑K
k=1

|Υk|
2

K + 1
=

min
{

IP lnK
Z1

, PS lnK
}

NS

lnK
Z2

NS

PP
∥hP∥

2

NP

∑K
k=1

|Υk|
2

K + 1

d→
min

{
IP lnK

1+lnK+Z̄1
, PS lnK

}
NS

lnK

PP + 1
≈ IPκ2
PP + 1

, (17)

where the convergence follows from (15) together with the law

of large numbers. We can see that, by using a massive array at

the SBS (NS ∝ lnK), the receive SINR at the SU converges to

a non-zero value. Furthermore, by increasing κ2 (or increasing

NS), we can achieve an arbitrary quality-of-service (QoS) for
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the secondary link. In this case, the average achievable rate is

R̄ = log2

(

1 + IPk2

PP+1

)

.

B. Power Efficiency

In this section, we examine the potential of massive MIMO

to reduce the transmit power. By using massive antenna

arrays at the PBS, we can reduce the transmit power, PP,

proportionally to 1/NP, while maintaining a desired QoS for

all the PUs [17]. Using a very low transmit power at the

PBS is an interesting operating point of the massive primary

systems. Here, we consider the potential for power savings in

the secondary network where the SBS operates in the very low

transmit power regimes.

Define PP , EP/NP and PS , ES/NS, and assume that EP

and ES are fixed regardless of NP and NS. Again, by using

(11) and the law of large numbers, as NP and NS go to infinity,

we obtain

γ1 →ES. (18)

This implies that by using massive antenna arrays at the

PBS and the SBS, we can cut the transmit powers of PBS

and SBS proportionally to 1/NP and 1/NS, 2 respectively,

while maintaining a given QoS. For this case, the secondary

network’s performance is equivalent to a single-input single-

output (SISO) AWGN channel with no interference and trans-

mit power ES.

C. Imperfect CSI Knowledge

In realistic scenarios, the imperfect knowledge of the inter-

fering channel from the SBS to the PUs poses challenges to the

underlay cognitive network. The interference impinged on the

PU may exceed the maximal peak interference level IP during

the SBS transmissions. Different from [10] where the PU

and SU are single-antenna nodes, we extend this line of work

to a network consisting of multiple PUs and multi-antenna

PBS and SBS. Due to the independence of the channel vector

from the PBS to the SU with the PBS’s precoding matrix,

the impact of the primary network transmission on the SU is

not changeable regardless of perfect or imperfect CSI at the

PBS. For simplicity, we assume that perfect CSI is available

at the PBS. We show that the accuracy of CSI of the channel

between the SBS and the PUs, as well as the channel between

the SBS and the SU can be relaxed as NS grows large. In

this subsection, we will show that using massive MIMO can

alleviate the adverse effect of imperfect CSI knowledge.

Imperfect CSI of the channel between the SBS and the k-th

PU can be modeled as [19]

gk=δ
S
kĝk+

(√

1− (δSk)
2

)

ek, (19)

where gk ∼ CN 1×NS
(01×NS

, INS
) is the true channel vector,

ĝk ∼ CN 1×NS
(01×NS

, INS
) is the channel estimate available

at the SBS, and ek ∼ CN 1×NS
(01×NS

, INS
) is an i.i.d. Gaus-

sian noise term. The correlation coefficient δSk measures the

2Here, we have ignored the increase of the circuit power consumption due
to more antennas, as in [17]. The investigation of circuit power consumption
with massive MIMO is found in [18].

accuracy of the channel estimation, i.e., δSk = 1 corresponds

to perfect CSI, δSk = 0 corresponds to no CSI knowledge, and

δSk ∈ (0, 1) represents partial CSI. 3 Likewise, imperfect CSI

about the channel between the SBS and the SU is

gS = σĝS +
(√

1− σ2
)

eS, (20)

where gS ∼ CN 1×NS
(01×NS

, INS
) is the true channel vector,

ĝS ∼ CN 1×NS
(01×NS

, INS
) is the channel estimate, and

eS ∼ CN 1×NS
(01×NS

, INS
) is an i.i.d. Gaussian noise term.

The parameter σ (0 ≤ σ ≤ 1) is the correlation coefficient.

Similar to [10, 19], we assume that the correlation coefficient

is a constant value.

