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Abstract—The use of large-scale antenna arrays can bring
substantial improvements in energy and/or spectral efficiency to
wireless systems due to the greatly improved spatial resolution
and array gain. Recent works in the field of massive multiple-
input multiple-output (MIMO) show that the user channels
decorrelate when the number of antennas at the base stations
(BSs) increases, thus strong signal gains are achievable with little
inter-user interference. Since these results rely on asymptotics,
it is important to investigate whether the conventional system
models are reasonable in this asymptotic regime. This paper con-
siders a new system model that incorporates general transceiver
hardware impairments at both the BSs (equipped with large
antenna arrays) and the single-antenna user equipments (UEs).
As opposed to the conventional case of ideal hardware, we show
that hardware impairments create finite ceilings on the channel
estimation accuracy and on the downlink/uplink capacity of each
UE. Surprisingly, the capacity is mainly limited by the hardware
at the UE, while the impact of impairments in the large-scale
arrays vanishes asymptotically and inter-user interference (in
particular, pilot contamination) becomes negligible. Furthermore,
we prove that the huge degrees of freedom offered by massive
MIMO can be used to reduce the transmit power and/or to
tolerate larger hardware impairments, which allows for the use
of inexpensive and energy-efficient antenna elements.

Index Terms—Capacity bounds, channel estimation, energy
efficiency, massive MIMO, pilot contamination, time-division
duplex, transceiver hardware impairments.

I. INTRODUCTION

The spectral efficiency of a wireless link is limited by the

information-theoretic capacity [2], which depends not only on
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Gif-sur-Yvette, France, and with the Department of Signal Processing, KTH
Royal Institute of Technology, Stockholm, Sweden. He is currently with the
Department of Electrical Engineering (ISY), Linköping University, Sweden
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the signal-to-noise ratio (SNR) but also on spatial correlation

in the propagation environment [3], [4], channel estimation

accuracy [5], transceiver hardware impairments [6], [7], and

signal processing resources [8], [9]. It is of profound impor-

tance to increase the spectral efficiency of future networks,

to keep up with the increasing demand for wireless services.

However, this is a challenging task and usually comes at the

price of having stricter hardware and overhead requirements.

A new network architecture has recently been proposed

with the remarkable potential of both increasing the spectral

efficiency and relaxing the aforementioned implementation

issues. It is known as massive MIMO, or large-scale MIMO,

and is based on having a very large number of antennas at

each BS and exploiting channel reciprocity in time-division

duplex (TDD) mode [9]–[13]. Some key features are: 1)

propagation losses are mitigated by a large array gain due

to coherent beamforming/combining; 2) interference-leakage

due to channel estimation errors vanish asymptotically in

the large-dimensional vector space; 3) low-complexity signal

processing algorithms are asymptotically optimal; and 4) inter-

user interference is easily mitigated by the high beamforming

resolution.

The amount of research on massive MIMO increases

rapidly, but the impact of transceiver hardware impairments

on these systems has received little attention so far—although

large arrays might only be attractive for network deployment

if each antenna element consists of inexpensive hardware.

Cheap hardware components are particularly prone to the

impairments that exist in any transceiver (e.g., amplifier non-

linearities, I/Q-imbalance, phase noise, and quantization errors

[14]–[23]). The influence of hardware impairments is usually

mitigated by compensation algorithms [14], which can be im-

plemented by analog and digital signal processing. These tech-

niques cannot remove the impairments completely, but there

remain residual impairments since the time-varying hardware

characteristics cannot be fully parameterized and estimated,

and because there is randomness induced by different types of

noise. Transceiver impairments are known to fundamentally

limit the capacity in the high-power regime [6], [24], while

there are only a few publications that analyze the behavior

in the large number of antenna regime. Lower bounds on the

achievable uplink sum rate in massive single-cell systems with

phase noise from free-running oscillators were derived in [25].

The impact of amplifier non-linearities in a transmitter can be

reduced by having a low peak-to-average power ratio (PAPR).

The excess degrees of freedom offered by massive MIMO

were used in [26] to optimize the downlink precoding for low
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Fig. 1: Illustration of the reciprocal channel between a BS

equipped with a large antenna array and a single-antenna UE.

PAPR, while [27] considered a constant-envelope precoding

scheme designed for very low PAPR.

This paper analyzes the aggregate impact of different hard-

ware impairments on systems with large antenna arrays, in

contrast to the ideal hardware considered in [10]–[13] and

the single type of impairments considered in [25]–[27]. We

assume that appropriate compensation algorithms have been

applied and focus on the residual hardware impairments.

Motivated by the analytic analysis and experimental results in

[14]–[18], the residual hardware impairments at the transmitter

and receiver are modeled as additive distortion noises with

certain important properties. The system model with hardware

impairments is defined and motivated in Section II. Section III

derives a new pilot-based channel estimator and shows that the

estimation accuracy is limited by the levels of impairments.

The focus of Section IV is on a single link in the system

where we derive lower and upper bounds on the downlink

and uplink capacities. Our results reveal the existence of finite

capacity ceilings due to hardware impairments. Despite these

discouraging results, Section V shows that a high energy

efficiency and resilience towards hardware impairments at the

BS can be achieved. Section VI puts these results in a multi-

cell context and shows that inter-user interference (including

pilot contamination) basically drowns in the distortion noise

from hardware impairments. Section VII describes the impact

of various refinements of the system model, while Section VIII

summarizes the contributions and insights of the paper.

To encourage reproducibility and extensions to this paper,

all the simulation results can be generated by the Matlab code

that is available at https://github.com/emilbjornson/massive-

MIMO-hardware-impairments/

Notation: Boldface (lower case) is used for column vectors,

x, and (upper case) for matrices, X. Let XT , X∗, and XH

denote the transpose, conjugate, and conjugate transpose of

X, respectively. X1 � X2 means that X1 − X2 is positive

semi-definite. A diagonal matrix with a1, . . . , aN on the main

diagonal is denoted diag(a1, . . . , aN ) and I denotes an identity

matrix (of appropriate dimensions). The Frobenius and spectral

norms of a matrix X are denoted by ‖X‖F and ‖X‖2,

respectively, while ‖x‖k denotes the Lk norm of a vector x.

A stochastic variable x and its realization is denoted in the

same way, for brevity. The expectation operator with respect

to a stochastic variable x is denoted E{x}, while E{x|y}
is the conditional expectation when y is given. A Gaussian

stochastic variable x is denoted x ∼ N (x̄, q), where x̄ is the

mean and q is the variance. A circularly symmetric complex

Gaussian stochastic vector x is denoted x ∼ CN (x̄,Q), where

x̄ is the mean and Q is the covariance matrix. The empty set

is denoted by ∅. The big O notation f(x) = O(g(x)) means

that

∣∣∣ f(x)g(x)

∣∣∣ is bounded as x→ ∞.

II. CHANNEL AND SYSTEM MODEL

For analytical clarity, the major part of this paper analyzes

the fundamental spectral and energy efficiency limits of a

single link, which operates under arbitrary interference condi-

tions. The link is established between an N -antenna BS and a

single-antenna UE. A main characteristic in the analysis is that

the number of antennas N can be very large. We consider a

TDD protocol that toggles between uplink (UL) and downlink

(DL) transmission on the same flat-fading subcarrier. This

enables efficient channel estimation even when N is large,

because the estimation accuracy and overhead in the UL is

independent of N [9]. The acquired instantaneous channel

state information (CSI) is utilized for UL data detection as well

as DL data transmission, by exploiting channel reciprocity;1

see Fig. 1. In Section VI, we put our results in a multi-

cell context with many users, inter-cell interference, and pilot

contamination.

We assume a block fading structure where each channel

is static for a coherence period of Tcoher channel uses.

The channel realizations are generated randomly and are

independent between blocks. For simplicity, Tcoher is the

same for the useful channel and any interfering channels,

and the coherence periods are synchronized. We consider the

conventional TDD protocol in Fig. 2, which can be found

in many previous works; see for example [28] and [29].

Each block begins with UL pilot/control signaling for TUL
pilot

channel uses, followed by UL data transmission for TUL
data

channel uses. Next, the system toggles to the DL. This part

begins with TDL
pilot channel uses of DL pilot/control signaling.

These pilots are typically used by the UEs to estimate their

effective channel (with precoding) and the current interference

conditions, which enables coherent DL reception. Note that

these quantities are scalars irrespective of N , thus the DL

pilot signaling need not scale with N . The coherence period

ends with DL data transmission for TDL
data channel uses. The

four parameters satisfy TUL
pilot+T

UL
data+T

DL
pilot+T

DL
data = Tcoher.

The analysis of this paper is valid for arbitrary fixed values of

those parameters, but we note that these can also be optimized

dynamically based on Tcoher, user load, user conditions, ratio

of UL/DL traffic, etc.

The stochastic block-fading channel between the BS and

the UE is denoted as h ∈ C
N×1. It is modeled as an ergodic

process with a fixed independent realization h ∼ CN (0,R) in

each coherence period. This is known as Rayleigh block fading

and R = E{hhH} ∈ C
N×N is the positive semi-definite

covariance matrix. The statistical distribution is assumed to

1The physical channels are always reciprocal, but different transceiver
chains are typically used in the UL and DL. Careful calibration is therefore
necessary to utilize the reciprocity for transmission; see Section VII-E.
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Fig. 2: Cyclic operation of a block-fading TDD system, where

the coherence period Tcoher is divided into phases for UL/DL

pilot and data transmission.

be known at the BS. In the asymptotic analysis, we make the

following technical assumptions:

• The spectral norm of R is uniformly bounded, irrespec-

tive of the number of antennas N (i.e., ‖R‖2 = O(1));
• The trace of R scales linearly with N (i.e., 0 <

lim infN
1
N tr(R) ≤ lim supN

1
N tr(R) < ∞) and R has

strictly positive diagonal elements.

The first assumption is a necessary physical property that

originates from the law of energy conservation. It is also

a common enabler for asymptotic analysis (cf. [12]). The

second assumption is a typical consequence of increasing

the array size with N and thereby improving the spatial

resolution and aperture [9].2 These assumptions imply 0 <
lim infN

1
N rank(R) ≤ 1, which means that R can be rank

deficient but the rank increases with N such that cN ≤
rank(R) ≤ N for some c > 0. We stress that R is

generally not a scaled identity matrix, but describes the spatial

propagation environment and array geometry. It might be

rank-deficient (e.g., have a large conditional number) for large

arrays due to insufficient richness of the scattering [3], [4].

A. Transceiver Hardware Impairments

The majority of papers on massive MIMO systems considers

channels with ideal transceiver hardware. However, practical

transceivers suffer from hardware impairments that 1) create

a mismatch between the intended transmit signal and what is

actually generated and emitted; and 2) distort the received sig-

nal in the reception processing. In this paper, we analyze how

these impairments impact the performance and key asymptotic

properties of massive MIMO systems.

Physical transceiver implementations consist of many differ-

ent hardware components (e.g., amplifiers, converters, mixers,

filters, and oscillators [30]) and each one distorts the signals

in its own way. The hardware imperfections are unavoidable,

but the severity of the impairments depends on engineering

decisions—larger distortions can be deliberately introduced to

decrease the hardware cost and/or the power consumption [7].

The non-ideal behavior of each component can be modeled in

detail for the purpose of designing compensation algorithms,

but even after compensation there remain residual transceiver

impairments [15], [17]; for example, due to insufficient mod-

2Although these assumptions make sense for practically large N [4], we
cannot physically let N → ∞ since the propagation environment is enclosed
by a finite volume [9]. Nevertheless, our simulations reveal that the asymptotic
analysis enabled by the technical assumptions is accurate at quite small N .

eling accuracy, imperfect estimation of model parameters, and

time varying characteristics induced by noise.

From a system performance perspective, it is the aggregate

effect of all the residual transceiver impairments that is impor-

tant, not the individual behavior of each hardware component.

Recently, a new system model has been proposed in [14]–

[19] where the aggregate residual hardware impairments are

modeled by independent additive distortion noises at the BS as

well as at the UE. We adopt this model herein due its analytical

tractability and the experimental verifications in [15]–[17]. The

details of the DL and UL system models are given in the

next subsections, and these are then used in Sections III–VI to

analyze different aspects of massive MIMO systems. Possible

model refinements are then provided in Section VII, along

with discussions on how these might impact the main results

of this paper.

B. Downlink System Model

The downlink channel is used for data transmission and

pilot-based channel estimation; see Fig. 1. The received DL

signal y ∈ C in a flat-fading multiple-input single-output

(MISO) channel is conventionally modeled as

y = hT s+ n (1)

where s ∈ C
N×1 is either a deterministic pilot signal (during

channel estimation) or a stochastic zero-mean data signal; in

any case, the covariance matrix is denoted W = E{ssH} and

the average power is pBS = tr(W). W is a design parameter

that might be a function of the channel realization h and the

realizations of any other channel in the system (e.g., due to

precoding); we let H denote the set of channel realizations

for all useful and interfering channels (i.e., h ∈ H). Hence,

W is constant within each coherence period but changes

between coherence periods since H changes. The additive term

n = nnoise + ninterf is an ergodic stochastic process that con-

sists of independent receiver noise nnoise ∼ CN (0, σ2
UE) and

interference ninterf from simultaneous transmissions (e.g., to

other UEs). The interference has zero mean and is independent

of the data signal, but might depend on any channel in the sys-

tem (e.g., such that carry interference). Hence, the conditional

interference variance is E{|ninterf |2|H} = IUE
H ≥ 0 in the

coherence period where the channel realizations are H. The

long-term interference variance is denoted E{IUE
H }. It is only

for brevity that we use a common notation n for interference

and receiver noise—it does not mean that the interference must

be treated as noise at the UE. A detailed interference model

is provided in Section VI.

To model systems with non-ideal hardware more accurately,

we consider the new system model from [14]–[19] where the

received signal at the UE is

y = hT (s+ η
BS
t ) + ηUE

r + n. (2)

The difference from the conventional model in (1) is the

additive distortion noise terms η
BS
t ∈ C

N×1 and ηUE
r ∈ C,

which are ergodic stochastic processes that describe the resid-

ual transceiver impairments of the transmitter hardware at the

BS and the receiver hardware at UE, respectively. We assume
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that these are independent of the signal s, but depend on the

channel h and thus are stationary only within each coherence

period.3 In particular, we consider the conditional distributions

η
BS
t ∼ CN (0,ΥBS

t ) and ηUE
r ∼ CN (0, υUE

r ) for given chan-

nel realizations H. The Gaussian distributions of ηBS
t and ηUE

r

have been verified experimentally (see e.g., [17, Fig. 4.13]) and

can be motivated analytically by the central limit theorem—the

distortion noises describe the aggregate effect of many residual

hardware impairments. A key property is that the distortion

noise caused at an antenna is proportional to the signal power

at this antenna (see [15]–[17] for experimental verifications),

thus we have

ΥBS
t = κBS

t diag(W11, . . . ,WNN ) (3)

υUE
r = κUE

r hTWh∗ (4)

where Wii is the ith diagonal element of W and κBS
t , κUE

r ≥ 0
are the proportionality coefficients. The intuition is that a fixed

portion of the signal is turned into distortion; for example, due

to quantization errors in automatic-gain-controlled analog-to-

digital conversion (ADC), inter-carrier interference induced by

phase noise, leakage from the mirror subcarrier under I/Q im-

balance, and amplitude-amplitude nonlinearities in the power

amplifier [14], [21], [31]. The proportionality coefficients are

treated as constants in the analysis, but can generally increase

with the signal power; see Section VII-B for details.

Remark 1 (Distortion Noise and EVM). Distortion noise is

an alteration of the useful signal, while the classical receiver

noise models random fluctuations in the electronic circuits

at the receiver. A main difference is thus that the distortion

noise power is non-stationary since it is proportional to

the signal power pBS and the current channel gain ‖h‖22.

The proportionality coefficients κBS
t and κUE

r characterize

the levels of impairments and are related to the error vector

magnitude (EVM) [15]; for example, the EVM at the BS is

defined as

EVMBS
t =

√
E{‖ηBS

t ‖22|H}
E{‖s‖22|H} =

√
tr(ΥBS

t )

tr(W)
=
√
κBS
t . (5)

The EVM is a common quality measure of transceivers and

the 3GPP LTE standard specifies total EVM requirements

in the range [0.08, 0.175], where higher spectral efficiencies

(modulations) are supported if the EVM is smaller [31,

Sec. 14.3.4]. LTE transceivers typically support all the stan-

dardized modulations, thus the EVM is below 0.08. Larger

EVMs are, however, of interest in massive MIMO systems

since such relaxed hardware constraints enable the use of

low-cost equipment. Therefore, the simulations in this paper

consider κ-parameters in the range [0, 0.152], where small

values represent accurate and expensive transceiver hardware.

The system model in (2) captures the main characteristics

of non-ideal hardware, in the sense that it allows us to identify

some fundamental differences in the behavior of massive

3 These are model assumptions that originate from the experimental works
of [15]–[17]. An analytic motivation of the assumptions (which should not
be misinterpret as a proof) can be obtained from the Bussgang theorem; see
Section VII.

