
ARTICLE

Massive mining of publicly available RNA-seq data
from human and mouse
Alexander Lachmann 1, Denis Torre1, Alexandra B. Keenan1, Kathleen M. Jagodnik1, Hoyjin J. Lee1, Lily Wang1,

Moshe C. Silverstein1 & Avi Ma’ayan 1

RNA sequencing (RNA-seq) is the leading technology for genome-wide transcript quantifi-

cation. However, publicly available RNA-seq data is currently provided mostly in raw form, a

significant barrier for global and integrative retrospective analyses. ARCHS4 is a web

resource that makes the majority of published RNA-seq data from human and mouse

available at the gene and transcript levels. For developing ARCHS4, available FASTQ files

from RNA-seq experiments from the Gene Expression Omnibus (GEO) were aligned using a

cloud-based infrastructure. In total 187,946 samples are accessible through ARCHS4 with

103,083 mouse and 84,863 human. Additionally, the ARCHS4 web interface provides

intuitive exploration of the processed data through querying tools, interactive visualization,

and gene pages that provide average expression across cell lines and tissues, top

co-expressed genes for each gene, and predicted biological functions and protein–protein

interactions for each gene based on prior knowledge combined with co-expression.
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T
he completion of the Human Genome Project1 enabled the
quantification of mRNA expression at the genome-wide
scale, initially with cDNA microarray technology2, but now

more commonly via RNA-sequencing (RNA-seq) (Fig. 1). RNA-
seq is replacing cDNA microarrays as the dominant technology
because it offers reduced cost, increased sensitivity, ability to
quantify splice variants and perform mutation analyses, improved
quantification at the transcript level, identification of novel
transcripts, and improved reproducibility3. Genome-wide gene
expression data from thousands of studies have been accumu-
lating and made available for exploration and reuse through
public repositories such as the Gene Expression Omnibus (GEO)4

and ArrayExpress5. Since the late 1990s software for the analysis
of cDNA microarray data has matured toward established com-
munity accepted computational procedures, whereas analyses
methods to process RNA-seq data are still actively refined and
developed.

The quality of RNA-seq data depends on the sequencing depth
whereby more reads per sample can reduce technical noise.
Modern sequencing platforms such as Illumina HiSeq produce
tens of millions of paired-end reads of up to 150 base pairs in
length per sample. The raw reads are aligned to a reference
genome by mapping reads to known gene sequences. The align-
ment step is computationally demanding, and the various align-
ment algorithms implemented in software packages are
continually improving6–12. Bowtie6 is one of the first alignment
methods that gained wide spread popularity. More efficient
solutions were later implemented by improving memory utiliza-
tion with faster execution time. One of the currently leading
alignment methods, Spliced Transcripts Alignment to a Reference
(STAR)8, can map more than 200 million reads per hour. As a
trade-off for increased computational speed, STAR requires heavy
memory consumption, particularly for large genomes such as
human or mouse. For mammalian genomes, STAR requires more
than 30 GB of random access memory (RAM). This requirement
limits its application to high performance computing (HPC)
platforms. This introduces a barrier for the typical experimental
biologist who generates the data. Additionally, knowledge in
programming and a series of choices in regards to the alignment
software parameter settings, are commonly required to covert raw
reads to a quantified expression matrix of processed RNA-seq
data.

Retrospective analyses of large collections of previously pub-
lished RNA-seq data can illuminate new biology and accelerate
drug discovery13. However, many post hoc studies rely on large
data sets that are interoperable with data analysis workflows
whereby gene expression data is provided in processed form. For
example, the Genotype-Tissue Expression project (GTEx)14 and
The Cancer Genome Atlas (TCGA)15 RNA-seq data sets are
frequently reused in post hoc projects mainly because such data
are provided in a useful processed format. GTEx currently con-
tains 9662 RNA-seq samples from 53 human tissues collected
from over 250 individuals, whereas TCGA contains at least
11,077 RNA-seq samples created from a diverse collection of
tumors.

