
903

Progress of Theoretical Physics, Vol. 128, No. 5, November 2012

Massive Modes in Magnetized Brane Models

Yuta Hamada and Tatsuo Kobayashi

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received August 13, 2012)

We study higher dimensional models with magnetic fluxes, which can be derived from
superstring theory. We study mass spectrum and wavefunctions of massless and massive
modes for spinor, scalar and vector fields. We compute the 3-point couplings and higher
order couplings among massless modes and massive modes in 4D low-energy effective field
theory. These couplings have non-trivial behaviors, because wavefunctions of massless and
massive modes are non-trivial.
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§1. Introduction

Field theory in higher dimensions plays a role in particle physics and cosmol-
ogy. In particular, extra dimensional field theory derived from superstring theory
is important. Their four-dimensional (4D) low-energy effective field theories are de-
termined by geometrical aspects of compact extra dimensions. One of the simplest
compact spaces is a torus. However, the simple toroidal compactification does not
lead to a chiral theory as a 4D low-energy effective field theory. Hence, it is a key
issue to realize a 4D chiral theory when we start with higher dimensional field theory.

Complicated geometrical backgrounds such as Calabi-Yau manifolds would lead
to a 4D chiral theory, although it may be difficult to compute explicitly 4D low-
energy effective field theories from such geometrical backgrounds. On the other
hand, the toroidal compactification can also lead to a 4D chiral theory when we
introduce non-vanishing magnetic fluxes in extra dimensions. The numbers of zero-
modes are determined by the size of magnetic flux and each zero-mode has a quasi-
localized profile. Thus, the toroidal compactification with magnetic fluxes is quite
attractive background for higher dimensional field theory1)–5) (see also 6), 7)). Its
stringy setup corresponds to magnetized D-brane models wrapping cycles on the
torus.8)–11) Furthermore, magnetized D-brane models are the T-dual of intersecting
D-brane models, and many interesting models have been constructed in both types
of models.12),13)

The Yukawa couplings among massless modes were computed by integrating
the overlap of wavefunctions in the extra dimensional space.1) If zero-modes are
quasi-legalized far away from each other, their couplings are suppressed. On the
other hand, if they are localized near each other, their couplings are not suppressed,
but would be of O(1). Thus, these localization behaviors are important from the
phenomenological viewpoint, for example, to derive the realistic values of quark
and lepton masses and their mixing angles. Furthermore, higher order couplings
among massless modes were also computed.14) Interestingly, they are written by
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products of 3-point couplings. These low-energy effective field theories can also lead
to Abelian and non-Abelian discrete flavor symmetries, e.g. D4 and Δ(27) flavor
symmetries.15),16),∗) These non-Abelian discrete flavor symmetries are important
to derive the realistic quark and lepton mass matrices (see e.g. 18) and references
therein).

In addition to massless modes, massive modes also have important effects in
4D low-energy effective field theory. For example, they may induce the fast proton
decay and flavor changing neutral currents (FCNCs) (see e.g. 19)). Our purpose in
this paper is to study massive modes in the extra dimensional models with magnetic
fluxes. We study their mass spectrum and wavefunctions explicitly. Then, we study
compute 3-point couplings and higher order couplings including these massive modes.
These couplings have non-trivial behaviors, because wavefunctions of massless and
massive modes are non-trivial.

This paper is organized as follows. In §2, we briefly review the fermion zero-
modes on T 2 with the magnetic flux. Then, we study mass spectrum and wavefunc-
tions of higher modes explicitly. These analyses are extended to those for zero-modes
and higher modes of scalar and vector fields. Its extension to T 6 is straightforward.
In §3, we compute couplings among these modes. In §3.1, we give a brief review
on computations of the 3-point couplings and higher order couplings among zero-
modes. Then, we extend them to the computations of the 3-point and higher order
couplings including higher modes in §3.2. In §3.3, we also consider the couplings
including massive modes due to only the Wilson line effect, but not magnetic fluxes.
In §4, we give comments on some phenomenological implications of our results. Sec-
tion 5 is devoted to conclusion and discussion. In Appendix A, we show some useful
properties of the Hermite function. In Appendix B, we briefly review the vector field
in extra dimensions. In Appendix C, we show useful properties of the products of
zero-mode wavefunctions.

§2. Mass spectrum and wavefunctions of massive modes

We consider the (4 + d)-dimensions, and denote four-dimensional and d-dimen-
sional coordinates by xμ and ym with μ = 0, · · · , 3 and m = 1, · · · , d, respectively.
We study the spinor field λ(xμ, ym) and the vector field AM (xμ, ym) with M =
0, · · · , (3 + d). We decompose these fields as follows,

λ(xμ, ym) =
∑
n

χn(xμ)ψn(ym), (2.1)

AM (xμ, ym) =
∑
n

ϕn,M (xμ)φn,M (ym). (2.2)

Here we choose the internal wavefunctions ψn(ym) as eigenfunctions of the internal
Dirac operator as

iΓmDmψn = mnψn, (2.3)

∗) Similar non-Abelian discrete flavor symmetries are derived in heterotic orbifold models.17)
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where Γm denote the gamma matrices in the internal space. The eigenvalues of mn

become masses of the modes χn(xμ) in 4D effective field theory. Similarly, φn,M (ym)
correspond to eigenfunctions of the internal Laplace operators, as will be shown
explicitly later. The scalar field in the (4 + d)-dimensions is also decomposed in a
similar way.

2.1. T 2 with magnetic flux

First, let us consider the 2D torus, T 2. Here, we follow the notation of Ref. 1).
Instead of the real coordinates y1 and y2, we use the complex coordinate, z = y1+τy2

with τ ∈ C. The metric is given by

ds2 = 2(2πR)2dzdz̄. (2.4)

We identify the complex coordinate as z ∼ z + 1 and z ∼ z + τ on T 2. The area is
written by A = 4π2R2Imτ .