We still consider the MRT beamforming at the SBS.4 The

interference power at the k-th PU is written as

Ptλ
S
k = min

{
IP

Ẑ1

, PS

}

λSk, (21)

where λSk =

∣
∣
∣
∣
gk

ĝ
†
S

∥ĝ†
S∥

∣
∣
∣
∣

2

, Ẑ1 = max
k

{∣
∣
∣
∣
ĝk

ĝ
†
S

∥ĝ†
S∥

∣
∣
∣
∣

2
}

. The

receive SINR at the SU becomes

γ1 =
min

{
IP
Ẑ1

, PS

}

σ2
∥
∥
∥ĝ

†
S

∥
∥
∥

2

1
KNP

PPY1 + (1− σ2)min
{

IP
Ẑ1

, PS

}
ĝSE{e†

SeS}ĝ†
S

∥ĝ†
S∥2 + 1

=
σ2 min

{
IP
Ẑ1

, PS

}∥
∥
∥ĝ

†
S

∥
∥
∥

2

1
KNP

PPY1 + (1− σ2)min
{

IP
Ẑ1

, PS

}

+ 1
(22)

We next show the benefits of massive antenna arrays at the

secondary network with imperfect CSI knowledge. To this end,

two important cases are examined as follows:

1) NS → ∞, and K, NP are Fixed: This case corresponds

to the scenario where massive antenna arrays are only used at

the secondary network.

We first examine the interference leakage probability. An

interference leakage is declared when the interference power

at the k-th PU is larger than the peak allowable interference

power Ip. Based on (21), the interference leakage probability

is upper bounded as

Pr
(
Ptλ

S
k > Ip

)
= Pr

(

min

{
IP

Ẑ1

, PS

}

λSk > Ip

)

< Pr
(
PSλ

S
k > Ip

)
= e−

Ip
PS . (23)

Here, λSk follows the exponential distribution with unit mean,

as suggested in Appendix A. From (23), we find that reduc-

ing the SBS’s transmit power can decrease the interference

leakage probability. For low transmit power of PS → 0,

Pr
(
Ptλ

S
k > Ip

)
→ 0, which implies that an arbitrary small

value of the interference leakage probability can be achieved.

3As mentioned in [19], the correlation coefficient can be extended to an
arbitrary function of the system parameters.

4The linear transmission scheme can achieve the optimality with large
arrays [20, 21].
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In the secondary network, the receive SINR at the SU given

in (22) becomes

γ1
d→

σ2 min
{

IP
Ẑ1

, PS

}

NS

1
KNP

PPY1 + (1− σ2)min
{

IP
Ẑ1

, PS

}

+ 1
. (24)

Based on (24), the average achievable rate is

R̄L→log2
(
1+e∆2

)
, where ∆2 is provided in Appendix

D.

For low transmit power of PS → 0, the receive SINR at the

SU in (24) reduces to

γ1
d→ σ2PSNS

1
KNP

PPY1 + (1− σ2)PS + 1
. (25)

In (25), the interference term
(
1− σ2

)
PS resulting from

channel estimation error can be arbitrarily small, as PS → 0.

Based on (25), the average achievable rate reduces to

R̄L→log2
(
1+e∆3

)
, (26)

where ∆3 = lnNS + ln
[
σ2PS/

(
1 +

(
1− σ2

)
PS

)]
−

(ϖ1)
−(NP+K)/2

(NP−1)!(K−1)!G
4,1
2,4

[

(ϖ1)
−1

∣
∣
∣
−1−ϖ3,−ϖ3

−
ϖ2
2

,
ϖ2
2

,−1−ϖ3,−1−ϖ3

]

with

ϖ1 = PP

KNP
/
(
1 +

(
1− σ2

)
PS

)
, ϖ2 = NP − K, and

ϖ3 = (NP +K) /2− 1.

Remark 1: It is shown from (24) and (25) that the receive

SINR at the SU is proportional to NS under imperfect CSI,

which in turn implies that we can still cut the transmit power

at the SBS proportionally to 1/NS, while maintaining a given

QoS. In addition, reducing the SBS’s transmit power can

reduce the interference term
(
1− σ2

)
min

{
IP
Ẑ1

, PS

}

which

results from the imperfect channel estimation.

Remark 2: Based on Remark 1, (23) and (25), reducing

the SBS’s transmit power proportionally to 1/NS reduces the

interference leakage probability. Therefore, the detrimental

effect of imperfect CSI in cognitive radio networks can be

significantly mitigated when the SBS is equipped with large

antenna arrays.