Recent efforts attempted to simplify the access to gene
expression data collected via RNA-seq to create more unified
resources from fragmented repositories16–20. Currently, as of
February 2018, there are 187,946 RNA-seq samples, collected
from human or mouse cells and tissues, that are accessible from
the Gene Expression Omnibus (GEO) and the Sequence Read
Archive (SRA), making this resource the most comprehensive
repository for RNA-seq data collected from mammals. This large
collection of samples from diverse institutions, laboratories, stu-
dies, and projects is comprehensive, but not homogeneous
compared with RNA-seq data collected for large projects such as

GTEx and TCGA. The data within GEO/SRA is provided mostly
in raw sequence form. While some studies provide aligned reads
files, these are few and processed non-uniformly. This short-
coming makes it difficult to query and integrate this data at a
global scale. To bridge the gap that currently exists between RNA-
seq data generation and RNA-seq data processing, we developed
the resource all RNA-seq and ChIP-seq sample and signature
search (ARCHS4). The ARCHS4 pipeline (Fig. 2) processes RNA-
seq data from GEO/SRA to support retrospective data analyses
and reuse. ARCHS4 caters to users with different levels of com-
putational expertise and can be employed for many post hoc
analyses and projects. The goal is to provide users with direct
access to the data through a web-based user interface, while
implementing a scalable and cost-effective solution for the raw
data processing task. The usefulness of ARCHS4 is exemplified
through case studies that show how the data assembled can be
applied to predict gene function and protein–protein interactions
(PPI).

Results
The ARCHS4 website. The ARCHS4 website supports multiple
complementary ways to access the processed RNA-seq gene
expression data. For programmatic access, the download section
provides access to all the processed data for human and mouse in
H5 format. The H5 files contain extensive metadata retrieved
from GEO. This metadata can be queried to extract samples of
interest by keywords. Additionally, programmatic access to
ARCHS4 supports exploration of gene expression matrices
through search functions. The ARCHS4 website visualizes all the
processed samples, and alternatively all human or mouse genes,
based on their co-expression similarity, as interactive 3D
t-Distributed Stochastic Neighbor Embedding (t-SNE) plots. In
the samples view, all samples can be searched by metadata terms.
ARCHS4 performs text searches of the GEO metadata to retrieve
samples by matching terms. For example, searching Pancreatic
Islet in the human context, will return 1829 samples from 10
independent GEO series. After the search is complete, the sam-
ples are highlighted and an auto-generated R script is provided
for downloading the set of highlighted samples. Executing the R
script builds a local expression matrix in tab-separated values
format with the samples as columns and the genes as the rows.
The signature search in ARCHS4 enables searching samples at the
data level, matching high and low expressed genes from input
sets of high/low expressed genes across all ARCHS4 processed
samples. Signature similarity is approximated via the
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Johnson–Lindenstrauss (JL)21 transformed gene expression space
that preserves the global structure of the data while reducing its
dimensionality (Fig. 3a, b). Under the enrichment search tab,
samples can be selected by annotated prior knowledge gene sets.
Gene set libraries from which annotated gene sets are currently
derived are: ChEA22, ENCODE23, KEA24, Gene Ontology (GO)
25, KEGG PATHWAY database26, and MGI mammalian
phenotypes27.

The ARCHS4 three-dimensional viewer also supports manual
lasso selection of samples through a snipping tool. The colors
used to highlight selected samples can be changed by the user.
The genes view of ARCHS4 provides the same manual selection
feature as with the samples view. Selected gene lists can be
downloaded directly from ARCHS4, or submitted for gene list
enrichment analysis with Enrichr28,29. Additionally, individual
genes can be queried to locate an ARCHS4-dedicated gene-
landing page. These single gene landing pages contain predicted
biological functions based on correlations with genes assigned to
GO categories; predicted upstream transcription factors based on
correlation with identified targets as determined by ChIP-seq data
from the ChEA and ENCODE gene set libraries; predicted
knockout mouse phenotypes based on annotated MGI mamma-
lian phenotypes; predicted human phenotypes based on co-
expression correlation with genes that have assigned human
phenotypes in the Human Phenotype Ontology30; predicted
upstream protein kinases based on known kinase-substrates from
KEA; and membership in pathways based on co-expression with
pathways from KEGG. The single gene landing pages also list the
top 100 most co-expressed genes for each individual gene.
Additionally, for 53 distinct tissues and 67 cell lines, expression
levels are visualized for each gene. These are visualized as two
hierarchical trees with tissues and cells grouped by system and
organ.

In addition, ARCHS4 processed data can be accessed via the
ARCHS4 Chrome extension, which is freely available from the

Chrome Web Store. The Chrome extension detects GEO series
landing pages and then inserts a Series Matrix File (SMF) for
download for each series that has been processed by the ARCHS4
pipeline. Each SMF contains read counts for all available samples
in the series. The sample expression is also visualized as a
heatmap using the Clustergrammer plugin31. Clustergrammer
loads JSON files containing the z-score normalized gene
expression of the top 500 most variable genes across the series
and embeds the interactive heatmap directly into the GEO series
landing page.