We introduce the U(1) magnetic flux on T 2 as

Fzz̄ =
πi

Imτ
m. (2.5)

This magnetic flux is derived, e.g., from the following vector potential,

Az̄ =
π

2Imτ
mz, Az = − π

2Imτ
mz̄. (2.6)

Their boundary conditions can be written as

Ai(z + 1) = Ai(z) + ∂iχ1, Ai(z + τ) = Ai(z) + ∂iχ2, (2.7)

where

χ1 =
π

Imτ
m Imz, χ2 =

π

Imτ
m Imτ̄ z. (2.8)

Furthermore, we can introduce non-vanishing Wilson lines by using

χ1 =
π

Imτ
Im(mz + α), χ2 =

π

Imτ
Imτ̄(mz + α), (2.9)

where α is complex and corresponds to the degree of freedom of the Wilson line. It
is convenient to use the following notation,

α = mζ, (2.10)

for m �= 0.

2.1.1. Fermion zero-modes
Here, we review the fermion zero-modes, which satisfy Eq. (2.3) with mn = 0.1)

On T 2, the spinor ψn has two components,

ψn =
(
ψ+,n

ψ−,n

)
. (2.11)
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We use the gamma matrices on T 2 as

Γ 1 =
(

0 1
1 0

)
, Γ 2 =

(
0 −i
i 0

)
. (2.12)

Then, the zero-mode equation is written as

Dψ+,0 = 0, D†ψ−,0 = 0, (2.13)

where

D =
1
πR

(
∂̄ + q

πm

2Imτ
(z + ζ)

)
, (2.14)

for the spinor with U(1) charge q. The charge q and magnetic flux m should satisfy
that qm = integer. They also satisfy the following boundary conditions,

ψn(z + 1) = eiqχ1(z)ψn(z), ψn(z + τ) = eiqχ2(z)ψn(z). (2.15)

When qm > 0, only the zero-mode ψ+,0 has a solution, but ψ−,0 has no solution.
Then, the chiral spectrum for the zero-modes is realized and the number of zero-
modes is equal to qm. Their zero-mode wavefunctions are written explicitly as

ψj,qm
+ (z + ζ) =

(
2Imτqm

A2

)1/4 ∑
�

Θj,qm
� (z + ζ, τ), (2.16)

where

Θj,qm
� (z + ζ, τ) = exp

[
− πqmImτ

(
Im(z + ζ)

Imτ
+

j

qm
+ �

)2

+ iπqmRe(z + ζ)
(

Im(z + ζ)
Imτ

+ 2
(
j

qm
+ �

))
+ iπqmReτ

(
j

qm
+ �

)]
.

(2.17)

Note that the effect of the Wilson line ζ is the shift of the wavefunctions ψj,qm(z)
to ψj,qm(z + ζ). The zero-mode wavefunction can be written by a product of the
Gaussian function and the Jacobi ϑ-function, i.e.,

ψj,qm
+ (z + ζ) =

(
2Imτqm

A2

)1/4

exp
[
iπ
qm(z + ζ)Im(z + ζ)

Imτ

]

×ϑ
[
j/qm

0

]
(qm(z + ζ), qmτ), (2.18)

where

ϑ

[
a
b

]
(ν, τ) =

∑
�

exp
[
πi(a+ �)2τ + 2πi(a+ �)(ν + b)

]
. (2.19)
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(ψj,qm
+ )∗ represents the anti-particle of ψj,qm

+ , and is obtained from Eq. (2.16) by
replacing Θj,qm

� (z + ζ, τ) with Θ−j,−qm
� (z̄ + ζ̄, τ̄). These zero-mode wavefunctions

satisfy the following orthonormal condition,∫
T 2

dzdz̄ψj,qm
+ (ψk,qm

+ )∗ = δjk. (2.20)

When qm < 0, there appear the zero-modes for ψ−,0, but not for ψ+,0. The
number of their zero-modes is equal to |qm|, and their wavefunctions are obtained
similarly. In the following discussion, we assume qm > 0.

2.1.2. Fermion massive modes
Here, we study the fermion massive modes withmn �= 0 in Eq. (2.3). Formn �= 0,

the zero-modes, ψ+,n and ψ−,n, mix each other in Eq. (2.3). They satisfy(
D†D 0

0 DD†

)(
ψ+,n

ψ−,n

)
= m2

n

(
ψ+,n

ψ−,n

)
. (2.21)

The 2D Laplace operator is defined as

Δ =
1
2
{D†, D}, (2.22)

and it satisfies the following algebraic relations,

Δ = D†D +
2πqm
A , [D,D†] =

4πqm
A ,

[Δ,D†] =
4πqm
A D†, [Δ,D] = −4πqm

A D. (2.23)

Thus, massive modes are eigenfunctions of the Laplace operator Δ, and their mass
spectrum is derived in an analysis similar to that of the quantum harmonic oscillator.
It is convenient to use the normalized creation and annihilation operators,

a =

√
A

4πqm
D, a† =

√
A

4πqm
D†, (2.24)

which satisfy [a, a†] = 1. Then, the eigenvalues of the Laplace operator Δ are given
as

λn = 2π
qm

A (2n+ 1), (2.25)

and eigenvalues m2
n are also written as

m2
n = 4π

qm

A n. (2.26)

The corresponding wavefunctions ψn are written by

1√
n!

