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Abstract—Massive MIMO, also known as very-large MIMO
or large-scale antenna systems, is a new technique that poten-
tially can offer large network capacities in multi-user scenarios.
With a massive MIMO system, we consider the case where
a base station equipped with a large number of antenna el-
ements simultaneously serves multiple single-antenna users in
the same time-frequency resource. So far, investigations are
mostly based on theoretical channels with independent and
identically distributed (i.i.d.) complex Gaussian coefficients, i.e.,
i.i.d. Rayleigh channels. Here, we investigate how massive MIMO
performs in channels measured in real propagation environments.
Channel measurements were performed at 2.6 GHz using a
virtual uniform linear array (ULA) which has a physically
large aperture, and a practical uniform cylindrical array (UCA)
which is more compact in size, both having 128 antenna ports.
Based on measurement data, we illustrate channel behavior of
massive MIMO in three representative propagation conditions,
and evaluate the corresponding performance. The investigation
shows that the measured channels, for both array types, allow us
to achieve performance close to that in i.i.d. Rayleigh channels.
It is concluded that in real propagation environments we have
characteristics that can allow for efficient use of massive MIMO,
i.e., the theoretical advantages of this new technology can also
be harvested in real channels.

Index Terms—Massive MIMO, very-large MIMO, multi-user
MIMO, channel measurements

I. INTRODUCTION

Massive MIMO is an emerging technology in wireless

communications, which has attracted a lot of interest in recent

years. With massive MIMO, we consider multi-user MIMO

(MU-MIMO) systems [1] where base stations are equipped

with a large number (say, tens to hundreds) of antennas.

As a comparison, the LTE standard only allows for up to 8

antennas at the base station [2]. In this way, massive MIMO

scales conventional MIMO by an order or two in magnitude.

Typically, a base station with a large number of antennas

serves several single-antenna users in the same time-frequency

resource.

It has been shown in theory that such systems have po-

tential to remarkably improve performance in terms of link

reliability, spectral efficiency, and transmit energy efficiency

[3]–[6]. Massive MIMO can also reduce intra-cell interference

between users served in the same time-frequency resource,

due to its focus of transmitted power to desired users. The

fundamental idea is that as the number of base station antennas

grows large, channel vectors between users and base station

become very long random vectors and, under “favorable”

propagation conditions, these channel vectors become pairwise

orthogonal. The term “favorable” is first defined in [6] as

the mutual orthogonality among user channels, and “favor-

able” propagation is further investigated in theory in [7]. We

can also interpret “favorable” propagation as a sufficiently

complex scattering environment. Under these conditions, even

simple linear precoding/detection schemes, e.g., zero-forcing

and matched-filtering, become nearly optimal [3], [4], [8].

The attractive features of massive MIMO are, however,

based on optimistic assumptions about propagation conditions

in combination with available low-cost hardware making it

possible to deploy large number of antennas. So far, inves-

tigations are mostly based on theoretical independent and

identically distributed (i.i.d.) complex Gaussian, i.e., Rayleigh

fading, channels and for antenna numbers that grow without

limit. Bringing this new technology from theory to practice, we

must ask to what degree the optimistic theoretical predictions

can be maintained in real propagation environments when

using practical antenna array setups. In attempts to answer

this question, massive MIMO propagation measurements have

been conducted and measurement data used to assess mas-

sive MIMO performance in real channels [8]–[12]. Channel

measurements in [8], at 2.6 GHz with an indoor base station

using a 128-port uniform cylindrical array (UCA) of patch

antennas, showed that orthogonality of user channels improves

significantly with increasing number of base station antennas.

Already at 20 antennas, linear precoding schemes operating

on measured channels achieve near-optimal performance for

two users. From measurements using a 128-element virtual

uniform linear array (ULA) at 2.6 GHz, presented in [9] and

[10], it was concluded that the angular power spectrum (APS)

of the incoming waves varies significantly along the physically

large ULA. This is a clear indication that large-scale/shadow

fading across the array is an important mechanism when

dealing with physically large arrays. As a comparison, the

UCA studied in [8] is relatively compact and much smaller

in size, but still a similar effect of variation in channel

attenuations can be experienced over the array. In this case it

is not primarily a large-scale/shadow fading effect, but rather a

consequence of the circular array structure and directive patch

antenna elements pointing in different directions. No matter

the source of these power variations over the array, they can

have a large influence on massive MIMO performance [13].

A measurement campaign independent of our investigations,

with an antenna array consisting of up to 112 elements, is



FINAL MANUSCRIPT: PUBLISHED IN IEEE TRANS. WIRELESS COMMUN., 2015 2

reported in [12]. Results obtained there, which to a large

extent agree with our own experience [11], show that despite

fundamental differences between measured and i.i.d. channels

in terms of propagation characteristics, a large fraction of

the theoretical performance gains of massive MIMO can be

achieved in practice. A different approach to characterize

massive MIMO performance has been presented in [14], where

real propagation environment is replaced by simulation in a

reverberation chamber.

In this paper, we aim for a deeper insight into how

massive MIMO performs in real propagation environments.

The investigations are based on outdoor-to-outdoor channel

measurements using a 128-port UCA and a 128-port virtual

ULA, as described in [11]. We study the channel behavior

of massive MIMO under three representative propagation

conditions, where users are: 1) closely located with line-

of-sight (LOS) to the base station, 2) closely located with

non-line-of-sight (NLOS) to the base station, and 3) located

far from each other. When users are located close to each

other, spatial multiplexing with good isolation between users

can be particularly difficult, as compared to the case when

users are located far from each other. LOS conditions may

prove particularly difficult with highly correlated channels to

different users, making spatial multiplexing less efficient. The

more complex propagation in NLOS conditions is expected to

decorrelate channels to different users to a larger extent. We

investigate the corresponding performance obtained in these

scenarios, by calculating sum-rates based on measured channel

data and comparing with those obtained in i.i.d. Rayleigh

channels. As a complementary tool, we also study the sin-

gular value spreads for the measured channels. This gives

an indication of how large the difference is between the

most favorable and least favorable channels. Small singular

value spreads indicate stable channels to all users, while large

spreads indicate that one or more users may suffer from

significantly worse conditions than others.

