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1 Introduction

The spinor helicity formalism has been a key ingredient in developing a purely on-shell

formulation of S-matrix computations in four dimensions. This is because helicity spinors

may be used as a complete description of the data of external scattering states (that is,

their momentum and spin polarisation) without recourse to the unnecessary non-linear

gauge redundancy of polarisations used in the Feynman rules. This can be coupled with

on-shell methods, such as recursion and generalised unitarity, to perturbatively build the

internal S-matrix structure out of on-shell units that bypass the need for the fictitious
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degrees of freedom that frequently arise in standard field-theoretic methods. However, the

dream of a fully on-shell formulation of particle physics is far from realised.

Helicity spinors have been adapted to describe the kinematics of massive particles pre-

viously in [1–5]. This generally involved decomposing time-like momenta into two null

vectors and then proceeding with massless helicity spinors to describe each of these in

some way. However, the element of arbitrariness in this decomposition often convoluted

the method, as sought-after patterns could easily be obscured by an inappropriate choice.

Furthermore, this choice of direction often involved a spurious breaking of Lorentz invari-

ance in the amplitudes.

An advance on this formalism was made in [6], where the spinors of the null vectors

were organised into representations of the little group for massive momenta, SU(2). This

symmetry represents the redundancy in the spinor description of momentum, analogous

to the U(1) redundancy in the massless case. However, it may also be utilised to describe

the polarisations of the external massive states, or better, to directly use symmetries to

build amplitudes that have the required transformation properties of the external states

under their individual little group rotations. While there was never a gauge ambiguity in

the polarisations of massive particles in the Feynman rules, non-existent time-like com-

ponents still source tension in a symmetric treatment of a 4-vector description of these

fundamentally 3-vector objects (recent use in effective field theories was given in [7]). Mas-

sive and massless particles may thus be treated on equal footing within the spinor helicity

formalism.

Supersymmetry (SUSY) offers an idealisation that, in theories of massless particles,

has enabled the utility of on-shell methods to be drastically extended. It is thus natural

to look to supersymmetry as a testing grounds for on-shell methods for massive particles.

We therefore here amalgamate the little group-covariant helicity spinors for massive par-

ticles with the formulation of an on-shell superspace in which external scattering states

are grouped into supermultiplets without reference to an external spin direction. This

makes the relations between the amplitudes imposed by the supersymmetric Ward identi-

ties (SWIs) transparent while simultaneously preserving the polarisation structures. See [8]

for a review of on-shell superspace for massless particles. An on-shell superspace for mas-

sive particles was first constructed in [9] and we will rediscover their results along the way,

albeit re-expressed in the covariant formalism. This helps to organise the amplitudes into

Lorentz-covariant terms that are simpler to interpret, identify and construct.

After laying the foundation by writing the superalgebra in a little group covariant

form and constructing covariant supermultiplets, we turn to N = 1 theories to exhibit

the usage and utility of this formalism. We construct from first principles all possible

three particle amplitudes, the most primitive on-shell scattering data, that are consistent

with these symmetries and involve particle spins no greater than one. We also make some

comments on how SUSY generally constrains interactions with higher-spin states. The on-

shell supersymmetry allows us to simply catalogue the most general possible interactions

given only the spectrum of a theory. It is also easy to further specialize by incorporating

additional on-shell data such as the presence of a parity symmetry relating some component

amplitudes to each other, or the absence of self-interactions for a vector in an Abelian
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theory. By studying the high energy or massless limits of superamplitudes, we may obtain

the necessary dependence of the couplings on the masses of the external legs if the states

are to be identified as elementary superfields.

This paper is structured as follows. In section 2 we present the little group covariant

on-shell SUSY algebra. This allows us in section 3 to construct massive on-shell super-

multiplets as coherent states of the supercharges in any reference frame. In section 4 we

discuss general features of superamplitudes and strategies for their construction, including

the implementation of parity symmetry. We exhibit all of this technology in section 5 to

construct elementary three particle amplitudes for flat space N = 1 theories. We then

conclude.

2 Little group covariant superalgebra for massive particles

The general super-Poincaré algebra extends the Poincaré algebra to a graded Lie algebra in

4 dimensions through the introduction of N fermionic generators QαA, Q
†
β̇B

, where α, β̇ are

SL(2,C) indices and A,B = 1 . . .N count the number of left-handed spinor supersymmetry

generators. The Lie brackets of the generators of supersymmetry — or supercharges —

with the generators of translations (Pµ) and rotations/boosts (Mµν) are (following [10])

[QαA, P
µ] = 0,

[QαA,M
µν ] =

i

4
ǫα̇β̇(σµ

αα̇σ
ν
ββ̇

− σν
αα̇σ

µ

ββ̇
)Qβ

A,

{QαA, Q
†B
β̇

} = −2δBA (σ
µ

αβ̇
)Pµ,

{QαA, QβB} = ZABǫαβ ,

{Q†A
α̇ , Q†B

β̇
} = −ZABǫα̇β̇ .

(2.1)

The automorphism group of the supercharges preserving the anticommutation relations

is the R-symmetry group and will be discussed further in what follows. The ‘central charge’

ZAB = −ZBA = −(ZAB)∗ is allowed for N > 1 and typically breaks the R-symmetry to a

subgroup.

We will be interested in the construction of superamplitudes, which package together

scattering data for entire representations of the super-Poincaré algebra. Before discussing

this, we will first rewrite the superalgebra using the massive spinor helicity language. This

allows the spinor indices to be stripped out of the supercharges, leaving an elegant, frame-

independent formulation of the algebra from which massive representations can be simply

constructed. This provides an aesthetic improvement over previous treatments [11] in

addition to setting up our discussion of superamplitudes.

In appendix A.1, we present a lightning review of massive spinor helicity in which we

also develop our conventions and provide relevant and useful identities. The reader can

find there further introduction to the subject and the elementary mechanics which will not

be remarked upon in the main text.
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The external particles in a scattering amplitude are acted upon by the super-Poincaré

generators as separate tensor factors of the scattering state. Each symmetry generator may

therefore be represented on a scattering amplitude as the sum of its action on each external

scattered particle. This will allow us to study symmetry generators and transformations

on each leg separately. We will use spinor helicity variables to represent these generators,

because these encapsulate the on-shell kinematic data for each leg. For massive particles,

this means exhibiting the SU(2) little group symmetry by expressing the symmetry gener-

ators acting on each particle i in an appropriately covariant fashion. By construction, the

momentum eigenvalue of particle i is pα̇βi = pµi σ
α̇β
µ =

∣∣iI
〉α̇

[iI |β . We can likewise define

on-shell, little group covariant supersymmetry generators for each leg by projecting the

supercharges onto the spinors of a given particle

qIi,A =
−1√
2mi

[
iIQi,A

]
, q†Ai,I =

1√
2mi

〈
iIQ

†A
i

〉
, (2.2)

where the factor of mass mi of the particle makes them dimensionless. Note that we are

defining these operators as being restricted to single-particle momentum eigenspaces. For

convenience, the inverse relations are given by

Qi,αA = −
√
2 |iI ]α qIi,A Q†A

i,β̇
=

√
2q†Ai,I

〈
iI
∣∣
β̇
. (2.3)

The factor of 1/
√
2 is just a normalisation convention and has been chosen here so that

the little group covariant supercharges satisfy the anticommutation relations

{
qIi,A, q

†J,B
i

}
= −ǫIJδBA ,

{
qIi,A, q

J
i,B

}
= −ǫIJ

Zi,AB

2mi
,

{
q†I,Ai , q†J,Bi

}
= ǫIJ

ZAB
i

2mi
.

(2.4)

These hold only on a particular single-particle momentum eigenspace, the labeling of which

we leave implicitly subsumed in the particle label i. Here Zi is the particle’s central

charge. Also of note is that, as a result of the way the massive spinors transform under

conjugation, (qI,A)
† = −q†I,A and (qIA)

† = q†AI . As usual, the SU(2) little group indices may

be raised and lowered using the Levi-Civita symbol. When the external legs are massless,

the supercharges (2.3) become

Qi,αA = −
√
2 |i]α qi,A Q†A

i,β̇
= −

√
2q†Ai 〈i|β̇ . (2.5)

The little group covariant supercharges satisfy the algebra

{
qi,A, q

†B
i

}
= δBA (2.6)

and the other anticommutators are zero.

The stripping of the helicity spinor effectively exchanges manifest chirality for manifest

spin polarisation (of which helicity is often a natural and useful example). For massless

states, these are identical and each chiral spinor supercharge can only either raise or lower

a state’s helicity. However, for massive states, the supercharges in the form of chiral spinors

will do a superposition of both, for the usual reason that chirality and helicity/polarisation
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are no longer identical. The little group here describes the freedom in choosing a spin direc-

tion as a state label, which determines how the chiral spinor supercharges are decomposed

into supercharges characterised by polarisation.

In the simple case in which all legs carry a single, electric central charge, Zi,AB =

ZiΩAB, where Zi ∈ R while ΩAB = −ΩBA is a symplectic 2-form:

ΩAB =

[
0 −I

I 0

]
, (2.7)

where 0 is the N
2 × N

2 zero matrix, while I is the identity of the same size. Specifically for

N = 2, ΩAB = ǫAB, Zi may be complex (corresponding to two central charges) and this

central extension is general. The supercharge labels A,B give a manifest representation

of a symmetry group that acts on qIA (and on q†IA in the conjugate representation) while

preserving the algebra (2.4). If ZAB = 0, this would be SU(N ) (or U(N )), while for the

central charge considered above, this would be broken to USp(N ). The symplectic 2-form

ΩAB may then be used to convert USp(N ) tensor representations (such as the supercharges)

into conjugate representations (i.e. raise and lower the explicit R-indices) in the way that

the Levi-Civita tensor does for SU(2).

For |Zi| < 2mi, the relations (2.4) may be simplified. Unlike for massless particle

representations, the generators qI,A and their conjugates q†I,A may mix because their index

heights may be changed by ǫIJ and ZAB. This allows for a rotation into a basis that

canonicalises the anticommutators. This basis is given by

q̄Ii,A =
1√
D


qIi,A +

(
2mi

|Zi|

)2

1−

√

1−
( |Zi|
2mi

)2

 Zi,AB

2mi
q†B,I
i


 . (2.8)

where D = 2

((
2mi

|Zi|

)2
− 1

)(
1−

√
1−

(
|Zi|
2mi

)2
)
. The q̄I,A and their conjugates then

satisfy the anticommutation relations without a central charge:
{
q̄Ii,A, q̄

†J,B
i

}
= −ǫIJδBA ,

{
q̄Ii,A, q̄

J
i,B

}
= 0,

{
q̄†I,Ai , q̄†J,Bi

}
= 0. (2.9)

In such cases, representations of the supersymmetry algebra may be constructed with

a structure identical to that of the case with Zi = 0, although such multiplets still carry

central charge (and this would still appear in relating q̄Ii,A and q̄†I,Ai to QαA and Q†
β̇B

for

these states). Henceforth, this redefinition of the particles’ supercharges will be implicit in

subsequent discussions of SUSY representations with central charges satisfying |Zi| < 2mi

and the bars on the diagonalised supercharges will be omitted.

The relations (2.9) illustrate the symplectic R-symmetry of the massive representation.

While (2.4) has a manifest USp(N ) R-symmetry, because the supercharges can mix with

their conjugates while preserving the SU(2) little group symmetry, the full R-symmetry

group is actually determined by all of the automorphisms that preserve the anticommuta-

tion relations (2.9). Grouping the supercharges into a 2N length vector qI
i,a = (q̄Ii,A, q̄

†I,B
i ),

where a = A for a ≤ N and a = B+N for a > N , (2.9) may be combined into the relation
{
qI
i,a,q

J
i,b

}
= ǫIJΩab. (2.10)

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
0
9
2

Here Ωab is a 2N × 2N symplectic 2-form. Thus the anticommutator is effectively itself

a symplectic 2-form and the R-symmetry is enhanced to USp(2N ) [12]. However, it is

often broken by interactions. The enlarged R-symmetry does not occur for massless repre-

sentations of the SUSY algebra because the non-zero supercharges have definite opposite

helicity and cannot mix.

The case |Zi| = 2mi is the special BPS limit. This typically occurs for elementary

particles which obtain mass through Higgsing of a vector multiplet [13]. The redefinition

of supercharges that give the canonical anticommutation relations described above fails in

the BPS limit. This is because, for these representations, half of the number of supercharges

are eliminated through the reality constraint

qi,IA =
−1

2mi
Zi,ABq

†B
i,I . (2.11)

The phase of Zi may be absorbed into a redefinition of the supercharge. Calling this

time q̄i,IA = qi,IAe
−i(argZ)/2, the BPS condition reduces to

q̄IAi = −q̄†IAi q̄i,IA = −q̄†i,IA. (2.12)

This condition again preserves the supersymmetry algebra. Clearly, BPS states are an-

nihilated by the combination q̄IAi + q̄†IAi . For the central charge considered above with

ZAB ∝ ΩAB, the multiplet is 1/2-BPS as it is annihilated by half of the supercharges.

Configurations with multiple central charges are also possible in which some smaller frac-

tion of supercharges annihilate the state.