(a†)nψj.qm
+,0 . (2.27)
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Explicitly, the wavefunctions of massive modes are written as

ψj,qm
n =

(2mqImτ)1/4

(2nn!A)1/2

∑
l

Θj,qm
� (z + ζ, τ)

×Hn

(√
2πqmImτ

(
Im(z + ζ)

Imτ
+

j

qm
+ �

))
, (2.28)

where Hn(x) is the Hermite function. Massive spectra of ψ+,n and ψ−,n are the
same and each number of them is equal to qm. Note that ψj,qm

n satisfy the bound-
ary conditions (2.15). Also, these wavefunctions satisfy the following orthonormal
conditions, ∫

T 2

dzdz̄ψj,qm
n (ψk,qm

� )∗ = δjkδn�. (2.29)

2.1.3. Scalar and vector modes
Here, we study the scalar and vector modes on T 2. The scalar fields are expanded

as eigenfunctions of the Laplace operator,

Δφn(z) = m2
nφn(z). (2.30)

That is, these eigenvalues are obtained as λn, i.e.,

m2
n = λn = 2π

qm

A (2n+ 1), (2.31)

for the scalar field. All of them including the lightest mode with n = 0 are massive.
Eigenfunctions are the same as those for the fermion, i.e. ψj,qm

n in Eq. (2.28).
Next, we study the vector field on T 2. We are interested in the charged vector

field with the U(1) charge q, where q �= 0.∗) For example, they correspond to the
W± vector bosons in the SU(2) gauge theory. We decompose the vector fields as
Eq. (2.1). From Eq. (B.11) in Appendix B, the mass-squared matrix is written by

M2 =
(

Δ −i4π qm
A

i4π qm
A Δ

)
, (2.32)

in the real basis of the 2D vector field (φn,1, φn,2). Instead of the real basis, we use
the complex basis,

φn,z =
1√
2
(φn,1 + iφn,2), φn,z̄ =

1√
2
(φn,1 − iφn,2). (2.33)

The mass spectra of these internal wavefunctions are obtained through solving the
following equations, (

Δ− 4πqm
A

)
φn,z = m2

nφn,z, (2.34)(
Δ+

4πqm
A

)
φn,z̄ = m2

nφn,z̄. (2.35)

∗) Obviously, there is no effect due to magnetic fluxes in the neutral vector fields with q = 0.
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That is, the mass spectrum of φn,z is obtained as

m2
n = λn − 4πqm

A = 2π
qm

A (2n− 1), (2.36)

while the mass spectrum of φn,z̄ is obtained as

m2
n = λn +

4πqm
A = 2π

qm

A (2(n+ 1) + 1). (2.37)

The spectrum of φn,z includes the tachyonic mode for n = 0, while all modes of
φn,z̄ are massive. Their wavefunctions φn,z and φn,z̄ are the same as those for the
fermion, i.e. ψj,qm

n in Eq. (2.28).

2.1.4. Massive modes only due to Wilson lines
The massive modes also appear only due to non-vanishing Wilson lines α without

magnetic fluxes. For completeness, we show their mass spectrum and wavefunctions.
The internal wavefunctions for the spinor field as well as the scalar and vector fields
satisfy the same boundary condition as Eq. (2.15) with

χ1 =
π

Imτ
Imα, χ2 =

π

Imτ
Imτ̄α. (2.38)

Then, the wavefunctions satisfying this boundary condition are obtained as

ψ(W )
nR,nI

(z) =
1√A exp

[
iπ

(
Imα
Imτ

+ 2nR

)
Rez + iπ

Imz
Imτ

(−Reα+ 2(nI − ReτnR))
]
,

(2.39)

where nR and nI are integers. Their masses are given as

m2
nR,nI

=
4π2Imτ

A
[(

Imα
Imτ

+ nR

)2

+
(

1
Imτ

)2

(−Reα+ (nI − ReτnR))2
]
. (2.40)

2.2. T 6

Here we study the field theory on (T 2)3. It is straightforward to extend the
analyses on T 2 and (T 2)3 to one on (T 2)2. We use the complex basis, zi = y2i−1 +
τ iy2i with i = 1, 2, 3 on the i-th T 2, and the metric is written by

ds2 =
∑

i

2(2πRi)2dzidz̄i. (2.41)

We identify the complex coordinate as zi ∼ zi + 1 and zi ∼ zi + τ i, and the area on
the i-th T 2 is written by Ai = 4π2(Ri)2Imτ i.

We introduce the U(1) magnetic flux on the i-th T 2 as

Fziz̄i =
πi

Imτ i
mi, (2.42)
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where qmi is integer. This magnetic flux is derived from the following vector poten-
tial,

Az̄i =
π

2Imτ i
mizi, Azi = − π

2Imτ i
miz̄i. (2.43)

We also introduce the Wilson line on the i-th T 2,

αi = miζi. (2.44)

Obviously, the mass spectrum and wavefunctions on each T 2 are given as those
in §2.1. The full eigenfunctions are the products of the eigenfunctions for the ni-th
modes on the i-th T 2, and the full mass squared is the sum of masses squared for
each T 2. The numbers of massless fermions are obtained as

∏
i qm

i. The scalar field
on T 6 is always massive. The vector field φzr along the r-th (complex) direction on
T 6 has the lowest mass squared with ni = 0 (i = 1, 2, 3) as

m2 = 2πq

⎛
⎝∑

i�=r

mi

Ai
− mr

Ar

⎞
⎠ . (2.45)

For example, when m2/A2 + m3/A3 − m1/A1 = 0, the massless mode appears in
φz1 . When m2/A2 + m3/A3 − m1/A1 is positive (negative), it becomes massive
(tachyonic).

§3. Couplings including massive modes

Here, we study couplings including zero-modes and higher modes in 4D low-
energy effective field theory. The 3-point couplings among zero-modes are computed
in 1), 20), and higher order couplings among zero-modes are studied in 14). First
we briefly review them in §3.1, and extend to 3-point and higher order couplings
including higher modes in §3.2. In §3.3, we also consider the couplings including
massive modes due to only the Wilson line effect, but not magnetic fluxes.