2) κ1 = NP/K and κ2 = NS/ lnK are Fixed, and

NP → ∞: The significance of this case has been mentioned

in Section IV-A2 and Section IV-A3. In this case, we have

min
{

IP
Z1
, PS

}

→ IP
lnK (as illustrated in Section IV-A3), hence

Ptλ
S
k
→ IPλ

S
k

lnK . The interference leakage probability becomes

Pr
(
Ptλ

S
k > Ip

)→Pr

(
IPλ

S
k

lnK
> Ip

)

= e− lnK . (27)

Based on (27), we find that an arbitrary small value of

interference leakage probability can be achieved, when the

number of PBS antennas goes to infinity.

With the assistance of (17) and (24), the receive SINR at

the SU becomes

γ1
d→ σ2 IP

lnKNS

PP + (1− σ2) IP
lnK + 1

≈ σ2IPNS

(PP + 1) lnK
. (28)

It is indicated from (28) that the detrimental effect of imperfect

CSI at the SBS vanishes when the number of SBS antennas

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
er

ag
e 

ac
h
ie

v
ab

le
 r

at
e 

(b
it

s/
s/

H
z)

 

 

Exact, Monte Carlo Simulation

Lower bound, Monte Carlo Simulation

Lower bound, Analytical

= 8NS

= 16NS

= 32NS

= 64NS

PS (dB)

Fig. 2. The average achievable rate versus PS for NP = 16, K = 5, IP = 10

dB, PP = 15 dB.

grows large. In this case, the average achievable rate is

R̄→ log2

(

1 + σ2IPNS

(PP+1) lnK

)

.

V. NUMERICAL RESULTS

In this section, numerical results are presented to verify our

analysis. We first consider a practical scenario that different

links may have different large-scale fading coefficients. This

setting enables us to validate the expression for the average

achievable rate. We also show the accuracy of our massive

MIMO analysis. We focus on the average achievable rate in

the secondary network.

Fig. 2 plots the average achievable rate versus the SBS’s

maximum transmit power PS for different number of antennas

at the SBS. The large scale fading coefficients are set as

βS = βP = 1, [αP
1, α

P
2, α

P
3, α

P
4, α

P
5] = [0.5, 0.7, 1, 0.65, 0.6],

and [αS
1, α

S
2, α

S
3, α

S
4, α

S
5] = [0.8, 1, 0.6, 0.7, 0.4]. The analytical

curves for the lower bound of the average achievable rate

are obtained from (8), which are tightly matched to the exact

Monte Carlo simulations. As suggested, the average achievable

rate increases with adding number of antennas at the SBS. Due

to the interference constraint, there exist rate ceilings at high

signal-to-noise ratio (SNR).

Fig. 3 plots the average achievable rate for the case that

K, NS are fixed and NP → ∞ in Section IV-A1. The

analytical and Monte Carlo simulated curves for the lower

bound of average achievable rate are obtained based on (13).

Our asymptotic analysis for large NP is in a strong agreement

with the exact Monte Carlo simulation. As mentioned in

Section IV-A1, increasing number of antennas at the PBS has

negligible effect on the average achievable rate. The average

achievable rate increases with adding number of SBS antennas.

Fig. 4 plots the average achievable rate for the case that

κ1 = NP/K and κ2 = NS/ lnK are fixed and NP → ∞ in

Section IV-A3. The asymptotic analytical curves are obtained
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based on (17). Our asymptotic analysis can well predict

the performance behavior. As suggested in Section IV-A3,

increasing number of PBS antennas has negligible effect on

the average achievable rate. The average achievable rate is

improved by increasing κ2 (increasing NS).

Fig. 5 plots the average achievable rate with imperfect

CSI for the case that NS → ∞ and K, NP are fixed in

Section IV-C1. The channel estimation accuracy coefficients

are assumed to be δS1 = · · · = δSK = σ. The analytical curves

for approximate average achievable rate are obtained from

(26). Our approximate analysis has a tight match with the

exact Monte Carlo simulations, especially in the low SNR

regime. As predicted, the accuracy of channel estimation has
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a big effect on the average achievable rate. The average

achievable rate improves with increasing NS. Thanks to the

large array gain, the transmit power can be saved and the

channel estimation accuracy can be alleviated for a given

average achievable rate value.