The explicit SU(N ) symmetry of the SUSY algebra, which is broken to USp(N ) by the

central charge of these massive single particle states, is therefore the massive R-symmetry

group expected for a theory with half of the number of supersymmetries. A 1/2-BPS

state in N -SUSY may be represented as a massive non-BPS state of N/2-SUSY. For

example, for the simplest spontaneous symmetry breaking pattern in N = 4 SYM, the

massless SU(4) R-symmetry is broken to USp(4) when the central charge is generated. As

the former is unbroken by dynamics and imposes stringent selection rules on scattering

amplitudes at the origin of the moduli space, the latter should also be respected by the

dynamics and organise the transition matrix structure away from the origin. See [14] for

further discussion. Further elaboration upon the representation of BPS states in scattering

amplitudes has been recently made in [15].

More generally, with more complicated configurations of active central charges than the

simple case discussed above, for each 1/2-BPS leg there is nevertheless an SU(N ) R-basis

in which the central charge can be rotated into the form Zi,AB ∝ ΩAB. In such a basis,

the representation of the leg’s supercharges is just as described. However, as this basis is

different for each leg, the linear combinations of supercharges that annihilate each state

may differ by a SU(N ) rotation matrix, which must be accounted for when adding together

the total supercharges. The R-symmetry group will also be broken further beyond USp(N ),

but this will still be a symmetry restricted to the algebra of a single leg’s supercharges.

– 6 –
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Finally, the BPS bound itself, |Zi| ≤ 2mi, may be derived for these scattering states

from the fact that the operator,

(
qi,IA +

1

2mi
Zi,ABq

†B
i,I

)(
qi,IA +

1

2mi
Zi,ACq

†C
i,I

)†
(2.13)

being a sum of squares, must have non-negative spectrum. Using the algebra (2.4), (2.13)

simplifies to qi,IA (qi,IA)
†
(
1− |Zi|2

(2mi)2

)
. The BPS bound follows by simply requiring that

this be non-negative.

3 On-shell supermultiplets

We seek here to construct scattering amplitudes for supersymmetric theories, so need to

understand the structure of supersymmetric scattering states. Scattering data is simplified

considerably by the grouping of component states into coherent states of the supersymmetry

algebra, known as ‘on-shell superfields’. For these scattering states we may describe their

collective S-matrix entries using superamplitudes, which manifest both the supersymmetric

Ward identities in a simple manner.

For massless theories, on-shell superfields have been established as a convenient organ-

isation of the representations [16]. The on-shell superspace was first conceived of in [17]

for N = 4 super Yang-Mills (SYM) and was employed later in [18] to formulate the su-

pertwistor space representation of tree-level scattering amplitudes in these theories (it is

worth noting that an off-shell superspace formulation of N = 4 SYM does not yet exist). In

particular, for N = 4 SYM, it makes transparent the classification of the amplitudes into

sectors of a fixed order of helicity violation, which close under both supersymmetry and

R-symmetry [19–21]. This enabled the formulation of the super-BCFW shift [19, 21] and

the subsequent construction of all tree amplitudes and loop-level integrands in the limit of

large gauge group dimension [22–24], as well as the elucidation of the dual superconformal

symmetry and dual twistor representations of amplitudes on complex projective space [20].

See [8] for a review of these topics. Amplitudes in theories with fewer supersymmetries

have also been formulated in an on-shell superspace in [16], where on-shell superfields for

N < 4 massless theories were constructed. We refer the reader to these papers and the

review for details of the construction of superamplitudes for massless theories, and now

turn to the construction of massive supermultiplets.

General on-shell superspaces for massive states have been previously developed in [9].

However, the manifestation of the massive little group for the external legs will allow us to

improve upon the presentation of this exposition, as well as providing flexibility to choose a

spinor basis best suited for the study of particular phenomena, such as high energy limits or

complex momentum shifts. Much of the subsequent discussion here will parallel that of [9],

with the improved organisation offered by the little group. This has been utilised more

recently for N = 4 super-Yang-Mills in [25] and will be elaborated upon in this context

in [14].

From (2.9), the massive supersymmetry algebra is that ofN fermionic oscillators, where

N = 2N if the representation is not BPS, but can be reduced by up to a factor of 1/2 if

– 7 –
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shortened. Supermultiplets may be represented as coherent states which are eigenstates

of N ‘lowering operators’. To build these states we introduce Grassmann variables which

transform in the little group of each particle ηAi,I , as well as their conjugates η
†I
i,A. The labels

here match those of the supercharges qIi,A. In this section, we will restrict our attention to

multiplets which are not BPS, in which case the oscillator index may be identified with a

supercharge R-index (‘A’ in the symbols just introduced). Following the conventions of [8],

all particles will be represented as outgoing scattering states. We will reverse the heights

of R-indices relative to this reference.

To ensure little group and R-covariance, either all of the qi,IA or all of the q†Ai,I will

be chosen as the lowering operators. These will have some Clifford vacuum states, 〈Ω|
and

〈
Ω
∣∣ , which are annihilated by either set. Generally, any linear combination of qi,IA

and q†Ai,I for each such pair can be chosen as annihilation operators, the choice of which

corresponds to the selection of a particular state in the multiplet as the Clifford vacuum

in the superfield representation, but a choice that yields the most manifest symmetries is

arguably desirable.

An entire supermultiplet may be encoded as a coherent state

〈ηi| = 〈Ω| eqIi,AηAi,I (3.1)

where ηAi,I are anticommuting Grassmann algebra generators. As is clear in this definition

and will be made manifest below, the entire superfield transforms coherently under little

group transformations with the same little group weight as the Clifford vacuum. The action

of the supercharges on the states generalizes the action for massless particles described

in [8], where little group and R-indices of the supercharge must be tensored together and

then decomposed. These are eigenstates of the annihilation operators, satisfying 〈ηi| q†AI =

〈ηi| (−ηAi,I). The Grassmann Fourier transform may be used to define a basis of conjugate

states. It is defined with its inverse respectively as:

〈
η†
∣∣∣ =

∫
d2N η eη

A
I η†I

A 〈η| 〈η| =
∫

d2N η† eη
†I
A
ηAI

〈
η†
∣∣∣ . (3.2)

The fact that both the two different η and η† representations for the same supermultiplet

exist and are related by the Fourier transform will be useful in constraining the form of

superamplitudes.

In the η basis, the supercharges act as (assuming for simplicity the absence of central

charges)

〈ηi|
〈
θAQ

†A
〉
= −

√
2
〈
θAi

I
〉
ηAI 〈η| 〈ηi|

[
θAQA

]
=

√
2
[
θAiI

] ∂

∂ηAI
〈η| (3.3)

where small |θA〉 and
∣∣θA

]
parameterise a linearised supersymmetry transformation. The

supercharges may therefore be represented as linear operators on the superamplitudes

Q†A = −
√
2
∑

i

∣∣iI
〉
ηAi,I QA =

√
2
∑

i

|iI ]
∂

∂ηAi,I
(3.4)

– 8 –
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or on individual legs:

q†Ai,I = −ηAi,I qIi,A = − ∂

∂ηAi,I
. (3.5)

Supersymmetry transformations of both types act simply on these coherent states:

〈η| eiξ
†I
A

q†A
i,I = e−iξ†I

A
ηAI 〈η| , 〈η| e−iξAI qIi,A = 〈η + iξ| . (3.6)

Here, ξAI =
[
θAiI

]
and ξ†IA =

〈
θAi

I
〉
parameterise the supersymmetry transformation pro-

jected onto the spinors of leg i of the appropriate chirality. The action of the supercharges

encoded in (3.6) give the supersymmetric Ward identities relating the components.

As established in appendix A.1, massless limits are most naturally taken in the helicity

basis for the massive little group (in which momentum is chosen as the quantisation axis).

We will adopt the convention that this frame is chosen unless specified otherwise, so that

little group indices always denote helicity by default.

By construction, the massive on-shell superfields do not depend upon a preferred frame

of reference. However, as a result, the difference between massless and massive represen-

tations of the supersymmetry algebra is firmly ingrained in the formalism, as the massive

(non-BPS) states non-trivially represent a larger algebra. In the massless limit, following

the rules established in (A.1), the form of the spacetime supercharges (3.4) requires that

the massive Grassmann variables are mapped onto the massless ones as ηi,− → ηi. Here ηi
is the massless Grassmann variable used to construct the massless on shell superfields (as

in e.g. [16]). For reference, massless coherent states are defined here as

〈ηi| = 〈Ω| eqi,AηAi (3.7)
〈
η†i

∣∣∣ =
∫

dN ηeη
Aη†

A 〈η| . (3.8)

Massless analogues of the previous formulae may be obtained similarly.

However, for non-BPS states, the massless limit of the spacetime supercharges (3.4)

reduces the number of supercharges represented on the multiplet in half, leaving the def-

initions of the spinor-stripped supercharges q†Ai,+ and q+i,A ambiguous. As a consequence,

expressions obtained upon taking the massless limit directly on coherent states or their

matrix entries will involve a residual Grassmann variables denoted here as ηi,+ → η̂i. This

does not represent the action of a supercharge, but does delineate a division of the massive

superfield into separate massless representations.

3.1 Superfields

The coherent state construction generically gives component fields in reducible representa-

tions of the little group and R-symmetries, which need to be disentangled to locate the field

content. The structure of these vary significantly with the number of supersymmetries.

We consider first the simple case of N = 1. The states in the multiplet are generated

by acting qI on the Clifford vacuum and then decomposing the resulting little group tensors

into irreducible representations, which will be further constrained by the needed fermionic
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antisymmetry of the supercharges. Choosing the Clifford vacuum to be a scalar φ = 〈Ω|, the
resulting states are then χI = −〈Ω| qI and φ̃IJ = −〈Ω| qIqJ = ǫIJ 〈Ω| −1

2 qKqK . Because

the tensors are antisymmetric, the state φ̃IJ = −ǫIJ φ̃ is decomposed into a single scalar

degree of freedom. The states of the chiral supermultiplet may therefore be arranged into

coherent state

Φ = φ+ ηIχ
I − 1

2
ηIη

I φ̃ . (3.9)

All states in the multiplet must have identical internal quantum numbers (except for pos-

sible U(1)R charges). If the multiplet is self-conjugate, then the fermion is Majorana and

the scalars are permitted to have opposite R-charges. Otherwise (as is necessary if the field

is in a complex representation, like a quark in superQCD), an anti-superfield is required

with conjugate internal quantum numbers which may be constructed similarly.

Component fields can be extracted from the full superfield via Grassmann derivations.

In this simple case we have the mapping

φ = Φ
∣∣
ηI=0

, χI =
∂

∂ηI
Φ
∣∣
ηI=0

, φ̃ =
1

2

∂

∂ηI

∂

∂ηI
Φ
∣∣
ηI=0

(3.10)

which generalizes straightforwardly to other theories. By the equivalence of Grassmann

differentiation and integration, the derivatives may be replaced by integration. The Grass-

mann differential operators above can be used to extract component amplitudes in the

usual way as for massless superamplitudes.

In the massless limit, the superfield decomposes into components that may be described

by opposite helicities:

Φ → Φ+η̂ +Φ− (3.11)

with

Φ+ = χ+ + ηφ̃, Φ− = φ+ ηχ−. (3.12)

The limit is taken by simply replacing η− → η and η+ → η̂ in (3.9). Here η is the

Grassmann number that would represent the supercharge that acts non-trivially on the

massless multiplet, while η̂ is the variable corresponding to the trivially-acting component.

Similarly to the extraction of component states above, each resulting massless super-

field may be extracted by either setting η̂ = 0 (Φ− in this example) or differentiating with
∂
∂η̂ (−Φ+ here). This likewise allows for the extraction of massless superamplitudes from

limits of massive ones.

We can next construct a vector superfield by starting with a fermionic Clifford vacuum.

Because the two spin components of the fermion belong to different supermultiplets (that

is, the vector multiplet does not contain its CPT -conjugate states), a little group covariant

representation necessitates that two multiplets be combined to create an on-shell superfield

that itself transforms in a non-trivial representation of the SU(2) little group, where each

multiplet contains states of opposite spin projections. Here, this amounts to combining two

Clifford vacua into an SU(2) fundamental representation to describe the two polarisation

states of a fermion’s degrees of freedom. The superfield is

WI = λI + ηIH + ηJW
(IJ) − 1

2
ηJη

J λ̃I , (3.13)
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where the components have already been decomposed to give the spin-1/2 fermion highest-

level state λ̃, while we have both a real scalar H and a massive vector W (IJ) at the

first level. We can extract the different irreducible representations of the little group via
1
2

∂
∂ηI

WI = H, and 1
2

(
∂

∂ηJ
WI + ∂

∂ηI
WJ

)
= W (IJ).

Taking the massless limit again, the massive vector supermultiplet decomposes into

the two helicity components of a massless vector superfield and those of a massless chiral

superfield as

W+ → G+η̂ +Φ+ W− → G− +Φ−η̂,

G+ = g+ + ηλ̃+ G− = λ− + ηg−, (3.14)

Φ+ = λ+ + η

(
1√
2
WL +H

)
Φ− =

(
1√
2
WL −H

)
+ ηλ̃− .

The longitudinally polarised vector, WL =
√
2W (+−), combines with the scalar H to give

the two real scalar degrees of freedom in the massless chiral superfields.