MIMO systems as compared to the case of ideal hardware.

However, it cannot capture all practical characteristics of resid-

ual transceiver hardware impairments. Possible refinements,

and their respective implications on our analytical results and

observations, are outlined in Section VII.

C. Uplink System Model

The reciprocal UL channel is used for pilot-based channel

estimation and data transmission; see Fig. 1 and Sections

III–IV. Similar to (2), we consider a system model with the

received signal z ∈ C
N at the BS being

z = h(d+ ηUE
t ) + η

BS
r + ν (6)

where d ∈ C is either a deterministic pilot signal (used for

channel estimation) or a stochastic data signal; in any case,

the average power is pUE = E{|d|2}. The additive term

ν = νnoise + ν interf ∈ C
N×1 is an ergodic process that

consists of independent receiver noise νnoise ∼ CN (0, σ2
BSI)

as well as potential interference ν interf from other simultane-

ous transmissions. The interference is independent of d but

might depend on the channel realizations in H. Moreover, the

interference statistics can be different in the pilot and data

transmission phases; for example, it is common to assume that

each cell uses time-division multiple access (TDMA) for pilot

transmission, since this can provide sufficient CSI accuracy

to enable spatial-division multiple access (SDMA) for data

transmission [9]–[13]. Therefore, we assume that ν interf has

zero mean and S = E{ν interfν
H
interf} is that the covariance

matrix during pilot transmission. We assume that S has a

uniformly bounded spectral norm, ‖S‖2 = O(1), for the same

physical reasons as for R. For data transmission, we define

the conditional covariance matrix QH = E{ν interfν
H
interf |H},

in a coherence period with channel realizations H, and the

corresponding long-term covariance matrix E{QH}. The co-

variance matrices S,QH ∈ C
N×N are positive semi-definite.

The spectral norm of QH might grow unboundedly with N
due to pilot contamination in multi-cell scenarios [9]–[13]; see

Section VI for further details.

Similar to the DL, the aggregate residual transceiver impair-

ments in the hardware used for UL transmission are modeled

by the independent distortion noises ηUE
t ∈ C and η

BS
r ∈

C
N×1 at the transmitter and receiver, respectively. These

ergodic stochastic processes are independent of d, but depend

on the channel realizations H. The conditional distribution for

a given H are ηUE
t ∼ CN (0, υUE

t ) and η
BS
r ∼ CN (0,ΥBS

r ).
Similar to (3) and (4), the conditional covariance matrices are

modeled as

υUE
t = κUE

t pUE (7)

ΥBS
r = κBS

r pUE diag(|h1|2, . . . , |hN |2). (8)

Note that the hardware quality is characterized by κBS
t , κBS

r

at the BS and by κUE
t , κUE

r at the UE. We can have κBS
t 6= κBS

r

and κUE
t 6= κUE

r since different transceiver chains are used for

transmission and reception at a device.

Generally speaking, we would like to achieve high perfor-

mance using cheap hardware. This is particularly evident in

massive MIMO systems since the deployment cost of large
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antenna arrays might scale linearly with N unless we can

accept higher levels of impairments, κBS
t , κBS

r , at the BSs than

in conventional systems. This aspect is analyzed in Section V.

III. UPLINK CHANNEL ESTIMATION

This section considers estimation of the current channel

realization h by comparing the received UL signal z in (6)

with the predefined UL pilot signal d (recall: pUE = |d|2).

The classic results on pilot-based channel estimation consider

Rayleigh fading channels that are observed in independent

complex Gaussian noise with known statistics [32]–[35]. How-

ever, this is not the case herein because the distortion noises

ηUE
t and η

BS
r effectively depend on the unknown stochastic

channel h. The dependence is either through the multiplication

hηUE
t or the conditional variance of η

BS
r in (8), which is

essentially the same type of relation. Although the distortion

noises are Gaussian when conditioned on a channel realization,

the effective distortion is the product of Gaussian variables

and, thus, has a complex double Gaussian distribution [36].4

Consequently, an optimal channel estimator cannot be deduced

from the standard results provided in [32]–[35].

We now derive the linear minimum mean square error

(LMMSE) estimator of h under hardware impairments.

Theorem 1. The LMMSE estimator of h from the observation

of z in (6) is

ĥ = d∗RZ̄−1
︸ ︷︷ ︸

,A

z (9)

where Rdiag = diag(r11, . . . , rNN ) consists of the diagonal

elements of R and the covariance matrix of z is denoted as

Z̄ = E{zzH} = pUE(1+κUE
t )R+pUEκBS

r Rdiag+S+σ2
BSI.
(10)

The total MSE is MSE = E{‖ĥ−h‖22} = tr(C), where the

error covariance matrix is

C = E{(ĥ− h)(ĥ− h)H} = R− pUERZ̄−1R. (11)

Proof: The LMMSE estimator has the form ĥ = Az

where A minimizes the MSE. The MSE definition gives

MSE = tr

(
R− dAR− d∗RAH +AZ̄AH

)
(12)

where the expectations that involve ηUE
t ,ηBS

r in MSE =
E{‖ĥ − h‖22} are computed by first having a fixed value

of h and then average over h. The LMMSE estimator in

(9) is achieved by differentiation of (12) with respect to A

and equating to zero. This vector minimizes the MSE since

the Hessian is always positive definite. The error covariance

matrix and the MSE are obtained by plugging (9) into the

respective definitions.

Based on Theorem 1, the channel can be decomposed as

h = ĥ + ǫ where ĥ is the LMMSE estimate in (9) and

4For example, the ith element of η
BS
r can be expressed as xi = hiξi,

which is the product of the ith channel coefficient hi ∼ CN (0, rii) and an
independent variable ξi ∼ CN (0, κBS

r pUE). The joint product distribution

is complex double Gaussian with the PDF f(xi) =
2

πµi
K0

(

2
|xi|√
µi

)

, where

µi = riiκ
BS
r pUE is the variance and K0(·) denotes the zeroth-order modified

Bessel function of the second kind [36].

ǫ ∈ C
N×1 denotes the unknown estimation error. Contrary

to conventional estimation with independent Gaussian noise

(cf. [32, Chapter 15.8]), ĥ and ǫ are neither independent nor

jointly complex Gaussian, but only uncorrelated and have zero

mean. The covariance matrices are E{ĥĥH} = R − C and

E{ǫǫH} = C where C was given in (11).

We remark that there might exist non-linear estimators

that achieve smaller MSEs than the LMMSE estimator in

Theorem 1. This stands in contrast to conventional channel es-

timation with independent Gaussian noise, where the LMMSE

estimator is also the MMSE estimator [34]. However, the

difference in MSE performance should be small, since the

dependent distortion noises are relatively weak.

Corollary 1. Consider the special case of R = λI and S = 0.

The error covariance matrix in (11) becomes

C = λ

(
1− pUEλ

pUEλ(1 + κUE
t + κBS

r ) + σ2
BS

)
I. (13)

In the high UL power regime, we have

lim
pUE→∞

C = λ

(
1− 1

1 + κUE
t + κBS

r

)
I. (14)

This corollary brings important insights on the average

estimation error per element in h. The error variance is given

by the factor in front of the identity matrix in (13). It is

independent of the number of antennas N , thus letting N grow

large neither increases nor decreases the estimation error per

element.5 The estimation error is clearly a decreasing function

of the pilot power pUE = |d|2, but contrary to the ideal

hardware case the error variance is not converging to zero

as pUE → ∞. As seen in (14), there is a strictly positive error

floor of λ(1 − 1
1+κUE

t +κBS
r

) due to the transceiver hardware

impairments. Thus, perfect estimation accuracy cannot be

achieved in practice, not even asymptotically. The error floor

is characterized by the sum of the levels of impairments κUE
t

and κBS
r in the transmitter and receiver hardware, respectively.

In terms of estimation accuracy, it is thus equally important

to have high-quality hardware at the BS and at the UE.

Non-ideal hardware exhibits an error floor also when R

is non-diagonal and when there is interference such that

S 6= 0; the general high-power limit is easily computed from

(11). In fact, the results hold for any zero-mean channel and

interference distributions with covariance matrices R and S,

because the LMMSE estimator and its MSE are computed

using only the first two moments of the statistical distributions

[32], [34].

A. Impact of the Pilot Length

The LMMSE estimator in Theorem 1 considers a scalar pilot

signal d, which is sufficient to excite all N channel dimensions

in the UL and is used in Section IV-B to derive lower bounds

on the UL and DL capacities. With ideal hardware and a total

pilot energy constraint, a scalar pilot signal is also sufficient

to minimize the MSE [34]. In contrast, we have non-ideal

5The MSE per element is finite, i.e. 1

N
tr(C) < ∞, but the sum MSE

behaves as tr(C) → ∞ when N → ∞ since the number of elements grows.
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hardware and per-symbol energy constraints in this paper. In

this case we can improve the MSE by increasing the pilot

length.

Suppose we use a pilot signal d ∈ C
1×B that spans 1 ≤

B ≤ TUL
pilot channel uses and where each element of d has

squared norm pUE. A simple estimation approach would be

to compute B separate LMMSE estimates, ĥi = h − ǫi for

i = 1, . . . , B, using Theorem 1. By averaging, we obtain

̂̂
h =

1

B

B∑

i=1

ĥi = h− 1

B

B∑

i=1

ǫi. (15)

If the distortion noises are temporally uncorrelated and iden-

tically distributed, the MSE of the estimate
̂̂
h is

E





(
1

B

B∑

i=1

ǫi

)H(
1

B

B∑

j=1

ǫj

)
 =

tr(C)

B
. (16)

Hence, the MSE goes to zero as 1/B when we increase the

pilot length B, although the MSE per pilot channel use is

limited by the non-zero error floor demonstrated in Corollary

1. This is interesting because one pilot signal with energy

BpUE exhibits a noise floor, while B pilot signals with energy

pUE per signal does not.6 This stands in contrast to the case

of ideal hardware, where the MSE is exactly the same in both

cases [34]. The reason is that we can average out the distortion

noise (similar to the law of large numbers) when we have B
independent realizations.

Despite the averaging effect, we stress that B ≤ Tcoher
and thus there is always an estimation error floor for non-

ideal hardware—we can, at most, reduce the floor by a

factor 1/Tcoher by increasing the pilot length. Moreover, the

derivation above is based on having temporally uncorrelated

distortions, but the distortions might be temporally correlated

in practice (especially if the same pilot signal d is transmitted

multiple times through the same hardware). In these cases, the

benefit of increasing B is smaller and
̂̂
h should be replaced

by an estimator that exploits the temporal correlation by

estimating h jointly from all the B observations. Finally, we

note that it is of great interest to find the B that maximizes

some measure of system-wide performance, but this is outside

the scope of our current paper. We refer to [34], [35], [37],

[38] for some relevant works in the case of ideal hardware.

B. Numerical Illustrations

This section exemplifies the impact of transceiver hardware

impairments on the channel estimation accuracy.

In Fig. 3, we consider N = 50 antennas at the BS and no

interference (i.e., S = 0). The channel covariance matrix R

is generated by the exponential correlation model from [39],

which means that the (i, j)th element of R is

[R]i,j =

{
δ rj−i, i ≤ j,

δ (ri−j)∗, i > j,
(17)

6 Since we have per-symbol energy constraints, what we really compare is
one system that has an average symbol energy of BpUE and one with pUE.

where δ is an arbitrary scaling factor. This model basically

describes a uniform linear array (ULA) where the correlation

factor between adjacent antennas is given by |r| (for 0 ≤ |r| ≤
1) and the phase ∠r describes the angle of arrival/departure

as seen from the array. The correlation factor |r| determines

the eigenvalue spread in R, while ∠r determines the corre-

sponding eigenvectors. Since we simulate channel estimation

without interference, the angle has no impact on the MSE

and we can let r be real-valued without loss of generality. We

consider a correlation coefficient of r = 0.7, which is a modest

correlation in the sense of behaving similarly to an array with

half-wavelength antenna spacings and a large angular spread

of 45 degrees (cf. [40, Fig. 1] which shows how practical

angular spreads map non-linearly to |r|).
Fig. 3 shows the relative estimation error per channel

element, MSErel =
MSE
tr(R) , as a function of the average SNR

in the UL, defined as

SNR
UL = pUE tr(R)

Nσ2
BS

. (18)

Based on the typical EVM ranges described in Remark 1,

we consider four hardware setups with different levels of im-

pairments: κUE
t = κBS

r ∈ {0, 0.052, 0.12, 0.152}. We compare

the LMMSE estimator in Theorem 1 with the conventional

impairment-ignoring MMSE estimator from [32]–[34].7

Fig. 3 confirms that there are non-zero error floors at high

SNRs, as proved by Corollary 1 and the subsequent discussion.

The error floor increases with the levels of impairments. The

estimation error is very close to the floor when the uplink

SNR reaches 20–30 dB, thus further increase in SNR only

brings minor improvement. This tells us that we need an uplink

SNR of at least 20 dB to fully utilize massive MIMO, because

coherent transmission/reception requires accurate CSI. Lower

SNRs can be compensated by adding extra antennas (see Fig. 6

in Section IV), but the practical performance not as large.

Moreover, Fig. 3 shows that the conventional impairment-

ignoring estimator is only slightly worse than the proposed

LMMSE estimator. This indicates that although hardware

impairments greatly affect the estimation performance, it only

brings minor changes to the structure of the optimal estimator.

The influence of the estimation error floors depend on the

anticipated spectral efficiency, the uplink SNR, and the number

of antennas. To gain some insight, suppose we have ideal

hardware and that the fraction of channel uses allocated for UL

data transmission is TUL
data/Tcoher = 0.45. The uplink spectral

efficiency can then be approximated as

0.45 log2

(
1 +

1−MSErel

MSErel +
1

NSNRUL

)
(19)

by using [41, Lemma 1]. When the number of antennas is

large, such that N SNR
UL → ∞, this approximation gives a

spectral efficiency of 1.5 [bit/channel use] for MSErel=10−1

and 4.5 [bit/channel use] for MSErel = 10−3. The impact of

the estimation errors on systems with non-ideal hardware is

7Note that the MSE of any linear estimator Ãz can be computed by

plugging the matrix Ã into the general MSE expression in (12). The difference
in MSE is easily quantified by comparing with tr(C) using (11).
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Fig. 3: Estimation error per antenna element for the LMMSE

estimator in Theorem 1 and the conventional impairment-

ignoring MMSE estimator. Transceiver hardware impairments

create non-zero error floors.

considered in Section IV, where we derive lower and upper

capacity bounds and analyze these for different SNRs and

number of antennas.

Next, we illustrate the possible improvement in estimation

accuracy by increasing the pilot length to comprise B ≥ 1
channel uses. As discussed in Section III-A, it is not clear

whether the distortion noise is temporally uncorrelated or cor-

related in practice. Therefore, we fix the levels of impairments

at κUE
t = κBS

r = 0.052 and consider the two extremes:

temporally uncorrelated and fully correlated distortion noises.

The latter means that the distortion noise realizations are the

same for all B channel uses, since the same pilot signal is

always distorted in the same way. The channel and interference

statistics are as in the previous figure (i.e., N = 50, S = 0, and

R is given by the exponential correlation model with r = 0.7).

The relative estimation error per antenna element is shown

in Fig. 4 as a function of the pilot length. We also show the

performance with ideal hardware as a reference. At a low SNR

of 5 dB, hardware impairments have little impact and there is

a small but clear gain from increasing the pilot length because

the total pilot energy increases as BpUE. At a high SNR of 30

dB, the temporal correlation has a large impact. Only small

improvements are possible in the fully correlated case, since

only the receiver noise can be mitigated by increasing B. In

the uncorrelated case the distortion noise can be also mitigated

by increasing B. This gives a logarithmic slope similar to the

case of ideal hardware. We stress that the actual performance

lies somewhere in between the two extremes.

Next, we consider different channel covariance models:

1) Uncorrelated antennas R = I. (Equivalent to the expo-

nential correlation model in (17) with r = 0.)

2) Exponential correlation model with r = 0.7.

3) One-ring model with 20 degrees angular spread [42].

4) One-ring model with 10 degrees angular spread [42].

The exponential correlation model was defined in (17). The

classic one-ring model assumes a ring of scatterers around the
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Fig. 4: Estimation error per antenna element for the LMMSE

estimator in Theorem 1 as a function of the pilot length B. The

levels of impairments are κUE
t = κBS

r = 0.052 and different

temporal correlations are considered.

UE, while there is no scattering close to the BS [42]. From the

BS perspective, the multipath components arrive from a main

angle of arrival (here: 30 degrees) and a small angular spread

around it (here: 10 or 20 degrees). The BS is assumed to have

a ULA with half-wavelength antenna spacings. An important

property of this model is that R might not have full rank as

N grows large [43], [44], due to insufficient scattering.