Fig. 6 plots the average achievable rate with imperfect CSI

for the case that κ1 = NP/K and κ2 = NS/ lnK are fixed and

NP → ∞ in Section IV-C2. The channel estimation accuracy

coefficients are assumed to be δS1 = · · · = δSK = σ. The

asymptotic analytical curves are obtained based on (28). Our

asymptotic analysis can well predict the average achievable

rate. It is observed that the exact Monte Carlo simulations
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slowly converges to the asymptotic results with increasing

NP. The average achievable rate decreases with lowering the

channel estimation accuracy and improves with increasing κ2
(increasing NS).

VI. CONCLUSION

In this paper, we considered the application of massive

MIMO in spectrum sharing networks. We first derived a

tight lower bound of the average achievable rate, which can

be used to measure the performance for any finite numbers

of antennas. We then presented the asymptotic analysis for

massive antenna arrays at the PBS and SBS. In particular,

we analyzed the impact of large number of primary users on

the secondary networks. The impact of imperfect CSI in the

secondary network was also examined. Based on our analysis,

we clearly established the importance of using massive MIMO

in the future spectrum sharing networks for 5G. For future

work, the adaption of the peak interference level in massive

MIMO spectrum sharing networks would be of interest.

APPENDIX A: A PROOF OF PROPOSITION 1

We first derive the PDF of X1. Conditioned on gS, gk
g
†
S

∥g†
S∥

is a complex Gaussian RV with zero mean and variance αS
k.

Since the PDF of a complex Gaussian RV is fully described via

its first and second moments, gk
g
†
S

∥g†
S∥ is a complex Gaussian

RV which is independent of gS. As such, the cumulative

density function (CDF) of Z1 is

FZ1
(x) = Pr




max

k







∣
∣
∣
∣
∣
∣

gk
g
†
S∥

∥
∥g

†
S

∥
∥
∥

∣
∣
∣
∣
∣
∣

2






< x






=
K∏

k=1

(

1− e−x/αS
k

)

= 1 +

K∑

k=1

(−1)
k

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

e−αSx. (29)

Taking the derivative of (29), we obtain the PDF of Z1 as

fZ1
(x) =

K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

αSe−αSx. (30)

In addition, the PDF of Z2 is given by [22]

fZ2
(x) =

xNS−1e−x/βS

(NS − 1)!(βS)
NS
. (31)

The CDF of X1 is expressed as

FX1
(x) = Pr

{

min

(
IP
Z1
, PS

)

Z2 < x

}

= Pr

{

Z2 <
x

PS

, Z1 <
IP
PS

}

︸ ︷︷ ︸

J1

+

Pr

{
Z2

Z1
<

x

IP
, Z1 ≥ IP

PS

}

︸ ︷︷ ︸

J2

. (32)

Noting that Z1 and Z2 are independent, it is easy to see that

J1 = FZ2

(
x

PS

)

FZ1

(
IP
PS

)

, (33)

where FZ2
(x) is the CDF of Z2. Also, J2 is derived as

J2 =

∫ ∞

IP/PS

FZ2

(
xt

IP

)

fZ1
(t)dt. (34)

Based on (32), the PDF of X1 is

fX1
(x) =

∂J1
∂x

+
∂J2
∂x

. (35)

From (33), we obtain

∂J1
∂x

=
1

PS

fZ2

(
x

PS

)

FZ1

(
IP
PS

)

. (36)

Substituting (31) into (36),we obtain

∂J1
∂x

= FZ1

(
IP
PS

)
xNS−1e−

x
PSβS

(NS − 1)!(PSβS)
NS
. (37)

From (34), we observe that

∂J2
∂x

=

∫ ∞

IP/PS

t

IP
fZ2

(
xt

IP

)

fZ1
(t)dt. (38)

Plugging (30) and (31) into (38), after some algebraic manip-

ulations, we obtain

∂J2
∂x

=
K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

αS xNS−1

(NS − 1)!(IPβS)
NS

×
∫ ∞

IP/PS

tNSe−(
x

IPβS
+αS)tdt

=

K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

αS
xNS−1

(
x

IPβS
+ αS

)−(NS+1)

(NS − 1)!(IPβS)
NS

× Γ

(

NS + 1,
x

PSβS
+
IPα

S

PS

)

. (39)

Based on (35), (37) and (39), we obtain the desired expres-

sion for the PDF of X1 as (6).

