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Abstract

A new state-of-the-art multi-cell minimummean square error (M-MMSE) scheme is proposed for massive
multiple-input-multiple-output (MIMO) networks, which includes an uplink MMSE detector and a downlink MMSE
precoder. Contrary to conventional single-cell schemes that suppress interference using only channel estimates for
intra-cell users, our scheme shows the optimal way to suppress both intra-cell and inter-cell interference
instantaneously by fully utilizing the available pilot resources. Specifically, let K and B denote the number of users per
cell and the number of orthogonal pilot sequences in the network, respectively, where β = B/K is the pilot reuse
factor. Our scheme utilizes all B channel directions that can be estimated locally at each base station, to actively
suppress both intra-cell and inter-cell interference. Our scheme is practical and general, since power control,
imperfect channel estimation, and arbitrary pilot allocation are all accounted for. Simulations show that significant
spectral efficiency (SE) gains are obtained over the conventional single-cell MMSE scheme and the multi-cell
zero-forcing (ZF) scheme. Furthermore, large-scale approximations of the uplink and downlink
signal-to-interference-and-noise ratios (SINRs) are derived, which are tight in the large-system limit. These
approximations are easy to compute and very accurate even for small system dimensions. Using these SINR
approximations, a low-complexity power control algorithm is further proposed to maximize the sum SE.

Keywords: Massive MIMO, Multi-cell MMSE, Large-scale SINR approximations, Power control

1 Introduction
Multi-user multiple-input-multiple-output (MU-MIMO)

communication has drawn considerable interest in recent

years. By scheduling multiple users on the same time-

frequency resource, the spatial degrees of freedom offered

by multiple antennas can be exploited to focus signals

on intended receivers, reduce interference, and thereby

increase the system throughput [1–6]. These features

motivate that MU-MIMO technology is incorporated

into recent and evolving wireless standards like 4G LTE-

Advanced [7].

Massive MU-MIMO is an emerging 5G technology that

scales up MU-MIMO by orders of magnitude [8, 9]. The

idea is to employ an array comprising a hundred, or more,
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antennas at the base station (BS) and serve tens of users

simultaneously per cell. Compared to the contemporary

cellular systems, the system throughput can be drastically

increased without consuming extra bandwidth [7–9]. The

uplink and downlink transmit power can also be reduced

by an order of magnitude since the phase-coherent pro-

cessing provides a comparable array gain [10]. In the

limit of an infinite number of antennas, intra-cell interfer-

ence and uncorrelated noise can be averaged out by using

simple coherent precoders and detectors, and the main

performance limitations are pilot contamination and the

distortions from hardware impairments [8, 11].

In the uplink reception and downlink transmission, the

most common processing schemes are matched filtering

(MF), zero-forcing (ZF), and minimummean square error

(MMSE) processing, where the latter is referred to as

single-cell MMSE (S-MMSE) in this work.1 A key char-
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acteristic of these schemes is that the BS only utilizes

the instantaneous realizations of the channels to its own

intra-cell users when creating the precoders/detectors,

while users in other cells are either neglected or only

considered based on their long-term statistics [12].

This is why we refer to MF, ZF, and S-MMSE as single-cell

schemes. In the coordinated multipoint (CoMP) literature,

there also exist multi-cell schemes that exploit the instan-

taneous channel realizations of the users in all cell; see [13]

for an overview. However, there is no scalable solution for

estimating all these channel realizations in a large system.

Massive MIMO addresses the channel estimation issue

by operating in time-division duplex (TDD) mode and

requiring only uplink pilots for channel estimation.

Hence, the pilot overhead scales linearly with the num-

ber of users, instead of the number of BS antennas, which

allows for adding additional antennas without affecting

the pilot overhead [14]. The BS first listens to the uplink

pilot signaling from its own cell, estimates the K intra-

cell channels, and then constructs its precoders/detectors

based on these channel estimates to mitigate the intra-

cell interference [12, 15–17]. In principle, the BS can also

estimate and utilize the channels from users in neighbor-

ing cells, but the channel estimates can be very unreliable

due to pilot contamination. As shown in [17], the gains

are marginal in the baseline scenario with uncorrelated

Rayleigh fading channels and every pilot being reused in

every cell, and a similar conclusion is drawn in [18].

In this work, we explore multi-cell scenarios where the

pilot signals are not reused in every cell. Let B denote

the number of orthogonal pilot sequences and K denote

the number of users in each cell. The pilot reuse factor

is β = B/K ≥ 1, which implies that 1/β of the cells

use a particular pilot sequence. In this case, a BS can

estimate the channels to inter-cell users more reliably by

utilizing the B − K pilots that are not used in the own

cell. In our previous work [19], we used these estimates to

propose a multi-cell ZF detector (referred to as full-pilot

ZF detector in [19]) to cancel interference from neigh-

boring cells. Unfortunately, the gains over the single-cell

schemes were marginal, partly due to the loss in array gain

of B in multi-cell ZF, instead of K as with single-cell ZF.

Therefore, in this work, we derive and analyze the uplink

multi-cell MMSE (M-MMSE) detector and downlink M-

MMSE precoder instead, under arbitrary pilot reuse and

pilot allocation. This is a generalization of the M-MMSE

schemes considered in [17] and [20] for the special case of

B = K and in [21] for the idealized case of perfect channel

state information (CSI).

The main contributions of our paper are:

• A new state-of-the-art M-MMSE scheme is

proposed, which includes an uplink detector and a

downlink precoder. The novelty is that all B pilots are

exploited at each BS to actively suppress both

intra-cell and inter-cell interference. It brings

significant SE gains over conventional single-cell

schemes which dominate the MIMO literature.

Moreover, we prove that the computational

complexity of the scheme is scalable since the KL
channels, in an L -cell setup, are fully represented by

only B channel direction estimates. The proposed

scheme is general since it accounts for imperfect

channel estimation, power control, and arbitrary pilot

allocation.
• Large-scale approximations of the uplink and

downlink signal-to-interference-and-noise ratios

(SINRs) for the proposed M-MMSE scheme are

derived, which are asymptotically tight in the

large-system limit. The approximations are very

accurate even for small system dimensions and are

easy to compute, which enables performance analysis

and optimization without the need for heavy

Monte-Carlo simulations.
• By utilizing the SINR approximations, a

low-complexity power control algorithm for sum SE

maximization is proposed. Since the SINR

approximations depend only on long-term statistics,

the computation complexity can be spread over time.

Compared to equal power allocation, the proposed

algorithm significantly improves the sum SE and

provides good user fairness.

The paper is organized as follows: In Section 2,

we describe the system model and the construction of

the M-MMSE scheme. Large-scale approximations of the

uplink and downlink SINRs are derived in Section 3.

A power control algorithm is proposed in Section 4.

Simulation results are provided in Section 5 before we

conclude the paper in Section 6.

Notation: Boldface lower and upper case symbols rep-

resent vectors and matrices, respectively. The trace,

transpose, conjugate, Hermitian transpose, and matrix

inverse operators are denoted by tr(·), (·)T , (·)∗, (·)H ,
and (·)−1, respectively. The function diag(·) constructs a
diagonal matrix by selecting the diagonal elements of a

matrix.

2 Systemmodel and transceiver design
We consider a synchronous massive MIMO cellu-

lar network with multiple cells. Each cell is assigned

an index in the cell set L, and the cardinality |L|
is the number of cells. The BS in each cell is equipped

with an array of M antennas and serves K single-antenna

users within each coherence block. We assume that each

time-frequency coherence block consists of Tc seconds

and Wc Hz, such that Tc is smaller than the coherence

time of all users and Wc is smaller than the coherence
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bandwidth of all users. This leaves room for S = Tc ×
Wc transmission symbols per block, and the channels

of all users remain constant within each block. Let hjlk
denote the channel response from user k in cell l to

BS j within a block, and assume that it is a realization

from a zero-mean circularly symmetric complex Gaussian

distribution:

hjlk ∼ CN
(

0, dj (zlk) IM
)

. (1)

The vector zlk ∈ R
2 is the geographical position

of user k in cell l, and dj(z) is an arbitrary func-

tion that accounts for the channel attenuation (e.g.,

path loss and shadowing) between BS j and any user

position z. Since the user position changes relatively

slowly, dj (zlk) is assumed to be known at BS j for all

l and all k.