In this investigation we compare two different large array

structures. From a practical point of view it is preferable to

have a compact array, such as the UCA, since it is easier

to deploy. However, if we make the array small, it will bring

drawbacks such as higher antenna correlation and poor angular

resolution. A two-dimensional structure like the UCA will,

however, have the ability to resolve incoming waves in two

dimensions. Using a much larger one-dimensional ULA with

the same number of elements, we benefit from a higher angular

resolution, but only in one dimension. Since both array struc-

tures have different characteristics, we can expect that they

perform differently in a massive MIMO setting. Depending

on how well the propagation environment suits each array

type, one may be better than the other. To investigate this,

we compare massive MIMO performance with the two arrays

in the same propagation environments.

The rest of the paper is organized as follows. In Sec. II,

we describe our massive MIMO channel measurements and

Sec. III, outlines the system model and performance met-

rics used when evaluating the measured channels, includ-

ing singular value spread and sum-rate capacity. Propagation

characteristics in three measured scenarios are illustrated and

discussed in Sec. IV. In Sec. V we evaluate singular value

spreads and sum-rate capacities for the measured channels.

Finally, in Sec. VI, we summarize our contributions and draw

conclusions.

II. CHANNEL MEASUREMENTS

In this section, we present the measurement campaigns for

massive MIMO channels, on which we base our study of prop-

agation characteristics and evaluations of system performance.

First we introduce the measurement setups, including antenna

arrays and measurement equipment. Then we describe the

semi-urban environment where measurements were performed

under different propagation conditions.

A. Measurement setups

Two channel measurement campaigns were performed with

two different large arrays at the base station side. Both arrays

are for the 2.6 GHz range and contain 128 antenna ports each,

with antenna elements spaced half a wavelength apart. Fig. 1a

shows the UCA having 64 dual-polarized patch antennas,

with 16 antennas in each of the four stacked circles, giving

a total of 128 antenna ports. This array is compact in size

with both diameter and height around 30 cm. Fig. 1b shows

the virtual ULA with a vertically-polarized omni-directional

antenna moving along a rail, in 128 equidistant positions. In

comparison, the ULA spans 7.4 m in space, which is more than

20 times the size of the UCA. In both measurement campaigns,

an omni-directional antenna with vertical polarization was

used at the user side.

Channel data were recorded at center frequency 2.6 GHz

and 50 MHz bandwidth. With the UCA, measurements were

taken with the RUSK LUND channel sounder, while for the

virtual ULA, an HP 8720C vector network analyzer (VNA)

was used. With the virtual ULA and VNA, it takes about half

an hour to record one measurement, when the antenna moves

from the beginning of the array to the end. In order to keep

the channel as static as possible during one measurement, we

performed this campaign during the night when there were

very few objects, such as people and cars, moving in the

measurement area. To verify that channel conditions were

static enough, some measurements were repeated directly after

the full array length was measured. The two measurements

done half an hour after each other were compared and found

to match well1.

Mutual coupling among antenna elements should also be

mentioned, since it is a critical issue that may affect massive

MIMO performance, if a large number of antennas are tightly

placed [15], [16]. Although the UCA is compact, the worst

case of mutual coupling between the neighboring elements is

-11 dB [17]. The virtual ULA, however, experiences no mutual

coupling effect. This may lead to different performance of the

1Comparing the two measured channels, i.e., the original one and the
verification one, we found that the two transfer functions are very similar,
however, there are minor differences due to channel variation and noise.
Average amplitude correlation coefficients between the two measured transfer
functions over all antenna positions are in the range of 0.95-0.99. Besides,
we observed that the two measured channels give very similar angular power
spectrum.
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a) UCA b) ULA

Fig. 1. Two large arrays at the base station side: a) a UCA with 64 dual-
polarized patch antenna elements, giving 128 ports in total, and b) a virtual
ULA with 128 vertically-polarized omni-directional antennas.

virtual ULA, as compared to a practical ULA. However, a the-

oretical study in [18] shows that coupling has a major impact

on MIMO capacity only when the element separation is below

0.2 wavelengths. Indeed, practical studies are also needed on

the impact of coupling on massive MIMO performance. This is

closely related to antenna array design, a topic not covered in

this paper. We focus on the propagation aspects and investigate

how different propagation conditions affect massive MIMO

performance.

B. Measurement environments

The channel measurements were carried out outdoors at

the E-building of the Faculty of Engineering (LTH), Lund

University, Sweden (N 55◦42′37.96′′, E 13◦12′39.72′′). Fig. 2

shows an overview of the semi-urban measurement area. The

two base station antenna arrays were placed on the same

roof of the E-building during their respective measurement

campaigns. More precisely, the position of the UCA was on

the same line as the ULA, near its beginning, and for practical

reasons about 25 cm higher than the ULA.

At the user side, the omni-directional antenna was moved

around the E-building at 8 measurement sites (MS) acting

as single-antenna users. Among these sites, three (MS 1-

3) have LOS conditions, and four (MS 5-8) have NLOS

conditions, while one (MS 4) has LOS for the UCA, but the

LOS component is blocked by the roof edge for the ULA,

due to the slightly lower mounting. Despite this, MS 4 still

shows LOS characteristic for the ULA, where one or two

dominating multipath components due to diffraction at the roof

edge cause a relatively high Ricean K-factor [19], [20]. At

MS 4, besides the roof-edge diffraction to the ULA, there is

also strong scattering from the building in the south. At each

measurement site, 40 positions with about 0.5 m inter-spacing

were measured with the UCA, and 5 positions with 0.5-2 m

inter-spacing were measured with the ULA. The reason for

having fewer positions with the ULA was due to the long

measurement time.