The relative estimation error per channel element is shown

in Fig. 5 for these four channel covariance models. We

consider two SNRs (5 and 30 dB), hardware impairments with

κUE
t = κBS

r = 0.052, and show the estimation errors as a

function of the number of BS antennas. The main observation

from Fig. 5 is that the choice of covariance model has a large

impact on the estimation accuracy. It was proved in [34] that

spatially correlated channels are easier to estimate and this

is consistent with our results; increasing the coefficient r in

the exponential correlation model and decreasing the angular

spread in the one-ring model lead to higher spatial correlation

and smaller errors in Fig. 5. However, the error floors due

to hardware impairments make the difference between the

models reduce with the SNR. Moreover, the estimation error

per antenna is virtually independent of N in the exponential

correlation model, while increasing N improves the error per

antenna in the one-ring model. This is explained by the limited

richness of the propagation environment in the one-ring model,

which is a physical property that we can expect in practice.

Remark 2 (Acquiring Large Covariance Matrices). The pro-

posed channel estimator requires knowledge of the N × N
covariance matrices R and S. It becomes increasingly difficult

to acquire consistent estimates of covariance matrices as their

dimensions grow large [45]. Fortunately, the channel statistics

have a much larger coherence time and coherence bandwidth

than the channel realization itself; thus, one can obtain

many more observations in the covariance estimation than in

channel vector estimation. Robust covariance estimators for
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Fig. 5: Estimation error per antenna element for the LMMSE

estimator in Theorem 1 as a function of the number of

BS antennas. Four different channel covariance models are

considered and κUE
t = κBS

r = 0.052.

large matrices were recently considered in [46]. The impact

of imperfect covariance information on the channel estimation

accuracy was analyzed in [47]. The authors observe that the

usual improvement in MSE from having spatial correlation

vanishes if the covariance information cannot be trusted,

but the MSE degradation is otherwise small (if the esti-

mated covariance matrices are robustified). Another problem

is that the large-dimensional matrix inversion in (9) is very

computationally expensive, but [47] proposed low-complexity

approximations based on polynomial expansions.

Instead of acquiring the covariance matrix of a user directly,

the coverage area can be divided into “location bins” with

approximately the same channel statistics within each bin [48].

By acquiring and storing the covariance matrices for each bin

in advance, it is sufficient to estimate the location of a user

and then associate the user with the corresponding bin.

IV. DOWNLINK AND UPLINK DATA TRANSMISSION

This section analyzes the ergodic channel capacities of the

downlink in (2) and the uplink in (6), under the fixed TDD

protocol depicted in Fig. 2. More precisely, we derive upper

and lower capacity bounds that reveal the fundamental impact

of non-ideal hardware. These bounds are based on having per-

fect CSI (i.e., exact knowledge of h) and imperfect pilot-based

CSI estimation (using the LMMSE estimator in Theorem 1),

respectively. Since these are two extremes, the capacity bounds

hold when using the channel estimation technique proposed in

Section III and for any better CSI acquisition technique that

can be derived in the future. We now define the DL and UL

capacities for arbitrary CSI quality at the BS and UE.

We consider the ergodic capacity (in bit/channel use) of

the memoryless DL system in (2). In each coherence period,

the BS has some arbitrary imperfect knowledge HBS of the

current channel states H and uses it to select the conditional

distribution f(s|HBS) of the data signal s. The UE has a

separate arbitrary imperfect knowledge HUE of the current

channel states H and uses it to decode the data. Based on

the well-known capacity expressions in [49], the ergodic DL

capacity is

C
DL=

TDL
data

Tcoher
E

{
max

f(s|HBS) :E{‖s‖2
2}≤pBS

I(s; y|H,HBS,HUE)

}

(20)

where I(s; y|H,HBS,HUE) denotes the conditional mutual

information between the received signal y and data signal s for

a given channel realization H and given channel knowledge

HBS and HUE. The expectation in (20) is taken over the

joint distribution of H, HBS, and HUE. Note that the factor

TDL
data/Tcoher is the fixed fraction of channel uses allocated for

DL data transmission.

In addition, the ergodic capacity (in bit/channel use) of the

memoryless fading UL system in (6) is

C
UL=

TUL
data

Tcoher
E

{
max

f(d|HUE) :E{|d|2}≤pUE
I(d; z|H,HBS,HUE)

}

(21)

where I(d; z|H,HBS,HUE) denotes the conditional mutual

information between the received signal z and data signal d for

a given channel realization H and given channel knowledge

HBS and HUE. The conditional probability distribution of

the data signal is denoted f(d|HUE) and the expectation in

(21) is taken over the joint distribution of H,HBS,HUE. The

fraction of channel uses allocated for UL data transmission is

TUL
data/Tcoher.
There are a few implicit properties in the capacity defini-

tions. Firstly, the interference variance IUE
H and covariance

matrix QH depend on the channel realizations H and change

between coherence periods. We are not limiting the analysis

to any specific interference models but take care of it in

the capacity bounds; the lower bounds treat the interference

as Gaussian noise, while the upper bounds assume perfect

interference suppression. Section VI describes the interference

in multi-cell scenarios in detail. Secondly, we assume that the

distortion noises are temporally independent, which is a good

model when the data signals are also temporally independent.

The next subsections study the capacity behavior in the

limit of infinitely many BS antennas (N → ∞), which bring

insights on how hardware impairments affect channels with

large antenna arrays. The DL and UL are analyzed side-by-

side since the results follow from similar derivations.

A. Upper Bounds on Channel Capacities

Upper bounds on the capacities in (20) and (21) can be

obtained by adding extra channel knowledge and removing

all interference (i.e., IUE
H = 0 and QH = 0). We assume

that the UL/DL pilot signals provide the BS and UE with

perfect channel knowledge in each coherence period: HBS =
HUE = H. Since the receiver noise and distortion noises in (2)

and (6) are circularly symmetric complex Gaussian distributed

and independent of the useful signals under perfect CSI, we

deduce that Gaussian signaling is optimal in the DL and UL

[2] and that single-stream transmission with rank(W) = 1 is

sufficient to achieve optimality [6]; that is, we can set s = ws
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for s ∼ CN (0, pBS) and some unit-norm beamforming vector

w in the DL and d ∼ CN (0, pUE) in the UL. This gives us

the following initial upper bounds.

Lemma 1. The downlink and uplink capacities in (20) and

(21), respectively, are bounded as

C
DL ≤ TDL

data

Tcoher
× (22)

E

{
log2(1 + hH

(
κBS
t D|h|2 + κUE

r hhH +
σ2
UE

pBS
I
)−1

h

}

C
UL ≤ TUL

data

Tcoher
× (23)

E

{
log2

(
1 + hH

(
κUE
t hhH + κBS

r D|h|2 +
σ2
BS

pUE
I
)−1

h

)}

where D|h|2 = diag(|h1|2, . . . , |hN |2) with h =
[h1 . . . hN ]T . These upper bounds are achieved with equality

under perfect CSI, using the beamforming vector

wDL
upper =

(κBS
t D|h|2 +

σ2
UE

pBS I)
−1h∗

∥∥(κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h∗
∥∥
2

(24)

in the downlink and by applying a receive combining vector

wUL
upper =

(κBS
r D|h|2 +

σ2
BS

pUE I)
−1h

∥∥(κBS
r D|h|2 +

σ2
BS

pUE I)−1h
∥∥
2

. (25)

in the uplink.8

Proof: The proof is given in Appendix C-A.

Note that the beamforming vector in (24) and receive

combining vector in (25) only depend on the channel vector

h, hardware impairments at the BS, and the receiver noise.

Hardware impairments at the UE have no impact on wDL
upper

and wUL
upper since their distortion noise essentially act as an

interferer with the same channel as the data signal; thus

filtering cannot reduce it.

The bounds in Lemma 1 are not amenable to simple

analysis, but the lemma enables us to derive further bounds

on the channel capacities that are expressed in closed form.

Theorem 2. The downlink and uplink capacities in (20) and

(21), respectively, are bounded as

C
DL ≤ C

DL
upper =

TDL
data

Tcoher
log2

(
1 +

GDL

1 + κUE
r GDL

)
(26)

C
UL ≤ C

UL
upper =

TUL
data

Tcoher
log2

(
1 +

GUL

1 + κUE
t GUL

)
(27)

8A receive combining vector w is a linear filter wHz that transforms the
system into an effective single-input single-output (SISO) system.

where r11, . . . , rNN are the diagonal elements of R,

GDL =

N∑

i=1

1

κBS
t


1− σ2

UEe
σ2
UE

pBSκBS
t

rii

pBSκBS
t rii

E1

(
σ2
UE

pBSκBS
t rii

)

,

(28)

GUL =

N∑

i=1

1

κBS
r


1− σ2

BSe
σ2
BS

pUEκBS
r rii

pUEκBS
r rii

E1

(
σ2
BS

pUEκBS
r rii

)

,

(29)

and E1(x) =
∫∞
1

e−tx

t dt denotes the exponential integral.

Proof: The proof is given in Appendix C-B.

These closed-form upper bounds provide important insights

on the achievable DL and UL performance under transceiver

hardware impairments. In particular, the following two corol-

laries provide some ultimate capacity limits in the asymptotic

regimes of many BS antennas or large transmit powers.

Corollary 2. The downlink upper capacity bound in (26) has

the following asymptotic properties:

lim
pBS→∞

C
DL
upper =

TDL
data

Tcoher
log2

(
1 +

N

κBS
t + κUE

r N

)
(30)

lim
N→∞

C
DL
upper =

TDL
data

Tcoher
log2

(
1 +

1

κUE
r

)
. (31)

Proof: The diagonal elements of R satisfy rii > 0 ∀i,
by definition, thus GDL → ∑N

i=1
1
κBS
t

= N
κBS
t

as pBS → ∞
for fixed N , giving (30). The positive diagonal elements also

implies 1
NG

DL > 0 as N → ∞, thus GDL

1+κUE
r GDL − GDL

κUE
r GDL →

0 as N → ∞ which turns (26) into (31).

This corollary shows that the DL capacity has finite ceilings

when either the DL transmit power pBS or the number of BS

antennas N grow large. The ceilings depend on the impairment

parameters κBS
t and κUE

r , but the UE impairments are clearly

N times more influential. Note that even very small hardware

impairments will ultimately limit the capacity. In other words,

the ever-increasing capacity observed in the high-SNR and

large-N regimes with ideal transceiver hardware (cf. [9]–[13])

is not easily achieved in practice.

The next corollary provides analogous results for the UL.

Corollary 3. The uplink upper capacity bound in (27) has the

following asymptotic properties:

lim
pUE→∞

C
UL
upper =

TUL
data

Tcoher
log2

(
1 +

N

κBS
r + κUE

t N

)
(32)

lim
N→∞

C
UL
upper =

TUL
data

Tcoher
log2

(
1 +

1

κUE
t

)
. (33)

Proof: This is proved analogously to Corollary 2.

As seen from Corollary 3, the UL capacity also has finite

ceilings when either the UL transmit power pUE or the

number of antennas N grow large. Analogous to the DL, the

UE impairments are N times more influential than the BS

impairments and thus dominate as N → ∞.

The upper bounds in Corollaries 2 and 3 show that the DL

and UL capacities are fundamentally limited by the transceiver
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hardware impairments. To be certain of the cause of these

limits, we also need lower bounds on the channel capacities.

B. Lower Bounds on Channel Capacities

We obtain lower capacity bounds by making the poten-

tially limiting assumptions of Gaussian codebooks, treating

interference as Gaussian noise, using linear single-stream

beamforming in the DL, using linear receive combining in

the UL, pilot-based channel estimation as in Theorem 1,

and the entropy-maximizing Gaussian distribution on the CSI

uncertainty at the receiver of the DL and UL.9 The resulting

lower bound is given in the following theorem.

Theorem 3. Let H̃UE and H̃BS denote the CSI available

in the decoding at the receiver in the downlink and uplink,

respectively. These are degraded as compared to HUE and

HBS or equal. The downlink and uplink capacities in (20) and

(21), respectively, are then bounded as

C
DL ≥ C

DL
lower =

TDL
data

Tcoher
E
{
log2

(
1 + SINR

DL
lower(v

DL)
)}

(34)

C
UL ≥ C

UL
lower =

TUL
data

Tcoher
E
{
log2

(
1 + SINR

UL
lower(v

UL)
)}

(35)

where the beamforming vector vDL = [vDL
1 . . . vDL

Kr
]T and the

receive combining vector vUL = [vUL
1 . . . vUL

Kr
]T are functions

of ĥ and have unit norms. The expectations are taken over H̃UE

and H̃BS, while the SINR expressions for DL and UL are given

in (36) and (37), respectively, at the top of the next page.

Proof: This theorem is obtained by taking lower bounds

on the mutual information in the same way as was previously

proposed in [5] and [41]. This bounding technique was applied

to massive MIMO systems with ideal hardware in [11]–[13]

(among others), by making the limiting assumptions listed

in the beginning of this subsection. The distortion noises

from non-ideal hardware act as additional noise sources with

spatially correlated covariance matrices, thus these can easily

be incorporated into the proofs used in previous works.

This theorem is the key to the lower capacity bounding in

this paper. The lower bounds in (34) and (35) can be computed

numerically for any channel distribution and any way of

selecting the beamforming vector (in the DL) and receiver

combining vector (in the UL) from the channel estimate ĥ,

provided that the conditional distribution of (h, ĥ) given H̃ can

be characterized.10 To bring explicit insights on the behavior

when the number of antennas, N , grows large, we have the

following result for the cases of (approximate) maximum ratio

transmission (MRT) in the DL and (approximate) maximum

ratio combining (MRC) in the UL.

Theorem 4. Assume that no instantaneous CSI is utilized for

decoding (i.e., H̃BS = H̃UE = ∅). For v = ĥ

‖ĥ‖2
the terms in

9The linear processing assumption is motivated by its asymptotic optimality
as N → ∞ [9].

10Finding such a characterization is a challenging task, except for the case

H̃BS = H̃UE = ∅ considered in Theorem 4.

(36) and (37) behave as
∣∣E{hHv}

∣∣2 = |E {ϕ}|2 tr(R−C) +O(
√
N) (38)

E
{
|hHv|2

}
= E

{
|ϕ|2

}
tr(R−C) +O(

√
N) (39)

N∑

i=1

E{|hi|2|vi|2} = O(1) (40)

where

ϕ =
(1 + d−1ηUE

t )
√
tr(R−C)√

tr
(
A(|d+ ηUE

t |2R+Ψ)AH
) (41)

is a function of the stochastic variable ηUE
t while A =

d∗RZ̄−1 and Ψ = pUEκBS
r Rdiag+S+σ2

BSI are deterministic

matrices.

Proof: The proof is given in Appendix C-C.

Similar asymptotic behaviors were derived in [11]–[13] for

the case of ideal hardware.11 In the general case with hardware

impairments, the expectations of ϕ and |ϕ|2 must be computed

numerically, because the randomness of the scalar distortion

noise ηUE
t at the UE remains even when N grows large. In

the special case of κUE
t = 0 (which implies ηUE

t = 0), (38)

and (39) both reduce to tr(R−C) +O(
√
N). For κUE

t > 0,

the terms in Theorem 4 are easy to compute numerically.

Based on this result, we provide now an asymptotic char-

acterization of the downlink capacity.

Corollary 4. Consider the DL with beamforming vector v =
ĥ∗

‖ĥ‖2
and H̃UE = ∅. If E{IUE

H } ≤ O(Nn) for some n < 1,

the lower capacity bound in (34) can be expressed as

C
DL ≥ TDL

data

Tcoher
×

log2


1+

|E {ϕ}|2+O
(

1√
N

)

(1+κUE
r )E {|ϕ|2}−|E {ϕ}|2+O

(
1√
N
+ 1
N1−n

)




(42)

where ϕ is given in (41). The terms O
(

1√
N

)
and O

(
1

N1−n

)

vanish when N → ∞, while the other terms are strictly

positive in the limit.

Proof: The expression (42) is obtained from (34) by

plugging in the expressions in Theorem 4 and multiplying

each term by 1
tr(R−C) = 1

pUEtr(RZ̄−1R)
= O(N−1). The

interference term becomes
E{IUE

H }
pBStr(R−C)

=O
(

1
N1−n

)
.

Combining the upper bound in Corollary 2 with the lower

bound in Corollary 4, we have a clear characterization of

the DL capacity behavior when N → ∞. Both bounds are

independent of κBS
t in the limit, thus the transmitter hardware

of the BS plays little role in massive MIMO systems. Contrary

to the upper bound, the level of receiver hardware impairments

11We stress that the assumption in Theorem 4 that decoding is performed
without instantaneous CSI is only made to enable closed-form lower bounds.