We consider a TDD protocol in this paper, where the

downlink channels are estimated by uplink pilot signal-

ing by exploiting channel reciprocity.2 In TDDmode, each

transmission block is divided into two phases: 1) uplink

channel estimation phase, where each BS acquires CSI

from uplink pilot signaling which occupies B out of S

symbols in each block, and 2) uplink and downlink pay-

load data transmission phase, where each BS processes

the received uplink signal and the to-be-transmitted

downlink signals using the estimated CSI. Let ζ ul and

ζ dl denote the fixed fractions allocated for uplink and

downlink payload data transmission, respectively. These

fractions can be selected arbitrarily under the conditions

that ζ ul + ζ dl = 1 and that ζ ul(S − B) and ζ dl(S − B)

are positive integers. The uplink channel estimation is

first discussed to lay a foundation for the transceiver

design.

2.1 Uplink channel estimation

The B pilot symbols in a coherence block are used for

transmitting B-length pilot sequences. We consider a set

of B orthogonal sequences with unit-modulus entries,

denoted as v1, . . . , vB ∈ C
B. These sequences could, for

instance, be selected as the columns of a discrete Fourier

transform (DFT) matrix. By gathering the sequences in a

matrix V = [v1, . . . , vB] ∈ C
B×B, our orthogonality and

scaling assumptions lead to VHV = BIB.

Arbitrary pilot allocation is considered in this work,

with the only requirement of B ≥ K . The param-

eter β = B/K ≥ 1 is called the pilot reuse fac-

tor. If the pilots are allocated wisely in the network,

a larger β brings a lower level of interference during

the pilot transmission, also known as pilot contamina-

tion. Let ilk ∈ {1, . . . ,B} denote the index of the pilot

sequence used by user k in cell l, which implies that

the user sends the pilot sequence vilk (i.e., the ilkth

column of V).

In the uplink channel estimation phase, the collective

received signal at BS j is denoted as Yj ∈ C
M×B. Then, Yj

can be expressed as

Yj =
∑

l∈L

K
∑

k=1

√
plkhjlkv

T
ilk

+ Nj, (2)

where hjlk is the channel response defined in (1), plk ≥ 0

is the transmit power for the pilot of user k in cell l, and

the additive white Gaussian noise (AWGN) term Nj ∈
C
M×B contains independent and identically distributed

(iid) elements that are distributed as CN (0, σ 2).

Based on the received signal in (2), BS j can compute the

MMSE estimate of the uplink channel hjlk from user k in

cell l as [19]

ĥjlk = √
plkdj(zlk)Yj

(

�∗
j

)−1
v∗
ilk
, (3)

where� j =
∑

ℓ∈L

K
∑

m=1
pℓmdj(zℓm)viℓmv

H
iℓm

+σ 2IB. As pointed

out in [19], the part Yj

(

�∗
j

)−1
v∗
ilk

in (3) depends only on

which pilot sequence that user k in cell l uses and is oth-

erwise the same for all users. Consequently, users who use

the same pilot sequence have parallel estimated channels

at each BS, while only the amplitudes of their estimates

are different (due to the factor
√
plkdj(zlk) in (3)). To show

this explicitly, define theM × Bmatrix

ĤV ,j =
[

ĥV ,j1, ..., ĥV ,jB

]

= Yj

(

�∗
j

)−1
[

v∗
1, ..., v

∗
B

]

, (4)

which allows the channel estimate in (3) to be reformu-

lated as

ĥjlk = √
plkdj (zlk) ĤV ,jeilk , (5)

where ei denotes the ith column of the identity matrix IB.

The property that users with the same pilot have parallel

estimated channels is utilized to derive and analyze new

SE expressions in the sequel.

Notice that the estimate ĥjlk is a zero-mean com-

plex Gaussian vector and its covariance matrix is

E

{

ĥjlkĥ
H
jlk

}

= plkdj(zlk)
2φ̃jilk IM, where

φ̃jilk = B
∑

ℓ∈L
∑K

m=1 pℓmdj (zℓm)vHilkviℓm + σ 2
. (6)

This is straightforward to prove by utilizing the fact

that3

vHilk�
−1
j =

φ̃jilk

B
vHilk . (7)

According to the orthogonality principle of the MMSE

estimator, the estimation error h̃jlk = hjlk − ĥjlk is inde-

pendent of ĥjlk and has zero mean, and the covariance

matrix
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Cjlk = E

{

h̃jlkh̃
H
jlk

}

= dj (zlk)
(

1 − plkdj (zlk) φ̃jilk

)

IM. (8)

Finally, notice that also ĥV ,ji is a zero-mean com-

plex Gaussian vector and its covariance matrix is

E

{

ĥV ,jiĥ
H
V ,ji

}

= φ̃jiIM.

2.2 Uplink M-MMSE detector

Based on the channel estimates, we will now derive the

optimal M-MMSE detector in the uplink. After the uplink

channel estimation, during the uplink payload data trans-

mission phase, the received signal yj ∈ C
M×1 at BS j is

yj =
∑

l∈L

K
∑

k=1

√
τlkhjlkxlk + nj, (9)

where τlk is the transmit power of the payload data from

user k in cell l, xlk ∼ CN (0, 1) is the transmitted sig-

nal from a Gaussian codebook, and nj ∼ CN (0, σ 2IM) is

AWGN. Denoting the linear detector used by BS j for an

arbitrary user k in its cell as gjk ∈ C
M, the detected signal

x̂jk is

x̂jk = gHjkyj = √τjkg
H
jkhjjkxjk

+ gHjk

∑

(l,m) �=(j,k)

√
τlmhjlmxlm + gHjknj.

(10)

By using (10), the following achievable ergodic SE can

be achieved for this user [12]:

Rul
jk = ζ ul

(

1 − B

S

)

E{
ĥ(j)

}

{

log2

(

1 + ηuljk

)}

, (11)

where E{ĥ(j)} denotes the expectation with respect to all

the channel estimates obtained at BS j, the instantaneous

effective SINR ηuljk is

ηuljk =
τjkg

H
jk ĥjjk ĥ

H
jjkgjk

gHjk

(

τjkCjjk +
∑

(l,m)�=(j,k)
τlm

(

ĥjlmĥ
H
jlm + Cjlm

)

+ σ 2IM

)

gjk

.

(12)

Recall that Cjjk and Cjlk are estimation error covariance

matrices, defined in (8). Note that Rul
jk is a lower bound on

the uplink ergodic capacity.

The uplink SINR in (12) has the form of a generalized

Rayleigh quotient. Therefore, a new M-MMSE detector

can be derived to maximize this instantaneous SINR for

given channel estimates:

gM−MMSE
jk =

(

ĤV ,j�jĤ
H
V ,j +

(

σ 2 + ϕj

)

IM

)−1
ĥjjk ,

(13)

where �j =
∑

l∈L

K
∑

k=1

τlkplkd
2
j (zlk)eilke

H
ilk

∈ C
B×B is a diag-

onal matrix, and its ith diagonal element λji depends on

the large-scale fading, the pilot and payload power of the

users that use the ith pilot sequence in V . The scalar ϕj is

defined as

ϕj =
∑

l∈L

K
∑

k=1

τlkdj(zlk)
(

1 − plkdj(zlk)φ̃jilk

)

, (14)

where φ̃jilk is defined in (6). As the name suggests,

τjkg
M−MMSE
jk also minimizes the mean square error (MSE)

in estimating xjk [22], E
{

∣

∣x̂jk − xjk
∣

∣

2 ∣
∣ĥ(j)

}

.