We next derive the PDF of Y1. Y1 can be rewritten as Y1 =

ξ1ξ2, where ξ1 = ∥hP∥2, and ξ2 =
K∑

k=1

|Υk|2 with Υk =

hP

∥hP∥
h
†
k. We see that Υk is a complex Gaussian RV with zero
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mean and variance αP
k, which is independent of hP. The PDF

of ξ1 is given by

fξ1 (x) =
xNP−1e−x/βP

(NP − 1)!(βP)
NP
, (40)

and the PDF of ξ2 is given by [23]

fξ2 (x) =

ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
µ−h
j

(h− 1)!
xh−1e

− x
µj . (41)

Since ξ1 and ξ2 are independent, the CDF of Y1 is written as

FY1
(x) = Pr (ξ1ξ2 < x)

=

∫ ∞

0

Fξ1

(x

t

)

fξ2 (t) dt. (42)

Taking the derivative of FY1
(x) in (7), we obtain the PDF

of Y1 as

fY1
(x) =

∫ ∞

0

1

t
fξ1 (x/t) fξ2 (t) dt

=

ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
µ−h
j xNP−1

(h− 1)! (NP − 1)!(βP)
NP

×
∫ ∞

0

1

tNP−h+1
e−x/tβPe

− t
µj dt. (43)

After calculating the integral, we obtain (7).

APPENDIX B: A DETAILED DERIVATION OF (9)

From (8), we calculate ∆ as

∆=E {lnX1}−E {ln (εPPY1+1)} . (44)

In (44), E {lnX1} is derived as

E {lnX1} =

∫ ∞

0

lnxfX1
(x) dx

=FZ1

(
IP
PS

)
1

(NS − 1)!(PSβS)
NS

∫ ∞

0

xNS−1e−
x

PSβS lnxdx

︸ ︷︷ ︸

Ξ1

+

K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

αS

(NS − 1)!(IPβS)
NS

×
∫ ∞

0

xNS−1

(
x

IPβS
+ αS

)−(NS+1)

Γ

(

NS + 1,
x

PSβS
+
IPα

S

PS

)

lnxdx

︸ ︷︷ ︸

Ξ2

. (45)

Using
∫∞

0
xv−1e−µx lnxdx = µ−vΓ (v) (ψ (v)− lnµ) [13,

(4.352.1)], Ξ1 is calculated as

Ξ1 = (PSβS)
NS (NS − 1) ! (ψ (NS) + lnPSβS) . (46)

Changing the order of integration and using [13, (4.352.1)],

after some manipulations, Ξ2 is evaluated as

Ξ2 =

∫ ∞

0

xNS−1 lnx

∫ ∞

IP/PS

tNSe−(
x

IPβS
+αS)tdtdx

=

∫ ∞

IP/PS

tNSe−αSt

∫ ∞

0

e−
x

IPβS
txNS−1 lnxdxdt

=(IPβS)
NS

(NS − 1)!

αS

[

(ψ (NS) + ln IPβS) e
−αSIP/PS−

e−αSIP/PS ln
IP
PS

+ Ei

(

−α
SIP
PS

)]

. (47)

Substituting (46) and (47) into (45), after some manipula-

tions, we obtain

E {lnX1} =ψ (NS) + ln IPβS − FZ1

(
IP
PS

)

ln
IP
PS

+

K∑

k=1

(−1)
k+1

k!

K∑

n1=1

· · ·
K∑

nk=1
︸ ︷︷ ︸

|n1

∪
···

∪
nk|=k

×
[

Ei

(

−α
SIP
PS

)

− e−αSIP/PS ln
IP
PS

]

. (48)

In addition, E {ln (εPPY1+1)} is derived as

E {ln (εPPY1+1)} =

∫ ∞

0

ln (εPPx+1) fY1
(x) dx

=

ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
2µ−h

j (µj/βP)
−(NP−h)/2

(h− 1)! (NP − 1)!(βP)
NP

∫ ∞

0

x(NP+h)/2−1 ln (εPPx+1)KNP−h

(

2

√
x

βPµj

)

dx

=

ρ(A)
∑

j=1

θj(A)
∑

h=1

χj,h (A)
µ−h
j (µj/βP)

−(NP−h)/2

(h− 1)! (NP − 1)!(βP)
NP

(εPP)
−(NP+h)/2

G4,1
2,4

[

(εPPβPµj)
−1

∣
∣
∣
∣
∣

−1− νh,2,−νh,2
− νh,1

2 ,
νh,1

2 ,−1− νh,2,−1− νh,2

]

.