The BS should certainly exploit the channel estimate ĥ and the UE might
receive a downlink pilot signal that enables estimation of the effective channel
hHvDL. While this is relatively easy to handle with ideal hardware, where the
channel estimate and estimation error are independent (cf. [12]), the extension
to non-ideal hardware seems intractable due the statistical dependence between
the channel estimate and estimation error.
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SINR
DL
lower(v

DL)=

∣∣∣E{hHvDL |H̃UE}
∣∣∣
2

(1+κUE
r )E

{
|hHvDL|2 |H̃UE

}
−
∣∣∣E{hHvDL |H̃UE}

∣∣∣
2

+κBS
t

N∑
i=1

E{|hi|2|vDL
i |2 |H̃UE}+ E{IUE

H |H̃UE}
pBS +

σ2
UE

pBS

(36)

SINR
UL
lower(v

UL)=

∣∣∣E{hHvUL |H̃BS}
∣∣∣
2

(1+κUE
t )E

{
|hHvUL|2 |H̃BS

}
−
∣∣∣E{hHvUL |H̃BS}

∣∣∣
2

+κBS
r

N∑
i=1

E{|hi|2|vUL
i |2 |H̃BS}+ E{(vUL)H(QH+σ2

BSI)v
UL |H̃BS}

pUE

(37)

at the BS (κBS
r ) is present in the lower bound (42), through

A and Ψ in ϕ. However, the numerical results in Section

IV-C reveal that the asymptotic impact of BS impairments

is negligible also in the lower bound. This can also be seen

analytically in certain cases; if κUE
t = 0 we get ϕ = 1 and

therefore

lim
N→∞

C
DL
lower =

TDL
data

Tcoher
log2

(
1 +

1

κUE
r

)
. (43)

In this special case, the lower bound actually approaches the

upper bound in (31) asymptotically, and any DL capacity can

be achieved by making κUE
r sufficiently small. The opposite

is not true; setting κBS
r = 0 will not make the impact of UE

impairments vanish. We therefore conclude that the DL capac-

ity limit is mainly determined by the level of impairments at

the UE, both in the uplink estimation (κUE
t ) and the downlink

transmission (κUE
r )—although the former connection was not

visible in the upper bound since it was based on perfect CSI.

For the uplink, we have the following similar asymptotic

capacity characterization.

Corollary 5. Consider the UL with receive combining vector

v = ĥ

‖ĥ‖2
and H̃BS = ∅. If E{‖QH‖2} ≤ O(Nn) for some

n < 1, the lower capacity bound in (35) can be expressed as

C
UL ≥ TUL

data

Tcoher
×

log2


1+

|E {ϕ}|2+O
(

1√
N

)

(1+κUE
t )E {|ϕ|2}−|E {ϕ}|2+O

(
1√
N
+ 1
N1−n

)




(44)

where ϕ is given in (41). The terms O
(

1√
N

)
and O

(
1

N1−n

)

vanish when N → ∞, while the other terms are strictly

positive in the limit.

Proof: The expression (44) is obtained from (35) by

plugging in the expressions from Theorem 4 and multiplying

each term by 1
tr(R−C) = 1

pUEtr(RZ̄−1R)
= O(N−1). The

interference term becomes
E{vHQHv}
pUEtr(R−C)

=O
(

1
N1−n

)
.

The upper bound in Corollary 3 and the lower bound in

Corollary 5 provide a joint characterization of the uplink

capacity when N grows large. The UE impairments manifest

the behavior in both bounds; the BS impairments are present

in (42) since ϕ depends on A and Ψ, but their impact vanish

when κUE
t → 0. By making κUE

t appropriately small, we can

thus achieve any UL capacity as N grows large. We therefore

conclude that it is of main importance to have high quality

hardware at the UE, which is analog to our observations for

the DL. These observations are illustrated numerically in the

next subsection and are explained by the following remark.

Remark 3 (BS Impairments Vanish Asymptotically). The

lower and upper bounds show that it is the quality of the UE’s

transceiver hardware that limits the DL and UL capacities as

N → ∞. Thus, the detrimental effect of hardware impairments

at the BS vanishes completely, or almost completely, when the

number of BS antennas grows large. This is, simply speaking,

since the BS’s distortion noises are spread in arbitrary direc-

tions in the N -dimensional vector space while the increased

spatial resolution of the array enables very exact transmit

beamforming and receive combining for the useful signal. This

is a very promising result since large arrays are more prone

to impairments, due to implementation limitations and the will

to use antenna elements of lower quality (to avoid having

deployment costs that increase linearly with N ). In contrast,

the UE’s distortion noises are non-vanishing since they behave

as interferers with the same effective channels as the useful

signals.

Corollaries 4 and 5 assumed that the inter-user interference

satisfy E{IUE
H } ≤ O(Nn) and E{‖QH‖2} ≤ O(Nn),

respectively, for some n < 1. These conditions imply that the

interference terms only vanish asymptotically if the scaling

with N is slower than linear. This is satisfied by regular

interference which has constant variance (i.e., n = 0), but there

is a special type of non-regular pilot contaminated interference

in multi-cell systems that scales linearly with N . This adds an

additional non-vanishing term to the denominators of (42) and

(44). We detail this scenario in Section VI.

Finally, we stress that the DL and UL capacity bounds

in Corollaries 2 and 3, respectively, have a very similar

structure. The main difference is that the UL is only affected

by UL hardware impairments (i.e., κUE
t , κBS

r ), while the DL

is affected by both DL and UL hardware impairments (i.e., all

κ-parameters) due to the reverse-link channel estimation.

C. Numerical Illustrations

Next, we illustrate the lower and upper bounds on the

capacity that were derived earlier in this section. We consider

a scenario without interference, QH = S = 0 and IUE
H = 0,

and define the average SNRs as pUE tr(R)
Nσ2

BS
and pBS tr(R)

Nσ2
UE

in

the UL and DL, respectively. We consider different fixed SNR

values, while we vary the number of antennas N and the levels
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Fig. 6: Lower and upper bounds on the capacity. Hardware

impairments have a fundamental impact on the asymptotic

behavior as N grows large.

of hardware impairments. We assume that the transmitter and

receiver hardware of each device are of the same quality:

κBS , κBS
t = κBS

r at the BS and κUE , κUE
t = κUE

r at the

UE.12 Furthermore, we assume
TDL
data

Tcoher
=

TUL
data

Tcoher
= 0.45, which

are the percentage of DL data and UL data. These assumptions

make the bounds for the DL and UL capacities become

identical, thus we can simulate the DL and UL simultaneously.

Fig. 6 considers a spatially uncorrelated scenario with

R = I for different levels of impairments: κUE
t = κBS

r ∈
{0, 0.052, 0.152}. The meaning of these parameter values was

discussed in Remark 1. Simulation results are given for SNRs

of 20 dB and 0 dB. The capacity with ideal hardware grows

without bound as N → ∞, while the lower and upper bounds

converge to finite limits under transceiver hardware impair-

ments. The main difference between the two SNR values is

the convergence speed, while the upper bounds are exactly the

same and the lower bounds are approximately the same. Recall

that these bounds hold under any CSI HBS at the BS and HUE

12The transmitter and receiver hardware both involve converters, mixers,
filters, and oscillators; see [30, Fig. 1] for a typical transceiver model. The
main difference is the type of amplifiers, thus the assumption of identical
levels of impairments makes sense when the non-linearities of the amplifiers
at the transmitter are not the dominating source of distortion noise.
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Capacity: Upper Bounds

Capacity: Lower Bounds

Asymptotic Limits (Upper & Lower)

κBS ∈ {0, 0.052, 0.152}

Decreasing with

Increasing

BS Impairments:

Fig. 7: Lower and upper bounds on the capacity for κUE =
0.052. The impact of hardware impairments at the BS vanishes

asymptotically.

at the UE; the lower bounds represent no instantaneous CSI in

the decoding step and the upper bounds represent perfect CSI.

Although the gap between these extremes is large for ideal

hardware, the difference is remarkably small under non-ideal

hardware due to the finite capacity limit (caused by distortion

noise) and the channel hardening that makes stochastic inner

product such as hHv become increasingly deterministic as N
grows large. Since a main difference between the lower and

upper bounds is the quality of the CSI, the small difference

shows that the estimation errors have only a minor impact on

the capacity; hence, the estimation error floors described in

Section III has no dominating impact in the large-N regime.

The asymptotic capacity limits in Fig. 6 are characterized

by the level of impairments, thus the hardware quality has

a fundamental impact on the achievable spectral efficiency.

If the SNRs are sufficiently high (e.g., 20 dB), the majority

of the multi-antenna gain is achieved at relatively low N ;

in particular, only minor improvements can be achieved by

having more than N = 100 antennas. Larger numbers are,

however, useful for inter-user interference suppression and

multiplexing; see Section VI. We need many more antennas to

achieve convergence at 0 dB SNR than at 20 dB, because a 100

times larger array gain is required to compensate for the lower

SNR. Hence, we conclude that the massive MIMO gains are

much more attractive at higher SNRs (which matches well with

the results in Section III where 20–30 dB SNR was needed

to achieve a close-to-perfect channel estimate). Therefore, we

only consider an SNR of 20 dB it the remainder of this section.

Fig. 7 considers the same scenario as in Fig. 6 but with

a fixed level of impairments κUE = 0.052 at the UE and

different values at the BS. As expected from the analysis, the

lower and upper capacity bounds increase with κBS, but the

difference is only visible at small N since the curves converge

to virtually the same value as N → ∞. This validates that the

impact of impairments at the BS vanishes as N grows large.

Finally, we consider the capacity behavior for different

channel covariance models, namely the four propagation

scenarios described in Section III-B. The lower and upper

capacity bounds are shown in Fig. 8 for κBS = κUE = 0.05.

The upper bound is identical for all the models, since it only
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Case 1: Uncorrelated

Case 2: Exponential Mod. r= 0.7

Case 3: One-Ring, 20 degrees

Case 4: One-Ring, 10 degrees

Asymptotic Limits

Fig. 8: Lower and upper bounds on the capacity as a function

of the number of BS antennas. Four different channel covari-

ance models are considered and the hardware impairments are

characterized by κBS = κUE = 0.05.

utilizes the diagonal elements of R. However, there are clear

differences between the lower bounds. The spatially uncor-

related covariance model provides the highest performance,

while the strongly spatially correlated one-ring model from

[42] with 10 degrees angular spread gives the lowest perfor-

mance. This stands in contrast to Section III-B, where the

highly correlated channels gave the lowest estimation errors

(i.e., highest estimation accuracy). However, the differences

between the channel covariance models vanish asymptotically

as N → ∞.

V. IMPROVING ENERGY EFFICIENCY AND REDUCING

HARDWARE QUALITY

Next, we analyze how the energy efficiency (EE) can be

optimized in massive MIMO systems. The EE is measured

in bit/Joule and a common EE definition is the ratio of the

spectral efficiency (in bit/channel use) to the emitted power (in

Joule/channel use). It has recently been shown that the array

gain in massive MIMO systems can be utilized to reduce the

emitted power; see [12], [13] for systems with ideal hardware

and [25] for systems with phase noise from free-running

oscillators. More specifically, these prior works show that one

can reduce the transmit powers as 1/N t, for 0 < t < 1
2 , and

still achieve non-zero spectral efficiencies as N → ∞. By

following this power scaling law, we can achieve an infinitely

high EE as N → ∞ because the numerator has a non-zero

limit and the denominator goes to zero as 1/N t [1]. Although

this property indicates that massive MIMO systems can be

very energy efficient, the unboundedness also shows that the

conventional EE metric needs to be revised when applied to

massive MIMO systems. In this section, we consider a refined

metric of overall EE (based on prior work in [50]–[54]) and

use it to analyze the overall EE of massive MIMO systems.

Under the TDD protocol, the energy consumed in the

amplifiers of the transmitters (per coherence period) is

Eamp = (TDL
pilot + TDL

data)
pBS

ωBS
+ (TUL

pilot + TUL
data)

pUE

ωUE
[Joule]

(45)

where the parameters ωBS, ωUE ∈ [0, 1] are the efficiencies

of the power amplifiers at the BS and UE, respectively.13 The

average power (in Joule/channel use) can then be separated as

Eamp

Tcoher
= αDL

(
TDL
pilot

Tcoher

pBS

ωBS
+
TUL
pilot

Tcoher

pUE

ωUE

)
+
TDL
data

Tcoher

pBS

ωBS

︸ ︷︷ ︸
Downlink power

+ αUL

(
TDL
pilot

Tcoher

pBS

ωBS
+
TUL
pilot

Tcoher

pUE

ωUE

)
+
TUL
data

Tcoher

pUE

ωUE

︸ ︷︷ ︸
Uplink power

(46)

where the ratios of DL and UL transmission are, respectively,

αDL =
TDL
data

TDL
data + TUL

data

(47)

αUL =
TUL
data

TDL
data + TUL

data

. (48)

In addition to the power consumed by the amplifiers, there

is generally a baseband circuit power consumption which

we model as Nρ + ζ [50]–[54]. The parameter ρ ≥ 0
[Joule/channel use] describes the circuit power that scales with

the number antennas; for example, hardware components that

are needed at each antenna branch (e.g., converters, mixers,

and filters) and computational complexity that is proportional

to N (e.g., channel estimation and computing MRT/MRC).

In contrast, the parameter ζ > 0 [Joule/channel use] is a

static circuit power term that is independent of N (but might

scale with the number UEs); for example, it models baseband

processing at the BS and circuit power at the UE.14

Based on the power consumption model described above,

and inspired by the seminal work in [55], we define the overall

energy efficiency (in bit/Joule) as follows.

Definition 1. The downlink energy efficiency is

EE
DL =

C
DL

αDL

(
TDL
pilot

Tcoher

pBS

ωBS +
TUL
pilot

Tcoher

pUE

ωUE +Nρ+ ζ
)
+

TDL
data

Tcoher

pBS

ωBS

(49)

and the uplink energy efficiency is

EE
UL =

C
UL

αUL

(
TDL
pilot

Tcoher

pBS

ωBS +
TUL
pilot

Tcoher

pUE

ωUE +Nρ+ ζ
)
+

TUL
data

Tcoher

pUE

ωUE

.

(50)

The EE of any suboptimal transmission scheme is obtained by

replacing the capacities CDL and C
UL with the corresponding

achievable spectral efficiencies.

This definition considers a single link, which can be any

of the links in a massive MIMO system—the parameters ζ
and ρ should then be interpreted as the energy per channel

13The efficiency of a specific amplifier depends on the transmit power, but
to facilitate analysis we assume that the amplifier is optimized jointly with the
transmit power to give a specific efficiency at the particular power level. The
efficiency also depends on the PAPR and acceptable distortion noise, which
are two properties that we also keep fixed when optimizing the EE.

14This term can also model the overhead power consumption of the network
as a whole, which enables comparison of network architectures with different
BS density, amounts of backhaul signaling, etc.
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use per user. In the process of maximizing the EE metric

in Definition 1, we first extend the power scaling laws from

[12], [13], [25] to our general system model with non-ideal

hardware.

Theorem 5. Suppose the downlink transmit power pBS and

uplink pilot power pUE are reduced with N proportionally to

1/N tBS and 1/N tUE , respectively. If tBS + tUE < 1, tBS ≥
0, 0 < tUE <

1
2 , and E{IUE

H } = O(1), we have

lim
N→∞

C
DL ≥ TDL

data

Tcoher
log2

(
1 +

1

κUE
r + κUE

t + κUE
r κUE

t

)
.

(51)

Similarly, suppose the uplink transmit/pilot power pUE is

reduced with N proportionally to 1/N tUE . If 0 < tUE < 1
2

and E{‖QH‖2} = O(1), we have

lim
N→∞

C
UL ≥ TUL

data

Tcoher
log2

(
1 +

1

2κUE
t + (κUE

t )2

)
. (52)

Proof: The proof is given in Appendix C-D.

Theorem 5 shows that one can reduce the downlink and

uplink transmit powers as N grows large (e.g., roughly

proportionally to 1/
√
N ) and converge to non-zero spectral

efficiencies. The asymptotic DL capacity is lower bounded

by (51) and the UL capacity by (52). As expected from

Section IV, these lower bounds only depend on the levels of

impairments at the UE. The conditions E{IUE
H } = O(1) and

E{‖QH‖2} = O(1) in Theorem 5 are stronger than the ones

in Corollaries 4 and 5, thus the interfering transmissions might

have to reduce their transmit powers as well if their impact

should vanish asymptotically. We note that the lower bounds

in Theorem 5 are achieved by using the LMMSE estimator in

Theorem 1 for channel estimation and simple linear processing

at the BS (approximate MRT in the DL and MRC in the UL).

Based on Theorem 5 and the upper capacity bounds in

Section IV, the following corollary describes how to maximize

the EE.

Corollary 6. Suppose we want to maximize the EE metrics

with respect to the transmit powers and the number of anten-

nas. Let E{IUE
H } = O(1) and E{‖QH‖2} = O(1). If ρ = 0,

the maximal EEs are bounded as

log2

(
1+ 1

κUE
r +κUE

t +κUE
r κUE

t

)

Tcoher

TDL
data

αDLζ
≤ max
pBS,pUE≥0

N≥0

EE
DL≤

log2

(
1+ 1

κUE
r

)

Tcoher

TDL
data

αDLζ

(53)

log2

(
1 + 1

2κUE
t +(κUE

t )2

)

Tcoher

TUL
data

αULζ
≤ max
pUE,N≥0

EE
UL≤

log2

(
1 + 1

κUE
t

)

Tcoher

TUL
data

αULζ

(54)

where the lower bounds are achieved as N → ∞ using the

power scaling law in Theorem 5.