Remark 1 To elaborate the advantages of our M-MMSE

scheme, we compare it with the related S-MMSE detector

from [12, 15, 16], which is defined as

gS−MMSE
jk =

(

K
∑

m=1

τjmĥjjmĥ
H
jjm + Zj + σ 2IM

)−1

ĥjjk .

(15)

This detector only contains channel estimates from intra-

cell users, which is why we refer to it as a single-cell scheme.

The matrix Zj ∈ C
M×M is zero in some prior works and

otherwise equal to the covariance matrix

Zj = E

⎧

⎨

⎩

K
∑

m=1

τjmh̃jjmh̃
H
jjm +

∑

l �=j

K
∑

m=1

τjmhjlmh
H
jlm

⎫

⎬

⎭

.

(16)

of the intra-cell estimation errors plus the inter-cell inter-

ference. When Zj in (16) is used, τjkg
S−MMSE
jk minimizes

the MSE E{|x̂jk − xjk|2
∣

∣ĥjj1, . . . , ĥjjK } under the assump-

tion that only estimates of the intra-cell channels are

available, but we stress that this is a limiting assumption

in multi-cell scenarios since also the inter-cell channels

can be estimated without any additional pilot overhead.

As we will show numerically in Section 5, the bene-

fit of the M-MMSE detector over S-MMSE grows with

β , since the estimates of the inter-cell channels then

improve, and this allows for more efficient interference

suppression.

Remark 2 The M-MMSE detection vector in (13)

involves the inversion of anM-dimensional matrix, but the

dimension can be substantially reduced by some matrix
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algebra. By gathering the K detection vectors in cell j in

matrix form, we notice that
[

gM−MMSE
j1 , . . . , gM−MMSE

jK

]

=
(

ĤV ,j�jĤ
H
V ,j +

(

σ 2 + ϕj

)

IM

)−1

× ĤV ,j

[

√

pj1dj
(

zj1
)

eij1 , . . . ,
√

pjKdj
(

zjK
)

eijK

]

= ĤV ,j

(

�jĤ
H
V ,jĤV ,j +

(

σ 2 + ϕj

)

IB

)−1

×
[

√

pj1dj
(

zj1
)

eij1 , . . . ,
√

pjKdj
(

zjK
)

eijK

]

,

(17)

by exploiting the fact that (C1C2 + I)−1C1 = C1(C2C1 +
I)−1 for any matrices C1,C1 of compatible dimensions.

Hence, only a B-dimensional matrix needs to be inverted

and only once per cell and not once per user. The compu-

tation of the M-MMSE detectors in a cell requires approx-

imately 3
2B

2M complex multiplications. This is greater

than with the S-MMSE detector, which after similar matrix

algebra requires the inversion of a K-dimensional matrix,

and thus, 32K
2M complex multiplications are required.4 In

summary, the increased complexity compared to S-MMSE

is about 3
2

(

β2 − 1
)

K2M complex multiplications. Since

in massive MIMO systems M ≫ K is often assumed, the

complexity increase is not a big issue when K is small or

moderate, particularly since the computational efficiency

of digital hardware grows rapidly and is not expected to

be a bottleneck in the future. One way to reduce the com-

plexity is to check which of the diagonal elements of �j are

below a certain threshold and put these values to zero, to

effectively reduce thematrix to be inverted in theM-MMSE

expression. This approximation can significantly reduce

the complexity if only a few of the B − K pilots that belong

exclusively to other cells are used by users that cause strong

interference. Note that theM-MMSE scheme can be seen as

a CoMP coordinated beamforming scheme, but since there

is no signaling between the BSs (BS j estimates ĤV ,j from

pilots), the M-MMSE scheme is fully scalable.

2.3 Downlink M-MMSE precoder

Next, we will propose a new M-MMSE precoder for the

downlink. During the downlink payload data transmis-

sion, the received signal at user k in cell j is

yjk =
∑

l∈L
hHljk

K
∑

m=1

√
̺lmwlmslm + njk , (18)

wherewlm ∈ C
M×1 is the precoder used by BS l for userm

in its cell, slm ∼ CN (0, 1) is the payload data symbol

for user m in cell l, ̺lm is the corresponding downlink

transmit power, and njk ∼ CN
(

0, σ 2
)

is AWGN.

Recently, an uplink-downlink duality formassiveMIMO

systems was established in [19] which proves that the

uplink SEs can be achieved also in the downlink if each

downlink precoder is a scaled version of the correspond-

ing uplink detector and the downlink transmit power is

selected properly. Since the M-MMSE detector proposed

in the Section 2.2 is the state-of-the-art uplink scheme, we

apply the same methodology for downlink precoding. The

downlink M-MMSE precoder is constructed as

wM−MMSE
jk =

gM−MMSE
jk
√

γjk
, (19)

where γjk = E

{

∥

∥

∥
gM−MMSE
jk

∥

∥

∥

2
}

normalizes the aver-

age transmit power for the user k in cell j to

E

{

∥

∥

∥

√
̺lmw

M−MMSE
jk slm

∥

∥

∥

2
}

= ̺lm.

In this paper, we use uplink pilots, but to limit the

pilot overhead, there are no downlink pilots and we

rely instead on channel hardening. Thus, the users do

not know their instantaneous channel realizations. How-

ever, they can learn their average equivalent channels,
√

̺jkE{h}
{

hHjjkwjk

}

, and the total interference variance.

Then, the received signal yjk in (18) can be rewritten as

yjk =√̺jkE{h}
{

hHjjkwjk

}

sjk +
∑

l∈L
hHljk

K
∑

m=1

√
̺lmwlmslm

−√̺jkE{h}
{

hHjjkwjk

}

sjk + njk .

(20)

Consequently, a downlink SE

Rdl
jk = ζ dl

(

1 − B

S

)

log2

(

1 + ηdljk

)

(21)

can be achieved for user k in cell l [12, 19], where ηdljk is

ηdljk =
̺jk

∣

∣

∣
E{h}
{

hHjjkwjk

}∣

∣

∣

2

∑

l∈L

K
∑

m=1
̺lmE{h}

{

∣

∣

∣
hHljkwlm

∣

∣

∣

2
}

− ̺jk

∣

∣

∣
E{h}
{

hHjjkwjk

}
∣

∣

∣

2
+ σ 2

.

(22)

This downlink SINR holds for any linear precoding

scheme, and we omit the superscript “M-MMSE” of wjk

for brevity. By treating
√

̺jkE{h}
{

hHjjkwjk

}

as the true

channel, and the last three term in (20) as uncorre-

lated Gaussian noise, the user applies semi-coherent sym-

bol detection and achieves the effective SINR in (22).5

Thus, Rdl
jk is a lower bound on the downlink ergodic

capacity.

By utilizing all the available estimated directions, theM-

MMSE precoder can suppress intra-cell interference and

also reduce the interference caused to other cells. Thus,

a higher SINR is expected by our precoder than con-

ventional single-cell precoders, at least if an appropriate

power control is applied [19]. In [20], the authors also
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proposed a M-MMSE precoder, but it does not account

for arbitrary or optimized pilot allocation. Moreover, no

closed-form performance expression is provided in [20],

which makes it cumbersome to analyze the performance

and optimize the power control.

Looking jointly at the uplink and downlink, the ergodic

achievable SE for user k in cell j is

Rjk =
(

1 − B

S

)(

ζ ul
E{

ĥ(j)

}

{

log2

(

1 + ηuljk

)}

+ζ dl log2

(

1 + ηdljk

)

)

.
(23)

3 Asymptotic analysis
In this section, performance analysis is conducted for the

proposedM-MMSE scheme. Since the uplink SINR in (12)

depends on the stochastic channel estimates in each

block, the uplink SE in (11) cannot be computed in closed

form. Therefore, a deterministic equivalent expression for

the SINR is computed instead which is tight in the large-

system limit. A large-scale approximation of the downlink

SINR is also provided. The large-system limit is consid-

ered, where M and K go to infinity while keeping K/M

finite and non-zero. In what follows, the notationM → ∞
refers to K, M → ∞ such that K/M → c ∈ (0,∞).