For N = 2 without a central extension, we essentially just have two copies of the N = 1

superalgebra. There is only one supermultiplet to construct here, namely that which starts

with a scalar Clifford vacuum, as any other choice takes us into supergravity. The other

familiar N = 2 supermultiplets are short multiplets. Expanding the coherent state and

keeping the R-indices gives the superfield

Ω = φ+ ηAI ψ
I
A − 1

2
ηAI η

B
J (ǫ

IJφ(AB) + ǫABW
(IJ)) +

1

3
ηBI ηJBη

JAψ̃I
A + η11η

2
1η

1
2η

2
2φ̃. (3.15)

Each term has been decomposed into irreducible little group and R components (remem-

bering that ǫAB may be used to raise and lower the SU(2) R-indices). The Grassmann

order 3 and 4 terms respectively represent a pair of chiral fermions related by R-symmetry

and a scalar. The fermion ψ̃I
A may be extracted by the action of the Grassmann deriva-

tives for each of the Grassmann variables except ηAI . Fermion statistics of the Grassmann

generators implies that the Grassmann order 2 terms must be symmetric in either little

group or R indices, hence the little group triplet vector and R-triplet scalars. The scalars

φ(AB) may be extracted by the action of 1
2

∂
∂ηA

I

∂
∂ηIB

, while the vectors W (IJ) are extracted

by 1
2

∂
∂ηA

I

∂
∂ηJA

. This superfield will be discussed further in [14] as a short multiplet in N = 4

super-Yang-Mills.

Of course, higher-spin representations — either fundamental supergravity multiplets

or composite superfields — may be constructed using the same methods. For example, a

general massive N = 1 superfield S of spin s has the form

S(I1...I2s) = φ(I1...I2s) + η(I1ψI2...I2s) + ηJΨ
(JI1...I2s) − 1

2
ηJη

J φ̃(I1...I2s), (3.16)

where ψ, φ, φ̃ and Ψ are its component states in order of increasing spin. In the massless

limit, this decomposes into pairs of separate superfields each containing either one φ state

(with helicity between −s and s) or one φ̃ state (the superfield having helicity between

– 11 –



J
H
E
P
1
0
(
2
0
1
9
)
0
9
2

−s + 1
2 and s + 1

2). For reference, a massless higher spin superfield with Clifford vacuum

of helicity h is

Σh = ϕh + ηξh−
1
2 , (3.17)

where ϕ and ξ are the component states.

4 Constructing and constraining on-shell superamplitudes

We wish to write down superamplitudes which package together the scattering data for

full representations of the super-Poincaré algebra and allow for amplitudes of component

states to be projected out in a simple manner. In this form the SUSY Ward identities will

be simply represented. We first discuss general features of superamplitudes in 4.1 with

a focus on three legs, and then lay out useful strategies for building them in 4.2, with a

focus on N = 1. In 4.3 we discuss the imposition of parity symmetry at the level of the

superamplitude. We assume in this section the absence of central charges.

4.1 SUSY invariants and the η, η
† bases

Invariance under supersymmetry implies that each n-leg superamplitude, An, must be

annihilated by the supercharges. In the η basis defined in section 3, the multiplicative

action of Q† implies that Q†An = 0 is solved if and only if An is proportional to the delta

function

δ(2N )(Q†) =
N∏

A=1




n∑

i<j

〈
iIjJ

〉
ηAiIη

A
jJ +

1

2

n∑

i

miη
A
iIη

IA
i


 . (4.1)

A straightforward calculation using momentum conservation shows that this delta func-

tion is also invariant under supersymmetry transformations by QAα. However, as these

transformations are not multiplicative, this does not exhaust the constraints from Q trans-

formations.

If we had instead put all of our external states in the η† representation, the Q super-

charges would act multiplicatively and the Ward identity QAn = 0 would instead imply

that the amplitude is proportional to the delta function

δ(2N )(Q) =
N∏

A=1




n∑

i<j

[iIjJ ] η
†I
iAη

†J
jA +

1

2

n∑

i

miη
†I
iAη

†
iIA


 . (4.2)

The Fourier transform of this delta function, ˜δ(2N )(Q) =
∫ n∏

i=1
d2N η†i e

−ηAiIη
†I
iAδ(2N )(Q), is

also a supersymmetric invariant in the η basis, as can be seen by commuting Q,Q† through
the exponential. For amplitudes with massive particles, including three-leg amplitudes, this

Fourier transformed delta function is always of degree at least as large as δ(2N )(Q†).
Exceptions do exist in situations involving three-particle superamplitudes between BPS

states in theories with extended supersymmetry. This will be elaborated upon further

in [14], but we will merely comment here that, in these cases, some subset of the su-

percharges degenerate. The supersymmetric invariant in will instead be the product of
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all of the distinct supercharges. This is similar to the case of three massless particles,

where, for example, special kinematics can imply that if the square brackets are nonva-

nishing, then
〈
Q†AQ†A〉 = 0. The supersymmetric invariant must instead be taken as

N∏
A=1

[23]
〈q1〉

〈
qQ†A〉 =

N∏
A=1

(
[23] ηA1 + [31] ηA2 + [12] ηA3

)
, with |q〉 a reference spinor satisfying

〈qi〉 6= 0 for all |i〉, which matches ˜δ(2N )(Q).

The existence of the different η or η† bases for the same superamplitude yields a

restriction on its maximum Grassmann degree from knowledge that the delta functions are

the lowest Grassmann degree invariants. This restriction is especially important for the

construction and classification of three-leg superamplitudes. For any number of massive

external particles, we can always write a three-leg superamplitude in either basis as

A3|η = δ(2N )(Q†)F (ηI)

A3|η† = δ(2N )(Q)F̄ (η†I)
(4.3)

where F, F̄ are so far undetermined and are also functions of momentum spinors. Näıvely,

these functions could have maximum Grassmann degree N (M+3), where M is the number

of massive legs, since this is the number of independent Grassmann variables we have.

However, from above we know that the Grassmann Fourier transform relates fields

in the η basis to those in the η† basis and thus such a transform of all legs relates the

superamplitude in the two bases. That is, Ã3|η = A3|η† . The Grassmann Fourier transform

roughly returns the set complement of the η†s in the original expression from the total

number of ηs (a full discussion of the Grassmann Fourier transform may be found in

appendix A.2). So we end up with
[
Ã3|η

]
η†

= N (M + 3) − 2N − [F ]η = N (M + 1) −
[F ]η, denoting by [X]η the Grassmann degree in η of some polynomial X. However, the

Grassmann degree of A3|η† is at least 2N , because this is the minimal Grassmann degree

for the SUSY invariant to which it must be proportional. Hence we have the inequality

[F ]η ≤ N (M − 1) . (4.4)

Of course, the same reasoning holds with F replaced with F̄ .1

This simplifies our task of constructing general three-leg superamplitudes as we need

only understand the structure of appropriately invariant functions of Grassmann degree

2N at most.

4.2 Strategies for enumerating amplitudes without central charges

The main goal will be to construct three-leg superamplitudes in all simple supersymmetric

theories with spins ≤ 1. We presently discuss the procedure in brief and outline a number

of simplifications.

1As remarked previously, the situation is modified in the case of three massless particles because there

is a SUSY invariant with Grassmann degree N . In this case, SUSY directly implies that the only possi-

ble Grassmann structures are δ(2N )(Q†) and ˜δ(2N )(Q). The case in which the particles are BPS is also

exceptional and will be explained in [14].
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Now that we only have a small number of Grassmann orders to worry about at most,

our task will be to construct the function F which multiplies the SUSY invariant delta

function for various theories. This function is constrained by the little group covariance of

the amplitude, which is set by the external legs as in the N = 0 case. Supersymmetrically,

it is constrained by the Ward identities, since half of the supercharges act derivatively. An

important benefit of our representation of the supercharges (3.4) is that they are of uniform

degree in η and consequently these constraints do not mix up different Grassmann orders.

This simplifies the procedure so that we may construct the amplitude order by order in η.

At each order, the F factor consists of a sum of monomials in Grassmann variables. As

the delta function is little group invariant, each of these terms must carry the little group

representations of the superfield legs. The Grassmann variables themselves transform in

non-trivial little group representations, so must be combined with coefficients built out of

spinors in such a way as to give the necessary representation of the superamplitude. The

possible combinations of spinors that satisfy this then correspond to the possible terms that

are permitted by supersymmetry and Lorentz invariance. For example, a superamplitude

with three massive spin-1/2 legs will have an F factor with a single spin index for each leg

(F I1J2K3). An example of a candidate term with Grassmann degree 1 is then cI1J2K3M1η1M1 ,

where the Grassmann variable from leg 1 contains a little group index for that leg, while

the coefficient’s tensor structure is then determined by that of F IJK and η1M .

Each Grassmann variable carries either a fundamental SU(2) index for a massive leg or

a helicity weight of magnitude 1/2 for a massless leg. The rank and helicity weight of the

representations of the possible coefficients are determined by the possible combinations of

Grassmann monomials with the required little group structure. We define the ‘total little

group weight’ h of a superamplitude to be

h =
∑

massive legs

2si +
∑

massless legs

2|hi|, (4.5)

for spin si (helicity hi) of the massive (massless) leg i.

Each coefficient of the Grassmann monomials must involve an even number of con-

tracted spinors (as the superamplitude is a Lorentz scalar). This implies that terms with

an even number of Grassmann variables cannot arise if h is odd for the amplitude. Like-

wise, if the amplitude as a little group tensor has even h, only even Grassmann degree

terms are consistent.

The possible tensor coefficients of the Grassmann monomials may be constructed sim-

ilarly to the way in which S-matrix amplitudes are constructed in [6]. The coefficients like

cI1J2K3M1 above may be expanded in a tensor basis spanned by a massive spinor of our

choice for each of the required little group indices. We are then left to construct, for each

monomial, an SL(2,C) Lorentz tensor with the correct little group weight for the massless

legs and massless Grassmann variables, which we may do by identifying a tensor basis and

enumerating the possibilities as done in [6].

A similar procedure to that used in [26] may be used to determine F . As F is ambiguous

up to the addition of terms ∝ Q† (as these are annihilated by δ(Q†)), arbitrary linear

combinations of this supercharge may be added to simplify the superamplitude. The two
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components of each supercharge can be used to eliminate two Grassmann variables entirely

from F (for example, the two little group components of a particular massive leg). We

may then apply the supersymmetry constraint QF = 0 to relate the spinor coefficients of

different Grassmann monomials to each other.

An exceptional feature appears in the special case of a three-leg amplitude for two

massive, equal-mass particles and one massless particle. In this special kinematic configu-

ration, one finds that there is an additional object that can carry the little group weight

of the massless particle. Following [6], this is

x ≡ 1

m

[q| p2 |3〉
[q3]

, (4.6)

where 3 is the massless leg, m is the mass of legs 1 and 2, and |q] is an arbitrary reference

spinor defined so that [q3] 6= 0. In this unique case, the special kinematics of the legs

implies that p1 · p3 = −〈3| p1 |3] = 0 and so p1 |3] ∝ |3〉. The constant of proportionality is

x, which, as a SL(2,C) scalar, nevertheless carries helicity weight 1 of leg 3. In no other

kinematic configuration of massive legs in a 3-particle amplitude does such an alignment

of massless spinors occur in which the relative orientation is described by a single scalar.

This is the reason that (4.6) is independent of the reference spinor, despite its necessary

appearance in inverting 1
mp1 |3] = x |3〉, and also the reason that such a helicity-weight

carrying scalar object doesn’t exist in other kinematic configurations.

With this general method established, we turn to the construction of elementary am-

plitudes in simple SUSY theories, after first digressing to discuss parity.

4.3 Parity

While not obligatory, many theories exhibit parity (P ) symmetry. We here explain how this

acts upon on-shell superfields, from which relations between superamplitudes in a parity-

invariant theory may be deduced. Details about the construction and spin quantisation of

spinors can be found in appendix C of [27].

As for general chiral spinors, parity acts on the super-Poincare group as [28]

PPµP
† = Pν

µPν PQαP
† = iQ†α̇ PQ†

α̇P
† = −iQα. (4.7)

where Pν
µ = diag(1,−1,−1,−1).

The action of parity on the coherent states may be determined by its action on the

Clifford vacuum and on the spinor-stripped supercharges q, defined in (2.2). It is im-

portant to remember here that these have been implicitly defined with restriction to a

particular momentum eigenspace. The operators qi and q†i , through their particle labels,

implicitly also carry momentum labels. Under the action of parity, they are mapped to

their representations on different momentum eigenspaces.

For massless legs, noting that

|Pp〉 = −eiϕ |p] |Pp] = e−iϕ |p〉
〈Pp| = eiϕ [p| [Pp| = −e−iϕ 〈p| (4.8)
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for a phase ϕ, the action of P on the supercharges qi and q†i is derived from (4.7) to be

PqiP
† = −ieiϕq†Pi Pq†iP

† = ie−iϕqPi. (4.9)

Here, Pi denotes leg i with inverted 3-momentum. Note that helicity spinors are defined

up to a convention-dependent, arbitrary overall phase, which must be implicitly made in

the definition of the spinor-stripped supercharge. This effectively determines an arbitrary

phase multiplying the (complex) Grassmann variables ηA in the coherent states, which,

as will be shown below, can be defined to absorb these factors in the parity-conjugate

superfield.

