
International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

DOI:10.5121/ijcsit.2014.6302 21

MASSIVE PARALLE LISM WITH GPUS FOR

CE NTRALITY RANKING IN COMPLE X NE TWORKS

Frederico L. Cabral, Carla Osthoff, Rafael Nardes, Daniel Ramos1

1Laboratório Nacional de Computação Científica

ABSTRACT

Many problems in Computer Science can be modelled using graphs. Evaluating node centrality in complex
networks, which can be considered equivalent to undirected graphs, provides an useful metric of the
relative importance of each node inside the evaluated network. The knowledge on which the most central
nodes are, has various applications, such as improving information spreading in diffusion networks. In this
case, most central nodes can be considered to have higher influence rates over other nodes in the network.
The main purpose in this work is developing a GPU based and massively parallel application so as to
evaluate the node centrality in complex networks using the Nvidia CUDA programming model. The main
contribution of this work is the strategies for the development of an algorithm to evaluate the node
centrality in complex networks using Nvidia CUDA parallel programming model. We show that the
strategies improves algorithm´s speed-up in two orders of magnitude on one NVIDIA Tesla k20 GPU
cluster node, when compared to the hybrid OpenMP/MPI algorithm version, running in the same cluster,
with 4 nodes 2 Intel(R) Xeon(R) CPU E5-2660 each, for radius zero.

KEYWORDS

Complex Networks, Graphs, Centrality Ranking, GPGPU, CUDA.

1. INTRODUCTION

Historically, the performance improvement of computer applications is achieved by faster central
processing units, with higher clock frequencies along each new generation. This way, it was
possible to have more operations executed per second (FLOP/S or FLOPS).

As a solution to increase the computational power in terms of FLOPS, parallelism became widely
used for the last few decades.

The great appeal of faster computers and the difficulties of producing supercomputers with
hundreds and thousands of processors at a low cost and low energy consuming, impulse scientists
to look for another alternative, which was found in the so called many core architecture, present
in modern General Purpose Graphics Processing Units (GPGPUs). For last few years, the fastest
supercomputers and the most efficient ones, in terms of MFLOPS/Watt, are all constructed with
GPGPUs, like Nvidia cards, and accelerators, like Intel Xeon Phi, all based on many core
concept.

On the other hand, the analysis of complex networks has become one of the main goals of science
[1]. Describing, characterizing and above all extracting relevant data from complex networks
currently draws the attention of many fields of research, as biology, economics, social science,
computer science and so on. The interest of so many fields is due to the fact of a huge amount of
systems shaped that way has come up by now such as the Internet, the World Wide Web, social
networks, organizational networks, distribution networks, neural networks, traffic networks, etc.
[1].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

22

One of the goals in network analysis is figuring out the behaviour of the nodes along the net. One
tool that was proposed to assay complex networks is the network centrality [2, 3]. Broadly
speaking, network centrality tells the relevancy of each node along the net. In this context,
different approaches have been proposed in years, each of them assesses the problem in a
different point of view. For instance, the network centrality to evaluate network robustness to
fragmentation [4, 5] or to identify the most important nodes in spreading information in diffusion
networks [6, 7].

According to [8] many strategies to compute centralities have been proposed in the last decades, a
lot of them having a high computing cost. Although there are low computing cost techniques as
degree centrality (estimates the centrality based only on the neighbours of each node), more
accurate procedures and nearer real world networks as closeness centrality commonly have very
high computing costs.

Closeness centrality [9] depends on ascertaining the lowest path between all pairs of network
nodes, and the centrality of every node is estimated by the minimum distances average to another
nodes.

The high computing demand and the need of whole network topology knowledge (reason why
these techniques are called global) are hitches that imposes a rare applying on large-scale
networks of nowadays.

The DACCER method (Distributed Assessment of the Closeness Centrality Ranking) purposed
by [8] adopts a local approach thus it is independent of full network awareness. That method is
restricted to evaluate a determined neighbourhood bounded surrounding to each node in order to
be generated the ranking nodes according their centralities.

In the complex networks study, the knowledge of nodes position in a centrality ranking is,
invariably, more crucial than knowing the precise value associated to each node. Therefore, the
local strategy suggested in [8] has its testified applicability because of its high correlation degree,
vouched empirically, between DACCER ranking and the one obtained by the method of high
overall cost: Closeness Centrality [9].