If ρ > 0, the upper bounds in (53) and (54) are still valid,

but the asymptotic EEs are

lim
N→∞

max
pBS,pUE≥0

EE
DL = lim

N→∞
max
pUE≥0

EE
UL = 0 (55)

and, consequently, the EEs are maximized at some finite N .

Proof: The lower bounds for ρ = 0 are achieved as

described in corollary, while the upper bounds follow from

neglecting the transmit power term in the denominator and

applying the capacity upper bounds from Corollaries 2 and 3.

In the case of ρ > 0, we note that the EE is non-zero for

N = 1 for any non-zero transmit power, while the EE goes

to zero as N → ∞ since the denominators of the EE metrics

grow to infinity and the numerators are bounded.

This corollary reveals that the maximal overall EE is finite,

also in massive MIMO systems. If the circuit power consump-

tion does not scale with N , such that ρ = 0, we can achieve an

EE very close to the upper bounds in (53) and (54) by having

very many antennas. This changes completely when there is a

non-zero circuit power per antenna: ρ > 0. The maximal EE is

then achieved at some finite N , which naturally depends on the

parameters ρ, ζ, ωBS, and ωUE. We illustrate this dependence

numerically in the next subsection.

Since ρ has a dominating impact on the maximal EE in

massive MIMO systems, one would like to find a way to re-

duce ρ. Generally speaking, the hardware power consumption

depends on the circuit architecture and the hardware resolution

[7], [21]; by tolerating larger hardware impairments we can

also reduce the power dissipation in the corresponding circuits.

Now recall from Section IV that the impact of hardware

impairments at the BS vanishes as N → ∞. This fact

raises the important question: Can we increase the levels of

impairments at the BS as N grows and still obtain non-zero

capacities? The answer is given by the following corollary.

Corollary 7. Suppose the levels of impairments κBS
t , κBS

r are

increased with N proportionally to Nτt and Nτr , respectively.

The lower capacity bounds in Corollaries 4 and 5 (for n ≤ 1
2 )

converge to non-zero quantities as N → ∞ if τr <
1
2 in the

UL and τt + τr < 1 and τr <
1
2 in the DL.

Proof: The proof is given in Appendix C-E.

This corollary shows that we can indeed increase the levels

of impairments, κBS
t and κBS

r , at the BS roughly proportionally

to
√
N and still have a non-zero asymptotic capacity. The

numerical results in the next subsection shows that only minor

degradations of the lower capacity bounds appear when the

impairment scaling law in Corollary 7 is followed.

Recall from (5) that the conventional EVM measure of

transceiver quality equals the square root of the κ-parameters,

thus Corollary 7 shows that the EVMs can be increased

proportionally to N1/4. A high-quality BS antenna element

with an EVM of 0.03 can thus be replaced by 256 low-quality

antenna elements with an EVM of 0.12, while the loss in

capacity is negligible. This is a very encouraging result, since

it indicates that massive MIMO can be deployed with BS

hardware components that are inexpensive, have lower quality

and thus low power consumption than conventional ones (i.e.,

ρ is smaller). If the hardware components are treated as

optimization variables, the maximal EE is achieved by jointly

reducing the transmit power and the circuit power consumption

with N . This optimization is, however, strongly dependent on

the practical hardware setup (e.g., how an increased EVM

maps to a smaller circuit power dissipation) and is outside

the scope of this paper. Finally, we note that the ability to

degrade the hardware quality with N comes in addition to all

other benefits of massive MIMO, such as the array gain and
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the decorrelation of user channels; see the multi-cell results in

Section VI.

A. Numerical Illustrations

Next, we illustrate how the overall EE depends on the

number of antennas, transmit powers, and circuit power pa-

rameters ζ and ρ. Based on the power consumption numbers

reported in [56, Table 7], we consider two setups: ζ + ρ =
2µJ/channel use and ζ + ρ = 0.02µJ/channel use.15 These

represent the total circuit power consumptions in a system with

N = 1 antenna. Since the total circuit power for arbitrary N is

ζ+Nρ, we consider three different splittings between ρ and ζ:
ρ
ζ+ρ ∈ {0, 0.01, 0.1}. From an EE optimization perspective,

any scaling of the power amplifier efficiencies is equivalent to

an inverse scaling of ζ and ρ. Hence, we can set the efficiencies

to ωBS = ωUE = 0.3, which corresponds to 30%, without

limiting the generality of our numerical results.

The transmit powers in the UL and DL are assumed to be

equal and upper bounded by pmax = 0.0222µJ/channel use.16

We consider a scenario without interference (i.e., QH =
S = 0 and IUE

H = 0), the channel covariance matrix R is

generated by the exponential correlation model in (17) with

correlation coefficient r = 0.7. We let
Nσ2

UE

tr(R) =
Nσ2

BS

tr(R) =
pmax

100 µJ/channel use which gives an SNR of 20 dB if the

maximal transmit power pmax is used; recall from Section

IV-C that this SNR is desirable if one should operate close

to the asymptotic capacity limits. To make the EE of the

DL and UL equal, we consider a symmetric scenario with

αDL = αUL = 0.5 and
TDL
pilot

Tcoher
=

TUL
pilot

Tcoher
= 0.05.

Fig. 9 shows the achievable DL/UL energy efficiencies

using the lower capacity bounds in Theorem 3. The levels of

impairments are set to κBS
t = κBS

r = κUE
t = κUE

r = 0.052; see

Remark 1 for the interpretation of these parameter values. The

transmit powers are either optimized numerically for maximal

EE at each N , fixed at the value that is optimal for N = 1, or

reduced from this value according to the power scaling law in

Theorem 5 with t = 1
2 . Fig. 9 shows that the EE is almost the

same in all three cases, but varies a lot with the circuit power

parameters ζ and ρ. If ρ = 0, the EE increases monotonically

with N and eventually converge according to (53) and (54) in

Corollary 6. On the contrary, the EE has a unique maximum

when ρ > 0 and then decreases towards zero. The maximum

is in the range of 5 ≤ N ≤ 50 in the figure, but the exact

position depends on the circuit power parameters. If ρ
ζ+ρ is

sufficiently small we can use a larger N without losing much

in EE. Hence, it is important to make the power that scales

with N (e.g., the number of extra hardware components and

the computational complexity) as low as possible if massive

MIMO systems should excel in terms of energy efficiency.

The EE with ideal hardware is also shown in Fig. 9, which

reveals that the difference in EE between ideal and non-ideal

hardware is small. This is because the performance loss from

15As a reference, these numbers correspond to 18 W and 0.18 W, respec-
tively, for a system with an effective bandwidth of 9 MHz, since then there
are 9 · 106 channel uses per second.

16As a reference, this number corresponds to 200 mW, or 23 dBm, for a
system with an effective bandwidth of 9 MHz.
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Fig. 9: Achievable energy efficiency with ideal and non-ideal

hardware for fixed transmit power (t = 0), transmit power

that decreases as 1/N t for t = 1
2 , and the transmit power

that maximizes the EE. The EE is computed using the lower

bounds in Theorem 3 and are valid for both DL and UL

transmissions.

hardware impairments is relatively small at reasonable number

of antennas.

In order to compare the three different power allocations,

we show the corresponding transmit powers in Fig. 10. Recall

that the power is either fixed, reduced with N according to

the scaling law in Theorem 5, or optimized for maximal EE

at each N . Despite the very similar EEs in Fig. 9, these three

power allocations behave very differently. If ρ = 0, the optimal

transmit power decreases with N but at a clearly slower pace

than 1/
√
N (which is the fastest power scaling that gives a

non-zero asymptotic rate according to Theorem 5). However,

the optimal transmit for ρ > 0 only decreases until the

maximal EE is achieved (which is in the range of 5 ≤ N ≤ 50)

and then increases with N . This makes much sense, because

when the circuit power increases we can also afford using more

transmit power to get a higher spectral efficiency. In the case

when the circuit power is large (i.e., ζ+ρ = 2µJ), we see that

it is often optimal to use full transmit power, as represented

by the upper straight line. To summarize, the transmit power

in massive MIMO systems can be decreased monotonically

with N , but this is generally not the way to maximize the EE

since we have ρ > 0 in most practical systems. The loss in

EE by decreasing the power appears to be small, but the loss

in spectral efficiency is naturally larger due to the definition

of the EE. If we want a simple design rule, it is better to keep

the total power fixed for all N than to decrease it with N .

Finally, the ability to increase the levels of impairments

at the BS with N is illustrated in Fig. 11. We consider the

same symmetric scenario as in the previous two figures, but

the average SNR is set to 20 dB in the DL and UL. We

have κUE
t = κUE

r = 0.052 at the UE, while the levels of

impairments at the BS are scaled as κBS
t = κBS

r = 0.052Nτ

for different τ -values: τ ∈ {0, 14 , 12 , 1, 2}. The lower capacity

bounds are shown in Fig. 11 as a function of N . The
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Fig. 10: The transmit powers that correspond to the curves in

Fig. 9.
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Fig. 11: Lower bounds on the capacity when the levels of

impairments at the BS are increased with N as Nτ for

τ ∈ {0, 14 , 12 , 1, 2}. The results are valid for both DL and UL

transmissions.

simulation confirms that the performance degradation is small

when the impairment scaling law in Corollary 7 is followed

(e.g., for τ = 1
4 and τ = 1

2 ). A larger performance loss is

observed for τ = 1 and the curve begins to bend downwards

at N ≈ 350. In the extreme case of τ = 2, the lower bound

goes quickly to zero. While these asymptotic results are based

on the lower capacity bounds, we note that whenever τ > 1
the upper capacity bounds in Corollaries 2 and 3 converge to

zero as well.

VI. EXTENSIONS TO MULTI-CELL SCENARIOS

The previous sections focused on a single link of a massive

MIMO system, which experiences interference from other

concurrent transmissions. Recall that IUE
H ∈ C and QH ∈

C
N×N are the conditional covariances of these transmissions

in the DL and UL, respectively, for a given set of channel

realizations H. The asymptotic capacity analysis in Section

IV, particularly the lower capacity bounds in Corollaries 4

and 5, are based on the assumptions that E{IUE
H } ≤ O(Nn)

and E{‖QH‖2} ≤ O(Nn) for some n < 1. However, the

interference variance can actually increase faster than this,

particularly under the so-called pilot contamination which

gives rise to terms that scale linearly with N [9]–[13]. This

section investigates the impact of inter-user interference on

massive MIMO systems with non-ideal hardware. The BS and

UE from the previous sections are referred to as the ones under

study.

A. Inter-User Interference in the Uplink

To exemplify the impact of inter-user interference, we

assume that there is a set U of co-users that are scheduled for

UL transmission in the current coherence period. Each co-user

is served by the BS under study or any of the neighboring BSs,

thus the total number of co-users |U| is generally large. The

association of UEs to BSs is arbitrary since the association has

no impact on the UE under study in the UL. The block-fading

channel from UE l ∈ U to the BS under study is modeled as

hl ∼ CN (0,Rl), where Rl has bounded spectral norm and the

channel is ergodic and block fading. Recall that H is the set

of channel realizations for all channels in the system, thus we

have hl ∈ H for all l ∈ U . The co-user channels are assumed

to be independent, which in practice means that users are

selected to have no common scatterers [3], [4]—this is a basic

criterion of spatial user separability in the scheduler. A more

refined scheduling criteria would be the one in [48], where

the coverage area is divided into location bins. The users in

a bin are roughly equivalent in terms of channel statistics and

should not be served simultaneously. Users in different bins

have independent channels and sufficiently different spatial

properties, thus selecting one user per location bin for parallel

transmission is a reasonable scheduling decision.

The UL pilot signaling is limited to TUL
pilot channel uses

in the TDD protocol depicted in Fig. 2. Since the number

of active co-users generally satisfies |U| > TUL
pilot, each pilot

channel use must be allocated to multiple users. We divide

U into two disjoint sets: U‖ are the users that transmit in

parallel with the pilot of the UE under study, while U⊥ are

the remaining users.17 The co-users in the same cell as the UE

under study are usually in U⊥, but this is not necessary. The

interference vector during UL pilot signaling is

ν
pilot
interf =

∑

l∈U‖

dlhl (56)

where dl is the signal transmitted by UE l ∈ U‖. These

signals can be either deterministic or stochastic, thus some

of the interfering transmissions can in principle carry data

instead of pilot signals (cf. Remark 5 in [13]). Assuming

E{|dl|2} = pUE, the interference covariance matrix during

pilot signaling is

S = E

{
ν
pilot
interf(ν

pilot
interf)

H
}
= pUE

∑

l∈U‖

Rl. (57)

17Only one pilot channel use is allocated per UE in this section. For other
pilot lengths B > 1, one can construct up to B parallel pilot signals that
are orthogonal in space. This increases the pilot power per UE, but does not
increase the total number of orthogonal pilots.
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The LMMSE estimator in Theorem 1 and the corresponding

analysis in Section III holds for any covariance matrix S,

thus the explicit ways of computing ν
pilot
interf and S in (56)–

(57) can be plugged in directly. The channel estimate ĥ is

now correlated with the co-user channels hl for l ∈ U‖,

which has an important impact on the spectral efficiency.

More specifically, the interference vector during UL data

transmission becomes

ν
data
interf =

∑

l∈U
dlhl (58)

where dl is the independent zero-mean stochastic data signal

sent by UE l ∈ U and has power E{|dl|2} = pUE. The condi-

tional interference covariance matrix during data transmission

is

QH = E
{
ν
data
interf(ν

data
interf)

H |H
}
= pUE

∑

l∈U
hlh

H
l . (59)

Note that QH depends on the channel realizations in H
and has not bounded spectral norm; in fact, there are |U|
eigenvalues of QH that grow without bound as N → ∞. This

property affects the lower capacity bound in (35) of Theorem

3 where the conditional interference term now becomes

E

{
(vUL)HQHvUL |H̃BS

}
= pUE

∑

l∈U
E

{
|hHl vUL|2 |H̃BS

}
.

(60)

The following theorem shows how interference terms of the

type E

{
|hHl vUL|2 |H̃BS

}
in (60) behave as N grows large.

Theorem 6. Assume that no instantaneous CSI is utilized for

decoding (i.e., H̃BS = H̃UE = ∅), interference is treated as

noise, and the receive combining vector v = ĥ

‖ĥ‖2
. Under the

interference model in (56)–(59), the terms in (60) are

E
{
|hHl v|2

}
(61)

=




E

{
pUE(tr(ARl))

2

tr
(
A(|d+ηUE

t |2R+Ψ)AH

)
}
+O(

√
N), l ∈ U‖,

O(1), l ∈ U⊥,

where ηUE
t is stochastic and A,Ψ are given in Theorem 4.

The lower capacity bound in (44) is generalized by replac-

ing the term O( 1
N1−n ) in the denominator by

E

{
tr(R−C)

tr
(
A(|d+ ηUE

t |2R+Ψ)AH
)
}
∑

l∈U‖

(
tr(ARl)

tr(AR)

)2

+O
(

1

N

)
. (62)

Proof: The proof is given in Appendix C-F.

This theorem shows that the effective interference from a

co-user depends strongly on whether it interfered with the pilot

transmission of the UE under study or not. The interference

from co-users in U⊥, which were silent when the UE under

study sent its pilot, vanishes asymptotically since the user

channels decorrelate with N . This is the classical type of

interference and is called regular interference in this section.

In contrast, the interference from co-users in U‖, which were

active during the pilot transmission remains and even scales

with N . This is the very essence of pilot contaminated interfer-

ence and Theorem 6 generalizes previous results from [9]–[13]

(among others) to non-ideal hardware. The explanation to the

diverse behavior in Theorem 6 is that the channel estimate ĥ

used in the receive combining is independent of the co-user

channels hl for l ∈ U⊥, but correlated with hl for l ∈ U‖ since

these vectors appeared in the interference term (56) during

pilot transmission. Note that Theorem 6 was derived using

MRC, while minimum mean squared error (MMSE) receive

combining is generally a better choice in multi-cell multi-

user scenarios since it actively suppresses interference [12].

Nevertheless, the theorem establishes the baseline behavior:

only the pilot contaminated interference may have a substantial

impact when N is large (if a judicious receive combining is

used). The severity of the pilot contamination depends on how

the sets U⊥ and U‖ are chosen [43].

B. Inter-User Interference in the Downlink

The downlink transmission can also suffer from pilot con-

tamination, especially if the numbers of antennas at neigh-

boring BSs also grow linearly with N . The conditional

interference variance in the DL takes a similar form as in

(58)–(60):

IUE
H = pBS

∑

l∈U
E

{
|h̃Hl vDL

l |2 |H̃UE
}

(63)

where vDL
l is the beamforming vector for DL transmission to

UE l ∈ U from its (arbitrary) serving BS and h̃l is the channel

from that BS to the UE under study. For brevity, we will not

dive into the details since these require assumptions on the

decision making at other BSs. The general behavior is however

the same: UEs with parallel UL pilots cause non-vanishing

interference to each other in the DL, while the impact of all

other interfering DL transmissions vanish as N grows large.