The existence and action of P is a model-dependent property. Depending upon the

theory, supermultiplets may be self-conjugate or mapped to distinct supermultiplets. Mass-

less spinning particles must be mapped to states with opposite helicity, which are usually

part of a distinct supermultiplet. However, because of (4.7), massless scalars and massive

spinning particles, at least when selected as Clifford vacua, must also be mapped to states

of distinct weight (in the same or possibly different multiplets) for consistency with SUSY.

For theories with this property, the action of P on a massless coherent state may be de-

termined as follows. Taking for example the left-handed chiral multiplet Φ− in (3.12) and

explicitly labeling its 3-momentum ~p,

Φ−
~p P

† =
〈
φ~p

∣∣P †Peq~pη~pP †

= ζφ

〈
φ̃−~p

∣∣∣ eη
†
−~p

q†
−~p = ζφΦ̃

+
−~p , (4.10)

calling the Grassmann variable of the parity conjugate coherent state η†−~p = ieiϕη~p, absorb-

ing the phase from the transformation of the supercharge. Here, the Φ̃+ denotes Grassmann

Fourier transform of the chiral superfield Φ+ in (3.12) (which, in general, need not have

any other necessary relationship with Φ−). Finally, ζφ is an intrinsic parity assigned to the

scalars (note that the Clifford vacuum is not a parity eigenstate).

Similarly,

Φ+
~p P

† = ζλ+Φ̃−
−~p (4.11)

G+
~p P

† = ζg+G̃
−
−~p (4.12)

G−
~p P

† = ζχ−G̃+
−~p (4.13)

where the Clifford vacuum for Φ+ maps under parity as
〈
λ+
~p

∣∣∣P † = ζλ+

〈
λ−
−~p

∣∣∣ (and analo-

gously for the other coherent states). The factors of ζX are possible phases associated with

intrinsic parity of the Clifford vacuum. For example, in SUSY QED, the action of parity

on the photon’s multiplet would introduce a factor of ζg+ = −1 in (4.12) because of the

intrinsic parity of the photon.

For massive legs, the null vectors that constitute the little group decomposition of the

massive momenta transform in the same way as (4.8) under 3-momentum inversion:
∣∣PpI

]
=

∣∣pI
〉 ∣∣PpI

〉
=

∣∣pI
]

[
PpI

∣∣ = −
〈
pI
∣∣ 〈

PpI
∣∣ = −

[
pI
∣∣ . (4.14)
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Helicity reverses under parity because, while spin is invariant, the quantisation axis (de-

fined as the 3-momentum) reverses. The massive little group components are expressed

with respect to some external quantisation axis, rather than the 3-momentum, so should

not change under parity. This is the reason that the phases that accompanied the trans-

formation of the massless helicity spinors (and subsequently the supercharges) do not arise

here. The massive supercharges therefore transform as

PqIi P
† = iq†IPi Pq†i,IP

† = iqPi,I . (4.15)

Calling η†−~p,I = iη~p,I , the action of P on a massive chiral superfield is

Φ~pP
† = ζφ

〈
φ̃′
−~p

∣∣∣ eq
†I
−~p

η†
−~pI = ζφΦ̃

′
−~p , (4.16)

where, depending upon other quantum numbers, Φ′ may or may not be equal to Φ. The

scalar Clifford vacuum is importantly mapped to the scalar of opposite weight in the other

superfield: φ → φ̃′. For a massive vector, the transformation is similar but with fermionic

Clifford vacuum mapped to the other fermionic degree of freedom in the multiplet with the

same polarisation

WI
~pP

† = ζχIW̃ ′
−~p

I
, (4.17)

where again W ′ may or may not be distinct from W.

Parity invariance of a theory implies equality of the superamplitudes of a set of particles

with that of their parity conjugates. Given the results above, this may be stated as

An(Xp1 , Xp2 , . . . Xpn) =

(
n∏

i=1

ζXi

∫
d2ηPi e

ηPi,Iη
†I
Pi

)
An(X

P
Pp1 , X

P
Pp2 , . . . X

P
Ppn), (4.18)

where XP is the parity conjugate superfield of X (while we have written the Fourier

transforms in (4.18) in the form specific for massive coherent states, they should be rein-

terpreted as their massless analogues for each massless leg). In other words, to relate

couplings between superamplitudes in a parity symmetric theory, any superamplitude

An(Xp1 , Xp2 , . . . Xpn) must be equal to that obtained by taking the superamplitude of

the parity conjugate multiplets, Fourier transforming and then reversing the 3-momenta

using (4.8), (4.9), (4.14), (4.15) and the relations between Grassmann variables η†−~p,I = iη~p,I

and η†−~p = ieiϕη~p. Kinematic-dependent phases appearing in (4.18) from the use of (4.8)

and (4.14) may be dropped, representing arbitrary phases in the polarisations of the ex-

ternal legs.

5 N = 1 three-particle superamplitudes

In this section we systematically construct the possible three-particle superamplitudes for

scattering of N = 1 chiral and vector superfields and identify the types of theories to

which they would belong. We furthermore discuss the dependence of the couplings on the

masses of the different legs, how they behave in different limits and how they may appear in

“tree-unitary” theories [29]. We also present some simple results for higher spin multiplets.

In appendix B, we additionally present some well-known results for higher leg amplitudes

recast in the little group invariant helicity spinor language.
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5.1 Three chiral supermultiplets

We begin with the case of three massive chiral supermultiplets, and will then find the

cases with massless chiral supermultiplets via appropriate limits. Our representation of

the massive chiral superfield is given in (3.9). This three-point superamplitude has the

general form

A(Φ1,Φ2,Φ3) = δ(2)(Q†)F (ηIi ), (5.1)

where, from section 4.1, F (ηIi ) is at most a second degree polynomial and, since it has total

little group weight h = 0, contains only even orders in η. Since the Ward identities do not

mix different Grassmann orders, we may construct each i-th order Grassmann term F (i)

separately.

We will illustrate the general procedure by explicitly deriving the superamplitude from

first principles using the method described in section 4.2. From little group scaling, F (0)

is fixed to be a constant which we call λ. The second-order function can be simplified by

using the supercharge conservation constraint imposed by the delta function, Q† = 0. We

can use this to eliminate any dependence on η3I , which then leaves us with

F (2) = b
[
1I2J

]
η1Iη2J + c

〈
1I2J

〉
η1Iη2J + d1η1Iη

I
1 + d2η2Iη

I
2 . (5.2)

The Ward identity QF (2) = 0 is a first-order Grassmann equation and results in two

independent spinor equations (bm2−2d1)
∣∣1I

]
+cp2

∣∣1I
〉
= 0 and similarly with 1 ↔ 2. The

independent constraints may be found by contracting with [1I | and 〈1I | p2, which allows

one to solve for d1 in terms of b and find c = 0. Along with the same procedure for the

other equation, this yields

F (2) = b

([
1I2J

]
η1Iη2J +

1

2

(
m2η1Iη

I
1 +m1η2Iη

I
2

))
. (5.3)

The full superamplitude is then

A(Φ1,Φ2,Φ3) = δ(2)(Q†)
[
λ+ b

([
1I2J

]
η1Iη2J +

1

2

(
m2η1Iη

I
1 +m1η2Iη

I
2

))]
. (5.4)

When all of the legs are identical the superamplitude can be written in the manifestly

exchange symmetric form

A(Φ1,Φ2,Φ3) = δ(2)(Q†)


λ+

b′

3m


∑

i<j

[
iIjJ

]
ηiIηjJ +m

∑

i

ηiIη
I
i




 . (5.5)

We have here redefined the coupling b to make it dimensionless.

There are three special cases to consider corresponding to the number of different

massless legs. Firstly, the massless limit m1 → 0 may be taken directly on (5.4) to produce

the most general expected superamplitudes

A(Φ−
1 ,Φ2,Φ3) = λδ(2)(Q†) (5.6)

A(Φ+
1 ,Φ2,Φ3) = −bδ(2)(Q†)

([
12J

]
η2J +m2η1

)
. (5.7)
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These expressions are independent of whether m2 = m3. We have assumed that the

coupling b is unaffected by the limit, which is self-consistent.

Similarly, taking the subsequent limit that m2 → 0 results in the superamplitudes for

two massless legs:

A(Φ−
1 ,Φ

−
2 ,Φ3) = λδ(2)(Q†) A(Φ+

1 ,Φ
+
2 ,Φ3) = bδ(2)(Q†) [12] , (5.8)

while A(Φ±
1 ,Φ

∓
2 ,Φ3) = 0. It is again being assumed that the couplings present no obstruc-

tion to this, which is clearly self-consistent.

In the high energy limit, the superamplitude (5.5) does not diverge with inverse powers

of a mass scale because of the special 3-particle kinematics. Note that [i+j+] ∼ O(m2/E)

or 〈i−j−〉 ∼ O(m2/E) as m → 0 for some (complex) energy, depending upon the kinematic

configuration that is converged to (individual spinor mass limits can be found in (A.8)).

The superamplitude converges to (at leading order in energy)

A(Φ1,Φ2,Φ3) → A(Φ−
1 ,Φ

−
2 ,Φ

−
3 )−A(Φ+

1 ,Φ
+
2 ,Φ

+
3 )η̂1η̂2η̂3 (5.9)

A(Φ−
1 ,Φ

−
2 ,Φ

−
3 ) = λδ(2)(Q†) (5.10)

A(Φ+
1 ,Φ

+
2 ,Φ

+
3 ) = −b′δ̃(1)(Q), (5.11)

where Φ± are the massless superfields in the notation of (3.12). For the latter kinematic

configuration, the delta function is

δ̃(1)(Q) = [23] η1 + [31] η2 + [12] η3, (5.12)

which is a Grassmann order 1 supersymmetry invariant that is the Fourier transform of

δ(2)(Q) in the η† basis. In the first term of (5.9), [ij] → 0, while in the second, 〈ij〉 → 0.

The (−) sign accompanying the second term arises because the Grassmann variables η̂i
must anticommute past the fermionic Φ+

i states.

Note that if the limit that all particles are sent massless at the same rate is instead

taken, then (5.9) is exact, rather than merely leading. The fully massive superampli-

tude (5.5) contains helicity violating couplings that, in the high energy limit, scale as

mass-dependent constants and cannot be expressed as a massless superamplitude.

This massless limit is to be expected from field theory, where the three scalar compo-

nent amplitudes contained in the two surviving superamplitudes are expected to vanish in

the massless limit according to the superpotential. Also of note is that the massive super-

amplitudes (5.4) are totally determined by two parity conjugate sets of couplings. That

there are no others is not completely obvious from a Lagrangian derivation, where the

possibility of spontaneous supersymmetry breaking has to be explicitly checked for a given

holomorphic superpotential. Here, constraints from unbroken supersymmetry are more di-

rectly applied. It automatically follows that candidate holomorphic superpotential terms,

such as tadpoles and quartics that would naively give interactions that do not conform to

the structures derived here, must induce spontaneous supersymmetry breaking.

The only remaining massless superamplitudes are those of superfields with mixed he-

licity. These are determined by symmetries to be (up to a coupling constant)

A(Φ+
1 ,Φ

+
2 ,Φ

−
3 ) = δ(2)(Q†)

1

〈12〉 A(Φ+
1 ,Φ

−
2 ,Φ

−
3 ) = δ̃(1)(Q)

1

[23]
. (5.13)
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However, these superamplitudes have peculiar locality properties. While non-divergent in

the real momentum limit, they are also non-zero, being unsuppressed by helicity conser-

vation [30]. These are the supersymmetrisations of the helicity conserving scalar-fermion-

fermion 3-leg amplitude found in [31]. Consistent factorisation properties of 4-leg ampli-

tudes were used to rule this out. Notably, while consistent with symmetries, they do not

appear in the massless or high energy limit of the massive superamplitudes.

The theory of a single chiral supermultiplet has an accidental parity symmetry. This is

a model-dependent and needn’t be a general property of this three particle superamplitude.

However, we take the opportunity to comment that parity may be imposed as described

in section 4.3 to relate the two otherwise independent couplings. Ignoring the possible

non-trivial intrinsic parity phases, this gives b′ = λ, in agreement with the massless and

massive cases. The Wess-Zumino three-leg superamplitude is then

A(Φ1,Φ2,Φ3) = λδ(2)(Q†)


1− 1

3m


∑

i<j

[
iIjJ

]
ηiIηjJ +m

∑

i

ηiIη
I
i




 . (5.14)

It would be interesting to find an on-shell condition from which the accidental parity is

derived as an outcome. One would have to study higher leg amplitudes in this theory with

only a single chiral supermultiplet in order to derive this feature. In this regard, it would

also be interesting to find how holomorphy of the superpotential is represented in the S-

matrix. In the case where all particles are massless, each holomorphic composite operator

in the superpotential contributes a contact interaction inducing a (super)amplitude that

is holomorphic in helicity. The rest of the S-matrix is presumably then generated by

consistent factorisation involving these. Mass mixes states of different helicities, so produces

a violation of this pattern of helicities induced by the holomorphic contact interactions.

The on-shell superspace significantly clarifies the pattern, the foundations of which were

described in [1] at the level of “seed” MHV component amplitudes with the fewest legs.