RNA-seq alignment pipeline speed and cost. The ARCHS4
pipeline (Fig. 2) speed is measured by the elapsed time from job
submission until completion for 31,825 samples. The timed
process includes: downloading the SRA file, extracting the
FASTQ file from the SRA data format, alignment to the refer-
ence genome, mapping the transcript counts to the gene level,
and writing the final result to the database. Processing time of a
single FASTQ file takes on average ~11 min. This benchmark is
applied using Amazon EC2 on-demand m4.large instances with
8 GB of memory and 2 vCPUs, running with 200 GB of hard-
drive storage. Each instance can run 2 Dockerized alignment
pipeline containers in parallel. At the time of the benchmark, the
cost of the on-demand m4.large instances was $0.1/h. This
results in an average compute cost for one processed SRA file to
be $0.00982. For samples with at least 1,000,000 aligned reads
and paired reads with 200 bp, the alignment cost was $0.973 per
billion reads or $0.00486 per billion base pairs. For these specific
samples, this averages to $0.025 per sample. Most samples,
however, have unpaired reads and lower read counts, resulting
in the lower cost of less than a cent. The alignment time cor-
relates with the number of reads (Spearman’s correlation coef-
ficient r= 0.881), and the processing time increases linearly with
the number of spots aligned with some variance (r= 0.901,
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Fig. 2 Schematic illustration of the ARCHS4 cloud-based alignment pipeline workflow. A job scheduler instructs Dockerized alignment instances that are

processing FASTQ files from the SRA database in parallel. The pipeline supports the STAR and Kallisto aligners. The final results are sent to a database for

post-processing. Dimensionality reduction for data visualization is calculated with t-SNE, and all counts are additionally stored in a H5 data matrix. The .sra

file extension is the native file format for files from the SRA database
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paired reads) due to performance differences between cloud
computing instances (Fig. 3c, d). Paired-end read RNA-seq
experiments require more time during the alignment process
due to the increased number of spots that have to be processed.
The ARCHS4 pipeline is, to our knowledge, the most cost-

effective cloud-based RNA-seq alignment infrastructure pub-
lished to date.

STAR vs. Kallisto comparison. To achieve its fast and cost-
effective solution, ARCHS4 utilizes the Kallisto aligner9.
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of JL dimensions, the procedure was repeated 10 times to obtain variances. b Mean AUC for predicting GO biological processes using the ARCHS4 mouse

co-expression data created from different size sets of randomly selected samples. Whiskers in plots a and b represent one standard deviation from the mean.

c Processing time per million reads for single read and paired-end read RNA-seq for the Kallisto processing container. d Elapsed time per million (MM) spots/

nucleotides for completing the processing of paired read FASTQ files with the Dockerized Kallisto processing container; rs in c and d are the r2 correlation

coefficient linear fit. e Distribution of the number of detected genes for pipelines that utilize the Kallisto vs. STAR aligners across 1708 randomly selected and

processed human RNA-seq samples. f Distribution of AUCs for predicting gene set membership for GO biological processes from co-expression matrices

derived from the same set of 1708 human RNA-seq samples processed by STAR or Kallisto aligners

Table 1 Comparison of processed RNA-seq resources

RNA-seq resource ARCHS4 Recount Toil Recompute RNAseqDB Expression Atlas

Human samples 84,863 61,350 19,931 >17,000 NA

Mouse samples 103,083 0 0 0 NA

Total samples 187,946 61,350 19,931 > 17,000 118,209a

Cost per sample < $0.01 $0.73 $1.30 NA NA

Gene level ✓ ✓ ✗ ✗ ✓

Transcript level ✓ ✓ ✓ ✓ ✗

Alignment-free quantification ✓ ✗ ✗ ✗ ✗

API support ✓ ✓ ✗ ✗ ✗

Chrome extension ✓ ✗ ✗ ✗ ✗

Data query ✓ ✗ ✗ ✗ ✓

Enrichment ✓ ✗ ✗ ✗ ✓

aMostly not RNA-seq, only ~500 samples are from RNA-seq
The number of samples covered by ARCHS4, Recount, Toil Recompute, RNAseqDB, and Expression Atlas as well as features of the web resource are listed and compared
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However, it is not clear whether the improved speed and cost
provided by Kallisto comes with a cost of drop in the output
quality. To benchmark Kallisto against other aligners, a subset of
1708 human samples processed by ARCHS4 were also aligned
with STAR8. While Kallisto and STAR return similar gene
expression profiles, there are profound differences between the
output produced by the two methods. In general, Kallisto detects
more genes than STAR (Fig. 3e, f). The average Pearson corre-
lation of the z-score transformed samples between the Kallisto
and STAR outputs is 0.77. However, the number of detected
genes does not directly translate to a qualitative advantage
of Kallisto over STAR. To test the quality of the generated
gene expression matrices and their gene correlation structure,
we tested the ability of the processed data sets by STAR or Kal-
listo to predict GO biological processes for single genes, as
described in detail in the Methods section. The quality of the
predictions is almost identical for the two compared data sets
with an average area under the curve (AUC) of 0.69 for predic-
tions made by processed data generated by the two separate
methods (Fig. 3f).