This paper presents a CUDA implementation of DACCER and its results with experiments that
were carried out on a two nodes Linux cluster with an infini-band network channel and a NVIDIA
Tesla k20 GPU per node. We simulate networks of sizes 10.000, 100.000, 200.000, 400.000,
600.000 and 1.000.000 vertices. For every size of network (in amount of vertices)
aforementioned, we carried out tests with four different values of minimum degree, i.e. the least
amount of edges connected to each vertex in the net, specified in Barabasi-Albert model for
networks [15].

According to [8] a radius equal to 2, of each vertex degree can ensure a high correlation degree
between the centrality ranking produced by DACCER and the one produced by global strategies.
Based on that fact, performed tests were focused on radius smaller than or equal to 2. However,
the developed solution is general enough to be used with any value of radius.

We evaluate the performance of DACCER Cuda parallel algorithm against an earlier DACCER
OpenMP/MPI parallel algorithm version [8] with 32 simultaneous threads on a hybrid
OpenMP/MPI environment.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

23

The comparative results show that, on the tested networks, the execution for radius equal to zero
and one on a GPU Tesla K20 was in average about two orders of magnitude faster than the
execution on 32 cores CPU cluster.

The remainder of this paper is organized as follows. Section 2 presents Network Representation in
Terms of Data Structures background and related work, section 3 presents Parallel Programming
Models background, while section 4 presents the CUDA version algorithm strategy for DACCER.
The performance evaluation, experimental results and experimental analysis are presented in
section 5. The last section presents conclusions and future works.

2. NETWORK REPRESENTATION IN TERMS OF DATA STRUCTURES

The study of networks is a relevant field; in order to model networks the Mathematics applies the
Graph Theory. Through that theory, one defines a network as a set of items called vertices or
nodes. Connecting these items exist structures called edges [2].

A graph is an abstraction structure applied in a huge range of problems. In computer science,
algorithms to deal with this kind of structure arises since an enormous variety of problems has its
solution based on graph representations.

Visually, can be represented drawing items (vertices or nodes) as dot or circles. The
interconnections between the items are represented by lines, which link the dots.

2.1 Representation of graphs

Thus, a graph G can be formally be defined as a pair of sets G = (V,E), which V = {1,2,3…n} is
the set that contains n vertices of the graph and E={1,2,3,…m} is the set which contains all of its
m edges. We are denoting |V| and |E|, respectively, the number of vertices and the number of
edges of the graph G.

If the connections between the elements depend on the origin, in other words, if given a node v, it
can be related to another node w without necessarily reciprocal is true, we have a directed graph,
therefore connections need to be represented by the use of arrows evincing the direction of the
connection.

In order to represent graphs according to [10] there are two standard approaches: adjacency
matrix or a collection of adjacency lists.

Figure 1. Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and seven

edges. (b) An adjacency list representation of G. (c) The adjacency matrix representation of G.

Adjacency matrices have an inconvenience in sparse graph (|E| is much smaller than |V|²). In that
situations, one ends up using too big matrices for representing a structure that could be
represented in a more compact way. That is the reason why generally representing a graph by

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

24

adjacency lists is preferred. Nevertheless adjacency matrices are quite useful for very dense
graphs (|E| is closer to |V|²) or when it is necessary to be able to tell quickly if there is a
connection between two given vertices.

An adjacency matrix representation consists of a |V| x |V| matrix A = aij such that ai j = 1 if there is
a connection between vertex i and vertex j, otherwise aij = 0.

Figure 2. A directed graph represented by an adjacency matrix.

For adjacency lists representations one uses an array V of size |V|. Every element from that array
represents a vertex v of the graph and contains a pointer to a linked list that keeps all its
neighbours. Therefore there are linked list in this representation.

Figure 3. A directed graph represented by adjacency lists.

2.2 Representation of graphs in GPU

According to [11] many complex data structures have already been studied as hash tables in order
to represent graphs in search of high performance CPU algorithms. However, the memory model
of GPU’s is optimized to graphic rendering not supporting efficiently data structures defined by
the users. Nevertheless, CUDA model manages the memory as general arrays thus allowing
CUDA to be able to support data structures in a more efficient way.