Hence, B/M → βc. The results should be understood in

the way that, for each set of system dimension parameters

M, K, and B, we provide large-scale approximative expres-

sions for the uplink SINR and downlink SINR, and the

expressions are tight asM, K, and B grow large. The main

feature is that they are deterministic and can be computed

efficiently without the need for time-consuming Monte

Carlo simulations. Almost sure convergence of a stochas-

tic sequence is denoted by
a.s.−−−−→

M→∞
, and −−−−→

M→∞
denotes

convergence of a deterministic sequence.

Before we continue with our performance analysis, a

useful theorem from large random matrix theory is first

recalled.

Theorem 1 ([23]) Let T = diag {t1, . . . , tB} ∈ R
B×B

be deterministic with tb ≥ 0 (b = 1, . . . ,B) and H ∈
C
M×B be random with independent column vectors hb ∼

CN
(

0, 1
M Ib
)

. Assume that B
M → βc ∈ (0,∞), then for any

ρ > 0,

1

M
tr
(

(

HTHH + ρIM
)−1
)

− mo(ρ)
a.s.−−−−→

M→∞
0, (24)

where mo(ρ) is the solution of the following equation:

mo(ρ) =
(

ρ + βc

B

B
∑

b=1

tb

1 + tbmo(ρ)

)−1

. (25)

Based on Theorem 1, we obtain the following

Theorem 2 which is useful in our analysis.

Theorem 2 Under the same conditions onT andH as in

Theorem 1, for any ρ > 0,

1

M
tr
(

(

HTHH + ρIM
)−1 (

HTHH + ρIM
)−1
)

− m
′
o(ρ)

a.s.−−−−→
M→∞

0,
(26)

where m
′
o(ρ) is defined as

m
′
o(ρ) = m2

o(ρ)

(

1 − m2
o(ρ)

βc

B

B
∑

b=1

tb

(1 + tbmo(ρ))2

)−1

,

(27)

and mo(ρ) is defined in Theorem 1.

3.1 Large-scale approximations of the SINRs with the

M-MMSE scheme

Next, we derive the deterministic equivalent η̄uljk of η
ul
jk with

the M-MMSE detector, and the large-scale approximation

η̄dljk of η
dl
jk with the M-MMSE precoder, such that

η̄uljk − ηuljk
a.s.−−−−→

M→∞
0, η̄dljk − ηdljk −−−−→

M→∞
0. (28)

Theorem 3 For the uplinkM-MMSE detector in (13), we

have η̄uljk − ηuljk
a.s.−−−−→

M→∞
0, where η̄uljk is given by

η̄uljk =
τjkpjkd

2
j

(

zjk
)

φ̃jijk

δ2j
ϑj

φ̃jijk

δ2j
ϑj

∑

(l,m)�=(j,k),ilm=ijk

τlmplmd
2
j (zlm) +

∑

ilm �=ijk

τlmdj(zlm)
μjlm

M + σ 2

M

,

(29)

where

1 δj = mo(ω) is given by Theorem 1 for ω = σ 2+ϕj
M and

T = �j�j, with the diagonal matrix

�j = diag
{

φ̃j1, . . . , φ̃jB

}

.

2 ϑj = mo
′(ω) is given by Theorem 2 for ω = σ 2+ϕj

M ,

T = �j�j with �j = diag
{

φ̃j1, . . . , φ̃jB

}

.

3 μjlm = 1 − plmdj(zlm)φ̃jilm

(

1+λjilm φ̃jilm
δj

)2
−1

(

1+λjilm φ̃jilm
δj

)2 .

Proof : See Appendix 1.

The η̄uljk above not only provides a tight SINR approx-

imation but also shows how the signal, the interference,

and the noise change as M grows large. The first term

of the denominator represents the interference from the

pilot-sharing users, i.e., those users with ilm = ijk . This

term is at the same order of magnitude as the signal

power (notice the δ2jk in both terms), since the estimated

channels of these users are parallel with the target user.
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The second term of the denominator is the interference

from the non-pilot-sharing users, i.e., those users with

ilm �= ijk . Since their estimated channels are indepen-

dent of the channel of the target user, their interference

decreases and goes to zero as M → ∞. So does the third

term which represents the noise. Thus, only the signal and

the interference from the pilot-sharing users remain as

M grows, which is referred to as the pilot contamination

effect [7–10].

Next, we provide the large-scale SINR approximation

for the downlink M-MMSE precoder.

Theorem 4 For the downlink M-MMSE precoder

in (19), we have η̄dljk − ηdljk −−−−→
M→∞

0, where η̄dljk is given by

η̄dljk =
̺jkpjkd

2
j

(

zjk
)

φ̃jijk

δ2j
ϑj

pjk
∑

(l,m) �=(j,k),ilm=ijk

̺lmd
2
l

(

zjk
)

φ̃lilm

δ2
l

ϑl
+
∑

i
lm

�=ijk

̺lmdl
(

zjk
) μljk

M + σ 2

M

,

(30)

where δl, μljk , and ϑl are given in Theorem 3.

Proof : See Appendix 2.

By utilizing Theorems 3 and 4, the ergodic SEs Rul
jk

in (11) and Rdl
jk in (21), after dropping the prelog factor

(1 − B
S ), converge to R̄ul

jk = log2

(

1 + η̄uljk

)

and R̄dl
jk =

log2

(

1 + η̄dljk

)

in the large-system limit, respectively.

Therefore, a large-scale approximation of the joint ergodic

SE in (23) is provided by
(

1 − B
S

)

(

ζ ulR̄ul
jk + ζ dlR̄dl

jk

)

. This

approximation is easy to compute and only depends on

the long-term parameters: large-scale fading, power con-

trol, and pilot allocation. As shown in Section 5, this

approximation is very accurate even for small-system

dimensions.

3.2 Uplink-downlink duality

It is pointed out in [19] that when the precoder is a scaled

version of the detector, the same per-user SEs as in the

uplink can be achieved in the downlink by properly select-

ing the downlink payload power. We establish this uplink-

downlink duality also for our M-MMSE scheme, using the

large-scale SINR approximations given by Theorem 3 and

Theorem 4.

Theorem 5 For the proposed M-MMSE scheme, if η̄uljk
in (29) is achievable in the uplink for user k in cell j, then

a downlink power control policy {̺jk} can be obtained by

transforming the corresponding uplink power {τjk}, such
that the total transmitted power remains the same, i.e.,

∑

j∈L

K
∑

k=1

τjk =
∑

j∈L

K
∑

k=1

̺jk , and that the same SE is achieved

in the downlink, i.e., η̄dljk = η̄uljk . The transformation is

̺ =
(

D − �FT
)−1

(D − EF) τ , (31)

where τ =[ τ11, . . . , τLK ]
T ∈ R

LK×1, ̺ =[ ̺11, . . . , ̺LK ]
T ∈

R
LK×1, and E = diag

{

η̄ul11, . . . , η̄
ul
LK

}

∈ R
LK×LK . The

matrix F ∈ R
LK×LK and the diagonal matrixD ∈ R

LK×LK

are defined as

Fu,v =

⎧

⎨

⎩

δ2j plmd
2
j (zlm)

ϑj
, if ilm = ijk ,

dj(zlm)μjlm

M , if ilm �= ijk ,
D = diag (F) ,

(32)

where u = k+
(

j − 1
)

K, v = m+(l − 1)K. The symbol [·]i,j
represents the element in the ith row and the jth column of

the corresponding matrix.

Proof : The proof follows the same lines as the duality

proof in [19] and is thus omitted.