Comparison to existing RNA-seq pipelines and resources.
Multiple efforts attempted to uniformly reprocess large collec-
tions of RNA-seq data16–20. Table 1 provides an overview com-
parison of several resources with respect to size, cost per sample,
and other attributes. The total sample size and cost for data
processing are visualized in Fig. 4. Even though ARCHS4 con-
tains more than double the number of RNA-seq samples than

other resources, the estimated costs compared with Recount and
Toil Recompute is an order of magnitude lower with $1745,
$44,785, and $25,910, respectively. All approaches rely on the use
of either private or public high-performance computer clusters.
Toil Recompute16 was applied to re-compute the transcript level
counts of 19,931 RNA-seq samples. The UCSC pipeline archi-
tecture was run on an Amazon Web Services (AWS) cluster and
averaged $1.30 per sample. The data set contains 11,194 samples
from TCGA, 8002 from GTEx, and 734 additional samples. The
processed data is made available through a web interface called
the Xena browser. Expression Atlas17 provides processed RNA-
seq and microarray gene expression data for multiple species.
Expression data is processed by a pipeline named iRAP18. The
total number of assays in Expression Atlas is 118,209 from 3035
experiments. From these, only 565 are RNA-seq. All data is
reported at the gene level and is accessible as a bulk zip download.

The Recount project19 performed sequence alignment with a
pipeline termed Rail-RNA. The reported cost per sample is $0.72.
The data in Recount contains 9662 samples from GTEx, 11,350
from TCGA, and ~50,000 human SRA samples. The data is
available as bulk download or through an R package. Expression
is reported at the gene and transcript levels. The RNAseqDB20

also contains all GTEx and TCGA processed samples. The
alignment for RNAseqDB was performed on an internal cluster
and no cost analysis is available. The data is provided as bulk
download files with FPKM normalized transcripts. The data is
deposited in a GitHub repository. In contrast with ARCHS4, the
reported cost for all similar efforts is about two orders of
magnitude more expensive for processing a sample. Cost per
sample is a critical factor in processing RNA-seq data because of
the rapid growth in data production. Compute cost for ARCHS4
is almost negligible compared to the cost of comparable efforts.
The number of samples already available from the ARCHS4
resource is by far the largest collection of processed RNA-seq to
date, and the low-cost pipeline enables a rolling update as more
samples become available. In contrast with other resources,
ARCHS4 provides multiple methods for data accessibility. While
Recount and Expression Atlas support programmatic access
through R packages, only the Expression Atlas supports
enrichment analysis on signatures derived from the expression
profiles. A unique feature of ARCHS4 is the real-time data and
metadata querying support that allows the identification and
selection of relevant subsets of samples.

Read quality across institutions. The percentage of aligned reads
over total reads for each FASTQ file varies significantly across
labs, projects, and sequencing cores due to various reasons. Since
each sample from GEO/SRA is annotated with the producers of
the data, the percent of aligned reads by institution can be plotted
(Fig. 5). The 34 institutions that so far produced more than 100
unique samples from more than 20 gene expression series of
RNA-seq samples available on the GEO/SRA database show that
the highest percentage of successful aligned reads is by the Uni-
versity of Minnesota with a median of 87%. The 429 samples that
originated from the Jackson Laboratory come from 23 distinct
gene expression series. It should be noted that observed differ-
ences in the fraction of aligned reads is not necessarily an indi-
cator of the performance of the sequencing core within an
institution but can be attributed to the quality of the samples. For
example, samples from formalin-fixated tissues will suffer from
RNA degradation which will result in lower percent of aligned
reads. In addition, it should also be noted that in general inves-
tigators from most research institutions frequently use various
external sequencing core services. On average, 63% of reads were
aligned across all 84,863 of the processed human RNA-seq
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samples, whereas 59% of all mouse RNA-seq reads from
103,083 samples were aligned to matching genes.