5.2 One massless vector

We next turn to the case of two chiral supermultiplets interacting with a massless vector

multiplet. This includes matter interactions in supersymmetric gauge theories (like su-

perQCD). Because of this, in this section we refer to the chiral supermultiplets as quarks

and the vector fields as gluons. Specifically in superQCD, the states of the quark super-

multiplets arrange into the following on-shell superfields:

Q = Q̃L + ηIQ
I − 1

2
ηIη

IQ̃R

Q = Q̃L + ηIQ
I − 1

2
ηIη

IQ̃R, (5.15)

where Q are the quark and Q are the antiquark states. The L and R subscripts identify

each of the squarks. The arrangement of the states is to be contrasted with the field-

theoretic off-shell superfields. However, while we will use the symbols Q and Q to denote

the chiral superfields in what follows, we will not be committing to identifying them with

any particular theory beyond what we will find to be possible to construct.
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It is easily shown using the methods of section 4.2 that a three-leg superamplitude

between two massive chiral multiplets and a massless vector multiplet is impossible unless

the chiral multiplets have equal mass. This case is distinguished by the existence of x,

which will allow for expressions with the required little group scaling to be constructed.

The G+ and G− superamplitudes have total little group weights h = 2 and h = 1

respectively. The superamplitude for the positive helicity gluon superfield is simplest to

construct as little group scaling immediately gives the unique form

A(Q1, G
+
2 ,Q3) = δ(2)(Q†)

g

x
, (5.16)

where x is defined in (4.6) and g is the coupling constant (which may have suppressed

dependence upon possible internal quantum numbers of the states). For the negative

helicity superamplitude, little group scaling, supersymmetry invariance and the Grassmann

counting rule of section 4 determine the superamplitude up to a single coupling constant b:

A(Q1, G
−
2 ,Q3) = δ(2)(Q†)bx

(
η2 +

1

2m

([
21I

]
η1I +

[
23I

]
η3I

))
. (5.17)

That the superamplitudes are determined here by a single coupling constant is a reflec-

tion of the fact that the anomalous magnetic dipole moment of matter fermions in N = 1

gauge theories is exactly zero [32]. Supersymmetry determines the fermionic coupling to

the gauge bosons from the scalar coupling, which has only one possible Lorentz structure.

As a consequence, the supersymmetry implies that the matter-photon interaction is entirely

characterised by the electric charge monopole.

Thus far we have not actually assumed anything beyond particles 1 and 3 having

equal mass. However, these superamplitudes are antisymmetric under exchange of the two

matter fields 1 ↔ 3 (through x). As the superfields Q and Q are bosonic, this implies

that they must be distinct (the same argument applies to couplings of matter to massless

vectors without supersymmetry as well).

Parity may additionally be imposed. Assuming that the Q and Q multiplets are both

self-conjugate under P (the minimal assumption), this implies that b = g. Parity invariance

was an assumption used in the derivation of the Lie algebra structure of the matter cou-

plings from consistent factorisation [6, 33], which is unaffected by the quark masses (with

massless matter, CP also suffices, which justifies it for chiral gauge theories). It would

be interesting to clarify the role of the discrete symmetry needed to relate the amplitudes

on each side of the factorisation channel. In Yang-Mills field theory, this symmetry is

accidental. In the examples below, we always find parity emerge in the high energy limit

of massive amplitudes, as well as the massless limits of individual legs, in the terms that

match onto sensible amplitudes of massless vectors.

It is interesting to note that the USp(2) massive R-symmetry of the SUSY algebra is

broken in this theory because the gaugino couplings distinguish between the two squark

states. The identification of the squarks as L and R is determined by the helicity of the

gaugino that couples to them (the squarks are then oppositely charged under the residual

unbroken massless U(1)R). This is ultimately a reflection of the breaking of the USp(2)R
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by parity symmetry, which distinguishes between the two squarks. This would be restored

in an N = 2 gauge theory, where the gauginos are Dirac fermions.

The coupling of higher spin multiplets to photons follows a similar pattern. The

superamplitude for the case of the positive helicity massless vector is

A(S
(I1...I2s)
1 , G+

2 , S
(J1...J2s)
3 ) = δ(2)(Q†)T (I1...I2s)(J1...J2s). (5.18)

SUSY places no further constraints upon T (I1...I2s)(J1...J2s), which can be constructed as

in [6] just as a general amplitude for a photon coupled to a massive spin s state. This

implies that the coupling to photons of the spin s+ 1
2 states in the multiplet is determined

by that of the spin s state. For a massive particle of spin s, there are 2s+1 such multipoles

representing each possible independent Lorentz structure in the coupling. Following [6],

these are

T (I1...I2s)(J1...J2s) =
1

x


c0

2s∏

i,j=1

[
1(Ii)3(Jj)

]
+

c1
m
x

2s−1∏

i,j=1

[
1(Ii3(Jj

] [
1I2s)2

] [
3J2s)2

]

+
c2
m2

x2
2s−2∏

i,j=1

[
1(Ii3(Jj

] 2s∏

i,j=2s−1

[
1Ii)2

] [
3Jj)2

]
+ . . .


 , (5.19)

for coupling constants ci. The additional multipole moment for the coupling of the s + 1
2

state is therefore determined here entirely from the lower multipoles by SUSY. This is the

generalisation of the protection of the magnetic dipole moment for supersymmetric matter

fermions to higher spin states. We will see another explicit example of this in section 5.5,

where the electric quadrupole moment of the massive vector within the spin-half vector

superfield is determined by the lower multipoles.

5.3 One massive vector

We next consider the three-leg superamplitude of two massive chiral multiplets and a

massive vector multiplet, as may occur in a Higgsed gauge theory. Repeating the procedure

as in previous sections, we can reduce the amplitude to

A(Q1,WI
2 ,Q3) = δ(2)(Q†)

(
d1
m2

〈
2I1J

〉
η1J − m3d2 +m2d1

m1m2

[
2I1J

]
η1J

+
d1
m2

〈
2I3K

〉
η3K +

d2
m2

[
2I3K

]
η3K

)

= δ(2)(Q†)
(
− d2
m3

〈
2I1J

〉
η1J +

(
(m2

1 −m2
3)d2

m1m3m2
− d1

m1

)[
2I1J

]
η1J

−d1η
I
2 +

d2
m2m3

[
2I
∣∣ p3

∣∣2J
〉
η2J

)
. (5.20)

This leaves two undetermined couplings d1 and d2 after imposing supersymmetry invari-

ance. The two forms stated are useful for taking massless limits m3 → 0 and m2 → 0

respectively.
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Taking the vector massless differs depending on whether the chiral multiplets have

equal mass. In the case m1 6= m3, one recovers solely the three-chiral superamplitudes (5.6)

with b = d′2(m
2
3−m2

1)/(m1m3)−d1/m1 and λ = d1 (this mass scaling has been anticipated

in the definition of d1, as well as the assumption that it is non-zero and finite in this limit),

where d′2 = d2/m2 must be finite (and hence must be suppressed by some other mass

scale). This is consistent with our finding above that there was no consistent three-leg

superamplitude for a massless gluon and two unequal mass chiral multiplets.

More interestingly, if m1 → m3 at a rate |m1 − m3| ∼ O(m2) as m2 → 0, then non-

zero superamplitudes involving massless vector multiplets may be recovered if d2 remains

a dimensionless constant. The reference spinors that appear in the factors of x do so

through the spinor limits in (A.9). This leaves the parity-symmetric terms in the superQCD

amplitudes with b = g = d2, as well as the three-chiral superamplitudes mentioned above.

As alluded to above, parity in the vector coupling emerges in this special limit.

If we instead take the third leg massless, we find smoothly

A(Q1,WI
2 ,Q3) → A(Q1,WI

2 ,Φ
−
3 ) +A(Q1,WI

2 ,Φ
+
3 )η̂3 (5.21)

A(Q1,WI
2 ,Φ

−
3 ) =

d1
m1m2

δ(2)(Q†)
〈
32I

〉 ([
31J

]
η1J +m1η3

)
(5.22)

A(Q1,WI
2 ,Φ

+
3 ) =

d2
m2

δ(2)(Q†)
[
2I3

]
, (5.23)

which are alternatively determined purely from symmetries. These expressions hold re-

gardless of whether m1 = m2 or not. It is being assumed here that d1 and d2 do not vanish

or diverge in this limit, which is self-consistent (they may still differ from their counterparts

in (5.20) by terms of O(m2)).

Taking the further m1 → 0 limit of these superamplitudes requires d1 ∼ m1 in (5.22)

and yields

A(Φ+
1 ,WI

2 ,Φ
−
3 ) = δ(2)(Q†)

1

m2

[
2I1

]
, (5.24)

where we have omitted the coupling and provided the dependence on mass necessary to

realize the final massless limit smoothly (so d1 ∼ 1/m2 and d2 constant). The case in

which the chiral multiplets have the same helicity is forbidden by symmetries, so does

not appear in the limit. Taking finally m2 → 0, only the transverse polarisations interact

non-trivially (see comments about the superamplitudes of mixed helicity chiral supermul-

tiplets in section 5.1). It is easily verified that A(Φ+
1 ,W+

2 ,Φ−
3 ) → −A(Φ+

1 , G
+
2 ,Φ

−
3 )η̂1 and

A(Φ+
1 ,W−

2 ,Φ−
3 ) → A(Φ+

1 , G
−
2 ,Φ

−
3 ). This is expected from the Higgs mechanism if the

massive vector is coupled to massless matter.

In the high energy limit (taking all masses small simultaneously at the same rate),

then it can be verified that

A(Q1,W+,Q3) → A(Φ+, G+,Φ−)η̂1η̂2 +A(Φ+,Φ+,Φ+)η̂1η̂3 −A(Φ−, G+,Φ+)η̂2η̂3

A(Q1,W−,Q3) → −A(Φ+, G−,Φ−)η̂1 +A(Φ−,Φ−,Φ−)η̂2 +A(Φ−, G−,Φ+)η̂3. (5.25)
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In the W+ limit, the coupling d2 is the cubic coupling among chiral multiplets, while d1 is

the parity conjugate coupling. The couplings of the chiral multiplets to the massless vectors

are dermined by linear combinations of these weighted by combinations of the masses.

The possibility of distinct couplings d1 and d2 allows for parity violation in the massive

superamplitudes and accounts for the way in which the massive amplitudes can combine

together states of different helicities that would otherwise be described as having different

interactions. Despite the observation that chiral multiplets coupling to massless vectors

must have the same mass, there is not inconsistency with the massive multiplets having

different masses in the high energy limit.

5.4 Two vector superfields

We next turn to three-leg superamplitudes with two vector superfields and one chiral super-

field. Starting with the case of one massive leg, we first look at a massive chiral superfield

decaying into two massless vectors. The case where the massless decay products are instead

both matter fields was addressed in section 5.1, while no consistent superamplitude may

be constructed if the massless multiplets are chiral and vector. Only the superamplitudes

with massless vector multiplets of the same helicity are non-zero, following from the rules

of section 4.2. These are (calling m the nonzero mass)

A(G−
1 ,Φ2, G

−
3 ) = δ(2)(Q†)a 〈13〉 A(G+

1 ,Φ2, G
+
3 ) = δ(2)(Q†)

b

m
[31]2 . (5.26)

These superamplitudes would arise, for example, in a theory involving the quantum field

couplings [ΦWAWB]F , for (off-shell) chiral superfield Φ and super-Yang-Mills curvatures

WA,B for some Abelian gauge groups (in other words, a massive supersymmetric axion or

dilaton-like coupling). Demanding P invariance would imply that a = b (if the massive

chiral multiplets in each superamplitude are antiparticles, then the couplings may be related

by CP instead). The couplings a and b have the expected inverse mass dimension of an

irrelevant interaction. Assuming that, as defined in (5.26), they have no further dependence

on the mass of the heavy chiral multiplet, then the massless limit may be taken while

holding them fixed (if they instead scale as e.g. ∝ 1/m, then this would obstruct the limit).

This gives

A(G−
1 ,Φ

−
2 , G

−
3 ) = δ(2)(Q†)a 〈13〉 A(G+

1 ,Φ
+
2 , G

+
3 ) = δ̃(1)(Q)b [13] . (5.27)

and the other components are zero.

The superamplitudes for a massive vector multiplet decaying into massless vector and

chiral fields may be found similarly. Those that are permitted by the symmetries are (up

to coupling constants)

A(WI
1 , G

+
2 ,Φ

+
3 ) = δ(2)(Q†)

1

m

[
1I2

]
[23] (5.28)

A(WI
1 , G

−
2 ,Φ

−
3 ) = δ(2)(Q†)

〈
1I2

〉
. (5.29)

All other helicity combinations are zero. The other allowed decay channel for a massive

vector multiplet was found above in (5.24).
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The massless limits of the superamplitudes (5.28) and (5.29) converge to the superam-

plitudes (5.27). Both of these massive and massless superamplitudes may have a common

origin, for example in the axionic coupling suggested above, where one of the vectors may

become massive through the Higgs mechanism. As in previous cases, the coupling constants

for (5.28) and (5.29) may be related by parity.

Finally, we note that it is not possible to find a superamplitude describing the decay

of a massive vector multiplet into two massless vector multiplets, which is an expression of

the Landau-Yang theorem.

Continuing to the two-massive-leg case, one may construct superamplitudes for massive

chiral and vector supermultiplets with a massless vector, which are independent of whether

the massive multiplets have the same mass or not:

A(Φ1,WI
2 , G

−
3 ) = aδ(2)(Q†)

〈
2I3

〉
(5.30)

A(Φ1,WI
2 , G

+
3 ) = bδ(2)(Q†)

[
2I3

]([
31J

]
η1J − m1

m2

[
32K

]
η2K

)
. (5.31)

Taking individual legs massless, one recovers solely those amplitudes already remarked on

above. The high energy behaviour of these superamplitudes is poor, scaling inversely with

some mass scale contained within the couplings a and b.