For all the measurements with the ULA, the average signal-

to-noise ratio (SNR) over all antenna elements was above

28 dB, while the lowest per-antenna SNR was above 23 dB.

With the UCA, at MS 1-4 and MS 7, the average SNR over

Fig. 2. Overview of the measurement area at the campus of the Faculty of
Engineering (LTH), Lund University, Sweden. At the base station side, the
two antenna arrays were placed on the same roof of the E-building during
their respective measurement campaigns. At the user side, the omni-directional
antenna was moved around at MS 1-8 acting as single-antenna users.

all antenna elements was above 33 dB, while the lowest per-

antenna SNR was above 20 dB. At MS 5-6 and MS 8, the

measurement SNR was lower but still good enough, i.e., for all

antenna elements of the UCA, the SNR was about 10-25 dB.

In the measured 50 MHz bandwidth, we observe a coherence

bandwidth about 25 MHz in the LOS scenarios, and about

5 MHz in the NLOS scenarios.

III. SYSTEM DESCRIPTION

The acquired measurement data allows study of various

aspects of massive MIMO systems. Before discussing channel

behavior and evaluating performance of massive MIMO, we

first define our system model.

A. Signal model

We consider a single-cell multi-user MIMO-OFDM system

with N subcarriers in the downlink. The base station is

equipped with M antennas and simultaneously serves K
(K ≤ M ) single-antenna users in the same time-frequency

resource. We assume that the base station has perfect channel

state information (CSI), and that the channel can be described

as narrow-band at each OFDM subcarrier.

As shown in Fig. 3, the signal model of the considered

narrow-band MU-MIMO downlink channel is

yℓ =

√

ρK

M
Hℓzℓ + nℓ, (1)

where Hℓ is a K×M channel matrix at subcarrier ℓ, zℓ the

normalized transmit vector across M base station antennas,

satisfying E
{

‖zℓ‖
2
}

= 1, yℓ the vector of received signals

at the K users, and nℓ a complex Gaussian noise vector

with i.i.d. unit variance elements. The term ρK/M scales the

transmit energy and ρ relates to the average per-user receive
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Fig. 3. System model of the downlink of an MU-MIMO system with an
M -antenna base station and K single-antenna users.

SNR2. From the term ρK/M , we increase the transmit power

with the number of users and reduce it as the number of base

station antennas grows. As K increases, we keep the same

transmit power per user. With increasing M the array gain

increases and we choose to harvest this as reduced transmit

power instead of increased receive SNR at the users3.

Let us now return to the channel matrix Hℓ in (1) and how

it is formed. From our measurements, we have channel data

obtained with 128 antenna ports at the base station and, at

the user side, each measured position represents one single-

antenna user. With the selection of K positions, we have a

measured channel matrix of size K×128, which we denote

Hraw

ℓ , at subcarrier ℓ. The channel matrix Hℓ is then formed

by selecting M columns from a normalized version of Hraw

ℓ .

Two different normalizations of Hraw

ℓ are used in different

investigations. The two channel normalizations are:

• Normalization 1. The measured channel vectors of each

user, i.e., the rows of Hraw

ℓ , denoted as hraw

i,ℓ , i =
1, 2, . . . ,K, are normalized such that the average energy

over all 128 antenna ports and all N subcarriers is equal

to one. This is achieved through

hnorm

i,ℓ =

√

√

√

√

√

128N
N
∑

ℓ=1

‖hraw

i,ℓ ‖2
hraw

i,ℓ , (2)

where the vector hnorm

i,ℓ is the ith row of the normal-

ized channel matrix Hnorm

ℓ . With this normalization,

the imbalance of channel attenuations between users is

removed, while variations over antenna elements and

frequencies remain.

• Normalization 2. The measured channel matrix is nor-

malized such that the channel coefficients have unit

average energy over all 128 antenna ports, K users and

2With the defined signal model and channel normalization, the average
receive SNR at the users is smaller or equal to ρ, and different values can
be obtained depending on used precoding scheme. For example, when user
channels are not completely orthogonal and inter-user interference exists, the
average receive SNR using dirty-paper coding would be higher than for zero-
forcing precoding. Equality between average per-user receive SNR and ρ, both
for DPC and ZF precoding is obtained when user channels are orthogonal,
i.e., when the Gram matrix HℓH

H

ℓ
is diagonal.

3With realistic low-cost terminals it can be expected that only a limited
SNR can be handled by the terminals, before quantization noise and dynamic
range start to limit performance. Further, sum-rate capacities in i.i.d. Rayleigh
channels are closer to those in interference-free channels at lower SNRs [4].
For these reasons, we keep a constant interference-free SNR ρ at the users
when the number of antennas M at the base station changes. This is to make
fair and realistic comparisons of different settings.

N subcarriers. This is achieved through

Hnorm

ℓ =

√

√

√

√

√

128KN
N
∑

ℓ=1

‖Hraw

ℓ ‖2
F

Hraw

ℓ , (3)

where ‖ · ‖F represents the Frobenius-norm of a matrix.

Compared with Normalization 1, here we keep the dif-

ference in channel attenuation between users, as well as

variations over antenna elements and frequencies.

Both normalizations are done for the originally measured

channel matrix with 128 columns, rather than the matrix

with M columns, obtained by selecting a subset of the 128

antennas. The reason for this is that we would like to maintain

the imbalance of channel attenuations over the antenna arrays

due to power variations over the antenna elements. These vari-

ations, caused by large-scale fading/shadowing and/or directive

antennas with different orientation, are critical for performance

evaluation of massive MIMO. When investigating singular

value spreads of measured channels, we use Normalization 1.