Adjacency matrix can be considered as a good choice to be used on GPU, but with a severe
limitation: spatial complexity O(|V|²) make infeasible its use in large graphs thus limiting
radically the size of supported graphs implemented on a GPU, where available memory is a
limiting factor. Adjacency lists have spatial complexity of O(|V| + |E|), thus they are more
suitable to large graphs.

In this scenario, [11] proposed a compact adjacency list form, whose adjacency list is packed into
a single large array.

Vertices of graph G(V,E) are represented as an array Va. Another array Ea of adjacency lists
stores the edges with edges of vertex i+1 immediately following the edges of vertex i for all i in
V. Each entry in the array Va corresponds to the starting index of its adjacency list in the edge
array Ea. Each entry of the edge array Ea refers to a vertex in vertex array Va.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

25

Figure 4. Graph representation is in terms of a vertex list that points to a packed edge list.

For DACCER algorithm, this paper introduces some extensions of compact adjacency list, in
which Ea will store not only the direct neighbours of some node, but the neighbours of certain
distance k in a structure called Eak, and all neighbours until certain k in EakAccum. These
structures will be necessary for CUDA code in order to compute the volumes until certain radius,
by adding the degrees of all elements inside the neighbourhood.

Figure 5. Example of a graph and a neighbourhood of some node

In figure 5 there is a graph example where node zero and its neighbours are shown. The direct
neighbours (1-neighbourhood) are 1, 2, 3, 4 and 5, while the 2-neighbourhood is H0

2 = {6, 7, 8, 9,
10, 11, 12, 13}. Figure 6 shows the Eak and Vak for node zero with k = 2 in graph example of
figure 5.

Figure 6. Compact Adjacency List for k = 2

Another important structure used in CUDACCER (DACCER on CUDA) is the Cumulative
Compact k-Adjacency List (CCk-AL) which stores all the neighbours from a node until some
radius. For example in figure 5, the neighbours of node zero until radius = 2 is N0

2 = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13}. Figure 7 shows EakAccum and VakAccum for node zero with k = 2 in
graph example of figure 5.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

26

Figure7. Cumulative Compact Adjacency List for k = 2

3. PARALLEL PROGRAMMING MODELS

As a solution to increase the computational power in terms of FLOPS, parallelism became widely
used for the last few decades. The Message Passing Interface (MPI) defines an API to write
parallel code that allows processes to communicate with each other, exchanging messages. This is
a very adequate approach for loosely coupled environment, in which each processor unit accesses
a private memory. In general, these processes send/receive messages by a network link. The
OpenMP standard defines an API for multi threading programming that is applied in tightly
coupled environment, where all processor units share the same memory. A typical environment
adequate to OpenMP using is the multi core technology so common nowadays. One can get a
very efficient approach in parallel programming mixing MPI with OpenMP, in a hybrid model
that fits perfectly in modern clusters that combine multi core processors that communicate by a
network link [12].

There are programming models for GPGPUs like, OpenCL and Nvidia Compute Unified Device
Architecture (CUDA). Conceptually, CUDA is an extension to C language that allows
programmers to write code without the necessity of learning the details of graphics hardware, like
shader languages or graphics primitives [13]. The code is target to both CPU, called host, and
GPU, called device. The host creates and spawns multi thread tasks to run into the GPU,
specifically inside the many CUDA cores. The functions that run in the device are called kernel
functions in CUDA vocabulary, so a typical program have a CPU skeleton and some kernels that
can be invoked by it.

Figure 8 shows the differences between the multi core and many core architectures. One can
notice that the CPU has one Control Unit for all of its Arithmetic Units and a “big” cache
memory, while GPU has many Control Units and Many “small” caches.

Figure 8. Multicore and manycore architectures

The GPU hardware schedules the threads by units called warps that are executed by some SIMD
vector processors, which means that ideally, only one access to memory for an instruction and a

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

27

broadcast of that instruction to all processors are needed. Because of this particular
characteristics, branches in the code (if-then-else, for, while, etc.) can slow down the execution by
causing divergence in the execution flow. This is an important issue to the application studied in
this paper, as shown in further sections.