Next, the superamplitudes for two massive vector multiplets and one massless chiral

multiplet may be similarly determined. Using the definitions of the massless chiral su-

permultiplets in (3.12), the usual arguments determine the three-particle superamplitudes

to be

A(WI
1 ,Φ

+
2 ,W ′J

3 ) = δ(2)(Q†)F IJ
1+

[
1

m1

[
21K

]
η1K + η2

]
(5.32)

A(WI
1 ,Φ

−
2 ,W ′J

3 ) = δ(2)(Q†)F IJ
1−, (5.33)

where

F IJ
1± = d

(±)
1

〈
1I3J

〉
+ d

(±)
2

[
1I3J

]
. (5.34)

These are again independent of whether the massive legs have equal mass or not. Taking

the massless limit of the first leg, the coefficients in the Φ− superamplitude, d−i , should
have no mass dependence in order to smoothly match onto amplitudes (5.29) and (5.24).

For the Φ+ superamplitude, both coefficients must scale as d
(+)
i ∼ m1 to return to (5.28)

and (5.24). The couplings in both cases must be suppressed by a higher mass scale. Taking

the third leg massless instead, the expected limits are obtained only if d
(+)
i ∼ 1/m3, so

altogether d
(+)
i ∼ m1/m3 to leading order in m1 and m3 if the limits are to be both non-

trivial and unobstructed. However, in either of these cases, the resulting superamplitudes

must be suppressed by other mass scales and, in this sense, are “effective”. In contrast,

taking both legs massless simultaneously is possible without introducing new mass scales.

In this respect, these superamplitudes are merely a special example of the case in which

the chiral multiplet is also massive, which will be explained next.

Finally, the all-massive superamplitude for two vectors and a chiral multiplet is deter-

mined to be

A(WI
1 ,Φ2,W ′K

3 ) = δ(2)(Q†)
(
F IK
(0) + F IK

(2)

)
, (5.35)
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where

F IK
(0) = a

〈
1I3K

〉
+ a′

[
1I3K

]
(5.36)

F IK
(2) =

(
b′
〈
1I3K

〉
+ b

[
1I3K

]) [[
1M2J

]
η1Mη2J +

1

2

(
m2η1Lη

L
1 +m1η2NηN2

)]
. (5.37)

In the limit that the chiral multiplet becomes massless, the coefficients match on to

those of (5.32) and (5.33) as b′ → d
(+)
1 /m1, b → d

(+)
2 /m1, a → d

(−)
1 and a′ → d

(−)
2 . Making

the matter massive does not really affect the structure of the interactions beyond their

collection into the single superamplitude. The results from taking a single vector massless

instead are similar as for (5.32) and (5.33) and will not be elaborated upon further.

More interesting instead are the high energy limits. The superamplitude (5.35) consists

of two parity conjugate pairs of couplings. The couplings a and b represent “effective”

couplings (like those of the axion/dilaton mentioned above or loop induced interactions in

a perturbative field theory) that must be suppressed by some additional mass scale (and

similarly d−1 and d+2 in the case with a massless chiral multiplet). On the other hand, a′

and b′ (or d+1 and d−2 ) correspond to couplings of a Higgs boson to massive vectors, where

the Higgs belongs to a chiral multiplet (and is not part of the multiplet eaten by the vectors

with the Goldstone boson). This happens when the quartic coupling of the scalar potential

originates from the superpotential (“F -term”).

To illustrate how the superamplitude (5.35) scales in the UV limit, assume that a′ =
ā/v and b′ = b̄/v2 for some mass scale v of order the leg masses and call constants ci = mi/v

for leg masses mi. The leading terms in the limit are then

A(W+
1 ,Φ2,W ′+

3 ) → A(Φ+
1 ,Φ

−
2 , G

+
3 )η̂3 −A(G+

1 ,Φ
−
2 ,Φ

+
1 )η̂1 −A(Φ+

1 ,Φ
+
2 ,Φ

+
1 )η̂2

A(W+
1 ,Φ2,W ′−

3 ) → −A(G+
1 ,Φ

+
1 ,Φ

−
3 )η̂1η̂2η̂3 +A(Φ+

1 ,Φ
−
2 , G

+
3 )η̂3 (5.38)

and similarly for parity conjugate states. All terms in the first line depend upon the

coupling ā and each term proportional to η̂i is accompanied by a factor of ci. In the second

line, the first term depends upon b̄c1c3, while the second has coupling constant āc3. Again,

this pattern of couplings reverses for the parity conjugate limits.

However, there are also subleading terms that vanish in the massless limit that cannot

be placed into massless superamplitudes. These represent the effective Goldstone boson

couplings to the Higgs.

A supersymmetrised version of the argument used in [6] to demonstrate the Higgs

mechanism may presumably be made from constructing a four-leg vector superamplitude

from demanding consistent factorisation into 3-leg superamplitudes (5.35) on each factori-

sation channel. Notably, an exceptional case occurs when the Higgs couples to a massive

and massless vector boson in a three-particle superamplitude, as in (5.30) and (5.31),

which will induce unitarity-violating superamplitudes in the high energy limit in tree-level

processes.

5.5 Massive and massless vector multiplet interactions

Let us begin with amplitudes with two massive vector superfields and one massless vector

superfield, which has two distinct cases of interest. The first is A(WI , G,WJ
), where the
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two massive vector superfieldsW andW have the same mass. This arises in many examples,

such as the adjoint Higgsing of a simple gauge theory by a single vacuum expectation value

(vev), which does not feature any 3-leg amplitudes entirely of massive vectors. In this case,

the vectors are conjugates, which is the reason for our choice of notation, although we do

not need to assume this at this point. The second is A(WI , G,W ′J), where the two massive

states are distinct and of different mass. These can occur, for example, in field theories

with generalised Chern-Simons terms [34–36], where at least one of the vectors is Abelian

and has a Stuckelberg mass, whereas another of the vectors may be separately Higgsed.

As in the superQCD case above, the positive helicity gluon superfield amplitudes are

determined very simply. In these cases one finds

A(WI
1 , G

+
2 ,W

J
3 ) = δ(2)(Q†)

[
1I
∣∣α [3J

∣∣β
(

g

mx
ǫαβ +

g − h

m2
|2]α |2]β

)
(5.39)

A(WI
1 , G

+
2 ,W ′J

3 ) = δ(2)(Q†) a
[
1I2

] [
3J2

]
, (5.40)

where, in both cases, the number of free parameters matches that in the non-supersym-

metric amplitude for two massive fermions and one massless vector [6]. As in all previous

examples, we have here neglected to show that the coupling constants g and h may have

internal quantum number structure. In the first case (5.39), the combination of terms with

coupling g corresponds to a massive vector ‘minimally coupled’ to the massless vector. As

has been foreseen in the definition of dimensionless couplings in (5.39), in the limit that

m → 0 or, equivalently here, at energies ≫ m, these terms converge to their expected

massless counterparts.

The term proportional to h would have the perturbative interpretation of an anoma-

lous magnetic dipole moment for the massive vector (or electric dipole moment if it has a

complex phase). This term has poor behavior in the UV limit for certain helicity configu-

rations, which is the reason for the tree-level universality of the magnetic dipole moment

h = 0 for elementary particles [37]. Note that supersymmetry has set fixed the possible

quadrupole structure of the massive vector boson amplitudes that may otherwise exist as

a further independent Lorentz structure in the vector boson component amplitude [6, 38].

This derivation makes obvious the way that supersymmetry determines the vector ampli-

tudes from their fermionic counterparts.

Finally, (5.39) appears to be symmetric under exchange of particles 1 and 3 (x 7→ −x

under this exchange — see (4.6)). However, because the superfields are fermionic, the

vector multiplets must be distinct.

In the second example (5.40), the coupling a has mass dimension −2. However, unlike

for the minimal coupling terms in the case above, the kinematic factors of the component

superamplitudes corresponding to the + helicity states (such as A(W+G+W ′+)) contain

terms that merely scale as ∼ O(mi) in the massless limit (see equations (A.8) in ap-

pendix A.1 for massless limits of spinors). The amplitude must therefore diverge in the

high energy E limit as E/M for some mass scale M . Correspondingly, the examples of field

theories cited above that feature these amplitudes are only effective up to a UV cut-off.

We can likewise find the negative helicity superamplitude purely from little group

covariance and supersymmetry. From the same arguments as in the SQCD case, the
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Grassmann polynomial must only contain an order-one term.

A(WI
1 , G

−
2 ,WJ

3 ) = δ(2)(Q†)
[
1I
∣∣α [3J

∣∣β F2αβ

(
− 1

m1
η1K

[
1K2

]
+ η2

)
. (5.41)

The tensor F2αβ is then determined from the little group representations of the legs. In

the equal mass case, this gives a superamplitude with two free parameters:

A(WI
1 , G

−
2 ,W

J
3 ) = δ(2)(Q†)

[
1I
∣∣α [3J

∣∣β
(
g′

m
xǫαβ +

h′

m2
x2 |2]α |2]β

)(
− 1

m
η1K

[
1K2

]
+ η2

)
.

(5.42)

Exchange (anti-)symmetry between W and W may be manifested by adding terms propor-

tional to Q† to give

A(WI
1 , G

−
2 ,W

J
3 ) = δ(2)(Q†)

[
1I
∣∣α [3J

∣∣β
(
g′

m
xǫαβ +

h′

m2
x2 |2]α |2]β

)

×
(
− 1

2m
η1K

[
1K2

]
+ η2 −

1

2m
η3K

[
3K2

])
. (5.43)

If parity is a symmetry of the theory under consideration, then this relates the su-

peramplitudes of A(WI , G−,WJ
) as discussed in section 4.3. Assuming that the vector

multiplets are self-conjugate, this requires that g′ = g and h′ = h.

For the case where m1 6= m3, the only option which has the correct scaling is F2αβ =

b(p3 |2〉)α(p3 |2〉)β . Our amplitude in this case is

A(WI
1 , G

−
2 ,W ′J

3 ) = δ(2)(Q†)b′
[
1I
∣∣ p3 |2〉

[
3J

∣∣ p3 |2〉
(
− 1

m1
η1K

[
1K2

]
+ η2

)

= δ(2)(Q†)b
〈
1I2

〉 〈
3J2

〉(
− 1

m1
η1K

[
1K2

]
+ η2

)
(5.44)

where the coupling b has been redefined in the second line to absorb some factors of mass.

If parity is a symmetry of this theory, then one finds b = am1/m3.

In the massless limit, the superfields are expected to decompose as shown in (3.14).

In anticipation of the superamplitudes of the massless components being matched onto

by the massless limit of the massive superamplitude, we first determine these directly

from symmetries. The constraints of complex three-particle special kinematics, little group

scaling and ‘locality’, in the sense that the three-particle amplitudes do not scale as negative

powers of momentum, determine that the superamplitudes of the massless supermultiplets

are (neglecting coupling constants):

A(G+
1 , G

+
2 , G

−
3 ) = δ̃(1)(Q)

[12]2

[13] [23]
(5.45)

A(G−
1 , G

+
2 , G

−
3 ) = δ(2)(Q†)

〈13〉2
〈12〉 〈23〉 (5.46)

A(Φ−
1 , G

+
2 ,Φ

+
3 ) = δ̃(1)(Q)

[23]

[13]
(5.47)

A(Φ+
1 , G

+
2 ,Φ

−
3 ) = δ̃(1)(Q)

[21]

[31]
. (5.48)
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Other superamplitudes between other possible combinations of massless superfields are also

possible, but do not arise in taking the massless limit of (5.39).

Choosing a particular helicity configuration in (5.39), the massless limit may be taken

using the limits presented in appendix A.1 and identified with the superamplitudes above.

The limits may be calculated explicitly to be

A(W+
1 , G+

2 ,W
+
3 ) → 0, A(W−

1 , G+
2 ,W

−
3 ) → A(G−

1 , G
+
2 , G

−
3 ) (5.49)

A(W+
1 , G+

2 ,W
−
3 ) → −A(G+

1 , G
+
2 , G

−
3 )η̂1 +A(Φ−

1 , G
+
2 ,Φ

+
3 )η̂3, (5.50)

and similarly for A(W−
1 , G+

2 ,W
+
3 ). Similar results may be shown for the limits of (5.42).

This demonstrates how the supersymmetrisation of the Higgs mechanism operates by

combining well-defined UV amplitudes of massless chiral and vector multiplets into single

superamplitudes of massive vector multiplets in the IR.

5.6 Self-interacting massive vector supermultiplets

A similar analysis may be performed to determine the possible structure of three-leg super-

amplitudes of massive vector superfields. A general expression will include several special

cases, such as when the vectors have equal mass and belong to the same species, as well as

the case in which there is only one type of superfield, which must be constrained so that

there are no vector self-interactions.

Just as for the cases considered previously, supersymmetry implies that the amplitude

has the form

A(WI
1 ,WJ

2 ,WK
3 ) = δ(2)(Q†)F IJKM

1

(
η1,M +

1

m2

[
1M2N

]
η2,N

)
. (5.51)

This is the extent to which supersymmetry determines the amplitude. The next step is

to determine the number of independent Lorentz structures that can appear in F IJKM
1 .