For capacity evaluation, Normalization 2 is used in scenarios

where users are closely located, while Normalization 1 is used

when users are far from each other and have large channel

attenuation imbalance. The detailed reasons for using each

normalization are given in the following.

B. Singular value spread

As mentioned in Sec. I, by using a large number of

antennas at the base station, massive MIMO has the potential

to separate users so that all spatial modes are useful in such

a system. However, this relies on “favorable” propagation

where user channels become pairwise orthogonal with growing

number of antennas, i.e., the off-diagonal terms of the Gram

matrix HℓH
H
ℓ become increasingly small compared to the

diagonal terms. As this phenomenon can be easily seen in

i.i.d. Rayleigh channels, many theoretical studies are based on

this assumption. We need to investigate to what degree real

massive MIMO channels are “favorable”. One way to evaluate

joint orthogonality of all users is singular value spread of

the normalized propagation matrix [21]. Here Normalization 1

applies, since the imbalance of channel attenuations between

the users should be removed, so that the singular value spread

does not contain the difference in channel norms, but only

reflects the joint orthogonality of the users.

The propagation matrix Hℓ at subcarrier ℓ has a singular

value decomposition (SVD) [22]

Hℓ = U ℓΣℓV
H
ℓ , (4)

where U ℓ and V ℓ are unitary matrices, and the K×M diagonal

matrix Σℓ contains the singular values σ1,ℓ, σ2,ℓ, ..., σK,ℓ. The

singular value spread is defined as

κℓ =
max

i
σi,ℓ

min
i

σi,ℓ

, (5)

i.e., the ratio of the largest and smallest singular values. A

large κℓ indicates that at least two rows of Hℓ, i.e., the channel

vectors of two users, are close to parallel and thus relatively
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difficult to separate spatially, while κℓ=1, i.e., 0 dB, implies

the best situation where all rows are pairwise orthogonal.

The singular value spread can be an indicator whether the

users should be served in the same time-frequency resource.

It also has close connection with the performance of MIMO

precoders/detectors [23]–[25].

With massive MIMO, as the number of antennas increases

and becomes much larger than the number of users (M≫K),

we expect better orthogonality between user channels and thus

smaller singular value spreads, as compared to conventional

MIMO. More importantly, we expect the singular value spread

to become more stable over channel realizations. The stability

of singular value spread implies that bad channel conditions

can be avoided and also leads to stability of MIMO pre-

coders/detectors. While the above is true for i.i.d. Rayleigh

channels, we investigate the measured channels in Sec. V, in

an attempt to find out if realistic channels also can provide

sufficiently good and stable user orthogonality.

C. Dirty-paper coding capacity

Through the singular value spread, we can investigate the

potential of massive MIMO to spatially separate the users.

However, singular value spread cannot fully quantify the

performance of an MU-MIMO system, since it only offers

an indication of the minimum quality of service that can be

guaranteed for all users. We would also like to know the

overall performance of a massive MIMO system in terms of

sum-rate capacity. A small singular value spread leads to high

capacity, as interference between all users is low and they

can get relatively good quality of service. A large singular

value spread, however, does not imply a low channel capacity.

In this case, at least one user has relatively poor quality of

service, but we do not know how many that still can get good

quality of service. For example, in a rank-deficient channel

with one singular value being zero, i.e., two user channels

are aligned, the singular value spread goes to infinity, but the

channel capacity can still be relatively high, depending on

the remaining singular values. By combining the two metrics,

singular value spread and sum-rate capacity, we can get a good

understanding of massive MIMO performance.

Sum-rate capacity in the narrow-band MU-MIMO downlink

channel is [26],

CDPC,ℓ = max
P ℓ

log2 det

(

I +
ρK

M
HH

ℓ P ℓHℓ

)

, (6)

which is achieved by dirty-paper coding (DPC) [27]. The

diagonal matrix P ℓ with Pℓ,i, i = 1, 2, ...,K on its diagonal

allocates the transmit power among the user channels and

capacity is found by optimizing over P ℓ under the total power

constraint
∑K

i=1
Pℓ,i = 1. This can be done using the sum-

power iterative water-filling algorithm presented in [28].

In measured channels where users are far from each other,

large variations in channel attenuations to different users can

have a strong influence on sum-rate capacity. In order to

maximize the downlink sum-rate, a large proportion of the

transmit power will be allocated to users with low channel

attenuation. These users will have relatively high date rates,

compared to users with higher channel attenuation. We can

imagine an extreme case where only one user has a very

high data rate and the multi-user transmission is reduced to

single-user transmission. When this happens, it is difficult to

investigate the effect of user channel orthogonality on the

system performance. To avoid large imbalance of channel

attenuations, users with similar attenuation should be grouped

and served simultaneously, while the user groups are, e.g,

time multiplexed. Due to a limited number of measurement

positions, we do not have enough data to analyze this situation.

We therefore focus on orthogonality between channels to dif-

ferent users and remove attenuation imbalance between users

that are far apart, when evaluating their sum-rate capacity, as

described in Normalization 1. When users are closely located,

the path losses can be expected to be similar and any attenu-

ation imbalance is mainly due to small-scale and large-scale

fading. From our measurements, we observe that attenuation

imbalance between co-located users is very small. Thus, for

capacity evaluation in this case, we apply Normalization 2

on the measured channels and keep the small attenuation

imbalance among the users, as is the case in i.i.d. Rayleigh

channels.

Ideally, in massive MIMO, as the number of base station

antennas goes to infinity in “favorable” propagation conditions,

the channels to different users become interference free (IF)

[4] with per-user receive SNRs approaching ρ as given in our

model (1). This leads to an asymptotic, interference free, sum-

rate capacity

CIF = K log2 (1 + ρ) , (7)

to which i.i.d. Rayleigh channels converge, as the number of

antennas grows. For the measured channels we would like to

know how large a fraction of this capacity we can achieve.