3.1. Couplings among zero-modes

Here we concentrate on the T 2 theory. We consider the coupling among three
zero-modes, whose wavefunctions are given as ψi,q1m1(z + ζ1, τ), ψi,q2m2(z + ζ2, τ)
and (ψi,q3m3(z+ζ3, τ))∗. They have U(1) charges, q1, q2 and q3, respectively, and the
magnetic fluxes, m1, m2 and m3 appear in their zero-mode equations. We use the
notation, N1 = q1m1, N2 = q2m2 and N3 = q3m3. We assume that N1, N2, N3 �= 0.
The gauge invariance requires that q1 + q2 = q3, N1 +N2 = N3 and N1ζ1 +N2ζ2 =
N3ζ3. Their 3-point coupling in the 4D low-energy effective field theory is given by
the following integral of wavefunctions,

yijk̄ =
∫
d2zψi,N1ψj,N2(ψk,N3)∗, (3.1)

up to the 3-point coupling constant in higher dimensional field theory. Hereafter,
we concentrate on the part given as the overlap integral of wavefunctions, omitting
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Massive Modes in Magnetized Brane Models 911

the coupling constants in higher dimensions. For the Yukawa coupling, two of these
modes correspond to the spinor fields, and the other corresponds to the 4D scalar
field. The 4D scalar may be originated from the higher dimensional vector, e.g. on
T 6, if the 4D scalar is massless. At any rate, the wavefunctions are the same among
the spinor, scalar and vector fields. Thus, we compute the 3-point and higher order
couplings without specifying such Lorentz transformation behaviors. However, note
that the Lorentz invariance leads to a certain selection rule.

In the computation of the above integral, the important property of zero-mode
wavefunctions is that they satisfy the following relation,

ψi,N1(z1, τ) · ψj,N2(z2, τ) =
1√

N1 +N2

N1+N2∑
m=1

ψi+j+N1m, N1+N2(X, τ)

× ψN2i−N1j+N1N2m, N1N2(N1+N2)(Y, τ), (3.2)

where
X =

N1z1 +N2z2
N1 +N2

, Y =
z1 − z2
N1 +N2

, (3.3)

as shown in Appendix C (see also 1), 20)).
For example, when all of Wilson lines vanish, i.e. z1 = z2 = z, the above

expansion becomes

ψi,N1(z, τ) · ψj,N2(z, τ) =
(

2ImτN1N2

A2(N1 +N2)

)1/4 N1+N2∑
m=1

ψi+j+N1m,N1+N2(z, τ)

× ϑ

[
N2i−N1j+N1N2m

N1N2(N1+N2)

0

]
(0, τN1N2(N1 +N2)). (3.4)

Then, by using the orthonormal condition (2.20), the 3-point coupling is obtained
as

yijk̄ =
(

2ImτN1N2

A2(N1 +N2)

)1/4 N1+N2∑
m=1

δk,i+j+N1m

× ϑ

[
N2i−N1j+N1N2m

N1N2(N1+N2)

0

]
(0, τN1N2(N1 +N2)). (3.5)

There is the selection rule for allowed couplings as

k = i+ j. (mod N1) (3.6)

Similarly, we can calculate the 3-point coupling for non-vanishing Wilson lines.
Its result leads to the 3-point couplings,

yijk̄ =
(

2ImτN1N2

A2(N1 +N2)

)1/4 N1+N2∑
m=1

δk,i+j+N1me
iπ(N1ζ1Imζ1+N2ζ2Imζ2−N3ζ3Imζ3)/Imτ

×ϑ
[

N2i−N1j+N1N2m
N1N2(N1+N2)

0

]
(N1N2(ζ1 − ζ2), τN1N2(N1 +N2)). (3.7)
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Next, we consider the 4-point couplings,

yijk�̄ =
∫
d2zψi,N1ψj,N2ψk,N3(ψ�,N4)∗, (3.8)

where the gauge invariance requires N1 +N2 +N3 = N4. For simplicity we consider
the case that all of Wilson lines vanish, but it is straightforward to extend to the
case with non-vanishing Wilson lines. The direct computation is possible by using
the relation (3.4). However, the following calculation is much simpler.14) We write
the above integral

yijk�̄ =
∫
d2zd2z′ψi,N1(z)ψj,N2(z)δ2(z − z′)ψk,N3(z′)(ψ�,N4(z′)))∗. (3.9)

We replace the δ function by

δ2(z − z′) =
∑
s,n

(ψs,N1+N2
n (z))∗ψs,N1+N2

n (z′), (3.10)

which is the summation over the complete set corresponding to eigenfunctions for
the magnetic flux N1 +N2. This summation includes higher modes, i.e. n �= 0. Then
we can write

yijk�̄ =
∑
s,n

(∫
d2zψi,N1(z)ψj,N2(z)(ψs,N1+N2

n (z))∗
)

×
(∫

d2z′ψs,N1+N2
n (z′)ψk,N3(z′)(ψ�,N4(z′)))∗

)
. (3.11)

Using the 3-point coupling among zero-modes, the above integral can be obtained as

yijk�̄ =
∑

s

yijs̄ysjk̄. (3.12)

The higher modes n �= 0 do not appear in this summation, because only zero-mode
modes n = 0 appear on the RHS of Eq. (3.4).

Instead of Eq. (3.9), there is another way to split the integral, e.g.,

yijk�̄ =
∫
d2zd2z′ψi,N1(z)ψj,N2(z)δ2(z − z′)ψk,N3(z′)(ψ�,N4(z′)))∗. (3.13)

Then, by replacing the δ function by

δ2(z − z′) =
∑
t,n

(ψt,N2+N3
n (z))∗ψt,N2+N3

n (z′), (3.14)

we obtain

yijk�̄ =
∑

t

yjkt̄ysi�̄. (3.15)

We can show that both of Eqs. (3.12) and (3.15) lead to the same result.14)
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Similarly, we can calculate another type of the 4-point coupling,

yijk̄�̄ =
∫
d2zψi,N1ψj,N2(ψk,N3)∗(ψ�,N4)∗, (3.16)

where the gauge invariance requires N1 +N2 = N3 +N4. Furthermore, the integrals
for 5-point and higher order couplings can be carried out in a similar analysis, and
they are written by the proper summations over products of 3-point couplings.

3.2. Couplings including higher modes

Here, we study couplings including higher modes. The relation (3.2) among
zero-mode wavefunctions plays an important role in the computation of the 3-point
couplings for zero-modes. When we operate (∂z1 − πN1

2Imτ z̄1)
n1(∂z2 − πN2

2Imτ z̄2)
n2 on the

LHS of Eq. (3.2), we obtain(
∂z1 −

πN1

2Imτ
z̄1

)n1
(
∂z2 −

πN2

2Imτ
z̄2

)n2

ψi,N1
0 (z1, τ) · ψj,N2

0 (z2, τ)

=

√
n1!n2!