C. Numerical Illustrations

The impact of inter-user interference and pilot contamina-

tion on multi-cell systems with non-ideal hardware is now

studied numerically. We consider UL scenarios with spatially

uncorrelated channels, define the average SNR as pUE tr(R)
Nσ2

BS
,

and let
TUL
data

Tcoher
= 0.45 be the fraction of UL data transmission.

In Fig. 12 we consider the two types of inter-user in-

terference from Theorem 6: regular interference from a UE

whose pilot is orthogonal to the UE under study and pilot

contaminated interference from a UE with an overlapping

pilot. We want to investigate how the achievable per-user

spectral efficiency in massive MIMO systems depends on

the strength of the pilot contaminated interference, thus we

consider a scenario where we operate close to the asymptotic

limits: the SNR is 20 dB and the number of antennas is set to

N = 200 (see Fig. 6). We consider three levels of impairments:

κUE
t = κBS

r ∈ {0, 0.052, 0.12}. The lower capacity bounds are

shown without interference, with only pilot contaminated in-

terference, and with both types of interference. The horizontal

axis in Fig. 12 shows the performance as a function of the

relative channel gain of the pilot contaminated interference

(with respect to the useful channel).
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Fig. 12: Lower capacity bounds of a user that experiences pilot

contaminated interference of varying strength and possibly

regular inter-user interference that is −10 dB weaker than the

useful channel. The interference drowns in the distortion noise

if it is weaker than the level of impairments at the UE.

We make several observations. Firstly, the ideal hardware

case is more sensitive to interference than the non-ideal

hardware case. This is particularly evident when it comes

to regular inter-user interference, which gives a much larger

performance gap in the ideal case. With non-ideal hardware,

the regular interference (from a channel that is only −10 dB

weaker than the useful channel) has little impact. This is due

to the large number of antennas, which decorrelate the user

channels. Secondly, the figure shows that pilot contaminated

interference has a negligible impact when it arrives over a

channel that is much weaker than the useful channel, but there

are breaking points where the degradation effect suddenly

becomes immense. Interestingly, the breaking points are close

to 10 log10(κ
UE
t ); that is, how much weaker the distortion

noise caused by the UE is compared to the useful signal.

This is very intuitive if we compare the size of the distortion

term κUE
t E

{
|ϕ|2

}
in lower capacity bound in (44) with the

interference term in (62). This is formalized as follows.

Corollary 8. The pilot contaminated interference is negligible,

when N grows large, if

κUE
t ≫

∑

l∈U‖

(
tr(ARl)

tr(AR)

)2

. (64)

This corollary shows that pilot contaminated interference

drowns in the distortion noise under certain conditions, which

are independent of the absolute SNRs but depend on rela-

tive SNR differences of the type tr(ARl)/tr(AR). Since

the distortion noise typically is 20–30 dB weaker than the

useful signal, the same is needed for the pilot contaminated

interference to make its impact negligible. This is not a big

deal in cellular deployments; the scheduler should simply

allocate different pilots within each cell and to cell-edge users
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Cell 1 Cell 2
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Fig. 13: Illustration of a multi-cell scenario consisting of 16

square cells with wrap-around to avoid edge effects. Each cell

is 400m× 400m and contains of 6 UEs equally spaced on a

circle of radius 100m.

of neighboring cells.18 This can be achieved by the pilot

allocation algorithm in [43], but also by simple predefined

cell sectorization as illustrated next.

Fig. 13 shows an illustration of the realistic multi-cell sce-

nario that we use validate Corollary 8. The setup consists of 16

square cells, each of size 400m×400m. To avoid edge effects,

we use wrap-around as illustrated in Fig. 13. For simplicity, six

UEs are scheduled per cell using a simple angular sectorization

technique; the UEs are equally spaced on a circle of radius

100m. We assume that orthogonal pilots are allocated to the

UEs in each cell, while the same pilots are reused across cells

with the same pattern. The channel covariance matrices are

identity matrices that are scaled by the channel attenuations,

which are based on the 3GPP propagation model in [57]: the

path loss is 10−1.53/D3.76 where D is the distance in meters.

The transmit powers are pUE = 0.0222µJ/channel use and

the noise variance is σ2
BS = 10−7.9 µJ/channel use. This

gives an SNR of 32 dB to the serving BS and 0–13 dB to

the surrounding BSs.

Fig. 14 shows the average achievable rates (based on the

lower capacity bounds) with MMSE receive combining, which

exploits the estimated intra-cell channels to suppress intra-

cell interference. We consider ideal hardware and hardware

impairments with κUE
t = κBS

r = 0.12. To illustrate the impact

of pilot contamination, we compare the inter-cell pilot reuse

pattern described above with the ideal case when all UEs are

allocated unique pilots. We observe that pilot contamination

has a substantial impact on the ideal hardware case, and the

relative loss will continue to increase with N since only the

curve for unique pilots grows towards infinity. In contrast,

there is almost no difference between the unique and reused pi-

lots cases in the system with non-ideal hardware—particularly

18As an example, suppose R = δ−3.7I and Rl = δ−3.7
l

I where 3.7 is the
path loss exponent and δ, δl are the distances between the BS under study and

the two users. The right-hand side of (64) becomes (tr(ARl)/tr(AR))2 =
(δl/δ)

−7.4 which is in the range −20 to −30 dB if UE l is 1.9–2.5 times
further away from the BS than the UE under study. This is the case for most
UEs in neighboring cells, but to be sure one can apply a fractional reuse
pattern such that adjacent cells use different pilots. All interfering UEs will
then be, at least, 2 times further away from the BS than the UE under study.
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Fig. 14: Achievable UL spectral efficiency for an average user

in the multi-cell scenario depicted in Fig. 13. Each UE has

either a unique pilot signal or the same pilots are reused in

every cell. Pilot contamination degrades the spectral efficiency

under ideal hardware, while the impact on a system with

hardware impairments (κUE
t = κBS

r = 0.12) is negligible.

not when N is large. This implies that pilot contamination

might have a negligible impact on massive MIMO systems

with hardware impairments, as also shown in Corollary 8. The

explanation is that the distortion noise at the UE is the main

limiting factor in the considered scenario, thus regular inter-

user interference and the pilot contamination drowns in the

distortions.

Informally speaking, the distortion noise acts as a fog that

prevents the BS from seeing distant interferers in the pilot

transmission phase. The number of orthogonal pilot signals is

limited by TUL
pilot within the sight of each BS, but can otherwise

be reused freely. A simple location-based pilot allocation was

sufficient for the multi-cell scenario depicted in Fig. 13, but

in general we believe that cell center and cell edge UEs need

to be treated differently. If one can afford a fractional reuse

pattern, where adjacent cells never use the same pilots, then

Corollary 8 will be satisfied in most cases; see Footnote 18.

Finally, we recall from Section IV-C that the gain of

increasing the number of antennas beyond N = 100 was

small in the single-user case with non-ideal hardware. More

antennas can be used in multi-cell scenarios to suppress the

regular interference. The convergence to the asymptotic limit

is, however, much faster with non-ideal hardware, because it is

sufficient to suppress the regular interference to a level below

the distortion noise.

VII. REFINEMENTS OF THE SYSTEM MODEL AND THE

POSSIBLE IMPLICATIONS

Using the system model defined in Section II, we have

shown how the additive distortion noises from hardware im-

pairments limit the estimation accuracy and channel capacities.

The practical relevance of the system model has been verified

experimentally in [15]–[17]. It can also be motivated theo-

retically when the impairment characteristics are static within

each coherence period (e.g., due to the use of strong compen-

sation algorithms). In this case, one can apply the Bussgang

theorem which shows that any nonlinear distortion function

of a Gaussian signal can be reduced to an affine function

where the signal is multiplied with an effective channel and

corrupted by uncorrelated Gaussian noise [7]. This results

in additive distortion noise similar to the one in our system

model, but not identical. For analytic tractability, we assumed

in the system model of Section II that the distortion noises

are independent of the data signals (not only uncorrelated)

and Gaussian distributed (even if the data signals are not);

the same assumptions were made in [14]–[19]. If one would

consider an alternative model where these two assumptions are

not made, then the lower capacity bounds in this paper will

still hold (because the mutual information is always reduced

by adding the two assumptions [35]). The upper bounds in

Section IV would not hold without the two assumptions,

and new upper bounds can only be derived if we impose

alternative assumptions on the exact dependence between

signal and distortion. In other words, the model in Section

II is a tractable canonical approximation of communication

systems with hardware imperfections, but it is not a perfect

model of reality.

In general, the time-varying nature of hardware impairments

cannot be completely mitigated, which also give rise to mul-

tiplicative distortions that vary within each coherence period.

Furthermore, the covariance matrices of the additive distortion

noises, given in (3), (4), (7), and (8), can be refined in

several ways. This section outlines some possible refinements

of the system model in Section II and how each one is

expected to affect the main results—the exact analysis is not

straightforward and is left for future work. Most of these

model refinements will further degrade the performance, thus

the upper capacity bounds in Theorem 2 is typically valid,

while the lower capacity bounds need to be reduced.

A. Power Loss

It is difficult to model the total emitted power under non-

ideal hardware, because some distortions are created indepen-

dently in the hardware, other distortions take their power from

the useful signals, and some impairment sources (e.g., non-

linearities) can even reduce the emitted power. In this paper,

we have implicitly assumed that the compensation algorithms

scale the total emitted power such that it equals pBS(1+κBS
t )

in the DL and pUE(1 + κUE
t ) in the UL. This simplification

creates a small bias when comparing systems with different

levels of impairments, but the simulations in [20, Section

4.3] showed that this has a negligible impact on the spectral

efficiencies. Nevertheless, it is important to note that although

the distortion noise caused by the BS vanishes as N → ∞,

there remains a power loss of
κBS
t

1+κBS
t

that should be taken into

account when designing massive MIMO systems.

B. High-Power Scalings

The levels of impairments in the transmitter hardware, κBS
t

and κUE
t , were taken as constants in Sections II–IV. This is

reasonable when operating within the dynamic/linear range
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of the respective power amplifiers. Outside these ranges, the

proportionality coefficients increase rapidly with the transmit

powers pBS and pUE due non-linearities. This behavior was

accurately modeled by polynomials in [19] and [58]; for

example, κBS
t could have two terms: a constant term describing

the low-power EVM and a term (pBS/c)q , for some exponent

q, describing the severity/order of the dominating non-linearity

and a constant c > 0 that marks the end of the dynamic range

[19]. Note that the distortion noise added by the low-noise

amplifiers in radio receivers will typically not become worse

with the received power, thus it is reasonable to let κBS
r and

κUE
r be constants.

The consequence of having proportionality coefficients that

scale with the transmit powers is that the distortion noise

power increases faster than the signal power. Hence, the

capacity and estimation accuracy are no longer monotonically

increasing in pBS and pUE when using non-ideal hardware—

these metrics are instead maximized at some finite transmit

powers [58]. The reason that we took κBS
t and κUE

t as

constants herein is that the high-power regime is not our main

focus. Consequently, the high-power limits that we derived

are optimistic and might not be achievable in practice—

alternatively, they are the result of decreasing the propagation

distance instead of increasing the actual emitted power. The

results when N → ∞ are however accurate since the total

power (or at least the power per antenna) decreases with N ;

see the discussion in Section V.

C. Alternative Distortion Noise Distributions

The distortion covariance matrices in (3) and (8) are based

on the assumption of independent distortion at the different BS

antennas. This implies that the distortion noise has a different

spatial signature than the useful signal, which is the reason

why the detrimental impact of the distortion noise caused by

the BS vanishes as N → ∞. The underlying assumption is

that the hardware chains of different antennas are decoupled.

Nevertheless, there can exist cross-correlation since the same

useful signal is transmitter/received over the array, thus making

the hardware react similarly. Such correlation was predicted

and characterized in [59] but is typically small. Thus, we

believe that also in practice the distortion noise and useful

signal have different spatial signatures as N grows large.

The distortion noises were assumed to be Gaussian dis-

tributed (for any fixed channel realization), but this can also

be relaxed. As can be seen in the appendices, the proofs

rely on that the cross-moments between the signal and the

distortion are weak. The independence can, probably, be

replaced with uncorrelation and that the higher-order moments

are sufficiently weak, but the corresponding generalized proofs

will be rather tedious and the convergence as N → ∞ might

be slower.

D. Multiplicative Distortions

The additive distortion model in this paper has been verified

experimentally for systems that apply compensation algo-

rithms to mitigate the main hardware impairments. It is also

an accurate model for uncompensated inter-carrier interference

caused by phase noise and I/Q imbalance, amplitude-amplitude

nonlinearities in power amplifiers, and quantization errors

[14], [31], [60]. As described in the beginning of Section

VII, hardware impairments also cause channel attenuations

and phase shifts that are multiplied with the channel vector

h. If these multiplicative distortions are sufficiently static

(after compensation), they can be included in the channel

vector h by an appropriate scaling of the covariance matrix

R or by exploiting that the channel distribution is circularly

symmetric. However, phase noise is a prime example of an

impairment that causes multiplicative distortions that drift and

accumulate within the channel coherence period [25], [61]–

[63]. We now take a look closer at this type of distortions, to

investigate in which ways it behaves differently from additive

distortion noise. The actual channel under phase noise can be

described as diag(eφ1,t , . . . , eφN,t)h, where  =
√
−1 is the

imaginary unit and {φi,t} is the stochastic process at the ith
channel element. The phase drift of free-running oscillators is

commonly modeled as a Wiener process

φi,t = φi,t−1 + θBS
i,t + θUE

t ∀i (65)

where the initial value is φi,0 = 0 since t = 0 denotes the time

of the channel estimation. The innovations that occur t channel

uses after the channel estimation are θBS
i,t ∼ N (0,∆BS) and

θUE
t ∼ N (0,∆UE) at the BS and UE, respectively. Note

that the single-antenna UE’s hardware causes identical drifts

on all channel elements, while the BS can cause identical

or independent drifts depending on the use of a common

oscillator (CO) or separate oscillators (SOs) at each antenna

element. The phase drifts are temporally white, thus φi,t ∼
N (0, t∆BS + t∆UE) which shows that the variance increases

with time.

To comprehend the impact of phase noise, we note that the

signal part of the received UL signal under MRC, v = ĥ

‖ĥ‖2
,

is

vHdiag(eφ1,t , . . . , eφN,t)hd

≈ vHhd︸ ︷︷ ︸
Ideal signal

+ vHdiag(φ1,t, . . . , φN,t)hd︸ ︷︷ ︸
Distortion from phase noise

(66)

using the Taylor approximation eφi,t ≈ 1 + φi,t because

the drifts are small19 [64], [65]. The first term in (66) is

the same as without phase noise, while the second term

characterizes the mismatch from the phase drift. Since φi,t
has zero mean, the two terms are uncorrelated (irrespective of

if h and d are deterministic or stochastic). We can therefore

obtain a lower bound on the mutual information by treating

the uncorrelated second term of (66) as independent Gaussian

noise [35, Theorem 1]. By taking the average over channel

realizations, data signals, and phase drifts, the variance of this

19Since the variance of φi,t increases linearly with t, the Taylor approxi-
mation is only valid for a certain time. The time dependence can however be
mitigated by tracking the phase noise within each coherence period [64].
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distortion is

E

{∣∣vHdiag(φ1,t, . . . , φN,t)hd
∣∣2
}

=

N∑

i1=1

N∑

i2=1

E{v∗i1vi2hi1h∗i2}E{φi1,tφ∗i2,t}E{|d|2}

= pUE
E{|vHh|2}t∆UE

+

{
pUEt∆BS

E{|vHh|2}, if CO,

pUEt∆BS
∑N
i=1 E{|hi|2|vi|2}, if SO,

(67)

where the first term originates from the UE and the second

term is due to the BS having either a CO or SOs at each

antenna. Recall from Theorem 4 that E{|vHh|2} = O(N)
and E{|hi|2|vi|2} = O(1). This means that a BS with a CO

causes distortion that scales as O(tN), while it only scales

as O(t) when having SOs.20 In other words, it appears to

be preferable to have independent oscillators at each antenna

element in massive MIMO systems, which was also noted

in [25]. This is also consistent with our results for additive

distortion noise: impairments at the UE are N times more

influential on the capacity, thus we can degrade the quality

of the BS’s oscillators with N and only get a minor loss

in performance. This property is also positive for distributed

massive MIMO deployments where the antenna separation is

large and prevents the use of a CO. A major difference from

the additive distortion noise in Section II is that the distortion

in (67) increases linearly with the time t, thus it eventually

grows large and it becomes necessary to send pilot/calibration

signals more often to mitigate it [25].