Prediction of biological functions and protein interactions.
Gene function and PPI can be potentially predicted using

co-expression data, whereas the data that is processed for
ARCHS4 provides a rich resource for generating gene co-
expression correlations. Evaluating the quality of co-expression
correlation networks to predict protein interactions and biological
functions can also provide an unbiased benchmark to compare
the ARCHS4 resource with other major RNA-seq and microarray
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Table 2 Comparison of functional prediction for ARCHS4 mouse and human gene expression compared to GTEx and CCLE

Gene set library ARCHS4 mouse ARCHS4 human GTEx CCLE

Go Biological Process 2017 Median 0.745 0.726 0.709 0.667

Δ median 0 −0.0186 −0.0356 −0.0773

p-value 1 7.70E−08 1.47E−27 8.50E−124

GO molecular function Median 0.724 0.71 0.649 0.649

Δ median 0 −0.0134 −0.0752 −0.0752

p-value 1 0.0174 1.08E−78 7.93E−64

ENCODE TF ChIP-seq 2015 Median 0.596 0.608 0.5349 0.596

Δ median 0 0.0124 −0.061 0.000271

p-value 1 5.54E−13 0 0.000476

ChEA 2016 Median 0.606 0.617 0.57 0.608

Δ median 0 0.0104 −0.0363 0.00139

p-value 1 1.95E−17 5.44E−266 0.758

KEGG 2015 Median 0.797 0.786 0.713 0.688

Δ median 0 −0.0109 −0.0838 −0.109

p-value 1 0.21 5.76E−20 2.56E−35

Human phenotype ontology Median 0.698 0.683 0.669 0.623

Δ median 0 −0.0144 −0.0284 −0.0745

p-value 1 0.00251 2.38E−10 6.05E−48

KEA 2015 Median 0.591 0.583 0.587 0.572

Δ median 0 −0.0088 −0.00439 −0.019

p-value 1 0.431 0.0459 0.00365

MGI mammalian phenotype Median 0.687 0.6639 0.686 0.612

Δ median 0 −0.0227 −0.000726 −0.0749

p-value 1 3.83E−08 0.537 9.97E−83

Δ median is the difference in median AUC between ARCHS4 mouse and the other data sets. The significance of difference of the mean is calculated by t-test for observed AUC distributions.
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Fig. 6 Prediction of biological function and protein–protein interactions. a The distribution of AUC for gene set membership prediction of gene annotations

from eight gene set libraries with co-expression data created from ARCHS4 mouse, ARCHS4 human, GTEx, and CCLE. The gene set libraries used to train

and evaluate the predictions are ChEA, ENCODE, GO Biological Process, GO Molecular Function, KEA, KEGG Pathways, Human Phenotype Ontology, and

MGI Mammalian Phenotype Level 4. These libraries were obtained from the Enrichr collection of libraries. b Venn diagram showing the intersection of

edges between three PPI databases hu.MAP, BioGRID, and BioPLEX. c Distribution of AUC for protein–protein interaction prediction from gene co-

expression data created in the same way from ARCHS4 mouse, ARCHS4 human, CCLE, and GTEx. d Bar plot of the pairwise correlation between genes

with reported protein–protein interactions for the three PPI networks hu.MAP, BioGRID, and BioPLEX in ARCHS4 mouse expression. The right tail of the

gene pair correlation distribution is shown by the 75% quantile. On the right, the bars represent the percent overlap of predicted interactions for the

matching intersections from the Venn diagram plotted in b
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repositories. The hypothesis is that gene function and protein
interactions can be predicted using co-expression data, and this
implies that co-expressed genes tend to share their function and
physically interact. It means that genes are assigned predicted
biological functions when they are highly correlated with a set of
genes that are already annotated to have some biological function.
Similarly, a gene product is predicted to interact with another
protein if the known direct protein interactors for that other
protein are highly co-expressed with the gene product protein.
We evaluate the human and mouse ARCHS4 data sets by com-
paring them to co-expression matrices created in the same way
from the Cancer Cell Line Encyclopedia (CCLE) and GTEx
resources. All gene expression data sets produce, on average,
significant ability to predict both biological functions and protein
interactions. This suggests that gene expression correlations
derived from large-scale expression data sets are predictive of
biological function and protein interactions. In almost all the
tested categories, the ARCHS4 mouse and human data sets sig-
nificantly outperformed the predictions made with co-expression
data created from the CCLE and GTEx data sets (Table 2). The
most accurate predictions for GO biological processes, GO
molecular functions, KEGG pathways, Human Phenotype
Ontology terms, predicted upstream kinases, and MGI Mam-
malian Phenotype terms are achieved with the ARCHS4 mouse
gene co-expression data followed by the ARCHS4 human data.
The co-expression data from GTEx outperforms the co-
expression data created from the CCLE for GO biological pro-
cesses and the phenotype libraries, whereas the predictability of
using GTEx data in the same way is lower than CCLE for the
upstream regulatory transcription factor predictions. P-values are
calculated for the ∆ mean between methods. For the ARCHS4
mouse co-expression data, the AUC distributions for predicting
gene function are significant across all categories, but most suc-
cessfully in predicting GO biological processes with median AUC
of 0.745, and membership in KEGG pathways with a median
AUC of 0.797 (Fig. 6a).