(
πN1

Imτ

)n1
(
πN2

Imτ

)n2

ψi,N1
n1

(z1, τ) · ψj,N2
n2

(z2, τ). (3.17)

On the other hand, when we operate (∂z1 − πN1
2Imτ z̄1)

n1(∂z2 − πN2
2Imτ z̄2)

n2 on the RHS
of Eq. (3.2), we obtain

1√
N1 +N2

N1+N2∑
m=1

n1∑
�=0

n2∑
s=0

n1C� n2Cs
(−1)n2−sN �

1N
s
2

(N1 +N2)n1+n2

×
(
∂X − π

2Imτ
(N1 +N2)X̄

)�+s

ψi+j+N1m,N1+N2
0 (X, τ)

×
(
∂Y − π

2Imτ
N1N2(N1 +N2)Ȳ

)n1+n2−�−s

ψ
N2i−N1j+N1N2m,N1N2(N1+N2)
0 (Y, τ)

=
1√

N1 +N2

N1+N2∑
m=1

n1∑
�=0

n2∑
s=0

n1C� n2Cs
(−1)n2−sN �

1N
s
2

(N1 +N2)(n1+n2)/2

(
π

Imτ

)(n1+n2)/2

× (N1N2)(n1+n2−�−s)/2
√

(n1 + n2 − �− s)!(�+ s)!

× ψi+j+N1m,N1+N2

l+s (X, τ) · ψN2i−N1j+N1N2m,N1N2(N1+N2)
n1+n2−�−s (Y, τ), (3.18)

by using the derivatives with respect of X and Y . By identifying Eqs. (3.17) and
(3.18), the product of higher modes, ψi,N1

n1 (z1, τ) and ψj,N2
n2 (z2, τ), is expanded as∗)

ψi,N1
n1

(z1, τ) · ψj,N2
n2

(z2, τ) =
N1+N2∑
m=1

n1∑
�=0

n2∑
s=0

n1C� n2Cs(−1)n2−sN
(n2+�−s)/2
1 N

(n1−�+s)/2
2

(N1 +N2)(n1+n2+1)/2

×
√

(�+ s)!(n1 + n2 − �− s)!
n1!n2!

ψi+j+N1m,N1+N2

�+s (X, τ)

× ψ
N2i−N1j+N1N2m,N1N2(N1+N2)
n1+n2−�−s (Y, τ). (3.19)

∗) A similar relation has been derived in twisted tori.16)
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914 Y. Hamada and T. Kobayashi

When we take z1 = z + ζ1 and z2 = z + ζ2, it is found that

ψi,N1
n1

(z + ζ1, τ) · ψj,N2
n2

(z + ζ2, τ)

=
N1+N2∑
m=1

n1∑
�=0

n2∑
s=0

n1C� n2Cs(−1)n2−sN
(n2+�−s)/2
1 N

(n1−�+s)/2
2

(N1 +N2)(n1+n2+1)/2

×
√

(�+ s)!(n1 + n2 − �− s)!
n1!n2!

· ψi+j+N1m,N1+N2

�+s (z + ζ3, τ)

× ψ
N2i−N1j+N1N2m,N1N2(N1+N2)
n1+n2−�−s

(
ζ1 − ζ2
N1 +N2

, τ

)
. (3.20)

Note that the last factor, ψN2i−N1j+N1N2m,N1N2(N1+N2)
n1+n2−�−s ( ζ1−ζ2

N1+N2
, τ), is constant.

Using the above relation, we can compute the 3-point coupling,

yijk̄
n1n2n3

=
∫
dzdz̄ψi,N1

n1
(z + ζ1, τ) · ψj,N2

n2
(z + ζ2, τ) · (ψk,N3

n3
(z + ζ3, τ))∗, (3.21)

in a way similar to the 3-point coupling among the zero-modes. The result is obtained
as

yijk̄
n1n2n3

=
N1+N2∑
m=1

n1∑
�=0

n2∑
s=0

n1C� n2Cs(−1)n2−s

×
√

Nn2+�−s
1 Nn1−�+s

2

(N1 +N2)n1+n2+1

(�+ s)!(n1 + n2 − �− s)!
n1!n2!

× ψ
N2i−N1j+N1N2m, N1N2(N1+N2)
n1+n2−�−s

(
ζ1 − ζ2
N1 +N2

, τ

)
δ�+s,n3δk,i+j+N1m

=
min(n1,n3)∑

�=max(0,n3−n2)

n1C� n2Cn3−�(−1)n2−n3−�

×
√
Nn2−n3+2�

1 Nn1+n3−2�
2

(N1 +N2)n1+n2+1

n3!(n1 + n2 − n3)!
n1!n2!

× ψ
N2k−N3j, N1N2(N1+N2)
n1+n2−n3

(
ζ1 − ζ2
N1 +N2

, τ

)
. (3.22)

There is the selection rule among i, j and k, which is the same as one for the zero-
modes (3.6). Thus, the flavor symmetry appearing only in zero-modes is still exact
even when we take into account the effects due to higher modes. In addition, the
following relation,

n3 ≤ n1 + n2, (3.23)

should be satisfied for the mode numbers, n1, n2 and n3. For example, two zero-
modes, n1 = n2 = 0, can couple with only the zero mode n3 = 0. On the other
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Massive Modes in Magnetized Brane Models 915

hand, the two zero-modes, n1 = n3 = 0, can couple with higher modes, n2 �= 0, and
its coupling is determined by

1√
N1 +N2

(
N1

N1 +N2

)n2/2

ψN2k−N3j, N1N2N3
n2

(
ζ1 − ζ2
N1 +N2

, τ

)
. (3.24)

Similarly, we can compute the 4-point coupling,

yijk�̄
n1n2n3n4

=
∫
dzdz̄ψi,N1

n1
(z + ζ1, τ) · ψj,N2

n2
(z + ζ2, τ) · ψk,N3

n3
(z + ζ3, τ) · (ψ�,N4

n4
(z + ζ4, τ))∗.