The narrowband phase-noise analysis above only considered

a lower capacity bound, thus it is possible to achieve higher

rates. In particular, the analysis assumed uncompensated free-

running oscillators, while it might be better to track the phase

noise process at the BS; for example, by using previous

received signals, extra calibration signals (see [64] and refer-

ences therein), and utilizing correlation between subcarriers in

multi-carrier systems. The tracking might be more accurate for

a CO since there are O(N) observations of a single phase drift

parameter, instead of O(N) observations for N parameters

as with SOs. Another important aspect of phase noise is

that the standard deviations
√
∆BS and

√
∆UE are typically

proportional to the carrier frequency [62], thus phase noise

might be a major challenge in higher frequency bands (e.g.,

mmWave) [66]—unless the symbol time is also sufficiently

reduced by increasing the bandwidth.

E. Imperfect Channel Reciprocity

The downlink beamforming in massive MIMO TDD sys-

tems relies on channel reciprocity; that is, if h is the uplink

channel then hT is the downlink channel. This property holds

for the radio-frequency propagation channels, but the end-to-

end channels are also affected by the hardware since different

transceiver chains are used for transmission/reception at the

BS and the UE. The actual downlink channel is hTDb

where the diagonal matrix Db = diag(b1, . . . , bN ) contains

20Since the useful signal power pUEE{|vHh|2} also scales as O(N), the
relative distortion power behaves as O(t) with CO and O(t/N) with SOs.

N calibration parameters. These are bi = 1 ∀i for ideal

hardware but we generally have bi 6= 1 ∀i due to non-ideal

hardware. The mismatch is fully specified by b1, . . . , bN and

fortunately these parameters change slowly with time, thus one

can compute estimates b̂1, . . . , b̂N using a negligible amount

of overhead signaling [16] (even in massive MIMO systems

[67]). Since the transmit beamforming mainly depends on the

channel direction, it is often sufficient for the BS to compute

the downlink channel up to an unknown scaling factor; see

[16], [67]–[69] for different techniques that exploit uplink

pilot transmissions. The estimates are naturally imperfect, thus

bi = c(b̂i + ei) where ei is the estimation error and c is the

unknown common scaling factor.

Imperfect channel reciprocity has no impact on the UL and

is not expected to change anything fundamentally in the DL.

There is a loss in received signal power since the beamforming

direction is perturbed, but there is no extra self-interference

since all the CSI available at the receiving UE is estimated

in the downlink and thus reflects the actual downlink channel

hTDb. In other words, the lower capacity bound in (34) is still

valid if we replace h by Dbh everywhere and compute the

expectations with respect to the actual distributions. The beam-

forming vector vDL is now a function of diag(b̂1, . . . , b̂N )ĥ.

This perturbation of vDL, as compared to having perfect

reciprocity, behaves like a channel estimation error and its

impact is expected to vanish as N grows large. Moreover, it

should only have a minor impact on the inter-user interference

in multi-cell scenarios, since the reciprocity calibration errors

are independent of the co-user channels.

VIII. CONCLUSION

This paper analyzed the capacity and estimation accuracy of

massive MIMO systems with non-ideal transceiver hardware.

The analysis was based on a new system model that models

the hardware impairment at each antenna by an additive

distortion noise that is proportional to the signal power at

this antenna. This model has several attractive features: it is

mathematically tractable, it has been verified experimentally

in previous works, and it can be motivated theoretically in

systems that apply compensation algorithms to mitigate the

hardware impairments.

We proved analytically that hardware impairments create

non-zero estimation error floors and finite capacity ceilings

in the uplink and downlink—irrespective of the SNR and the

number of base station antennas N . This stands in contrast to

the very optimistic asymptotic results previously reported for

ideal hardware. Despite these discouraging results, we showed

that massive MIMO systems can still achieve a huge array

gain, in the sense that relatively high spectral efficiency and

energy efficiency can be obtained. Furthermore, we proved that

only the hardware impairments at the UEs limit the capacities

as N grows large. This implies that the hardware quality at

the BS can be decreased as N grows, which is an important

insight and might become a key enabler for future network

deployments.

In multi-cell scenarios, we proved that the detrimental effect

of inter-user interference and pilot contamination drowns in
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the distortion noise if a simple pilot allocation algorithm

is used to avoid the strongest forms of pilot contaminated

interference. Many quantitative conclusions can be drawn from

the numerical results in Sections III–VI; for example, that there

is little gain in having more than 100 antennas for a single-

user link, but additional antennas are useful to suppress inter-

user interference in multi-cell scenarios. The asymptotic limits

under non-ideal hardware are generally reached at much fewer

antennas than the asymptotic limits for ideal hardware, which

implies that we can expect practical systems to benefit from

the asymptotic results. We also gave a brief description of how

the system model considered in this paper can be refined to

model hardware impairments in even greater detail and how

such refinements would affect our results.

APPENDIX A

NEW AND OLD RESULTS ON RANDOM VECTORS

Lemma 2. [70, Eq. (2.2)] For invertible matrices B and

τ ≥ 0, it holds that

(B+ τxxH)−1x =
B−1x

1 + τxHB−1x
. (68)

Lemma 3. Suppose h ∼ CN (0, r) and a, b > 0, then

E

{ |h|2
a|h|2 + b

}
=

1

a

(
1− b

ar
E1

(
b

ar

)
e

b
ar

)
(69)

where E1(x) =
∫∞
1

e−tx

t dt denotes the exponential integral.

Proof: Since ̺ = |h|2 has the exponential distribution

with mean value r, the expectation in (69) equals
∫ ∞

0

̺

a̺+ b

e−̺/r

r
d̺ =

b

a2r
e

b
ar

∫ ∞

1

(
1− 1

x

)
e−

̺b
ar dx (70)

where the equality follows from a change of variable x =
a
b ̺ + 1. Straightforward integration and identification of the

exponential integral yield the right-hand side of (69).

Lemma 4. For any a, b ∈ C and non-zero c, d ∈ C, we have
∣∣∣∣
a

c
− b

d

∣∣∣∣ ≤
|b| |c− d|
|c| |d| +

|a− b|
|c| . (71)

Proof: This is straightforward to prove by using that |ad−
bc| = |ad− bc+ bd− bd| ≤ |b| |c− d|+ |d| |a− b|.

Lemma 5. Consider M arbitrary matrices M1, . . . ,MM ∈
C
N×N and an Hermitian positive semi-definite matrix B ∈

C
N×N . It follows that

|tr(M1 · · ·MMB)| ≤ tr(B)
M∏

i=1

‖Mi‖2. (72)

If M1, . . . ,MM ,B have uniformly bounded spectral norms,

then

|tr(M1 · · ·MMB)| = O(N). (73)

Proof: The bound in (72) follows from that B has non-

negative eigenvalues and each matrix Mi cannot amplify these

by more than ‖Mi‖2. The O(N)-scaling follows from (72) by

using the assumptions and tr(B) ≤ N‖B‖2.

Lemma 6. [71, Lemma B.26] Let B ∈ C
N×N be determin-

istic and x = [x1 . . . xN ]T ∈ C
N be a stochastic vector of

independent entries. Assume that E{xi} = 0, E{|xi|2} = 1,

and E{|xi|ℓ} = χℓ <∞ for ℓ ≤ 2q. Then, for any q ≥ 1,

E

{∣∣xHBx− tr(B)
∣∣q
}
≤ Cq

(
tr(BBH)

) q
2
(
χ

q
2
4 +χ2q

)
(74)

where Cq is a constant depending on q only.

APPENDIX B

APPLICATION-RELATED RANDOM VECTOR RESULTS

Lemma 7. The channel estimate ĥ can be decomposed as

ĥ = A
((
(d+ ηUE

t )I+Dr

)
h+ ν

)
(75)

where A is defined in (9) and the diagonal matrix Dr has

independent CN (0, κBS
r pUE)-entries such that ηBS

r = Drh.

For any realizations of ηUE
t and Dr, the conditional distri-

bution is

ĥ|ηUE
t ,Dr ∼ CN

(
0,A(Φ+ S+ σ2

BSI)A
H
)

(76)

where Φ = ((d+ ηUE
t )I+Dr)R((d+ ηUE

t )I+Dr)
H .

Proof: This characterization follows directly from Theo-

rem 1 and the system model defined in Section II.

Lemma 8. For the channel h and its estimate ĥ it holds that

E

{∣∣∣hH ĥ− (1 + d−1ηUE
t )tr(R−C)

∣∣∣
2
}

= O(N) (77)

E

{∣∣∣|hH ĥ| − |1 + d−1ηUE
t |tr(R−C)

∣∣∣
2
}

= O(N). (78)

Proof: Recall that ĥ = A
(
h(d + ηUE

t ) + ν + η
BS
r

)
for

A = d∗RZ̄−1. To prove (77), we expand the argument as

∣∣∣hH ĥ− (1 + d−1ηUE
t )tr(R−C)

∣∣∣
2

≤ 4|hHAν|2 (79)

+ 4|hHAη
BS
r |2 + 2|d+ ηUE

t |2
∣∣hHAh− d−1tr(R−C)

∣∣2

by using the rule |a+ b|q ≤ 2q−1(|a|q + |b|q) (from Hölder’s

inequality) twice. Next, we observe that

E{|hHAν|2}=tr
(
A(S+ σ2

BSI)A
HR

)
= O(N) (80)

E{|hHAη
BS
r |2}=κBS

r pUEtr
(
ARdiagA

HR
)

+ κBS
r pUE

N∑

i=1

|eHi RAei|2 = O(N) (81)

where ei is the ith column of an N ×N identity matrix. The

expression (80) follows from the independence of h,ν and

(81) follows by straightforward computation using the char-

acterization η
BS
r = Drh in Lemma 7. The O(N)-properties

follows from Lemma 5 since R,S,A have uniformly bounded

spectral norms (by assumption).

Since h ∼ R1/2h̃ for h̃ ∼ CN (0, I) and d−1tr(R−C) =
tr(R1/2AR1/2) we can apply Lemma 6 to obtain

E

{
|d+ ηUE

t |2
∣∣hHAh− d−1tr(R−C)

∣∣2
}

≤ (1 + κUE
t )2χ4C2tr

(
(R−C)2

)
= O(N).

(82)



23

We obtain (77) by combining (79)–(82). Expression (78)

follows directly, since it is upper bounded similarly to (79).

Lemma 9. For the channel h and its estimate ĥ it holds that

E

{∣∣∣‖ĥ‖22 − tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}
=O(N)

(83)

E

{∣∣∣‖ĥ‖2 −
√
tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}
=O(1)

(84)

where A is defined in (9) and Ψ = pUEκBS
r Rdiag+S+σ2

BSI.

Proof: By injecting the term tr(A(Φ+S+σ2
BSI)A

H) that

appeared in Lemma 7 and using the rule |a+b|q ≤ 2q−1(|a|q+
|b|q) (from Hölder’s inequality), we bound the left-hand side

of (83) as

E

{∣∣∣‖ĥ‖22 − tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

≤ 2E

{∣∣∣‖ĥ‖22 − tr
(
A(Φ+ S+ σ2

BSI)A
H
)∣∣∣

2
}

+ 2E

{∣∣∣tr
(
A(Φ+ S+ σ2

BSI)A
H
)

− tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}
.

(85)

The first term in (85) satisfies

E

{∣∣∣‖ĥ‖22 − tr(A(Φ+ S+ σ2
BSI)A

H)
∣∣∣
2
}

≤4C2E
{
tr(A(Φ+ S+ σ2

BSI)A
HA(Φ+ S+ σ2

BSI)
HAH)

}

≤4C2‖A‖42 E
{
‖Φ+ S+ σ2

BSI‖2F
}
= O(N)

(86)

where the first inequality follows from applying Lemma 6 on

(83) for fixed ηUE
t ,Dr (note that the fourth-order moment is

χ4 = 2 for complex Gaussian variables), while the second

inequality follows from applying Lemma 5 twice. The scaling

O(N) follows since σ2
BS is constant, ‖A‖2 = O(1), ‖S‖2F =

O(N), E{tr(ΦS)} ≤ ‖R‖2‖S‖2E{‖(d+ ηUE
t )I+Dr‖2F } =

O(N), and E{tr(ΦΦH)} ≤ ‖R‖2E{‖((d+ηUE
t )I+Dr)((d+

ηUE
t )I+Dr)

H‖2F } = O(N) using Lemma 5.

Next, we characterize the second term in (85) as

E

{∣∣∣tr
(
A(Φ+ S+ σ2

BSI)A
H
)

− tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

= E

{∣∣∣∣tr
(
A
(
DrRDH

r +DrR(d+ ηUE
t )∗

+ (d+ ηUE
t )RDH

r

)
AH

)
−pUEκBS

r tr
(
ARdiagA

H
)∣∣∣∣

2
}

≤ 2E

{∣∣∣tr
(
A(DrRDH

r − pUEκBS
r Rdiag)A

H
)∣∣∣

2
}

+ 4E
{
|d+ ηUE

t |2
}
E

{∣∣∣tr
(
ADrRAH

)∣∣∣
2
}
=O(N). (87)

where the equality follows from plugging in the ex-

pressions for Φ and Ψ and noting that the terms

|d+ ηUE
t |2tr(ARAH), tr(ASAH), and σ2

BStr(AAH) can-

cel out. The inequality follows again from the rule

|a + b|q ≤ 2q−1(|a|q + |b|q). The O(N)-scaling fol-

lows since the first term in (87) is upper bounded

by (pUEκBS
r )2tr(ARdiagA

HARdiagA
H) = O(N) using

Lemma 6 and some algebra, while E{|tr(ADrRAH)|2} ≤
‖RAHA‖22E{|tr(Dr)|2} = O(N) using Lemma 5. The

expression (83) now follows from combining (85)–(87).

Finally, the expression (84) is proved as

E

{∣∣∣‖ĥ‖2 −
√
tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

(88)

≤ E





∣∣∣‖ĥ‖22 − tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2

∣∣∣‖ĥ‖2 +
√
tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2





≤
E

{∣∣∣‖ĥ‖22 − tr
(
A(|d+ηUE

t |2R+Ψ)AH
)∣∣∣

2
}

tr
(
AΨAH

) = O(1)

where the first inequality follows from the rule (a − b)(a +
b) = a2 − b2 and the second inequality is due to removal

of non-zero terms from the denominator. The numerator

scales as O(N) and the denominator scales at least linearly

with N because tr
(
AΨAH

)
≥ λmin(Ψ)tr

(
AAH

)
≥

pUEλmin(Ψ)λmax(Z̄)tr
(
RRH

)
, where tr

(
R
)

grows lin-

early with N (by assumption). Here, λmax(·) and λmin(·)
denotes the largest and smallest eigenvalues of a matrix,

respectively. This shows that (84) is bounded and finalizes

the proof.

Lemma 10. For the estimated channel ĥ in (9) it holds that

E

{
|1+d−1ηUE

t |k
‖ĥ‖22

}
≤ 2k + 2k

(
k
2

)
!(κUE

t )
k
2

λ+min(B)(NB−1)
=O(N−1)

(89)

E

{
|1+d−1ηUE

t |k
‖ĥ‖42

}
≤ 2k + 2k

(
k
2

)
!(κUE

t )
k
2

λ+min(B)2(NB−1)(NB−2)
=O(N−2)

(90)

for any even integer k, where λ+min(B) > 0 denotes the

smallest non-zero eigenvalue of B = σ2
BSAAH and NB =

rank(B).

Proof: Using the conditional distribution of the channel

estimate in (76), it holds for any integer q > 0 that

E

{
|1 + d−1ηUE

t |k
‖ĥ‖2q2

}
= E

{
E

{
|1 + d−1ηUE

t |k
‖ĥ‖2q2

∣∣∣∣η
UE
t ,Dr

}}

≤ E

{
2k(1 + |d−1ηUE

t |k)
λ+min(σ

2
BSAAH)q

}
E

{
1

‖UH
Bv‖2q2

}
(91)

where the inequality follows from ‖ĥ‖22 = vHA(Φ + S +
σ2
BSI)A

Hv ≥ σ2
BSv

HAAHv ≥ λ+min(σ
2
BSAAH)‖UH

Bv‖22
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where v ∼ CN (0, I) and UB ∈ C
N×NB is an orthogonal ba-

sis of the span of AAH (note that this matrix is generally rank-

deficient). The expectations were separated since ‖UH
Bv‖22 is

independent of the smallest non-zero eigenvalue. Furthermore,

the rule |a+b|q ≤ 2q(|a|q+|b|q) from Hölder’s inequality was

applied on |1 + d−1ηUE
t |k. Note that UH

Bv ∼ CN (0, I) with

a dimension reduced from N to NB .

The final result in (89)–(90) follows from E{|d−1ηUE
t |k} =(

k
2

)
!(κUE

t )
k
2 and that [72, Lemma 2.10] with m = 1 and

n = NB gives

E

{
1

‖UH
Bv‖2q2

}
=

{
1

NB−1 , if q = 1,
1

(NB−1)(NB−2) , if q = 2,
(92)

and that NB scales linearly with N (see Section II).