Remark 3 By utilizing the large-scale SINR approxima-

tions, Theorem 5 provides a powerful tool to obtain a

judicious downlink power allocation whenever the same

SEs are desired in both uplink and downlink. However,

a certain level of BS coordination is required for this

downlink power control policy. Specifically, LK elements

in E, LK elements in τ , and 2KL2 elements in F need

to be exchanged (F can be represented by 2KL2 elements

from its definition). Therefore, the exchange overhead is

2KL(L + 1) elements. Fortunately, this overhead is accept-

able since the exchanged elements are long-term statistical

parameters.

4 Iterative power control
Power control for sum SE maximization has been widely

studied in cellular networks [13, 24–30]. However, the

power control with the M-MMSE scheme is compli-

cated since the detector/precoder depend on the power

control parameters and since the SINRs can not be

computed in closed form. In this section, we provide

a key application of the results from Theorem 3: joint

uplink payload power control for sum SE maximiza-

tion in multi-cell network. Since the downlink payload

power can be obtained according to Theorems 4 and 5,

the optimized uplink SEs can also be achieved in the

downlink.

Define r = [r1, . . . , rLK ] =
[

η̄ul11, . . . , η̄
ul
LK

]T ∈ R
LK×1

and suppose the uplink pilot powers are given.

We want to find the uplink payload powers {τjk} that

maximize the weighted uplink SE. The problem is called

P in the following, where Pmax is the maximum radiated
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transmit power of each user and ξl > 0 is the weight for

the corresponding user.

P : maximize
τ

LK
∑

l=1

ξl log2 (1 + rl)

s.t. 0 ≤ τl ≤ Pmax, ∀l.
Power control problems for sum SE maximization are

strongly NP-hard [31]. Thus, lower bounding of log2(1 +
rl) by log2(rl) is often used to construct an approxima-

tive problem [32, 33]. This approximative problem can be

further turned into a geometric programming (GP) prob-

lem for fixed F and D, by introducing the auxiliary vector

q with its lth element ql ≤ r
ξl
l . The corresponding GP

problem is shown as P1.

P1 : maximize
τ ,q

LK
∏

l=1

ql

s.t. q
1
ξl

l

(

K
∑

j=1
Fljτj + σ 2

M

)

τ−1
l D−1

l,l ≤ 1, ∀l,

0 ≤ τl ≤ Pmax, ∀l.
It can be solved numerically with the convex optimiza-

tion toolbox in MATLAB, and a low-complexity fixed

point iterationmethod is also proposed in [33] to solve the

problem of the same type. With our notation, the power

coefficient τl is updated as

τl (t + 1) = min

⎧

⎨

⎩

ξl

/

⎛

⎝

LK
∑

j=1

ξjFj,lrj (t)

Djτj (t)

⎞

⎠ ,Pmax

⎫

⎬

⎭

, (33)

where t is the iteration index in the fixed point algorithm,

for t = 0, 1, . . .. It is proved in [33] that starting from the

initial point τl(0) = Pmax for all l, the above algorithm

converges at a geometric rate to the optimal solution ofP1

(for fixed F and D).

In our case, however, F and D are not fixed since δj and

ϑj will change as τl changes. Hence, P1 in our work is not

a pure GP. Therefore, Algorithm 1 is proposed to iterate

between solving P1 for fixed F and D and updating F and

D using the current τ .

The rigorous proof of convergence of R(t) is intractable,

since D and F depend in a very complicated way on the

powers τlm of all users, and we update D and F after each

Algorithm 1 : Approximated Sum SE Maximization

Power Control Algorithm

1: Initialize τ (0) = Pmax for t = 0 and select ǫ > 0.

Calculate F(0), D(0) and R(0) =
LK
∑

l=1

ξl log2(rl) using

τ (0).

2: Let i = 0, and R(i)(t + 1) = R(t). Do:

update τ (i+1)(t + 1) using F(t) and D(t) by (33);

calculate R(i+1)(t + 1) based on τ (i+1)(t + 1), F(t) and

D(t);

update i with i + 1;

until
∣

∣R(i+1)(t + 1) − R(i)(t + 1)
∣

∣ ≤ ǫ.

Let τ (t+1) = τ (i+1)(t+1) and R(t+1) = R(i+1)(t+1)

3: Update F(t+1) andD(t+1)with τ (t+1), and update

the time slot index t with t + 1.

4: Repeat step 2 – 4 until R(t) converges.

iteration. However, numerical results testify the fast con-

vergence: about five iterations are enough. Therefore, our

algorithm can converges to some local optimal solution

of P1, and the involved information exchange overhead

is acceptable. Moreover, since only long-term parame-

ters need to be exchanged, the exchange overhead can be

spread over time.

5 Simulation results
In this section, we illustrate the analytical contributions

by simulation results for a symmetric hexagonal network

topology. We apply the classic 19-cell-wrap-around struc-

ture to avoid edge effects and guarantee consistent simu-

lated performance for all cells; see Fig. 1. Each hexagonal

cell has a radius of r = 500 m and is surrounded by six

interfering cells in the first tier and 12 in the second tier.

To achieve a symmetric pilot allocation in this network,

the pilot reuse factor can be β ∈ {1, 3, 4, 7}. For each pilot

reuse policy, the same subset of pilots are allocated to

the cells with the same color, and pilots in each cell are

allocated randomly to the users.

The user locations are generated independently and uni-

formly at random in the cells, but the distance between

each user and its serving BS is at least 0.14r. For each

Fig. 1 The 19-cell-wrap-around hexagonal network topology for β = 1, β = 3, β = 4, and β = 7
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user location z ∈ R
2, a classic pathloss model is con-

sidered, where the variance of the channel attenuation is

dj(z) = C(z)

‖z−bj‖κ . The vector bj ∈ R
2 is the location of the

BS in cell j, κ is the pathloss exponent, and ‖·‖ denotes the
Euclidean norm. C(z) > 0 is independent shadow fading

for some user location zwith 10 log10
(

C(z)

)

∼ N

(

0, σ 2
sf

)

.

In the simulation, we assume κ = 3.7, σ 2
sf = 5 and the

coherence block length S = 1000.6

5.1 Benefits of the proposed M-MMSE scheme

In this subsection, we show the benefits of our M-

MMSE scheme over the conventional alternatives. Statis-

tical channel inversion power control is applied to both

pilot and uplink payload data, i.e., plk = τlk = ρ
dl(zlk)

[19].

Thus, during the uplink phase, the average effective chan-

nel gain between users and their serving BSs is constant:

E
{

plk ‖hllk‖2
}

= E
{

τlk ‖hllk‖2
}

= Mρ. Then, the aver-

age uplink SNR per antenna and user at its serving BS is

ρ/σ 2. This is a simple but effective policy to avoid near-

far blockage and, to some extent, guarantee a uniform user

performance in the uplink. For downlink payload data

transmission, the transmit power ̺lk is selected according

to Theorem 5 to achieve the same downlink SE at each

user as in the uplink. In our simulation, ρ/σ 2 is set to 0

dB to allow for decent channel estimation accuracy, and

the time proportions for the uplink and downlink are set

to ζ ul = ζ dl = 1
2 .

To verify the accuracy of the large-scale approximations

from Section 3, 10,000 independent Monte-Carlo chan-

nel realizations are generated to numerically calculate the

joint achievable SE in (23). The numerical results and

their approximations from Theorems 3 and 4 are shown

in Fig. 2. As shown in the figure, the achievable sum

SE increases with β for the considered range of values.

Fig. 2 Achievable sum SE as a function of the number of antennasM,
for β ∈ {1, 3, 4, 7}, K = 10 and c = 0.0001

This is because a larger β results in a lower level of pilot

contamination, which contributes to a higher channel

estimation accuracy, and thereby increases the achievable

SE. Moreover, a larger β provides more estimated channel

directions in the construction of the M-MMSE scheme;

thus, a higher inter-cell interference suppression can be

achieved.7 Figure 2 shows that the numerical results and

the large-scale approximations match very well, even for

smallM and small K.