This is investigated and discussed in Sec. V.

IV. PROPAGATION CHARACTERISTICS

Before presenting numerical performance evaluation results,

we focus on propagation characteristics in the investigated

scenarios, as briefly outlined in Sec. I. While not providing

quantitative measures of massive MIMO performance, this

description gives an intuitive understanding of real massive

MIMO propagation mechanisms, and also helps to understand

the evaluation results of singular value spreads and sum-rate

capacities, presented later in Sec. V. By understanding these

propagation mechanisms observed in massive MIMO, we also

gain insight into what needs to be considered and included in

a massive MIMO channel model [29], [30].

For a simple and clear illustration of massive MIMO

propagation characteristics in each of the three scenarios, we

start with four users (K = 4), which is the number of users

supported in LTE MU-MIMO [2]. In two of the scenarios,

the four users are located close to each other, with only 1.5-

2 m inter-spacing, representing situations where the spatial

separation of user signals can be expected to be particularly

difficult. In the third scenario, the four users are located

far from each other, with more than 10 m inter-spacing,

representing situations where users are well distributed around

the base station and we can expect good channel orthogonality.
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Combining difference in user inter-spacing with LOS/NLOS

conditions, the three investigated scenarios are:

1) four users close to each other at MS 2, having LOS

conditions to the base station,

2) four users close to each other at MS 7, with NLOS

conditions,

3) four users far apart, at MS 1-4, respectively, all having

channels with LOS characteristics.

With the aim of assisting understanding of the physical

propagation channels, we estimate the APS at the base station

side. The directional estimates for the ULA are obtained

through the space-alternating generalized expectation maxi-

mization (SAGE) algorithm [31], which jointly estimates the

delay, incidence azimuth, and complex amplitude, of multi-

path components (MPCs) in radio channels. The frequency-

dependent SAGE algorithm is applied to a sliding window of

10 neighboring elements on the ULA and, for the measured

channel within each window, 200 MPCs are estimated. The

reason for estimating the MPC parameters based on 10-

antenna windows is that the incoming waves can be considered

planar if the array is small enough. This aperture corresponds

to a Fraunhofer distance of about 5 m, making waves origi-

nating from reflections beyond that distance to appear planar.

Using 10 antennas also provides a relatively high angular

resolution for the directional estimation. Note that the range

of azimuth estimation is 0-180 degrees for the ULA, due to

inherent directional ambiguity problem when using this type

of array structure [32].

Based on the SAGE estimates, we obtain the APS in

azimuth at each position along the ULA. For each scenario,

we compare the APS from different users as seen at the

base station. For the convenience of comparison, we simplify

the APS from each user. Instead of showing the estimated

power levels from all the azimuth directions, we only show

from which directions the incoming energy is strongest. The

colored patches show where 90% of the total energy across

the whole array is concentrated. This simplified form of APS

illustrates the directional pattern of the incoming energy from a

specific user. Since it is a highly simplified form of the spatial

properties of the channel from a specific user, we call it a

“spatial fingerprint”. In Fig. 4, for each scenario, we plot the

four users’ spatial fingerprints on top of each other. The four

colors in each plot represent the spatial fingerprints of the four

different users. Since the UCA was positioned at the beginning

of the ULA, as indicated by the dashed lines in Fig. 4, we

consider that it experiences the propagation channels at that

particular part of the ULA, but with directional patch antennas

oriented in different directions.

What can we learn from these spatial fingerprints? First,

they provide an intuitive understanding of the distribution of

incoming energy from different users in real channels under

different propagation conditions. Secondly, by comparing fin-

gerprints, we get an understanding of how much the APS

changes between users in different scenarios. Through this we

can acquire qualitative information about how difficult it is to

do spatial separation of signals from different users. Distinct

fingerprints indicate relatively good spatial orthogonality of the

user channels, and we can expect that the user signals can be

separated with rather simple means. In this case, the channels

have relatively small singular value spreads and relatively high

sum-rate capacities. Similar and overlapping fingerprints, on

the contrary, represent a more difficult situation and spatial

separation of user signals may be much harder. With incoming

energy from largely the same directions, detailed knowledge

about amplitude and phase is needed to fully assess the situa-

tion. Thirdly, these fingerprints allow for a direct comparison

of the propagation channels experienced by massive and more

conventional MIMO systems. This can be done by comparing

fingerprints along the entire ULA with the local fingerprint

somewhere along the ULA, that would be experienced by

a smaller conventional MIMO array. Lastly, an attempt to

develop a sophisticated geometry-based channel model for

massive MIMO should likely take these spatial fingerprints

into consideration. Our point of view is that if a channel

model does not reflect the spatial properties observed through

these fingerprints, it does not accurately model the nature of a

massive MIMO propagation channel. We discuss these issues

in the following.

First we turn our attention to propagation conditions and

spatial separability of user channels in the three investigated

scenarios. In Fig. 4a, we can see that in the LOS scenario

with co-located users, incoming energy from all users is

concentrated around 160 degrees, which is the LOS direction.

For some users, a significant amount of energy also comes

from some scatterers at around 20 degrees at the end of the

ULA. The overlap of the four users’ fingerprints indicates

that we may have a relatively high correlation4 between their

channels, making it difficult to spatially separate signals from

the co-located users. However, as discussed above, amplitude

and phase differences may still make users easier to separate

than they appear from studying the fingerprints.

An entirely different situation is shown Fig. 4b, where the

four users are still closely located but in an NLOS scenario

with rich scattering. Incoming energy from all four users

is distributed over a much larger angle across the whole

array, reflecting a rich scattering environment. The four users’

fingerprints are very complex and quite different from each

other, as compared to the case in Fig. 4a. This indicates that the

spatial correlation between channels to the users is relatively

low, which should allow for a better spatial separation of user

signals, even though they are still closely located.