APPENDIX C

COLLECTION OF PROOFS

A. Proof of Lemma 1

The DL capacity in (20) is upper bounded as

C
DL ≤ TDL

data

Tcoher
E

{
max

w(h) : ‖w‖2=1
log2(1 + SINR(w))

}
(93)

where

SINR(w) =
|hTw|2

κBS
t

N∑
i=1

|hiwi|2 + κUE
r |hTw|2 + σ2

UE

pBS

(94)

by assuming that the interference part of n is somehow

canceled, perfect CSI is available, and exploiting the corre-

sponding optimality of single-stream Gaussian signaling [2],

[6]. We can write (94) as

SINR(w) =
wHh∗hTw

wH
(
κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I
)
w

(95)

by utilizing wHw = 1. Since the logarithm is a monotonically

increasing function, the maximization in (93) can be applied

onto SINR(w). Using (95), this optimization is a generalized

Rayleigh quotient problem and thus solved by

w =
(κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I)
−1h∗

∥∥(κBS
t D|h|2 + κUE

r h∗hT +
σ2
UE

pBS I
)−1

h∗
∥∥
2

(96)

which is equivalent to (24) by using Lemma 2. The DL

capacity bound in (22) follows from plugging (96) into (95)

(we also took the complex conjugate of the real-valued SINR

expression to make it more consistent with the UL).

The UL capacity bound in (23) follows from [6] and by

assuming that the interference part of ν is somehow canceled.

We note that the uplink SINR with a receive combining vector

w is
wHhhHw

wH
(
κUE
t hhH + κBS

r D|h|2 +
σ2
BS

pUE I
)
w
. (97)

The receiver combining vector in (25) maximizes (97) and

achieves the upper bound in (23).

B. Proof of Theorem 2

The DL capacity bound in (22) can be rewritten as

TDL
data

Tcoher
E



log2


1 +

hH
(
κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h

1 + κUE
r hH

(
κBS
t D|h|2 +

σ2
UE

pBS I
)−1

h







(98)

using Lemma 2. This expression has the structure m(ψ) =

log2(1 + ψ
1+κUE

r ψ ) where ψ = hH(κBS
t D|h|2 +

σ2
UE

pBS I)
−1h.

Since m(ψ) is a concave function of ψ, we apply Jensen’s

inequality to achieve a new upper bound

C
DL ≤ TDL

data

Tcoher
E {m(ψ)} ≤ TDL

data

Tcoher
m(E {ψ}). (99)

The upper bound in (26) follows from evaluating E {ψ} as

E {ψ} = E

{
hH(κBS

t D|h|2 +
σ2
UE

pBS
I)−1h

}

=

N∑

i=1

E





|hi|2

κBS
t |hi|2 + σ2

UE

pBS



 = GDL

(100)

where the expression for GDL is obtained from Lemma 3 using

a = κBS
t and b =

σ2
UE

pBS .

The closed-form upper bound on the UL capacity in (27) is

derived analogously to the DL capacity bound.

C. Proof of Theorem 4

We introduce the notation
√
tr(R−C)ϕ = ϑ√

γ where

ϑ = (1 + d−1ηUE
t )tr(R−C) (101)

γ = tr
(
A(|d+ ηUE

t |2R+Ψ)AH
)
. (102)

Starting with the equivalence in (38), we use the rule a2 −
b2 = (a+ b)(a− b) to obtain
∣∣∣∣∣∣

∣∣∣∣∣E
{
hH ĥ

‖ĥ‖2

}∣∣∣∣∣

2

−
∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣
2
∣∣∣∣∣∣

=

∣∣∣∣∣E
{
hH ĥ

‖ĥ‖2
− ϑ√

γ

}∣∣∣∣∣

∣∣∣∣∣E
{
hH ĥ

‖ĥ‖2
+

ϑ√
γ

}∣∣∣∣∣

≤ E

{∣∣∣∣∣
hH ĥ

‖ĥ‖2
− ϑ√

γ

∣∣∣∣∣

}(∣∣∣∣∣E
{
hH ĥ

‖ĥ‖2

}∣∣∣∣∣+
∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣

)
.

(103)

In order to prove the first part of the theorem, we must

show that right-hand side of (103) behaves as O(
√
N). Using

Cauchy-Schwartz inequality and that γ ≥ tr(AΨAH), we

have∣∣∣∣∣E
{
hH ĥ

‖ĥ‖2

}∣∣∣∣∣+
∣∣∣∣E
{
ϑ√
γ

}∣∣∣∣

≤ E{‖h‖2}+

∣∣∣∣∣∣
E





ϑ√
tr
(
AΨAH

)





∣∣∣∣∣∣
= O(

√
N)

(104)

where E{‖h‖2} = O(
√
N) and the second term is bounded

in the same way since E{ϑ} = tr(R − C) = O(N)
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and tr
(
AΨAH

)
grows at least linearly with N (see the

proof of Lemma 9). Hence, it remains to prove that the

E

{∣∣∣hH ĥ/‖ĥ‖2 − ϑ/
√
γ
∣∣∣
}

= O(1). To this end, we expand

the expression using Lemma 4:

E

{∣∣∣∣∣
hH ĥ

‖ĥ‖2
− ϑ√

γ

∣∣∣∣∣

}
≤ E





∣∣∣hH ĥ− ϑ
∣∣∣

‖ĥ‖2





+ tr(R−C)E




|1 + d−1ηUE

t |
∣∣∣‖ĥ‖2−√

γ
∣∣∣

‖ĥ‖2√γ



 .

(105)

The first term in (105) is asymptotically bounded since

E

{
|hH ĥ− ϑ|

‖ĥ‖2

}
≤

√√√√√√√
E

{
|hH ĥ−ϑ|2

}

︸ ︷︷ ︸
(a)
=O(N)

E

{
1

‖ĥ‖22

}

︸ ︷︷ ︸
(b)
=O(N−1)

= O (1)

(106)

where the expectation of the numerator and denominator are

separated using Hölder’s inequality, (a) follows from Lemma

8, and (b) from Lemma 10 with k = 0. The second term of

(105) is upper bounded by

tr(R−C)︸ ︷︷ ︸
=O(N)

√√√√E

{
|1 + d−1ηUE

t |2
‖ĥ‖22γ

}

︸ ︷︷ ︸
=O(N−1)

√
E

{∣∣∣‖ĥ‖2 −
√
γ
∣∣∣
2
}

︸ ︷︷ ︸
=O(1)

= O(1) (107)

where Hölder’s inequality was used to separate the expecta-

tions. The scaling of the first square root follows from Lemma

10 and that 1
γ ≤ 1

tr(AΨAH)
= O(N−1) for any realization

of ηUE
t . The scaling of the second square root follows from

Lemma 9. By plugging these scaling expressions into (103),

we have proved (38).

Similarly, the equivalence in (39) follows if

E

{∣∣∣∣∣
|hH ĥ|2
‖ĥ‖22

− |1 + d−1ηUE
t |2(tr(R−C))2

γ

∣∣∣∣∣

}

≤
(
tr(R−C)

)2
E





|1 + d−1ηUE
t |2

∣∣∣‖ĥ‖22 − γ
∣∣∣

‖ĥ‖22γ





+ E





∣∣∣|hH ĥ|2−|1 + d−1ηUE
t |2(tr(R−C))2

∣∣∣
‖ĥ‖22





(108)

scales as O(
√
N), where the inequality follows from Lemma

4. By applying Hölder’s inequality on the first term, we obtain

(tr(R−C))2

tr(AΨAH)︸ ︷︷ ︸
(a)
=O(N)

√√√√√√√
E

{
|1 + d−1ηUE

t |4
‖ĥ‖42

}

︸ ︷︷ ︸
(b)
=O(N−2)

√√√√√√
E

{∣∣∣‖ĥ‖22 − γ
∣∣∣
2
}

︸ ︷︷ ︸
(c)
=O(N)

= O
(√

N
)

(109)

where (a) follows from 1
γ ≤ 1

tr(AΨAH)
= O(N−1) which is

a deterministic upper bound, (b) is characterized by Lemma

10, and (c) follows from Lemma 9. The second term behaves

as√√√√√√
E

{∣∣∣|hH ĥ| − |1 + d−1ηUE
t |tr(R−C)

∣∣∣
2
}

︸ ︷︷ ︸
(d)
=O(N)

×

√√√√√√√
E

{
2|hH ĥ|2
‖ĥ‖42

}

︸ ︷︷ ︸
(e)
=O(1)

+E

{
2|1 + d−1ηUE

t |2(tr(R−C))2

‖ĥ‖42

}

︸ ︷︷ ︸
(f)
=O(1)

= O(
√
N) (110)

by using the rule a2 − b2 = (a + b)(a − b) and Hölder’s in-

equality. (d) is characterized by Lemma 8 and (f) by Lemma

10. Moreover, (e) follows since
|hH ĥ|2
‖ĥ‖4

2

≤ ‖h‖2
2

‖ĥ‖2
2

= O(1) by

Cauchy-Schwartz inequality and that ‖h‖22, ‖ĥ‖22 have same

asymptotic scaling. By plugging these scaling expressions into

(108), we have proved (39).

Finally, the equivalence in (40) follows since
∣∣∣∣∣

N∑

i=1

E{|hi|2|vi|2} − 0

∣∣∣∣∣
(a)
=

∣∣∣∣∣E
{
‖ĥ‖24
‖ĥ‖22

N∑

i=1

|hi|2
|ĥi|2
‖ĥ‖24

}∣∣∣∣∣

(b)

≤

∣∣∣∣∣∣
E





‖ĥ‖24
‖ĥ‖22

√√√√
N∑

i=1

|hi|4
√√√√

N∑

i=1

|ĥi|4
‖ĥ‖44





∣∣∣∣∣∣

=

∣∣∣∣∣E
{
‖ĥ‖24
‖ĥ‖22

‖h‖24

}∣∣∣∣∣

(c)

≤

√√√√
√

E {‖h‖84}E
{
‖ĥ‖84

}
E

{
1

‖ĥ‖42

}
(d)
= O(1) (111)

where (a) follows from |vi|2 = |ĥi|2
‖ĥ‖2

2

and by inserting

the L4-norms ‖ĥ‖24. The reason for this is that the vector

[|ĥ1|2 . . . |ĥN |2]T /‖ĥ‖24 now has unit L2-norm, thus we ap-

ply Cauchy-Schwarz inequality in (b) to bound the sum by

‖h‖24. Next, (c) is obtained by applying Hölder’s inequality

twice and (d) follows from that E{‖h‖84} = O(N2) and

E{‖ĥ‖84} = O(N2) and E

{
1

‖ĥ‖4
2

}
= O(N−2) from Lemma

10.

D. Proof of Theorem 5

The bounds in this theorem are derived using the capacity

lower bounds in Corollaries 4 and 5. We begin with the DL

and note that the arguments of the expectations in (42) have

deterministic upper bounds since

|ϕ| ≤
√

tr(R−C)

pUEtr(ARAH)
(112)

for any realization of ηUE
t . The dominated convergence the-

orem implies that we can take the limit N → ∞ inside the

expectations.21 Next, we observe that scaling the pilot power

pUE proportionally to 1/N tUE for some tUE > 0 means that

21To be strict, we first should multiply all terms in (42) by pUE.
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N tUEpUE → B as N → ∞ for some 0 < B <∞. Therefore,

we have

N tUEtr(R−C) = N tUEpUEtr
(
RZ̄−1R

)

→ Btr(R(S+ σ2
BSI)

−1R), (113)

N tUEtr(A(|d+ ηUE
t |2R+Ψ)AH)

→ Btr(R(S+ σ2
BSI)

−1R), (114)

as N → ∞. Using (113) and (114) and the dominated

convergence theorem we obtain

lim
N→∞

|E{ϕ}|2 (115)

=

∣∣∣∣E
{
(1+d−1ηUE

t )
√
Btr (R(S+ σ2

BSI)
−1R)√

Btr (R(S+ σ2
BSI)

−1R)

}∣∣∣∣
2

= 1

lim
N→∞

E{|ϕ|2} (116)

= E

{ |1+d−1ηUE
t |2Btr

(
R(S+ σ2

BSI)
−1R

)

Btr (R(S+ σ2
BSI)

−1R)

}
= 1 + κUE

t

which holds for any tUE > 0. The goal is to make the

interference term
E{IUE

H }
pBStr(R−C)

=
E{IUE

H }
pUEpBStr(RZ̄−1R)

vanish

asymptotically under the assumption that E{IUE
H } = O(1),

which is achieved if the denominator grows to infinity with

N . We note that tr(RZ̄−1R) ≥ ‖R‖2

‖Z̄‖2
scales at least linearly

with N . Hence, the product pUEpBS must reduce at a slower

pace than linear with N , which implies tBS+tUE = tsum < 1.

Finally, we need the O(1/
√
N) terms in (51) to still vanish

as N → ∞. Some careful but lengthy algebra reveals that

the O(N) properties in Lemmas 9–10 become O(N1−tUE).
The term O(1/

√
N) in the numerator of (51) becomes

O(1/N
1
2−

tUE
2 ) while the O(1/

√
N) in the denominator be-

comes O(1/N
1
2−tUE). These terms vanish if tUE <

1
2 , which

finishes the proof for the DL.

The proof for the UL is analogous since the uplink capacity

bound in (44) has the same structure and contains the same

expectations as the downlink capacity.

E. Proof of Corollary 7

Recall from the proof of Theorem 5 that the dominated

convergence theorem can be applied, which means that we

can take the limit N → ∞ inside the expectations in the DL

capacity bound of (42) and UL capacity bound of (44). If κBS
t

and κBS
r grow with N , we obtain

lim
N→∞

|E{ϕ}|2 =

∣∣∣∣∣E
{
(1 + d−1ηUE

t )
√
tr(RR−1

diagR)
√
tr(RR−1

diagR)

}∣∣∣∣∣

2

= 1 (117)

lim
N→∞

E{|ϕ|2} = E

{ |1 + d−1ηUE
t |2tr(RR−1

diagR)

tr(RR−1
diagR)

}

= 1 + κUE
t . (118)

In the DL, we further note that

κBS
t

N∑
i=1

E{|hi|2|vi|2}

tr(R−C)
= O(

κBS
t κBS

r

N
) (119)

since κBS
r tr(R − C) → tr(RR−1

diagR) = O(N) as N →
∞. If this term should vanish asymptotically, it is sufficient

that
κBS
t κBS

r

N → 0 which corresponds to the condition in the

corollary. The corresponding condition for the UL is obtained

analogously and gives
(κBS

r )2

N → 0.

Finally, we note that the noise terms (for n ≤ 1
2 ) and

the O( 1√
N
) terms in (42) and (44) all behave as O(

κBS
r√
N
) or

smaller, after some straightforward but lengthy algebra. These

terms thus vanish under the condition τr <
1
2 stated in the

corollary.

F. Proof of Theorem 6

The interference expressions in (61) are proved similar to

Theorem 4. For the case l ∈ U‖ we have

E

{∣∣∣∣∣
|hHl ĥ|2
‖ĥ‖22

− pUEa2l
γ

∣∣∣∣∣

}
≤ E





∣∣∣|hHl ĥ|2 − pUEa2l

∣∣∣
‖ĥ‖22





+ E




pUEa2l

∣∣∣‖ĥ‖22 − γ
∣∣∣

‖ĥ‖22γ



 = O(

√
N)

(120)

where γ = tr
(
A(|d+ ηUE

t |2R+Ψ)AH
)

and al = tr(ARl).
This follows since the first term in (120) equals

E





∣∣∣|hHl ĥ| −
√
pUEal

∣∣∣
∣∣∣|hHl ĥ|+

√
pUEal

∣∣∣
‖ĥ‖22





≤
√
E

{∣∣∣|hHl ĥ| −
√
pUEal

∣∣∣
2
}

︸ ︷︷ ︸
=O(

√
N)

√√√√E

{
‖hl‖22
‖ĥ‖22

+
pUEa2l
‖ĥ‖42

}

︸ ︷︷ ︸
=O(1)

= O(
√
N) (121)

by using Hölder’s inequality, Lemma 6, Cauchy-Schwartz

inequality, and Lemma 10. The second term in (120) is

also upper bounded by O(
√
N) by using Hölder’s inequality

and that al = O(N), E
{∣∣‖ĥ‖22 − γ

∣∣2} = O(N) from

Lemma 9, E{‖ĥ‖−4
2 } = O(N−2) from Lemma 10, and

1
γ ≤ 1

tr(AΨAH)
= O(N−1).

Next, the case l ∈ U⊥ in (61) follows from

E
{
|hHl vUL|2

}
= E

{
(vUL)HRlv

UL
}

≤ ‖Rl‖2 = O(1)
since hl and vUL are independent.

Finally, we note that the noise term in the denominator of

(44) would be

E{vHQHv}
pUEtr(R−C)

=
∑

l∈U‖

pUE
E
{
|hHl v|2

}

pUEtr(R−C)
+O

(√
1

N

)

(122)

where the first term is equal to (62) by exploiting (61) and

tr(R−C) =
√
pUEtr(AR).
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