To show explicitly the advantages of our M-MMSE

scheme, simulation results for the MF scheme from [8],

the multi-cell ZF (M-ZF) scheme from [19], and the S-

MMSE scheme from [12, 15, 16] (and given in (15)) are

provided for comparison. The same downlink power allo-

cation from Theorem 5 and normalization based on (19)

are applied for all precoders. Notice that M − βK > 0 is

needed for the M-ZF scheme; thus, the minimum value

of M for M-ZF is βK + 1. Simulation results are shown

in Figs. 3–4 for β = 1 and β = 3, respectively. The

MF scheme always achieves the lowest performance since

it does not suppress any interference. Compared to S-

MMSE, our proposed M-MMSE always achieves a higher

sum SE, and the advantage becomes more significant as β

and/or K increases. For β = 3 and M = 200, the SEs of

M-MMSE are 30% and 42% higher than those of S-MMSE

for K = 10 and K = 30, respectively. For β = 7, the gains

increase to 42% and 82% for K = 10 and K = 30, respec-

tively (the related figure is omitted for brevity). The higher

performance gain at larger K or β comes from the fact

that more channel directions can be learned and utilized

for interference suppression byM-MMSE, while S-MMSE

always uses K directions regardless of β . The advantage of

M-MMSE overM-ZF is minor for small β and smallK, but

the gain becomes notable as β and K grow. Since the com-

plexity of our M-MMSE scheme is the same as for M-ZF,

Fig. 3 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with β = 1
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Fig. 4 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with β = 3

andM-ZF can sometimes achieve very low SE for smallM,

in general, our scheme is the a better choice if high system

SE is desirable.

Since the optimal pilot reuse factor may be different for

different schemes, we further compare the performance

when each scheme uses its own separately optimized βo ∈
{1, 3, 4, 7}. The results are shown in Fig. 5. We notice that

our M-MMSE scheme prefers a higher pilot reuse policy

βo = 7 while S-MMSE prefers βo = 3. Moreover, our M-

MMSE achieves a significantly higher performance than

S-MMSE, also when considering separately optimized

pilot reuse factors.

5.2 Effectiveness of joint power control

In this subsection, the effectiveness of the proposed power

control scheme is testified. Statistical power control plk =

Fig. 5 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with optimized βo ∈ {1, 3, 4, 7}
and K = 30

ρ
dl(zlk)

is still applied for pilots, while the uplink payload

power τjk is optimized. ρ/σ 2 is still set to 0 dB, and

the maximal transmit power Pmax in P is selected as in

Section 5.1. Results for equal maximum power allocation

(i.e., τlk = Pmax) are provided as a baseline. We also apply

Algorithm 1 to the instantaneous SINR in (12) for com-

parison. The following results are obtained for M = 300

and K = 10. After generating user locations and shadow

fading realizations, the 9 users with the worst channel

conditions in the whole network are dropped to provide

95% coverage.

We first consider the average per-user SE which is cal-

culated as the network sum SE divided by the number

of served users. The cumulative distribution functions

(CDFs) over user locations are shown in Fig. 6 for β = 3.

As seen from the figure, the CDF curve with long-term

power control based on Algorithm 1 coincides with those

with short-term power control optimized for the instanta-

neous SINR at every coherence block, which validates that

there is negligible loss associated with our power control

based on the large-scale SINR approximation. Further-

more, compared with the equal power allocation policy,

the average user SEs can be significantly improved by

our power control scheme. At the 50th percentile, 16%

increase can be achieved by our scheme.

We also analyze how the per-user SE at different parts

of the cells is affected by our power control. Results are

provided for the power control proposed in [35], which

tries to provide equal SE for users in the same cell so

that, to some extent, intra-cell user fairness is guaran-

teed. The CDF of the per-user SE is shown in Fig. 7.

With our algorithm, in contrast to equal power alloca-

tion, the majority of the users can enjoy higher SEs at

the cost of a small degradation for the users with the

strongest channels. This is because our algorithm assigns

Fig. 6 CDFs of average user SE with β = 3
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Fig. 7 CDFs of per-user SE with β = 3

lower transmit powers to the few users close to the center

of the cell and higher powers to the many users fur-

ther away, so that the interference caused by the former

to the latter is reduced. In this way, our algorithm sup-

presses interference. Compared with the power control

from [35], our algorithm provides essentially the same

SE for the weakest users, while pushing the SE of the

majority of the users to higher values. Despite the larger

SE variations, the proposed power control brings a bet-

ter type of user fairness than the scheme from [35] since

the strong users get higher SEs without degrading for the

weakest ones.

6 Conclusions
In this paper, a new state-of-the-art M-MMSE scheme

is proposed, which includes an uplink M-MMSE detec-

tor and a downlink M-MMSE precoder. It brings very

promising sum SE gains over S-MMSE and other

single-cell schemes by actively suppressing both intra-

cell and inter-cell interference. Since imperfect CSI is

accounted for in our scheme, the gains obtained by our

scheme are likely to be achievable in practical systems.

Furthermore, large-scale approximations of the uplink

and downlink SINRs are derived for the proposed M-

MMSE scheme. The approximations are very accurate

even for small system dimensions and are easy to compute

since they only depend on long-term statistics. Hence, the

expressions can be utilized for efficient performance anal-

ysis, without the need for Monte-Carlo simulations. The

SINR approximations can further be used for power con-

trol design, and a low-complexity power control algorithm

for sum SEmaximization is proposed. The proposed algo-

rithm brings a notable sum SE gain and also provides

good user fairness compared to the equal power alloca-

tion policy. Since the SINR approximations depend only

on long-term statistics, the complexity of the algorithm

can be spread over a long time period.

Endnotes
1These schemes have several names in the litera-

ture: MF is also known as maximum ratio combin-

ing/transmission; ZF is also known as channel-inversion;

and regularized ZF (RZF) is a simple variation on S-

MMSE.
2 In practice, only the propagation channels are recip-

rocal, while the hardware used for uplink and downlink

communication is not. This requires reciprocity-

calibration of the hardware, but there are many

algorithms for this, and the variations are slow so the

calibration overhead is negligible [34].
3Notice that 1√

B
V = 1√

B
[ v1, . . . , vB]∈ C

B×B is an

orthogonal basis for a B dimensional space. Therefore, a

singular value decomposition of � j is � j = 1
BVAjV

H ,

where Aj is a diagonal matrix with its bth element as

ajb = B/φ̃jb. Then, (7) is obtained.
4Only multiplications are counted in the complexity

comparison, since additions and subtractions have a neg-

ligible complexity in comparison.
5This method works well in massive MIMO systems

due to channel hardening—the effective channel is rela-

tively close to its mean, while the performance loss would

be large in a small-scale MIMO system.
6This coherence block can, for example, have the

dimensions of Tc = 10ms andWc = 100 kHz.
7One should notice that K and β cannot be increased

indefinitely due to the prelog loss in the achievable SE.

Appendix 1
Proof of Theorem 3

Define�j =
(

ĤV ,j�jĤ
H
V ,j +

(

σ 2 + ϕj

)

IM

)−1
, then theM-

MMSE detector in (13) is gjk = �jĥjjk . We omit the

superscript “M-MMSE” in the proof for brevity. In the

following proof, we use ≍ to denote the almost sure con-

vergence such that a ≍ b represents a − b
a.s.−−−−→

M→∞
0.