Altogether, there are 6 such independent terms (up to others related by the Schouten

identity and kinematic relations):

F IJKM
1 = c1

〈
1I3K

〉 [
2J1M

]
+ c2

[
1I3K

] 〈
2J1M

〉
+ c3

[
1I3K

] [
2J1M

]

+c4
〈
1I3K

〉 〈
2J1M

〉
+ c5

〈
2J3K

〉
ǫIM + c6

[
2J3K

]
ǫIM . (5.52)

One of the independent terms in this superamplitude represents a Higgs coupling,

where the Higgs has a “D-term” quartic and is part of the chiral multiplet eaten with the

Goldstone boson. In the Abelian Higgs theory, this is the only structure in the superam-

plitude. This may be identified by extracting the component amplitude of three vectors

and setting it to zero. The component amplitude is

A(W I1I2
1 ,W J1J2

2 ,WK1K2
3 ) = F I1J1K1M

1

(
δI2M

〈
3K22J2

〉
− 1

m2

[
1M2J2

] 〈
3K21I2

〉)
, (5.53)

where external spin indices are implicitly symmetrised over. After simplification this

reduces to five independent spin structures. Demanding that these vanish implies that
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c2 = c3 = c4 = 0, c6 = 0 and c5 = −m2c1, thereby reducing the number of independent

couplings to one. The corresponding term in the superamplitude is then

A(WI
1 ,WJ

2 ,WK
3 ) = c1δ(Q

†)
( (

−m2

〈
2J3K

〉
ǫIM +

〈
1I3K

〉 [
2J1M

])
η1M

+
(
m1

〈
1I3K

〉
ǫJM −

〈
2J3K

〉 [
1I2M

])
η2M

)
, (5.54)

which is manifestly antisymmetric under the exchange 1 ↔ 2. This constitutes one of the

six independent contributions to the superamplitude (5.51) and is itself the three-particle

superamplitude for the Abelian Higgs theory.

This contains component amplitudes of the form that would be expected in Abelian

Higgs theories. For example, calling Hi the scalar components of the supermultiplets, then

A3(W
I1I2
1 , H2,W

K1K2
3 ) =

∂

∂η1I2

(
1

2
ǫJ1J2

∂

∂η2J2

)
∂

∂η3K2

A(WI1
1 ,WJ1

2 ,WK1
3 )

= −c1m3

[
1I3K

] 〈
1I3K

〉
. (5.55)

Completion of the identification of this with a Higgs amplitude would require that c1 be

inversely proportional to some mass scale and that c1 ∼ 1/m2
3 as m3 → 0 (and likewise

for the other masses, repeating this argument with the identities of particles 1, 2 and

3 permuted). These are the component amplitudes expected in the Abelian Higgs theory

and, given the assumption that there are no vector self-interactions, N = 1 supersymmetry

implies that there is only a single Lorentz structure and coupling consistent with this.

The remaining five couplings each describe superamplitudes with vector boson self-

interactions. The triple gauge coupling vertex of three massive vectors has been studied

extensively in the past in the context of the electroweak bosons of the Standard Model. An

effective Lagrangian describing the independent Lorentz structures has been given in [39].

The superamplitude (5.51) represents the supersymmetrisation of this. Supersymmetry

restricts the seven independent couplings of [39] to five. The two prohibited terms are

those originating from F 3 terms (for Yang-Mills curvatures F of the vectors), just as for

massless amplitudes.

Of the five remaining structures, one can be attributed to the Yang-Mills (tree) cou-

pling. Just as for the Higgs couplings, the expected Yang-Mills vector self-interaction term

may be identified by matching the component amplitude (5.53) to the expected expres-

sion. Doing so imposes c3 = c4 = 0, c6 = m2c2 and identifies the gauge coupling as

c2 = −2g/(m1m3). The Higgs coupling c5 = −m2c1 remains free. This structure, in addi-

tion to the Higgs coupling above, are distinguished as having UV limits that converge to

massless three particle superamplitudes at leading order.

The remaining four couplings have poor UV scaling and correspond to field theoretic

operators upon which gauge invariance is not linearly realised. Two of these (that are CP -

odd) may be identified with the generalised Chern-Simons terms mentioned earlier (or are

generated at loop-level by anomalies), while the other two correspond to the remaining two

types of operators that may be constructed from vector multiplets with a single derivative.

Of these, one corresponds to the anomalous magnetic dipole moment in the massless limit
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of one leg in (5.39) and (5.42). Its CP -odd counterpart, in the massless limit, provides

the same Lorentz structure, but with a different phase in the coupling. The other two

couplings vanish in the limit of a massless leg on-shell.

Further conditions may be used to constrain or interpret the couplings, such as re-

quiring good UV limits and properties of higher leg amplitudes. Two simple examples are

provided by demanding that this amplitude matches onto either of the two cases discussed

in section 5.5 in the limit that m1 → 0.

For the case where we leave m2 6= m3, we demand that (5.51) converge to (5.44)

and (5.40) for each helicity configuration of the massless vector multiplet. As long as the

couplings do not scale as ∼ 1/m1, this requires that c3 = −a and c4 = −b, up to terms

∝ m1. One of the terms with couplings c1 and c2 vanishes (which depends upon the helicity

choice for index I) while the other degenerates with the c5 and c6 terms and so cannot

be independently determined. Finally, the couplings c5 and c6 (up to inclusion of possible

contributions from c1 and c2 as just described) match onto the terms in (5.32) and (5.33)

and may be identified with the couplings d1 and d2.

In the case where the two remaining masses approach equality, m2,m3 → m asm1 → 0,

we can demand that the coefficients of (5.51) approach (5.39) and (5.42). This deter-

mines the coefficients to be c1 = c2 = −g′/(m1m), c3 = h/m2 and c4 = h′/m2, while

it is required that g′ = g in the massless amplitudes (so parity must be an accidental

symmetry if h = h′ = 0). These may be easily checked using the spinor limits pro-

vided in appendix A.1. Again, matching onto the superamplitudes with massless vec-

tors, the remaining couplings must be c5 = −c6 = g′/m1, but may additionally have

extra terms that would be determined by matching onto the amplitudes with massless

matter (5.32) and (5.33). Unlike the previous case, these limits ensure that the mass

scale of the couplings is given by m and m1, so that, if h = h′ = 0 (as is true at

tree-level in perturbative gauge theories), the amplitudes would have the good UV lim-

its arranged by the Higgs mechanism [6]. Note that, as expected from (3.14), the su-

peramplitudes have limits A(W+
1 ,WJ

2 ,WK
3 ) → A(G+

1 ,WJ
2 ,WK

3 )η̂1 +A(Φ+
1 ,WJ

2 ,WK
3 ) and

A(W−
1 ,WJ

2 ,WK
3 ) → A(G−

1 ,WJ
2 ,WK

3 )+A(Φ−
1 ,WJ

2 ,WK
3 )η̂1 and involve terms that pick up

the extra Grassmann variable η̂1 for the massless superfield. A similar analysis can be per-

formed by instead m2 → 0 or m2 → 0 in order to find further consistency conditions on the

couplings to match onto the superamplitudes in the previous sections, but we refrain from

providing the results here. These are consistent with the identifications of the couplings

made above — that is, c3 and c4 are associated with the couplings that determined the

anomalous magnetic and electric dipole moments in the limits of a massless leg, while linear

combinations of c1, c2, c5, c6 correspond to the tree-level (“D-term”) Higgs and Yang-Mills

couplings, while c5 and c6 also contain the other non-Yang-Mills contact interactions, such

as those induced from Stuckelberg axions and anomalies.

5.7 Higher spin amplitudes

While the number of possible Lorentz structures in three-particle amplitudes typically

grows significantly with the spin of the interacting particles, the case of a heavy particle

decaying into two massless products is especially simple. As described in [6], the amplitude
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for a spin smassive particle φ̄ to decay into two massless particles ϕ1 and ϕ2 with respective

helicities h1 and h2 is uniquely

A(ϕh1
1 , ϕh2

2 , φ̄
(I1...I2s)
3 ) = G [12]s+h1+h2

s+h2−h1∏

i=1

[
3(Ii1

] 2s∏

j=s+h2−h1+1

[
3Ij)2

]
, (5.56)

whereG is some coupling constant of mass dimension [G] = −(2s+h1+h2−1). The notation

is intended to indicate that all of the spin indices for the massive field are symmetrised

over. It is being assumed that angular momentum selection rules permit this process to

exist.

The supersymmetrisation of this is just as simple. Promoting ϕhi to massless super-

multiplets (3.17) with Clifford vacua of helicities hi and likewise phi to the corresponding

massive multiplet (3.16), then the three-particle superamplitude is also fixed as

A(Σh1
1 ,Σh2

2 , S
(I1...I2s)
3 ) =

1

mS
δ(2)(Q†)A(ϕh1

1 , ϕh2
2 , φ̄

(I1...I2s)
3 )

=
1

〈12〉δ
(2)(Q†)A

(
ξ
h1− 1

2
1 , ξ

h2− 1
2

2 , φ
(I1...I2s)
3

)
, (5.57)

where mS is the mass of the heavy multiplet.

The superamplitude for scattering of four massless particles by exchange of a mas-

sive spinning particle may be constructed analogously to the non-supersymmetric case [6].

Supersymmetry fixes the superamplitude to have the form

A(Σh1
1 ,Σh2

2 ,Σh3
3 ,Σh4

4 ) =
1

〈34〉δ
(2)(Q†)A

(
ϕh1
1 , ϕh2

2 , ξ
h3− 1

2
3 , ξ

h4− 1
2

4

)
, (5.58)

where the component amplitude A

(
ϕh1
1 , ϕh2

2 , ξ
h3− 1

2
3 , ξ

h4− 1
2

4

)
may be constructed out of the

spinning Gegenbauer polynomials corresponding to the exchange of higher spin resonances,

just as for the non-supersymmetric case [6].

On a massive resonance, the superamplitude respects a supersymmetric factorisation

into three-particle superamplitudes. For example, in the s-channel,

A(Σh1
1 ,Σh2

2 ,Σh3
3 ,Σh4

4 ) →
∫

d2ηPAL(Σ
h1
1 ,Σh2

2 , S
(I1...I2s)
P )

1

(p1+p2)2
AR(S−P (I1...I2s),Σ

h3
3 ,Σh4

4 ),

(5.59)

where the intermediate superfield has Grassmann variables ηIP and the Grassmann integral

accounts for the sum over all states in the multiplet of the intermediate resonance. It has

been chosen to represent the massive multiplet as outgoing in AL and incoming in the

other factor. The incoming superfield is then represented as the analytic continuation of

an outgoing multiplet. Crossing relations imply that this must be the antimultiplet, hence

the bar and the opposite height spin indices. The component antiparticles occupy opposite

levels in the superfield.

The factorisation of the superamplitude (5.59) is easily demonstrated as consistent

with expectations from (5.58). Because of the simplicity of the three-particle superampli-

tudes, the Grassmann integral may be trivially evaluated using
∫
d2ηP δ

(2)(Q†
L)δ

(2)(Q†
R) =
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mSδ
(2)(Q†), where Q†

L and Q†
R are the supercharges associated with each respective sub-

superamplitude above in (5.59). This requires use of the analytic continuation rules for

spinors and Grassmann variables given in [14], which here imply that Q†
i,−P = −Q†

i,P

for state i of momentum P . The two representations of the three-particle superampli-

tude (5.57) can then be substituted to confirm that (5.59) is given simply by (5.58) with

the exhibited component amplitude factorised into the component three-particle ampli-

tudes shown in (5.57).

6 Conclusion

We have here initiated the study of the on-shell properties of supersymmetric theories by

developing the on-shell superspace formalism in which states are described in a supermul-

tiplet by their asymptotic quantum numbers — momentum, total spin and polarisation —

without the need to commit to a frame of reference. This was used to construct massive

supermultiplets and represent these in scattering amplitudes of supersymmetric theories,

concentrating here on N = 1 theories. Purely from the foundational principles of quan-

tum mechanics, special relativity and supersymmetry, we constructed all of the possible

elementary on-shell three-point amplitudes for multiplets of spin no greater than 1.

A more exhaustive study into the extent to which S-matrix postulates constrain super-

multiplets and their interactions at weak coupling is warranted. Further constraints upon

theories from assumptions about IR properties, such as factorisation or behaviour in the

high energy limit, remain to be investigated.

It would be interesting to more broadly catalogue theories characterised by their spec-

tra and interactions from conditions on IR properties and see whether they conspire to

imply emergent symmetries or uniqueness properties [6, 31, 40]. For example, consequences

of supersymmetry on emergent properties of theories constructible from soft limits were

recently investigated in [41]. We do not foresee difficulties in extending our analysis to scat-

tering states of higher-spin composite superfields or including multiplets of supergravity or

Kaluza-Klein modes (see recently [15, 42, 43] for a possible application to black holes).