Fig. 4c shows the scenario where four users are located far

from each other, all having LOS propagation characteristics.

Users at MS 2 and 3, whose fingerprints are in blue and

green, respectively, have the strongest LOS characteristics with

incoming energy concentrated to a certain direction along the

entire array. This is in stark contrast to users at MS 1 and

4, whose fingerprints are in red and yellow. At MS 1, the

LOS is at the end-fire direction of the ULA, and its power

contribution is weakened due to the superposition with the

ground reflection. At MS 4, besides the energy from the

roof-edge diffraction to the ULA, strong scattering from the

4The spatial correlation we talk about here is an instantaneous property
between users, rather than an average property, e.g., over time realizations of
the channels.
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Fig. 4. Spatial fingerprints (simplified forms of the angular power spectral density along the 128-element ULA), in (a) a LOS scenario where the four users
are co-located at MS 2, (b) an NLOS scenario where the four users are co-located at MS 7, (c) a LOS scenario where the four users are far away from each
other, at MS 1-4, respectively. The four different colors in each plot represent the spatial fingerprints of the four different users. Dashed vertical lines indicate
where the UCA is located and which part of the ULA propagation channel it is exposed to. Distinct fingerprints, as in (b) and (c), indicate relatively good
conditions for spatial separation of user signals, while similar fingerprints, as in (a), indicate that spatial separation may be more difficult.

building in the south also contributes considerably. Since the

users are located at different sites, their fingerprints should be

very different from each other. Note that the signals from users

at MS 2 and 3 appear to come from the same direction due

to the inherent angular ambiguity of the ULA. However, as

seen later in Sec. V it is possible to spatially separate the two

users. A good spatial separation of all users can be expected

in this scenario.

Now, let us turn our attention to propagation channels ex-

perienced by massive and more conventional MIMO systems.

In the fingerprint plots, we can see that the ULA potentially

experiences channels with much more spatial variations, as

compared to small arrays spanning only a few wavelengths

in space. Large spatial variations can help to decorrelate

channels even when users are closely located, as in Fig. 4b.

Fingerprints may overlap locally, but over longer distances

along the array they are quite distinct. This indicates that, with

small arrays users may have relatively low spatial correlation

on average, e.g., over time, while with a physically large

ULA decorrelation of user channels can be instantaneous.

However, strong LOS may reduce the ability of the ULA

to spatially separate signals from co-located users, such as

the situation shown in Fig. 4a. Since we do not consider the

phase information over the array there, we later investigate

this situation in more detail by evaluating both singular value

spreads and sum-rate capacities.

For the compact UCA, experiencing only a small part

of channels seen by the ULA, separation of user signals

may be more difficult. When users are closely located and

incoming energy is concentrated to similar and narrow di-

rections, patch antennas oriented in “wrong” directions may

have high channel attenuations and contribute little to spatial

separation of signals from co-located users. Despite this, the

UCA may still gain from its circular structure and provide

good user decorrelation, when users are distributed around the

base station, and incoming energy is distributed in different

directions, as shown in Fig. 4c.

V. PERFORMANCE EVALUATION

To get a more quantitative understanding of how massive

MIMO would perform in our measured channels, we turn our

attention to singular value spreads and sum-rate capacities in

the three measured scenarios. First we focus on the case of

four users (K=4), as we did in the propagation characteristics

in Sec. IV. We then increase the number of users to sixteen

(K = 16) and investigate the performance when more users

are served simultaneously.

A. Four users (K=4)

In all three scenarios, over N = 161 subcarriers and 2000

random selections of antenna subsets, i.e., selections of M
antennas out of the 128, we show a) the cumulative distribution

functions (CDFs) of the singular value spreads in the channels,
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when using 4, 32 and 128 base station antennas, and b)

the average DPC capacities including their 90% confidence

intervals, as the number of base station antennas M grows

from 4 to 128. Note that for M =128 there is only a single

choice of selecting the antenna subset, and the CDFs of the

singular value spreads and the capacity confidence intervals

are therefore computed over frequencies only. For M < 128,

as the number of all possible antenna subsets can be extremely

large, we randomly select 2000 subsets, and let the CDFs of

the singular value spreads and the capacity confidence intervals

also take the random antenna selections into account. As a

reference, we also show simulated results for i.i.d. Rayleigh

channels. We select the interference-free SNR to ρ = 10 dB
5, and with four users the asymptotic capacity (7) becomes

4 log2 (1+10) = 13.8 bps/Hz. In the following we discuss

the singular value spreads and DPC capacities in the three

scenarios.

1) Four users co-located with LOS: As discussed in

Sec. IV, this scenario represents a particularly difficult situa-

tion for spatial separation of user signals, which can be seen

from the four users’ similar fingerprints in Fig. 4a. First we

study the CDFs of singular value spreads, as shown in Fig. 5.

We observe that for i.i.d. Rayleigh channels, the median of

the singular value spread significantly reduces from 17 dB to

below 4 dB, as the number of antennas increases from 4 to 32

and 128. Singular value spreads also become much more stable

around small values, as the CDF curves have no substantial

upper tails.

For the measured channels, using either ULA and UCA,

the singular value spreads are significantly larger than those

of i.i.d. Rayleigh channels, for all three numbers of antennas.

This indicates a much worse user channel orthogonality in the

measured channels, due to co-location of users and strong LOS

conditions in this scenario. Still, trends similar to those seen

in i.i.d. Rayleigh channels can be observed in the measured

channels. The median of the singular value-spread decreases

by 14 dB with the ULA and 12 dB with the UCA, as the

number of antennas increases from 4 to 128. Meanwhile, when

using a large number of antennas, the substantial upper tails

of the CDF curves reduce, and almost disappear in the case of

128 antennas. With only 4 antennas, the selections of antenna

subsets and subcarriers can make a big difference on the

user orthogonality. This means that with small arrays we may

encounter propagation channels with very good conditions as

well as very bad ones, depending on the choice of antenna

positions and used subcarriers. When increasing the number

of antennas to 32, user orthogonality improves and becomes

much more stable over antenna selections and subcarriers.