Define

1. ĤV ,jlk =
[

ĥV ,j1, ..., ĥV ,j(ilk−1), ĥV ,j(ilk+1), ..., ĥV ,jB

]

,

2. �jlk = diag
{

λj1, ...λj(ilk−1), λj(ilk+1), ...., λjB
}

,

3. �j = diag{φ̃j1, ..., φ̃jB},
4. �jjk =

(

ĤV ,jjk�jjkĤ
H
V ,jjk +

(

σ 2 + ϕj

)

IM

)−1
,

5. �
′
j = M�j and �

′
jjk = M�jjk ,

then we have the following lemma.
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Lemma 1 Let ĥjlk and h̃jlk denote the MMSE estimate of

hjlk as in (5) and its estimation error, respectively, then

ĥHjjk�jĥjjk −
pjkd

2
j

(

zjk
)

φ̃jijkδj

1 + λjijk φ̃jijkδj

a.s.−−−−→
M→∞

0, (34)

ĥHjjk�jh̃jlm
a.s.−−−−→

M→∞
0. (35)

Proof Let x = ĥHjjk�jĥjjk , then

x = ĥHjjk

(

�−1
jjk + λjijk ĥV ,jijk ĥ

H
V ,jijk

)−1
ĥjjk

(a)=
pjkd

2
j

(

zjk
)

ĥH
V ,jijk

�jjk ĥV ,jijk

1 + λjijk ĥ
H
V ,jijk

�jjk ĥV ,jijk

=
1
M pjkd

2
j

(

zjk
)

ĥH
V ,jijk

�
′
jjk ĥV ,jijk

1 + λjijk
1
M ĥH

V ,jijk
�

′
jjk ĥV ,jijk

(b)≍
1
M pjkd

2
j

(

zjk
)

φ̃jijk tr
(

�
′
jjk

)

1 + 1
M λjijk φ̃jijk tr

(

�
′
jjk

)

(c)≍
1
M pjkd

2
j

(

zjk
)

φ̃jijk tr
(

�
′
j

)

1 + 1
M λjijk φ̃jijk tr

(

�
′
j

)

(d)=
pjkd

2
j

(

zjk
)

φ̃jijk δj

1 + λjijk φ̃jijk δj
,

where (a) follows from Lemma 1 in [12] and ĥjjk =
√
pjkdj(zjk)ĥV ,jijk and (b) follows from Lemma 12 in [36],

which can be applied since �
′
jjk has uniformly bounded

spectral norm with respect to M, because ϕj scales as K

and K
M > 0 by assumption; thus,

ϕj
M > 0 for all M. (c)

follows from Lemma 14.3 in [37]. In step (d), we define

δj = mo

(

σ 2+ϕj
M

)

, which is obtained by Theorem 1 for

T = �j�j and ρ = σ 2+ϕj
M .

Let y = ĥHjjk�jh̃jlm, then

y = ĥHjjk

(

�−1
jjk + λjijk ĥV ,jijk ĥ

H
V ,jijk

)−1
h̃jlm

(a)=
√
pjkdj(zjk)ĥ

H
V ,jijk

�jjkh̃jlm

1 + λjijk ĥ
H
V ,jijk

�jjkĥV ,jijk

(b)=
√
pjkdj(zjk)

1
M ĥH

V ,jijk
�

′
jjkh̃jlm

1 + λjijk
1
M ĥH

V ,jijk
�

′
jjkĥV ,jijk

(c)≍ 0, (36)

where (a) and (b) follow from Lemma 1 in [12] and

Lemma 12 in [36], respectively.

We use Lemma 1 in the following to determine the

asymptotic behavior of each term in (12).

Signal power

Since gHjk ĥjjk = ĥHjjk�jĥjjk , then according to Lemma 1, it is

obvious that

gHjk
ˆhjjk −

pjkd
2
j

(

zjk
)

φ̃jijkδj

1 + λjijk φ̃jijkδj

a.s.−−−−→
M→∞

0. (37)

By the continuous mapping theorem [38], we further

obtain

∣

∣

∣
gHjk ĥjjk

∣

∣

∣

2
−
(

pjkd
2
j

(

zjk
)

φ̃jijkδj

1 + λjijk φ̃jijkδj

)2
a.s.−−−−→

M→∞
0. (38)

Channel uncertainty

According to Lemma 1, gHjk h̃jjk = ĥHjjk�jh̃jjk
a.s.−−−−→

M→∞
0.

Thus, by the dominated convergence theorem [39] and the

continuous mapping theorem, we have

E

{

τjk

∣

∣

∣
gHjk h̃jjk

∣

∣

∣

2
∣

∣

∣

∣

ĥ(j)

}

a.s.−−−−→
M→∞

0. (39)

Interference power

Since gHjk = �jĥjjk , the interference power from user m in

cell l is

E{h}

{

∣

∣

∣
gHjkhjlm

∣

∣

∣

2
∣

∣

∣

∣

ĥ(j)

}

= E

{

∣

∣

∣
ĥHjjk�jhjlm

∣

∣

∣

2
∣

∣

∣

∣

ĥ(j)

}

(40)

The computation depends on which pilots that are used.

ilm = ijk = i0
In this case, user k in cell j use the same pilot sequence

as user m in cell j, and there will be coherence pilot

contaminated interference. Since

ĥjlm = √
plmdj(zlm)ĥV ,ji0 =

√

plm

pjk

dj(zlm)

dj(zjk)
ĥjjk , (41)

we have

ĥHjjk�jhjlm =
√

plm

pjk

dj(zlm)

dj(zjk)
ĥHjjk�jĥjjk + ĥHjjk�jh̃jlm

(a)≍ dj(zjk)dj(zlm)

√
pjkplmφ̃jijkδj

1 + λjijk φ̃jijkδj
, (42)

where in step (a) the first term remains and the sec-

ond term vanishes according to Lemma 1. Indicated by

the dominated convergence theorem and the continuous

mapping theorem, we have

E

{

∣

∣

∣
ĥHjjk�jhjlm

∣

∣

∣

2
∣

∣

∣

∣

ĥ(j)

}

− d2j
(

zjk
)

d2j (zlm)

×
pjkplmφ̃2

jijk
δ2j

(

1 + λjijk φ̃jijkδj

)2

a.s.−−−−→
M→∞

0.
(43)



Li et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:117 Page 13 of 15

ilm �= ijk
In this case, two users have different pilots, such that

∣

∣

∣
ĥHjjk�jhjlm

∣

∣

∣

2

(a)=
pjkd

2
j

(

zjk
)

1
M2 ĥ

H
V ,jijk

�
′
jjkhjlmh

H
jlm�

′
jjkĥV ,jijk

(

1 + λjijk ĥ
H
V ,jijk

�jjkĥV ,jijk

)2

(b)≍
pjkd

2
j

(

zjk
)

φ̃jijk
1
M2 tr
(

�
′
jjkhjlmh

H
jlm�

′
jjk

)

(

1 + λjijk φ̃jijkδj

)2

=
pjkd

2
j

(

zjk
)

φ̃jijk tr
(

�jjkhjlmh
H
jlm�jjk

)

(

1 + λjijk φ̃jijkδj

)2

=
pjkd

2
j

(

zjk
)

φ̃jijkh
H
jlm�jjk�jjkhjlm

(

1 + λjijk φ̃jijkδj

)2
, (44)

where step (a) follows from Lemma 1 in [12] and the def-

inition of �
′
jjk . Step (b) follows from Lemma 12 in [36],

Lemma 14.3 in [37], and Theorem 1. It remains to obtain a

deterministic equivalent of the numerator in (44). Define

�j,jk,lm =
(

�−1
jjk − λjilm ĥV ,jilm ĥ

H
V ,jilm

)−1
, then according to

Lemma 2 in [12] we have

�jjk = �j,jk,lm −
�j,jk,lmλjilm ĥV ,jilm ĥ

H
V ,jilm

�j,jk,lm

1 + λjilm ĥ
H
V ,jilm

�j,jk,lmĥV ,jilm

. (45)

Plugging (45) into the numerator of (44), we obtain

hHjlm�jjk�jjkhjlm = hHjlm�j,jk,lm�j,jk,lmhjlm → (intf. 1)

− 2Re

⎧

⎨

⎩

λjilmh
H
jlm�j,jk,lm�j,jk,lmĥV ,jilm ĥ

H
V ,jilm

�j,jk,lmhjlm

1 + λjilm ĥ
H
V ,jilm

�j,jk,lmĥV ,jilm

⎫

⎬

⎭

→ (intf. 2)

+
∣

∣λjilm

∣

∣

2

∣

∣

∣
hHjlm�j,jk,lmĥ

H
V ,jilm

∣

∣

∣

2
ĥH
V ,jilm

�j,jk,lm�j,jk,lmĥV ,jilm
∣

∣

∣
1 + λjilm ĥ

H
V ,jilm

�j,jk,lmĥV ,jilm

∣

∣

∣

2
→ (intf. 3).