To progress beyond single particle representations and 3-leg amplitudes, some guid-

ance for systematically constructing higher order (loop and leg) amplitudes from infrared

(on-shell) properties would be desirable, such as on-shell recursion. However, because the

validity of massless recursion is often sensitive to the helicity of the shifted states, the effec-

tive combining of massless states of definite helicity into massive particle representations of

the (super-)Poincare group poses a potential obstruction. Prospects for overcoming this are

most promising in N = 4 SYM where, for massless amplitudes, a myraid of constructibility

properties have been discovered. Vestiges of these may remain present on the Coulomb

branch, in particular the dual (super)conformal symmetry. In [14] we formulate a massive

super-BCFW shift and prove its validity for the construction of all Coulomb branch tree

superamplitudes. The constructibility of Coulomb branch superamplitudes seems to arise

from a surprising ‘nonlocality’ present in the three-particle superamplitudes. This remains

an interesting avenue for future work.
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A Conventions and useful identities

A.1 Spinor helicity for massive particles

We here summarise helicity spinors for massive particles and its consequences, taking the

opportunity to establish the conventions and notation that we adopt throughout this article

and also to present useful identities. The reader is referred to [8] for review of the spinor

helicity method for scattering processes of massless particles, the conventions of which, in

addition to [10], we (mostly) adhere to and will not restate.

Introducing helicity spinors with SU(2) little group structure has consequences for the

description of the internal and external structure of scattering amplitudes. Internally, as

mentioned above, the starting point is that massive momenta (as representations of the

spin group SL(2,C): p = pµσµ) may be decomposed into two null momenta as

pα̇β = −
∑

I

|pI〉α̇
[
pI
∣∣β . (A.1)

The two pairs of left- and right-handed spinors indexed by I, |pI ] and
〈
pI
∣∣, trans-

parently respect an SU(2) symmetry that may be identified with the momentum’s little

group. These SU(2) indices may be raised and lowered in the usual way to convert between

representations and their conjugates:

〈
pI
∣∣
α̇
= εIJ 〈pJ |α̇ |pI ]α = εIJ

∣∣pJ
]
α
. (A.2)

Under conjugation, the spinors transform as

(
[
pI
∣∣)† = |pI〉 (

〈
pI
∣∣)† = − |pI ] . (A.3)

Fundamental tensor representations have lowered indices. We take all scattering states

here to be outgoing, so naturally have raised internal indices (including little group) cor-

responding to the polarisations of the conjugated states.

As usual, det(p) = −p2 = m2 for mass m. As the spinors in (A.1) are conjugates,

det(p) = det(|p]) det(〈p|) = | det(|p])|2. The choice of the phase of det(|p]) is free, so

det(|p]) = m may be chosen without loss of generality (although see [44] for interpretation

of the mass and its complex phase as the extra components of a 6d momentum and its

consequences for dual conformal symmetry). The spinors then have bilinear products with

themselves 〈
pIpJ

〉
= mεIJ

[
pIpJ

]
= −mεIJ , (A.4)
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obey the Weyl equations:

p
∣∣pI

]
= −m

∣∣pI
〉

p
∣∣pI

〉
= −m

∣∣pI
]

[
pI
∣∣ p = m

〈
pI
∣∣ 〈

pI
∣∣ p = m

[
pI
∣∣ (A.5)

and the spin sums:

|pI ]α
[
pI
∣∣β = mδβα |pI ]α

〈
pI
∣∣
β̇
= pαβ̇

|pI〉α̇
〈
pI
∣∣
β̇
= −mδα̇

β̇
|pI〉α̇

[
pI
∣∣β = −pα̇β . (A.6)

The little group index effectively labels the two possible solutions to each of the Weyl

equations, which may be rotated into each other by a Wigner rotation.

Externally, the S-matrix transforms as a tensor under the little group of each of its

external particle legs, being an array of transition matrix entries between states of different

spin configurations. An external state of spin s has polarisation wavefunction that can be

described by a rank 2s symmetric tensor of the little group SU(2). States of a particular

polarisation ms may be extracted from this by choosing the symmetrised component of

the tensor with ms + s indices aligned with the spin direction and s−ms indices opposite

and then normalising. For example, a massive vector particle is described by symmetric

polarisation tensor T (I1I2), with ms = −1, 0, 1 states respectively given by T−−, 1√
2

(
T+−+

T−+
)

and T++. See [45] for tensor methods to describe spin. We (mostly) restrict to

particles of spin ≤ 1 in this work, although a significant part of the versatility of this

formalism is its ability to elegantly describe amplitudes of massive states of any spin.

The possible structures that may appear in the S-matrix and are consistent with

Lorentz invariance are determined by the number of independent combinations of exter-

nal state polarisations that can be made. The systematic construction of these was de-

scribed in [6]. Rather than build external polarisations directly from the tensor products

of massive spinors (e.g. T (I1I2) =
∣∣p(I1

] ∣∣pI2)
]
), a direct on-shell construction of elementary

amplitudes can be performed instead by using the massive spinors to construct a tensor

basis with respect to which the S-matrix may be decomposed. Spinors of either chirality

(or both) may be used to do this. The coefficients of these basis tensors then represent

polarisation-stripped Lorentz tensor amplitudes, in which the possible independent terms

may be built out of external momenta and massless spinors. The helicities of massless legs

then determine the amplitude’s U(1) little group scaling for each massless particle. As a

simple example, the S-matrix entry for the decay of a massive vector V1 into two massless

right-handed fermions ψ2 and ψ3 is determined uniquely by symmetry to be

A(V, ψ2, ψ3) = g
( [

1(I1
∣∣∣
α1

[
1I2)

∣∣∣
α2

)
× |2]α1

|3]α2
= g

[
1(I12

] [
1I2)3

]
, (A.7)

for some coupling constant g. This method of deducing little group structures built out of

spinors is used repeatedly throughout this work in constructing superamplitudes.

Part of the utility of this formalism is that the little group indices are an internal degree

of freedom and allow for the polarisation to be projected onto any external spin frame or

axis. The procedure for doing this is discussed in [6]. In practice, we find that it is clearest
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to abuse notation and, once such an external frame is specified, simply reinterpret the little

group indices as referring to components along this direction. In particular, as it is often

most useful, especially in taking massless or high energy limits, to choose spin frames for

each particle aligned with their momenta (so that the little group indices simply become

helicity indices), we will leave this choice implicit unless stated otherwise.

In this case, the spinors have massless limits

∣∣p+
]
→ |p]

∣∣p−
]
→ 0

∣∣p+
〉
→ 0

∣∣p−
〉
→ −|p〉 (A.8)

where the spinors without little group indices are the usual spinors for massless momentum

p. More precisely, the spinors that vanish do so O(m). The limits may be expressed as

lim
m→0

1

m

∣∣p−
]
=

|q]
[qp]

lim
m→0

−1

m

〈
p+

∣∣ = 〈q|
〈qp〉 , (A.9)

where the remaining spinors |q] and |q〉 become the reference spinors and are ambiguous

in the massless amplitude, as their direction arrived in taking the limit is arbitrary (up to

requiring [qp] , 〈qp〉 6= 0). In practice, it is often possible to take the limit while avoiding

the introduction of the reference by using momentum conservation and other identities.

For 3-leg amplitudes involving the factor x, the following identities are useful:

x =
1

m

[q| p2 |3〉
[q3]

=
m 〈q3〉
〈q| p2 |3]

(A.10)

and

x
[
32I

]
=

〈
32I

〉
, x

[
31I

]
= −

〈
31I

〉
, (A.11)

[
1I2J

]

x
=

〈
1I2J

〉

x
+

[
1I3

] [
2J3

]

m
, (A.12)

where p3 is the massless leg and p1 and p2 are the massive legs, while |q] and |q〉 are

arbitrary reference spinors, not necessarily related, that satisfy [q3] 6= 0 and 〈q3〉 6= 0.

A.2 Grassmann calculus

The Grassmann variables may be imbued with SU(2) little group indices ηI . In this case,

Grassmann differentiation may be defined in the usual way: ∂
∂ηI

ηJ = ∂
∂ηJ

ηI = δIJ . However,

this requires that the index height on the derivative be raised or lowered with an extra (−)

sign: ∂
∂ηJ

= −ǫJI
∂

∂ηI
. We note for convenience the identities

1

2

∂

∂ηI

∂

∂ηI

(
1

2
ηJη

J

)
= −1, (A.13)

ηIηJ = −1

2
ǫIJηKηK . (A.14)

The little group invariant Grassmann integration measures are defined here as

d2η =
1

2
ǫIJdηIdηJ d2η† = −1

2
ǫIJdη†Idη

†
J (A.15)
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where
∫
dηIη

J = δJI and
∫
dη†Iη

†J = δJI . The index placement on the differential is a

property of the differential and not of the variable being integrated — that is, dηI =

d(ηI). The strange positioning of the index is needed for this operation to be the same as

differentiation and is an occurrence of the general topsy-turvyness of Grassmann numbers.

Also, as for the derivative, dηI = −ǫIJdηJ (and likewise for the conjugate).

The Grassmann Fourier transform of some function f(η) of a Grassmann variable η is

defined as f̃ and these are related by

f̃(η†) =
∫

dηeηη
†
f(η) f(η) =

∫
dη†e−ηη† f̃(η†). (A.16)

The Fourier transform from the η† basis to the η basis in N = 1 is effected by the replace-

ments

1 → −1

2
ηIη

I , η†I → ηI , −1

2
η†Iη†I → 1. (A.17)

For multiplets without a central charge, the Grassmann variables have massless limits

in the helicity basis

η− → η, η+ → η̂. (A.18)

Here, η̂ represents the redundant variable left-over from the division of the massive mul-

tiplets into smaller massless multiplets that each represent the smaller massless SUSY

algebra. For the exceptional case of BPS multiplets, η̂ = η†, while for anti-BPS multiplets

the limit picks up an extra negative sign.

B Comments on higher-leg amplitudes in SQCD

We here make some comments on various massive quark and multigluon amplitudes and

rederive them in the little group covariant notation. Again, the arguments presented

here are parallel to [9] and [19]. Amplitudes stated here will be colour-stripped partial

amplitudes, following the usual rules for Yang-Mills theories, as prescribed in e.g. [46].

This discussion is supplementary to further comments made in [14] concerning the relation

between (S)QCD amplitudes and Coulomb branch amplitudes of N = 4 SYM.

Firstly, the supersymmetric Ward identities provide relations and constraints between

component amplitudes that can be exploited. Supersymmetry transformations can be

found that set a Grassmann generator for a particular leg to 0. In particular, under the

action of − [θQ], ηj,I is translated to ηj,I − i [θjI ] for each leg j (if the leg is massless,

just omit the little group index). This can be used to set ηi,I = 0, for some single leg

i with polarisation in some direction given by I in some little group frame, by choosing

[θ| = −i
m ηi,I

[
iI
∣∣ + C [iI | (no sum over I is implied). Here, C represents the remaining

unused degree of freedom in the supersymmetry parameter. Component amplitudes that

are obtained by integrating the superamplitude in the Grassmann parameters that are

translated are unaffected by this transformation, because the integration variable can be

likewise translated. After changing variables to absorb the supertranslation, the resulting

integrand is completely independent of ηi,I , so integrating over it will give 0. The compo-

nent amplitudes obtained by such projections must therefore be 0 by supersymmetry.
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Simple illustrative examples of this are the squark-antisquark and n-gaugino amplitude

and the squark-antisquark n-gluon amplitude.

A[Q̃Rλ
+ · · ·λ+Q̃L] =

∫
d2η1

∏

i

∫
dηi

∫
d2ηn+2A[Q, G+ . . . G+,Q] = 0 (B.1)

A[Q̃Rg
− · · · g−Q̃L] =

∫
d2η1

∏

i

∫
dηi

∫
d2ηn+2A[Q, G− . . . G−,Q] = 0 . (B.2)

Identical arguments in the η† basis may be used to show that the CP -conjugate amplitudes

are also 0. Identical arguments also demonstrate that amplitudes with additional squark

and antisquark pairs (Q̃R, Q̃L) are 0.

Vanishing amplitudes of massive quarks, states of non-trivial polarisation, may also

be obtained similarly. If all of the little group axes of the quarks are aligned, then the

transformation ηj,J − i [θjJ ] does not affect the Grassmann numbers with opposite spin

components to J — which is now the same direction for each massive field. Thus the su-

peramplitude integrated over only these components will be independent of the Grassmann

variable that is being eliminated, so must vanish. This derives the fact that amplitudes

with quarks and antiquarks all of identical polarisation are 0, as well as those that include

some number of gluons or gauginos of identical helicity. These include amplitudes that are

inherited by pure QCD at tree-level. The argument can be easily combined with that used

in the previous paragraph to extend these vanishing amplitudes to those involving squarks.

The extra degree of freedom in the supersymmetry parameter can be further utilised

to derive the vanishing of a further class of amplitudes. Choosing C = −i
m
[iIjK ]
[iIjK ] ηi,I (if j is

massless, omit its little group index in this expression), the Grassmann variable for leg j

does not shift under the supersymmetry transformation performed in the examples above.

This means that the variables ηj,K need not be integrated in order to obtain a vanishing

amplitude. Thus one extra particle in any spin state may be added to any of the amplitudes

above and the result will still be 0.

Tree-level amplitudes involving a quark-antiquark pair and any number of gluons of

the same helicity have been previously determined in [3, 47] and little group covariantised

in [48]. A compact expression exists that may be derived inductively using BCFW recur-

sion by shifting the massless legs in the usual way [49]. The superamplitudes to which

these amplitudes belong have the interesting property that they are fully determined by

a single component amplitude, which we show in appendix B of [14] by projecting these

superamplitudes out from the massive N = 4 theory.
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