When a kernel function is invoked, a grid of threads is created. A grid contains hundreds,
thousands or millions of threads, once not all of them are executed at the same time, due to the
warp scheduling mentioned before. The number of threads created can be higher that the number
of CUDA cores, for example. Inside a grid, threads are organized into blocks that can be one, two
or three dimensions. This organization is shown in figure 9, where one can see a two dimensional
grid with two dimensional blocks, which means that each thread is numbered by a ordered pair
inside the block.

Figure 9. Two-dimensional grid with two-dimensional blocks.

A block consists of a group of threads that can cooperate in two different ways: (1) synchronize
the execution through an instruction called __syncthreads that works as a barrier; (2) sharing data
in the shared memory, which has a low latency. Inside a block, threads are identified by the
threadIdx reserved word. In a three-dimensional block, for example, there exists threadIdx.x,
threadIdx.y and threadIdx.z coordinates. Similarly, blocks inside a grid are identified by
blockIdx.x and blockidx.y coordinates, unless the grid is one dimensional, in which block are
identified only by blockidx.x coordinate.

Another important issue for this paper is the memory model in CUDA. There are many types of
memory according to its location and function. A hierarchy begins with registers that are assigned
to threads followed by shared memory that are assigned to blocks. These two types are located
inside the GPU chip. The next is the constant memory that can be used to store data that can only
be read by the threads but can be written or read by the host code. The last level is represented by
the global memory that can written and or read by the host and the threads. Constant and global
memory are located outside the GPU chip, but located inside the GPU card, connected by a bus.
The communication between the host and device, to read/write the global memory is an important
bound for a kernel speedup. Ideally, one want to increase the Compute to Global Memory Access
Ratio (CGMA ratio) in order to obtain a significant gain for the kernel speedup. Figure 10 shows
the CUDA memory model.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

28

Figure 10. Memory Model in CUDA

In this work, for simplicity, all data structures describer in section 4, are allocated in global
memory. The use of shared memory in some structures, in order to gain performance, are to be
considered in further work.

3. ALGORITHM OUTLINE

In this section, the DACCER implementation with CUDA is presented. Before describing the
pseudo code for the host and device, it is necessary to describe the data structures used.

VaD and EaD are, as seen before, the basic structures used to represent graphs in CUDA with the
so called Adjacency Compact List. These two one dimensional arrays are the basic structures
from where the others are conceived.

VakAccumD and EakAccumD are extensions from Vak and Eak. The main idea is to have
structures that store the neighbours from each node until the “layer k”. For example, these arrays
for k = 2, stores all neighbours from 1 and 2 frontiers for each node. This pair of arrays its being
introduced in this paper with the name Cumulative Compact k-Adjacency List (CCk-AL)

VakD and EakD are too, extensions of Va and Ea, but they store the neighbour of “k” distance
from each node.

Basically, VaAntD and EaAntD store the same information that VakD and EakD, but for the
anterior layer, “k-1”.

VaAntAccumD and EakAntAccumD are similar to VakAccumD and EakAccumD, but for the
anterior layer, “k-1”. It means that they store all neighbours for each node until the “k-1” layer.
Once the five main pairs of data structures was presented, it is important to point out the need of
more four arrays that stores the numbers of neighbours in different steps of the process described
later in this section.

The first one is ContNeighbourskD that contains the number of k-neighbours for each node.
ContNeighboursAntkD contains the number of (k-1)-neighbours. The next two structures are
layer cumulative. ContNeighboursAccumkD and ContNeighboursAntAccumkD contain the
number of neighbours of each node until k and k-1 layers respectively.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

29

Two last arrays are necessary: DegreesD contains the number of neighbours for each node, which
is known as degree of the node. VolumesD is the structure that stores the final result, the volume
of each node. As explained before, the volume of a node is the sum of the degree from all the
neighbours until some radius. DACCER proposal regards on using the volume as a local metric to
approximate centrality.

The host code, which runs on CPU, is shown next. The kernel functions invoked by this code are
explained further in this section.