While predicting protein function with co-expression data has
been attempted successfully by many before, it is less established
whether co-expression data can be used to also predict PPI. A
similar strategy was employed to predict PPI using prior
knowledge about PPI. PPI data is fetched from three PPI
resources: hu.MAP32, BioGRID33, and BioPLEX34. These three
PPI resources are unique. After filtering, the PPI from BioGRID
are the composition of interactions from thousands of publica-
tions that report only few interactions. The PPI from BioPLEX
are bait-prey interactions from a massive mass-spectrometry
experiment. The hu.MAP PPI consist of data from three mass-
spectrometry experiments integrated with sophisticated compu-
tational methods. hu.MAP also considers prey-prey interactions
to boost interaction confidence. Importantly, none of these three
resources utilize knowledge from mRNA co-expression data to
confirm PPI. The overlap of shared interactions between the three
PPI networks is relatively low, with hu.MAP and BioPLEX
sharing more than 10% of their interactions (Fig. 6b). This is
likely because a part of BioPLEX is contained within hu.MAP.
Predicting PPI using knowledge from these three PPI resources,
the ARCHS4 mouse co-expression data is the most predictive,
with median AUCs of 0.85, 0.66 and 0.64 for hu.MAP, BioGRID,
and BioPLEX respectively (Fig. 6c).

The fact that PPI from hu.MAP can be predicted at a much
higher accuracy compared to the other two networks may suggest
that PPI within hu.MAP are more correct. The 75% quantile of
interaction correlation in hu.MAP is 0.174 compared to BioGRID
(0.0915) and BioPLEX (0.0478); whereas the intersections between
the PPI networks (I, II, III, IV) tend to have a higher 75% quantile
of correlations, with 0.198, 0.217, 0.131 and 0.132 suggesting that

aggregating evidence from experiments that detect PPI, is most
likely to boost confidence of real interactions (Fig. 6d). This
suggestion further supports that mRNA co-expression data can be
used to predict PPI. The predicted PPI and predicted biological
functions provide a plethora of computational hypotheses that
could be further validated experimentally.

Discussion
The ARCHS4 resource of processed RNA-seq data is created by
systematically processing publicly available raw FASTQ samples
from GEO/SRA. This resource can facilitate rapid progress of
retrospective post hoc focal and global analyses. The ARCHS4
data processing pipeline employs a modular Dockerized software
infrastructure that can align RNA-seq samples at an average cost
of less than a cent (US $0.01). To our knowledge, this is an
improvement of more than an order of magnitude over pre-
viously published solutions. The automation of the pipeline
enables constant updating of the data repository by regular
inclusion of newly published gene expression samples. The
pipeline is open source and available on GitHub so it can be
continually enhanced and adopted by the community for other
projects. The pipeline uses Kallisto as the main alignment algo-
rithm that was demonstrated through an unbiased benchmark to
perform as well as, or even better than, another leading aligner,
STAR. We compared the ARCHS4 co-expression data with co-
expression data we created from other existing gene expression
resources, namely GTEx and CCLE, and demonstrated how co-
expression data from ARCHS4 is more effective in predicting
biological functions and protein interactions. This could be
because the data from ARCHS4 is more diverse. The fact that the
data within ARCHS4 is from many sources has its disadvantages.
These include batch effects and quality control inconsistencies.
Standard batch effect removal methods are not applicable to the
entire ARCHS4 data but may be useful for improving the analysis
of segments of ARCHS4 data. The ARCHS4 web application and
Chrome extension enable users to access and query the ARCHS4
data through both metadata and data searches. For data-driven
queries, the unique JL dimensionality reduction method is
implemented to maintain pairwise distances and correlations
between samples even after reducing the number of dimensions
by two orders of magnitude. Reducing the data to a lower
dimension facilitates data-driven searches that return results
instantly. The gene expression data provided by ARCHS4 is freely
accessible for download in the compact HDF5 file format
allowing programmatic access. The HDF5 files contain all avail-
able metadata information about all samples, but such metadata
can be improved by having it follow community standards such
as linking it to established identifiers and biological ontologies.
The ARCHS4 three-dimensional data viewer lets users gain
intuition about the global space of gene expression data from
human and mouse at the sample and gene levels. The interface
supports interactive data exploration through manual sample
selection and highlighting of samples from tissues and cell lines.
With the available data, we constructed comprehensive gene
landing pages containing information about predicted gene
function and PPI, co-expression with other genes, and average
expression across cell lines and tissues. For a variety of tissues and
cell lines, gene expression distributions are calculated for each
gene. Such data can complement tissue and cell line expression
resources such as BioGPS35 and GTEx14 as well as resources that
provide accumulated knowledge about genes and proteins such as
GeneCards36, the Harmonizome37, and the NCBI gene data-
base38. Overall, the ARCHS4 resource contains comprehensive
processed mRNA expression data that can further enable
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biological discovery toward better understanding of the inner-
workings of mammalian cells.