Deterministic equivalent of (intf. 1): Define �
′
j,jk,lm =

M�j,jk,lm, then following similar procedures as before, it is

straightforward to show that

hHjlm�j,jk,lm�j,jk,lmhjlm ≍
dj(zlm)

M2
tr
(

�
′
j,jk,lm�

′
j,jk,lm

)

≍
dj(zlm)

M2
tr
(

�
′
j�

′
j

)

≍
dj(zlm)

M
ϑj,

(46)

where ϑj = mo
′
(

σ 2+ϕj
M

)

is given by Theorem 2 for ρ =
σ 2+ϕj
M and T = �j�j.

Deterministic equivalent of (intf. 2): Instead of tackling

the expression in (intf. 2) directly, we derive the deter-

ministic equivalents of its numerator and denominator,

respectively. Plugging hjlm = ĥjlm + h̃jlm and ĥjlm =
√
plmdj(zlm)ĥV ,jilm into the numerator, we have that

hHjlm�j,jk,lm�j,jk,lmĥV ,jilm

(a)≍
√
plmdj(zlm)

M2
φ̃jilm tr

(

�
′
j�

′
j

)

≍
√
plmdj(zlm)

M
φ̃jilmϑj. (47)

Step (a) follows from Lemma 12 in [36] and Lemma 14.3

in [37]. Similarly, we have

ĥH
V ,jilm

�j,jk,lmhjlm ≍
√
plmdj(zlm)φ̃jilm

M
tr
(

�j

)

= √
plmdj(zlm)φ̃jilmδj, (48)

ĥHV ,jilm
�j,jk,lmĥ

H
V ,jilm

≍ φ̃jilmδj, (49)

where δj is given in Lemma 1. Based on (47) – (49), the

equivalents of the denominator and numerator are given

as 1 + λjilm φ̃jilmδj and
1
Mλjilmplmd

2
j (zlm)φ̃2

jilm
ϑjδj, respec-

tively. According to the continuous mapping theorem,

(intf. 2) −
−2φ̃2

jilm
ϑjδj

1 + λjilm φ̃jilmδj

plmd
2
j (zlm) λjilm

M

a.s.−−−−→
M→∞

0.

(50)

Deterministic equivalent of (intf. 3): Based on the tech-

niques used to characterize (intf. 1) and (intf. 2), it is

straightforward to show that

(intf. 3) −
∣

∣λjilm

∣

∣

2
φ̃3
jilm

δ2j ϑj
(

1 + λjilm φ̃jilmδj

)2

plmd
2
j (zlm)

M

a.s.−−−−→
M→∞

0.

(51)

Plugging (46), (50), and (51) into (44), we have that

∣

∣

∣
ĥHjjk�jhjlm

∣

∣

∣

2
=

pjkφ̃jijkd
2
j

(

zjk
)

dj(zlm)μlm
(

1 + λjijk φ̃jijkδj

)2
M

, (52)

where μjlm = ϑj −plmdj(zlm)λjilmϑjδjφ̃
2
jilm

2+φ̃jilm
λjilm δj

(

1+λjilm φ̃jilm
δj

)2 is

defined. Consequently, we have by the dominated conver-

gence theorem that

E

{

∣

∣

∣
ĥHjjk�jhjlm

∣

∣

∣

2
∣

∣

∣

∣

ĥ(j)

}

−
pjk φ̃jijkd

2
j

(

zjk
)

dj(zlm)μjlm
(

1 + λjijk φ̃jijk δj

)2
M

a.s.−−−−→
M→∞

0.

(53)
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Noise power

The noise term in (12) is scaled by
∥

∥gjk
∥

∥

2
for which we

have that

∥

∥gjk
∥

∥

2 = ĥHjjk�j�jĥjjk
(a)= pjkd

2
j

(

zjk
)

1
M2 ĥ

H
V ,jijk

�
′
jjk�

′
jjkĥV ,jijk

(

1 + λjijk ĥ
H
V ,jijk

�jjkĥV ,jijk

)2

(b)≍
pjkd

2
j

(

zjk
)

φ̃jijkϑj
(

1 + λjijk φ̃jijkδj

)2
M

, (54)

where step (a) follows from Lemma 1 in [12] and step

(b) follows from Lemma 12 in [36], Lemma 14.3 in [37],

and Theorem 2. Then, by the dominated convergence

theorem, we have

E

{

∥

∥

∥
gHjk

∥

∥

∥

2
∣

∣

∣

∣

ĥ(j)

}

−
pjkd

2
j

(

zjk
)

φ̃jijkϑj
(

1 + λjijk φ̃jijkδj

)2
M

a.s.−−−−→
M→∞

0. (55)

Finally, by the continuous mapping theorem, we arrive

at the expression in (29).

Appendix 2
Proof of Theorem 4

Except for the channel variance var
{

hHjjkwjk

}

=

E

{

∣

∣

∣
hHjjkwjk − E

{

hHjjkwjk

}
∣

∣

∣

2
}

, large-scale approximations

of the signal power and the interference in (22) can be cal-

culated by following similar procedures as in Appendix 1.

Thus, only the channel variance is considered here.

Define c = ĥHjjk�jĥjjk , c̄ = E

{

ĥHjjk�jĥjjk

}

, and b =
h̃Hjjk�jĥjjk , then

var
{

hHjjkwjk

}

= 1

γjk
E
{

|c − c̄ + b|2
}

(56)

= 1

γjk
E {(c − c̄) (c + c̄)} + 1

γjk
E
{

|b|2
}

,

where the last step is due to the fact that ĥjjk is indepen-

dent of h̃jjk and that E{b} = 0.

From step (a) of Eq. (36), we have

c =
pjkd

2
j

(

zjk
)

ĥH
V ,jijk

�jjkĥV ,jijk

1 + λjijk ĥ
H
V ,jijk

�jjkĥV ,jijk

≤
pjkd

2
j

(

zjk
)

ĥH
V ,jijk

�jjkĥV ,jijk

λjijk ĥ
H
V ,jijk

�jjkĥV ,jijk

≤
pjkd

2
j

(

zjk
)

λjijk
� θ . (57)

Therefore, c ≤ θ and same bound also holds for c̄. Thus,

we have

var
{

hHjjkwjk

}

≤ 2θ

γjk
E {|c − c̄|} + 1

γjk
E
{

|b|2
}

. (58)

It is shown by Lemma 1 that c − d2j (zjk)δjk
1+λjijk δjk

a.s.−−−−→
M→∞

0.

Since c and c̄ are bounded, this implies by the dominated

convergence theorem that E{|c − c̄|} → 0 as M → ∞.

Furthermore,

E
{

|b|2
}

= E

{

ĥHjjk�jh̃jjkh̃
H
jjk�jĥjjk

}

= E

{

ĥHjjk�jCjjk�jĥjjk

}

(a)
≤ 1

ϕ2
j

E

{

ĥHjjkCjjkĥjjk

}

= 1

ϕ2
j

tr
(

�̂jjkCjjk

)

, (59)

where step (a) holds because �j � 1
ϕj
IM (where A � B

means that B−A is positive semi-definite). Since ϕ2
j scales

as K2 or equivalently as M2, and tr(�̂jjkCjjk) scales as M,

we have that E{|b|2} → 0 asM → ∞. Consequently,

var
{

hHjjkwjk

}

−−−−→
M→∞

0. (60)
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