4.1 Algorithm 1: CPU/HOST Skeleton

01: Read the graph from a text file and creates Ea and Va in the HOST.
02: Allocates EaD and VaD in the DEVICE
03: Transfers Ea and Va from HOST to DEVICE in EaD and VaD
04: Invokes kernel InitializeArrays

05: Invokes kernel ComputeDegrees
06: if (radius == 1)
07: Invokes kernel ComputeVolumeR1

08: if (radius > 1)
09: for (layer from 2 to radius) do
10: Invokes kernel ComputeNumberOfkNeighbours

11: Invokes kernel ComputeNumberOfUntillkNeighbours

12: Transfers ContNeighbourskD from DEVICE to HOST
13: Fills Vak and updates VakAccum using ContNeighbourskD
14: Transfers Vak and VakAccum from HOST to DEVICE
15: Computes the size of new EakD using ContNeighbours and Vak
16: Invokes kernel FillEakD

17: Computes the size of EakAccumD using ContNeighboursAccumkD and
 VakAccum
18: Invokes kernel FillEakAccumD_1step
19: Invokes kernel FillEakAccumD_2step

20: end-for
21: Invokes kernel ComputeVolumes
22: end-if
23: Transfers VolumesD from DEVICE to HOST

Important to notice that the entries for this algorithm are the graph itself and the radius in which
the volumes are desired. Each kernel function is described next.

4.2 Algorithm 2: Kernel function InitializeArrays

This function initialize some arrays in the GPU assigning zero to all their positions.

1. If (thread_index < number of vertices)
2. DegreesD[thread_index] = 0
3. ContNeighbourskD[thread_index] = 0
4. VolumesD[thread_index] = 0
5. end-if

4.3 Algorithm 3: Kernel function ComputeDegrees

This function counts how many direct neighbours each node has and stores it in the corresponding
position of DegreesD.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

30

1. If (thread_index < number of vertices)
2. x = thread_index + 1
3. DegreesD[thread_index] = VaD[x] – VaD[thread_index]
4. VolumesD = DegreesD
5. end-if

After this execution, VolumesD has exactly the same values from DegreesD, because for radius =
0, the volumes correspond to the degree of each node of the graph. In this case, both tests in
algorithm 1, in lines 6 and 8 will result false and execution jumps to line 23 with the volumes
already computed properly.

4.4 Algorithm 4: Kernel function ComputeNumberOfkNeighbours

This kernel computes the number of neighbours at layer k and stores it at ContNeighbourskD. For
each neighbour at layer k-1, a group of its neighbours are identified at EaD. The size of these
groups are used to count the number of neighbours at layer k.

1. if (thread_index < number of vertices)
2. ContNeighbourskD[thread_index] = 0
3. for all (k-1)-neighbours of thread_index do
4. Defines beginning of the group in EaD
5. Defines ending of the group in EaD
6. ContNeighbourskD[thread_index] += (groupEnd – groupBegin + 1)
7. end-for
8. end-if

4.5 Algorithm 5: Kernel function ComputeNumberOfUntillkNeighbours

This kernel computes the total number of all neighbours until the layer k and stores this
information at ContNeighboursAccumkD. It is a simple procedure: just add the number of
neighbours accumulated at layer k-1 and number of neighbours at layer k.

1. if (thread_index < number of vertices)
2. ContNeighboursAccumkD[thread_index] =
 ContNeighboursAntAccumkD[thread_index] + ContNeighbourskD[thread_index]
3.end-if

4.6 Algorithm 6: Kernel function FillEakD

This kernel discovers the neighbours in the k layer and fills EakD with the appropriate
information. It is important to remember that Eak is an extension of original Ea, but for a specific
layer. The merge procedure is key in this process. Each group of elements found in EaD and
EakD itself are already sorted, so it is possible to merge them into an auxiliary structure that will
end up sorted too with O(n) complexity, allowing to eliminate repeated values.

1. if (thread_index < number of vertices)
2. for all (k-1)-neighbours of thread_index
3. Defines beginning of the group in EaD
4. Defines ending of the group in EaD
5. Merges the group in EaD with actual EakD into as auxiliary structure
6. Stores the auxiliary structure in EakD
7. end-for
8. end-if

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

31

The next two kernels fill EakAccumD, in two separate steps, which is the structure where the
neighbours until layer k of each node is stored. This structure will be used to compute the volume.
The pair VakAccumD and EakAccumD are called Cumulative Compact k-Adjacency List (CCk-
AL).