Methods
RNA-seq data processing pipeline. The RNA-seq processing pipeline employed
for ARCHS4 runs in parallel on the AWS cloud. The core component of the
pipeline is the alignment of raw reads to a reference genome. This process is
encapsulated in deployable Docker containers39 that currently support alignment
with two leading fast aligners: STAR8 and Kallisto9. The memory requirement for a
Kallisto Docker image is 4 GB, and for STAR 30 GB. All available SRA files are
identified by downloading the GEO series (GSE) and GEO samples (GSM and SRA
information) using the GEOquery Bioconductor package40. Unprocessed SRA files
are entered as jobs into a scheduler database. The job scheduler is a Dockerized web
application with APIs that communicate job instructions to worker instances, and
for saving the final gene and transcript count files. To allow efficient scaling of
computational resources, AWS auto-scaling is utilized in combination with the
cluster management console (ECS). For Kallisto instances, a task definition is
specified running a Docker image hosted publicly at Docker Hub with 1 vCPU and
a 3.9 GB memory limit. The number of desired tasks specifies how many Docker
images are to run in parallel. For ARCHS4, we ran 400 Docker instances of Kallisto
in parallel due to AWS cap of 200 EC2 instances. The auto-scaling group is set to
launch 200 m4.large general compute instances with 2 vCPUs and 8 GB of memory
and 200 GB of SSD disk storage. Each instance is capable of running 2 Kallisto
Docker instances in parallel. The alignment Docker container, once launched,
continuously requests alignment jobs from the job scheduler. The job description
contains the SRA file URL and the reference genome. The SRA file is downloaded
from the SRA database, while fastq-dump from SRA tools is used to detect single or
paired reads file. Then, the SRA file is converted into FASTQ format. In case of a
paired read file, the data is split into two FASTQ files. Kallisto or STAR are then
used to align the reads against the reference genome. The resulting output is
reduced to gene or transcript counts and uploaded through the job scheduler API
to the gene and transcript count database. The complete workflow is visualized as a
flow chart (Fig. 2). For a subset of 1708 FASTQ files, reads were aligned using
STAR. These were selected for a separate project with the aim to generate differ-
ential gene expression signatures for single gene, drug/small-molecule, or disease
perturbations. The Docker39 container maayanlab/awsstar was deployed on a local
Mesosphere platform41 running on a Mac Pro with 3.7 GHz Quad-Core Intel Xeon
E5 and 32 GB of RAM. The supported genomes are Ensembl Homo sapiens
GRCh38 with the GRCh38.87 annotation file, and Mus Musculus GRCm38 with
the GRCm38.88 annotation file.

Post-processing to make the RNA-seq data accessible. To integrate new
samples into the ARCHS4 resource, gene and transcript count files are extracted
from the database and saved into HDF5 files42. The HDF5 files for human and
mouse contain metadata describing each sample retrieved from GEO with GEO-
query. The files are then deployed to Amazon S3 and made accessible for down-
load. The 3D visualization of all samples on the ARCHS4 website is calculated with
t-SNE43 after quantile normalization and log2 transformation of the human and
mouse samples separately. The t-SNE procedure uses a perplexity of 50 for the
sample centric embedding, and a perplexity of 30 for the gene-centric embedding
using the Rtsne package in R44. The integration of the processed data into GEO
series landing pages is achieved through the ARCHS4 Chrome extension. The
extension, freely available at the Chrome Web Store, first detects whether a GEO
GSE landing page is currently open in the browser. It then requests the matching
GSE series matrices from ARCHS4 containing the gene expression counts and
metadata information for the GSE. Additionally, the ARCHS4 Chrome extension
requests JSON objects with pre-computed clustered gene expression for visualizing
the samples with Clustergrammer31. Summary statistics of sample counts and
tissue-specific samples are saved in a dedicated database table to be accessed by the
ARCHS4 website landing page for display.