(3.25)

We rewrite it as∫
d2zd2z′ψi,N1

n1
(z + ζ1, τ) · ψj,N2

n2
(z + ζ2, τ)δ2(z − z′)ψk,N3

n3
(z′ + ζ3, τ)

× (ψ�,N4
n4

(z′ + ζ4, τ))∗, (3.26)

and replace the δ function by

δ2(z − z′) =
∑
n,s

ψs,N1+N2
n (z + ζ, τ)(ψs,N1+N2

n (z′ + ζ, τ))∗. (3.27)

Then, the 4-point coupling is given as the summation over products of 3-point cou-
plings,

yijk�̄
n1n2n3n4

=
∑
n,s

yijs̄
n1n2n y

sk�̄
nn3n4

. (3.28)

Similarly, we can compute other higher order couplings by products of the 3-point
couplings.

3.3. Couplings including massive modes only due to Wilson lines

In the previous section, we have considered the couplings including higher modes
under the magnetic flux. Here, we consider the couplings including massive modes
only due to the Wilson line. The wavefunctions of such modes are obtained in
Eq. (2.39). We compute the following 3-point couplings among two zero-modes
ψj,N1(z + ζ1, τ) and (ψk,N2(z + ζ2, τ))∗ and the massive mode ψ(W )

nR,nI (z), where the
two zero-modes have non-vanishing magnetic flux, while the massive mode has no
magnetic flux, but the Wilson line. Here, the gauge invariance requires that N1 = N2

and the Wilson line α3 of the massive mode ψ(W )
nR,nI (z) satisfies N1ζ1 + α3 = N1ζ2.

Then, the 3-point coupling among these modes is given by the following integral,

yj,k̄
(W )nRnI

=
∫
dzdz̄ψj,N1(z + ζ1, τ)(ψk,N1(z + ζ2, τ))∗ψ(W )

nR,nI
(z). (3.29)
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916 Y. Hamada and T. Kobayashi

More explicitly, the integral is written by

yj,k̄
(W )nRnI

=
√

2N1Imτ
A3/2

∫
dzdz̄

∑
�,n

exp
[

iπ

N1Imτ
{(N1z + α1)Im(N1z + α1)

− (N1z̄ + ᾱ2)Im(N1z + α2)} + πi

(
j

N1
+ �

)2

N1τ − πi

(
k

N1
+ n

)2

N1τ̄

+ 2πi
{

(N1z + α1)
(
j

N1
+ �

)
− (N1z̄ + ᾱ2)

(
k

N1
+ n

)}

+ πi

{
Rez

(
Imα3

Imτ
+ 2nR

)
+

Imz
Imτ

(
− Reα3 + 2(nI − nRReτ)

)}]
. (3.30)

The integral over Rez imposes j = k − nR and � = n. In addition, the integral over
Imz is Gaussian-like. By lengthy computation, it is found that

yj,k̄
(W )nRnI

=
1√A exp

[
− π

2N1Imτ
{(Imα3 + nRImτ)2 + (Reα3 − nI + nRReτ)2)}

+ i
π

N1Imτ

(
Imᾱ2α1 + nRImτ̄(α1 + α2) + nRnIImτ − nIIm(α1 + α2)

)]
.

(3.31)

This behaves as a Gaussian function for the Wilson line α3. Thus, this coupling is
suppressed depending on the Wilson line as well as nR and nI . The mode with the
strongest coupling |yj,k̄

(W )nRnI
| corresponds to the mode with nR = nI = 0, when

− 1
2
≤ Imα3

Imτ
≤ 1

2
, − 1

2
≤ Reα3 ≤ 1

2
. (3.32)

For other values of α3, another mode with non-vanishing nR and/or nI would have
the strongest coupling. For example, for nR = nI = 0, we have

|yj,k̄
(W )nR=nI=0| =

1√A exp
[
− π|α3|2

2N1Imτ

]
. (3.33)

This coupling is suppressed depending on |α3|2. For example, when |α3|2/2N1Imτ =
1, we obtain |yj,k̄

(W )nR=nI=0| ≈ e−π ≈ 0.04. The couplings to other modes with
nR, nI �= 0 are much more suppressed for the value of α3, which satisfy Eq. (3.32).

Similarly, we can compute the 3-point coupling among two higher modes, ψj,N1
n1 (z

+ ζ1, τ) and (ψk,N1
n2 (z+ ζ2, τ))∗ and the massive mode ψ(W )

nR,nI (z), where the first two
modes have non-vanishing magnetic flux, while the last mode has no magnetic flux,
but the Wilson line. We assume that n1 ≤ n2. Such a coupling is obtained as

yj,k̄
n1n2(W )nRnI

=
∫
dzdz̄ψj,N1

n1
(z + ζ1, τ)(ψk,N1

n2
(z + ζ2, τ))∗ψ(W )

nR,nI
. (3.34)
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Massive Modes in Magnetized Brane Models 917

Again, the integral over Rez imposes j = k − nR and � = n. For the integral over
Rez, we use Eq. (A.6). Then, the result is written by

yj,k̄
n1n2(W )nRnI

=
yj,k̄
(W )nRnI√
2n1+n2n2!

n1∑
k=0

2k (n1!)3/2

(k!)2(n1 − k)!

×
(√

2πN1Imτ
(
− nR

N1
+

Imα3

N1Imτ

))n1+n2−k

. (3.35)

These couplings include the same suppression factor, yj,k̄
(W )nRnI

.
Higher order couplings can be computed similarly. When we consider higher

order couplings including more modes such as ψ�,N
n (τ, z + ζ), we use the technique

such as Eqs. (3.26) and (3.27). When we consider higher order coupling including
more modes such as ψ(W )

nR,nI (z), we use the property that the product of two wave-
functions ψ(W )

nR,nI (z) and ψ
(W )
mR,mI (z) is obtained as ψ(W )

nR+mR,nI+mI
(z), and that the

Wilson line of ψ(W )
nR+mR,nI+mI

(z) is just the sum of two Wilson lines, which ψ(W )
nR,nI (z)

and ψ(W )
mR,mI (z) have. Using these, we can compute higher order couplings.