Thus, bad channel conditions can largely be avoided by adding

more antennas at the base station. When using all 128 anten-

nas, user orthogonality improves further and becomes more

stable over subcarriers. The above observations tell us that

despite a significant gap between measured and i.i.d. Rayleigh

channels in this scenario, spatial separation of signals from co-

located users can be greatly improved by using a large number

5The performance of i.i.d. Rayleigh channels at different SNR levels has
been derived in [4]. We select the interference-free SNR to be 10 dB since it
is a middle-level SNR.
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Fig. 5. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where the four users are closely located at MS 2, all having
LOS to the base station antenna arrays.

Fig. 6. Sum-rate capacity in the downlink, achieved by DPC, in a scenario
where four users are close to each other at MS 2, all having LOS to the base
station antenna arrays.

of antennas, and more importantly, the results become more

stable over both subcarriers and different antenna selections.

We now move to sum-rate capacities achieved by DPC,

as shown in Fig. 6. As a reference, the average capacity in

i.i.d. Rayleigh channels converges to the asymptotic capacity

value of 13.8 bps/Hz and the capacity variation becomes

smaller as the number of antennas increases. In the mea-

sured channels, however, averages are significantly lower and

variations are larger. Let us focus on the average capacities

first, and discuss the variations later. The drops in average

capacities for measured channels coincide with larger singular

value spreads. Despite this, in this potentially difficult spatial

separation situation, the ULA and UCA perform at 90% and

75% of the asymptotic capacity, respectively, when the number

of antennas is above 40, i.e., when the number of antennas is

10 times the number of users.
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Fig. 7. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where four users are closely located at MS 7, with NLOS to
the base station antenna arrays.

2) Four users co-located with NLOS: In this scenario we

still have users closely located, but now in NLOS conditions.

NLOS with rich scattering, as illustrated in Fig. 4b, where

spatial fingerprints of users are complex and distinct, should

improve the situation by providing more “favorable” propaga-

tion and thus allowing better spatial separation of user signals.

The benefits of complex propagation are reflected in the CDFs

of singular value spreads in Fig. 7. Singular value spreads

in this scenario become significantly smaller, as compared to

those in the corresponding LOS case. Especially for the ULA,

the CDF curves are very close to those of i.i.d. Rayleigh

channels. The substantial upper tails of the CDF curves

observed when using a small number of antennas disappear

when using all 128 antennas in the measured channels. This

means that over the measured bandwidth the probability of

seeing a singular value spread much larger than 2 dB for the

ULA, and 7 dB for the UCA, is very low.

Correspondingly, the benefits brought by the NLOS con-

dition with rich scattering can also be observed in DPC

capacities, as shown in Fig. 8. Despite co-located users,

the ULA here provides average performance very close to

the asymptotic capacity achieved in i.i.d. Rayleigh channels,

while the UCA reaches more than 90%, when the number of

antennas is above 40.

3) Four users located far from each other with LOS:

In this scenario, despite LOS characteristics, increased inter-

spacing between users should help to improve performance.

As can be seen in Fig. 4c, the users’ spatial fingerprints are

reasonably different, which indicates a favorable decorrelation

situation between user channels for the large arrays. In the

CDFs of singular value spreads shown in Fig. 9, the ULA

again performs very close to i.i.d. Rayleigh channels. The

UCA has a significant improvement as compared to the two

previous scenarios: the median of the singular value spread

reduces to below 5 dB when using 128 antennas. Singular

value spreads in the measured channels again become quite

stable when using a large number of antennas.
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Fig. 8. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where the four users are close to each other at MS 7, with NLOS to the base
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Fig. 9. CDFs of singular value spreads when using 4, 32 and 128 antennas,
in the scenario where four users are well separated at MS 1-4, respectively,
with LOS characteristics.

As can be seen in Fig. 10, both the ULA and the UCA per-

form very close to that of the asymptotic capacity achieved in

i.i.d. Rayleigh channels, when having more than 40 antennas.

The UCA shows slightly lower performance than the ULA.

Throughout the three scenarios discussed above and whose

performances are shown in Fig. 5 - Fig. 10, we observe that the

ULA performs better than the UCA. Due to its large aperture,

the ULA experiences more spatial variations in the channels

over the array, which provide better distinction between user

channels and thus better spatial separation. In other words, the

ULA has a very high angular resolution, which helps it resolve

scatterers better than the compact UCA. The small aperture

of the UCA and its patch antennas facing different directions

make it difficult to resolve scatterers at similar azimuth angles,

which is usually the case when users are located close to each

other. When users are well distributed around the base station,

the UCA can separate scatterers at different azimuth angles,
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Fig. 10. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where the four users are well separated at MS 1-4, respectively, with LOS
characteristics.

and achieves better performance.

For the DPC capacities, we focused on averages in the pre-

vious discussions. Now we turn our attention to the variations

over frequencies and random antenna selections. Comparing

with i.i.d. Rayleigh channels, we notice that capacity variations

in measured channels are much larger, and decrease much

slower as the number of antennas increases. This is due

to larger power variations over antenna elements and over

frequencies in the measured channels. For the ULA, power

variation over antenna elements is due to large-scale/shadow

fading experienced across the array, as reported in [9], [10],

while for the UCA, it is mainly due to its circular structure

with directional patch antennas oriented differently. With

omni-directional antenna elements, the ULA has larger power

variations over the measured bandwidth, as compared to the

UCA with directional antenna elements. This gives the ULA

larger capacity variations than the UCA, especially in the case

of 128 antennas when the capacity variations are only across

frequencies. Note that although the average capacity increases

with the number of antennas, for some antenna selections a

small number of antennas can perform better than a larger

number of antennas. This can be observed from the upper part

of the 90% confidence intervals of the UCA in Fig. 8. This is

because in our signal model we reduce the transmit power

with increasing number of antennas, while some antennas

contribute more to the capacity than the others. It implies that

we may gain by selecting the “right” antennas, as discussed

in [13].