Sample search with reduced dimensionality. To enable reliable similarity search
of signatures within the ARCHS4 data matrix, the matrix is compressed into a
lower dimensional representation. A projection that maintains pairwise distances
and correlations between samples is computed with the JL method21. The JL-
transform reduces the original gene expression matrix E 2 N ´M where N is the
number of genes and M is the number samples, into a matrix Ê 2 S ´M, with S<N .
A subspace of 1000 dimensions captures the original correlation structure with a
correlation coefficient of 0.99 (Fig. 3a). For implementing the ARCHS4 signature
search, a projection matrix DJL 2 1000 ´N is used to calculate Ê ¼ DJL ´E. The
human and mouse matrices are handled separately. For user queries, input sig-
natures~s ¼ ½s1; s2; ¼ ; sn� are projected onto a lower dimension b~s ¼ DJL ´~s. Since
covðb~s; ÊÞ � covð~s; EÞ, this method enables responsive real-time signature similarity
search with low error (Fig. 3b).

The ARCHS4 interactive website. The front-end of ARCHS4 is hosted on a web
server derived from a tutum/lamp Docker image that is pulled from Docker Hub. It
is a web service stack running on a UNIX-based operating system with an Apache
HTTP server and a MySQL database. ARCHS4 is an AJAX application

implemented with PHP and JavaScript. All visual data representations are imple-
mented in JavaScript. The sample statistics overview of the landing page is
implemented using D3.JS45. On the data view page, the sample and gene three-
dimensional embedding is visualized using Three.js and WebGL46, which enable
the responsive visualization of thousands of data points in 3D. Data-driven queries
such as signature similarity searches are performed in an R environment hosted on
a dedicated Dockerized Rook web server. On start-up, the Rook server auto-
matically retrieves all necessary data files, including the JT-transformed gene
expression table, as well as the transformation matrix, and loads them into memory
for fast access from an S3 cloud repository. All Docker containers can be load-
balanced and run on a Mesosphere computer cluster with redundant hardware.
The load balancing and port mapping is controlled through a HAProxy service.
The MySQL database is hosted as an RDS Amazon web service.

Prediction of biological function and protein interactions. Gene–gene co-
expression correlations across all human genes can be utilized to predict gene
function and PPI by exploiting the fact that genes that co-express have the ten-
dency to also share function and physically interact. First, expression matrices from
ARCHS4 mouse, ARCHS4 human, GTEx14, and CCLE47 were organized into genes
as the rows and samples as the columns. For the ARCHS4 data matrices,
10,000 samples were randomly selected to construct gene expression correlation
matrices for mouse and human separately. For GTEx and CCLE, all available
samples (9662 and 1037, respectively) were used to build the co-expression cor-
relation matrix for all human genes. For ARCHS4 data, functional prediction
accuracy increases with the number of samples included, while gains become
marginal with more than 10,000 samples. Interestingly, even with a subset of 100
randomly selected samples, functional prediction accuracy is high. The quantile
normalization function from the Bioconductor package preprocessCore48 was used
to normalize gene counts across samples. From the extracted expression matrices,
all pairwise gene correlations were calculated. For each gene set gj 2 GS and each
gene gi the mean correlation of the genes in the gene set to gi was calculated. Self-
correlations when gi 2 gsj were excluded. Hence, the resulting gene set member-
ship prediction matrix GM 2 M ´N for M genes and N gene sets is generated by
the following procedure:

GMij ¼ mean cor gi; gj
� �� �

:

GMi is then sorted from high to low based on correlation level. For each row i
within GM, a vector~s ¼ ½s1GS1; s2GS2; ¼ ; snGSn� is then constructed where snGSn 2
f0; 1g and sjGSj is 1 if gene gi is already known to be in the gene set GS. This vector
is sorted and used to compute the AUC from the cumulative sum of~si using
trapezoidal integration. To predict PPI, the three PPI networks, hu.MAP32, Bio-
GRID33, and BioPLEX34, are first converted to a gene set library as described by
Ma’ayan et al.49. Then, to predict PPIs, the same procedure as described for
functional predictions was applied.

Data availability. The ARCHS4 website is accessible at https://amp.pharm.mssm.
edu/archs4. On the site all processed data is available at the Download tab. Source
code for the project is provided at https://github.com/MaayanLab/archs4. Source
code is available under the Apache Licence 2.0. Provided gene expression files are
made available under the Creative Commons Attribution 4.0 International License
(Creative Commons License). All data is free to use for non-commercial purposes.
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