§4. Phenomenological comments

We have calculated the couplings among zero-modes and higher modes. They
have various important implications from the phenomenological viewpoints. Here,
we give some comments.

The first example is about the proton decay. For instance, the proton decay
would happen through the heavy X boson in the SU(5) GUT model. It couples
with quarks and leptons by the gauge coupling before the gauge symmetry breaking.
This coupling does not change in the 4D GUT theory even after the SU(5) group
is broken. However, it can change in extra dimensional models, which have been
discussed so far. Let us consider the SU(5)×U(1) GUT model with extra space, T 2

or T 6. We introduce non-vanishing magnetic flux m along the extra U(1) direction.
Suppose that the 5̄ matter field has a charge q under the extra U(1) symmetry.
Before SU(5) breaking, both of the quark and lepton in 5̄ are quasi-localized at the
same place, and their coupling to the X boson is given by the gauge coupling. Then,
we assume the non-vanishing Wilson line α along the U(1)Y direction in SU(5). It
breaks the SU(5) gauge symmetry, the X boson becomes massive and its profile is
written by ψ(W )

nR=nI=0(z) in Eq. (2.39). The quark and lepton in 5̄ are still massless,
but their profiles split each other, because of Wilson lines. In this case, the coupling
among the quark, lepton and the X heavy boson is not equal to the gauge coupling,
but it includes the suppression factor, |yj,k̄

(W )nR=nI=0|, as computed in the previous
section. That is important to avoid the fast proton decay. For example, when
|α3|2/2N1Imτ = 1, we obtain |yj,k̄

(W )nR=nI=0| ≈ e−π ≈ 0.04. Similarly, the coupling
of the X boson with quarks and leptons in the 10 matter field can be suppressed.
Then, the proton lifetime would drastically change by O(104 − 105).

Similarly, we can study the case that SU(5) is broken by the magnetic flux along
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918 Y. Hamada and T. Kobayashi

the U(1)Y direction, and the X boson becomes massive due to the magnetic flux.
In this case, the coupling of the X boson with quark and lepton has the suppression
factor given by Eq. (3.24).

Let us comment on another example. The Higgs mode gains its mass by the non-
vanishing Wilson line in certain models. That is, the Higgs mode corresponds to the
open string stretching between two parallel D-branes (on at least one T 2 of (T 2)3)
in the picture of intersecting D-brane models (see e.g. 21)). The Yukawa couplings
between this Higgs field and massless matter fields include the factor, |yj,k̄

(W )nR=nI=0
|.

When the compactification scale is high such as the GUT scale and the Planck scale,
this Wilson line α generating the Higgs mass is quite small, α � 1, and the factor
|yj,k̄

(W )nR=nI=0| is of O(1). It is also important to see the moduli dependence of these
couplings, that is, the dependence of the complex structure τ and the Wilson line α,
which is the open string modulus. If F terms of complex structure and/or Wilson
line moduli are non-vanishing, the corresponding A terms would appear and they are
determined by the moduli dependence. At any rate, it is important to have found
that the explicit moduli-dependence of these couplings, even though their values are
of O(1).

We would need heavy right-handed neutrino masses for the seesaw mechanism.
These masses may be generated by non-perturbative effects (see e.g. 22), 23)). Al-
ternatively, the right-handed neutrino masses are generated by Wilson lines. If such
a mass scale is comparable to the compactification scale, the couplings of the right-
handed neutrino with the left-handed neutrino and the Higgs scalar would be sup-
pressed.

Finally, we comment on the Kähler metric. The Kähler metric of the matter
fields is diagonal in the flavor basis. However, they couple with massive modes.
Such couplings may induce off-diagonal entries in the Kähler metric after integrat-
ing out massive modes. Such off-diagonal entries may lead to large FCNCs in the
gravity-mediated supersymmetry breaking scenario.19) However, when those cou-
plings among massles modes and massive modes are suppressed, off-diagonal entries
would be small. We have shown that the selection rule for allowed couplings includ-
ing higher modes is the same as the one for only zero-modes. Thus, if there is a
non-Abelian discrete flavor symmetry in massless modes,15),16) that forbids the off-
diagonal entries in the Kähler metric. Recall that such a symmetry is not violated
by effects due to massive modes.

§5. Conclusion and discussion

We have studied the mass spectrum and wavefunctions of zero-modes and higher
modes in extra dimensional models with magnetic fluxes and Wilson lines. Fur-
thermore, we have computed 3-point couplings and higher order couplings included
higher modes in the 4D low-energy effective field theory. These couplings have non-
trivial behaviors, because wavefunctions of massless and massive modes are quite
non-trivial. Using our results, we can write down the 4D low-energy effective field
theory with the full modes. Higher modes do not violate the coupling selection rules
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Massive Modes in Magnetized Brane Models 919

among only zero-modes. Thus, the flavor symmetry for zero-modes remains exact
even when we take into account the effects due to higher modes.

Our results would be important to phenomenological aspects, where couplings
between massless and massive modes play a role, for example, the proton decay, the
Higgs mass term, right-handed majorana neutrino mass term, FCNCs, etc. We will
study in detail phenomenological applications of our results elsewhere. Threshold
corrections and their moduli dependence after integrating out the massive modes
would be important.
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Appendix A
Hermite Function

Here we show properties of the Hermite function, Hn(x), which is defined as

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (A.1)

Its derivative satisfies

d

dx
Hn(x) = 2xHn(x) −Hn+1(x), (A.2)

d

dx
Hn(x) = 2nHn−1(x). (A.3)

The orthonormal conditions are written as∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = δm,n2n√πn!. (A.4)

We compute the following integral,

I =
∫ ∞

−∞
dxHn(x+A)Hm(x+B)e−(x+A+B)2, (A.5)

for n ≤ m. This integral can be calculated as

I =
∫
dxe−(x+A)2 d

n

dxn
(e−2B(x+A)−B2

Hm(x+B))