In all three scenarios with four users and the ULA, as

few as 20 antennas gives very competitive performance, while

slightly higher numbers are required for the UCA. However,

when using more practical precoding schemes, such as zero-

forcing (ZF) and matched-filtering (MF) precoding, sum-rate

converges slower, which means that more antennas are needed

to achieve the required performance. This is shown in [5] and

[11]. More antennas are also needed, if we want to serve more

users in the same time-frequency resource.

B. Sixteen users (K=16)

While only four users are supported in LTE MU-MIMO,

with more than one hundred antennas at the base station,

massive MIMO can potentially serve many more users si-

multaneously. Here we increase the number of users to six-

teen (K = 16), and again investigate singular value spreads

and achieved sum-rate capacities. Due to limited number of

measurement positions with the ULA, we concentrate on the

UCA. In the two scenarios with co-located users, we simply

increase the number of users from 4 to 16, and the inter-

spacing between users is about 0.5 m. In the scenario where

users are located far from each other, we select two users

from each of the sites MS 1-8, with an inter-spacing larger

than 10 m. Doing so, eight users have LOS conditions while

the other eight have NLOS.

CDFs of singular value spreads in the three scenarios are

shown in Fig. 11 - Fig. 13. In both measured channels and

i.i.d. Rayleigh channels, singular value spreads are larger than

those in the four user cases. This indicates, as expected,

that with more users it is more difficult to spatially separate

their signals. In the scenario where sixteen users are co-

located with LOS, as shown in Fig. 11, singular value spreads

are much larger than those in i.i.d. Rayleigh channels. The

situation improves significantly in the NLOS scenario, as

shown in Fig. 12. The gap in singular value spreads between

measured and i.i.d. Rayleigh channels becomes smaller, which

again indicates that NLOS with rich scattering provides more

“favorable” propagation for the spatial separation of user

signals, even when they are located close to each other. When

sixteen users are located far from each other, the CDF curves

of singular value spreads in the measured channels are closer

to the ones for i.i.d. Rayleigh channels, as shown in Fig. 13.

This implies that spatial separation of user signals improves

even more. In all three scenarios, despite larger singular value

spreads in the measured channels, trends similar to those for

i.i.d. Rayleigh channels can be observed. The singular value

spread becomes smaller and much more stable, as the number

of base station antennas increases.

DPC capacities in the three scenarios are shown in Fig. 14.

With sixteen users, asymptotic capacity given in (7) is

16 log2 (1+10) = 55.4 bps/Hz. Average performance in

i.i.d. Rayleigh channels gets closer and closer to this asymp-

totic capacity, as the number of antennas increases. Perfor-

mance in the measured channels is, however, significantly

lower. Despite this, in the worst case where sixteen users are

co-located with LOS, the average performance reaches about

50% of the asymptotic capacity when all 128 antennas are

used, i.e., 8 times the number of users. The situations in the

other two scenarios are better. With 128 antennas, the UCA

performs at 75% and 90% of the asymptotic capacity, when

sixteen users are co-located with NLOS and are far apart,

respectively.

With more users and equal number of base station antennas,

spatial separation becomes more difficult, but with the UCA

we still obtain a large fraction of the i.i.d. Rayleigh perfor-

mance, especially in NLOS conditions with rich scattering

and when users are far apart. Although we lack measurement
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Fig. 11. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are closely located at MS 2, all with LOS
to the UCA.
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Fig. 12. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are located close to each other at MS 7,
all with NLOS to the UCA.

data for sixteen users with the ULA, we can expect that

the ULA would provide better spatial separation also in this

case, especially for co-located users, due to its higher angular

resolution.

VI. SUMMARY AND CONCLUSIONS

The presented investigation shows that in the studied real

propagation environments we have characteristics that allow

for efficient use of massive MIMO: the advantages of this new

technology, as predicted by theory, can also be obtained in real

channels. Based on channel measurements, using one practical

UCA and one virtual ULA, both having 128 elements, we have

illustrated the channel behavior of massive MIMO in three rep-

resentative propagation scenarios and discussed corresponding

singular value spreads and achieved sum-rate capacities.

In all scenarios, the singular value spread decreases con-

siderably, and becomes more stable around a smaller value
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Fig. 13. CDFs of singular value spreads when using 16, 32 and 128 antennas,
in the scenario where sixteen users are located far from each other at MS 1-8,
among which eight have LOS conditions and eight have NLOS to the UCA.

Fig. 14. Sum-rate capacity in the downlink, achieved by DPC, in the scenario
where sixteen users are located close to each other at MS 2 with LOS, MS 7
with NLOS, and are far from each other at MS 1-8, respectively.

over the measured bandwidth, when using a large number

of antennas. This indicates that massive MIMO provides

better orthogonality between channels to different users and

better channel stability than conventional MIMO. In the most

difficult situation studied, i.e., closely located users with

strong LOS to the base station, the singular value spread is

significantly larger than that in i.i.d. Rayleigh channels, which

indicates worse user orthogonality in the measured channels.

Despite this gap, a large fraction of the asymptotic capacity

achieved in i.i.d. Rayleigh channels can still be harvested in

the measured channels. In the other studied scenarios, NLOS

conditions with rich scattering provide more “favorable” prop-

agation and allow better spatial separation of the users, even

though they are closely located, while well distributed users

also help to improve the performance. In the scenarios where

users are in NLOS or in LOS but located far from each other,

the measured channels with the ULA and the UCA achieve
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performance close to that in i.i.d. Rayleigh channels.
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