(49)

Substituting (48) and (49) into (44), we obtain ∆ in (9).

APPENDIX C: A DETAILED DERIVATION OF (14)

We derive the tight lower bound of the average achievable

rate when K, NS are Fixed and the large-scale fading effect is

neglected, and NP → ∞. Noting that X1 = min
{

IP
Z1
, PS

}

Z2

and ξ2 =
K∑

k=1

|Υk|2, the tight lower bound of the aver-

age achievable rate is given by R̄L= log2
(
1+e∆1

)
, with

∆1= E {lnX1} − E
{
ln
(
PP

K ξ2+1
)}

. In this case, E {lnX1}
in (48) reduces to

E {lnX1} = ψ (NS) + lnPS +

K∑

k=1

(
K

k

)

(−1)
k+1

Ei

(

−kIP
PS

)

.

(50)

In addition, the PDF of ξ2 in (41) reduces to

fξ2 (x) =
xK−1e−x

(K − 1)!
. (51)
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E
{
ln
(
PP

K ξ2+1
)}

is derived as

E

{

ln

(
PP

K
ξ2+1

)}

=

∫ ∞

0

ln

(
PP

K
x+1

)

fξ2 (x) dx. (52)

By employing [13, (4.337.5)], we calculate (52) as

E

{

ln

(
PP

K
ξ2+1

)}

=

K−1∑

j=0

(−1)
K−j−2

(K − 1− j)!
(K/PP)

K−1−j
eK/PPEi (−K/PP)+

K−1∑

j=0

(−K/PP)
K−1−j

(K − 1− j)!

K−1−j
∑

m=1

(m− 1)!(−K/PP)
−m

, (53)

Based on (50) and (53), ∆1 is derived as (14).

APPENDIX D: A DETAILED DERIVATION OF ∆2

As suggested in Appendix C, ∆2 = E {lnX1} −
E {lnX2}, where X1 = σ2 min

{
IP
Ẑ1

, PS

}

NS and X2 =

1
KNP

PPY1 +
(
1− σ2

)
min

{
IP
Ẑ1

, PS

}

+ 1. We first calculate

E {lnX1} as

E {lnX1} = ln
(
σ2NS

)
+

∫ ∞

0

ln

(

min

{
IP
x
, PS

})

fẐ1
(x)dx

= ln
(
σ2NS

)
+ ln (PS)

∫ IP/PS

0

fẐ1
(x)dx+

∫ ∞

IP/PS

ln

(
IP
x

)

fẐ1
(x)dx

= ln
(
σ2NS

)
+ ln

(
PS

IP

)

FẐ1
(IP/PS) + ln (IP)

−
∫ ∞

IP/PS

ln (x) fẐ1
(x)dx. (54)

Note that FẐ1
(x) = (1− e−x)

K
and fẐ1

(x) =
K∑

k=1

(
K
k

)
k(−1)

k+1
e−kx. Substituting them into (54) yields

E {lnX1} = ln
(
σ2NSIP

)
+ ln

(
PS

IP

)(

1− e−IP/PS

)K

+
K∑

k=1

(
K

k

)

(−1)
k+1

(

−e−(IP/PS) ln (IP/PS) + Ei (−kIP/PS)
)

.

(55)

We next derive E {lnX2} as

E {lnX2} = EY1

{

EẐ1

{

ln

(
1

KNP

PPY1 +
(
1− σ2

)
min

{
IP

Ẑ1

, PS

}

+ 1

)}}

= EY1

{∫ ∞

0

ln

(
1

KNP

PPY1 +
(
1− σ2

)
min

{
IP
x
, PS

}

+ 1

)

fẐ1
(x) dx

}

= FẐ1
(IP/PS)×

∫ ∞

0

ln

(
1

KNP

PPy + 1 +
(
1− σ2

)
PS

)

fY1
(y) dy+

∫ ∞

0

∫ ∞

IP/PS

ln

(
1

KNP

PPy + 1 +
(
1− σ2

) IP
x

)

fẐ1
(x) fY1

(y) dxdy, (56)

where fY1
(y) is the PDF of Y1, which is given by

fY1
(y) =

∫ ∞

0

1

t
fΥ1

(y

t

)

fξ2 (t)dt

=
2y(NP+K)/2−1KNP−K

(
2
√
y
)

(NP − 1)! (K − 1)!
. (57)

Based on (55) and (56), ∆2 can be obtained.
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