=
∫
dxe−(x+A)2

n∑
k=0

H(k)
m (x+B)(−2B)n−ke−2B(x+A)−B2

nCk

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/128/5/903/1896879 by guest on 21 August 2022



920 Y. Hamada and T. Kobayashi

=
n∑

k=0

2k
nCk nPk(−2B)n−k

∫
dxe−(x+A+B)2H

(k)
m−k(x+B)

=
n∑

k=0

2k
nCk nPk(−2B)n−k

∫
dxe−(x+B)2 d

m−k

dxm−k
e−2A(x+B)−A2

=
n∑

k=0

2k
nCk nPk(−2B)n−k(−2A)m−k

∫
dxe−(x+A+B)2

=
n∑

k=0

2k
nCk nPk(−2B)n−k(−2A)m−k√π, (A.6)

where

H(k)
m (x) =

dk

dxk
Hm(x), nCk =

n!
k!(n− k)!

, nPk =
n!
k!
. (A.7)

The following integral along the proper path,∫ ∞

−∞
Hn(x+A)Hm(x+B)e−(x+A+B+iC)2, (A.8)

leads to the same result as the above.

Appendix B
Vector Field

Here, we study the (4+2) dimensional U(N) non-Abelian gauge theory (see also
1), 6)). Its Lagrangian is given as

L = − 1
4g2

Tr
(
FMNFMN

)
, (B.1)

where

FMN = ∂MAN − ∂NAM − i[AM , AN ]. (B.2)

We compactify the two dimensions on T 2 with magnetic fluxes along U(1) directions.
We decompose the U(1) parts BN and off-diagonal parts WM ,

AM = BM +WM = Ba
MUa +W ab

M eab, (B.3)

with

(Ua)i
j = δaiδaj , (eab)ij = δaiδbj , (a �= b) (B.4)

where W ab
M = (W ba

M )∗. The quadratic terms of W ab
M in the Lagrangian are relevant

to our study, and these appear

L = − 1
2g2

Tr
(
DMWND

MWN −DMWND
NWM − iGMN [WM ,WN ]

)
+ · · · ,

(B.5)
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where

GMN = ∂MBN − ∂NBM , (B.6)
DMWN = ∂MWN − i[BN ,WN ]. (B.7)

Here, the ellipsis denotes irrelevant terms. Furthermore, these terms are written by

L =
i

4g2

(
Gq

ij −Gb
ij

) (
W i,abW j,ba −W j,abW i,ba

)
− 1

2g2

[(
DμW

ba
i DμW i,ab

)

+
(
D̃iW

ba
j D̃iW j,ab

)
− 2

(
D̃iW

ba
μ DμW i,ab

)
−

(
D̃iW

ba
j D̃jW i,ab

) ]
+ · · · ,

(B.8)

where

D̃iW
ab
j = ∂iW

ab
j − i(Ba

i −Bb
i )W

ab
j . (B.9)

We expand

W ab
i (x, y) =

∑
n

ϕab
n,i(x)φ

ab
n,i(y). (B.10)

Then, by imposing the gauge-fixing condition D̃iW ab
i = 0, the equation of motion in

the internal space is written by

D̃iD̃
iφab

n,j + 2i〈Gab,i
j 〉φn,i = −m2

nφ
ab
j,n. (B.11)

Appendix C
Theta Function Identities and Products of Zero-Mode Wavefunctions

Here we study the product of theta functions and product of zero-mode wave-
functions (see also 1), 20)). The theta function satisfies the following identity,

ϑ

[ r
N1

0

]
(z1, τN1) · ϑ

[ s
N2

0

]
(z2, τN2) =

N1+N2∑
m=1

ϑ

[
r+s+N1m

N1+N2

0

]
(z1 + z2, τ(N1 +N2))

× ϑ

[
N2r−N1s+N1N2m

N1N2(N1+N2)

0

]
(z1N2 − z2N1, τN1N2(N1 +N2)). (C.1)

Using this identity, we can derive the following relations among products of
zero-mode wavefunctions,

ψi,N1(z1, τ) · ψj,N2(z2, τ) =
1√

N1 +N2

N1+N2∑
m=1

ψi+j+N1m,N1+N2

(
N1z1 +N2z2
N1 +N2

, τ

)

× ψN2i−N1j+N1N2m,N1N2(N1+N2)

(
z1 − z2
N1 +N2

, τ

)
. (C.2)
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Its proof is as follows. The LHS is explicitly written as

ψi,N1(z1, τ) · ψj,N2(z2, τ) =
(

2Imτ
√
N1N2

A2

)1/2

exp
[
iπ

Imτ
(N1z1Imz1 +N2z2Imz2)

]

× ϑ

[
i

N1

0

]
(N1z1, N1τ) · ϑ

[ j
N2

0

]
(N2z2, N2τ), (C.3)

and it can be rewritten by use of Eq. (C.1) as

ψi,N1(z1, τ) · ψj,N2(z2, τ) =
(

2Imτ
√
N1N2

A2

)1/2

exp
[
iπ

Imτ
(N1z1Imz1 +N2z2Imz2)

]

×
N1+N2∑
m=1

ϑ

[ i+j+N1m
N1+N2

0

]
(N1z1 +N2z2, τ(N1 +N2))

× ϑ

[
N2i−N1j+N1N2m

N1N2(N1+N2)

0

]
(N1N2(z1 − z2), τN1N2(N1 +N2)).

(C.4)

Since the exponent part is written as

iπ

Imτ
(N1z1Imz1 +N2z2Imz2) =

iπ

Imτ

{
(N1z1 +N2z2)Im

(
N1z1 +N2z2
N1 +N2

)

+N1N2(z1 − z2)Im
z1 − z2
N1 +N2

}
. (C.5)

The RHS in Eq. (C.4) is the summation over the products of wavefunctions,
ψi+j+N1m,N1+N2(N1z1+N2z2

N1+N2
, τ) and ψN2i−N1j+N1N2m,N1N2(N1+N2)( z1−z2

N1+N2
, τ).
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