4.7 Algorithm 7: Kernel function FillEakAccumD_1step

1. if (thread_index < number of vertices)
2. pos = VakAccumD[thread_id]
3. pivot = pos
4. for (index i varying from pivot to pivot + ContNeighboursAntkD[thread_index]) do
5. EakAccumD[pos] = EakAccumD[i]
6. pos ++
7. end-for
8. end-if

4.8 Algorithm 8: Kernel function FillEakAccumD_2step

1. if (thread_index < number of vertices)
2. merges EakAccumD with EakD into an auxiliar structure
3. stores the auxiliary structure in EakAccumD
4. end-if

The next two kernel functions compute the volume of each node from the graph, using
EakAccumD and VakAccumD after the layer for loop. ComputeVolumes compute the general
case, where radius greater than one because for radius equals one there is a separated
ComputeVolumesR1 function which is much simpler.

4.9 Algorithm 9: Kernel function ComputeVolume

1. if (thread_index < number of vertices)
2. firstPos = VakAccumD[thread_index]
3. lastPos = VakAccumD[thread_index + 1] - 1
4. for (index i varying from firstPos to lastPos) do
5. VolumesD[thread_index] += DegreesD[EakAccumD[i]]
6. end-for
7. end-if

4.10 Algorithm 10: Kernel function ComputeVolumeR1

1. if (thread_index < number of vertices)
2. firstPos = VaD[thread_index]
3. lastPos = VaD[thread_index + 1] - 1
4. for (index i varying from firstPos to lastPos) do
5. VolumesD[thread_index] += DegreesD[EakD[i]]
6. end-for
7. end-if

5. PERFORMANCE ANALYSIS

The experiments were carried out on a Linux cluster with an infini-band network channel. The
cluster is composed of 4 nodes which are 2 Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz (16
cores per node) with 64GB DDR3 DIMMs memory and a NVIDIA Tesla k20 GPU per node. The

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

32

experiments with the MPI/OpenMP were compiled with the following products: (1) Portland
Group Compiler Collection (pgcc) 14.2, that supports OpenMP 3.0 and OpenACC 2.0 standards;
(2) MVAPICH 2.2.0, that fully supports MPI 2.0 standard. The CUDACCER was compiled with
Nvidia Compiler Driver version 5.5.0.

In order that we could generate networks for test with known and controlled features, we used a
python language software-package known as NetworkX [14]. NetworkX is used for the creation,
manipulation, and study of the structure, dynamics, and functions of complex networks [14]. In
our experiments, we used networks based on Barbási-Albert (BA) model [15] of sizes 10.000,
100.000, 200.000, 400.000, 600.000 and 1.000.000 vertices. Another parameter that was varied in
our tests was the minimum degree of the networks. The minimum degree corresponds to the least
amount of edges connected to each vertex in the net. For every size of network (in amount of
vertices) aforementioned, we carried out tests with four different values of minimum degree
specified in the networks generation: 1, 2, 3, 4.

Another point that must be cleared up about the tests is the used radii. As aforementioned in
section 2, the solution proposed in this paper comes from a local strategy for the calculation of
centrality. The analysed radius surrounding each vertex is a parameter chosen by the user.
According to [8] a radius equal to 2 can ensure a high correlation degree between the centrality
ranking produced by DACCER and the one produced by global strategies. This fact lead us to the
conclusion that the use of radii greater or equal to 3 are not justifiable in practical terms since
very similar results of centrality ranking are produced by radius equal to 2.

Based on that fact, performed tests were focused on radii smaller than or equal to 2. However,
the developed solution is general enough to be used with any value of radius.

The tests execution was divided into two steps: the first one was the execution of DACCER with
the aforementioned networks on a 32 simultaneous processes OPENMP/MPI environment. The
second step was the execution of CUDACCER on an Nvidia Tesla K20 graphic card. The
comparative results are shown below.

It is important to say that on the charts below the vertical axis is the log plot of time taken in
milliseconds and on the horizontal axis are the numbers of vertices.

5.1. Results using radius equal to zero

The results prove that, on the tested networks, the execution for radii equal to zero on a GPU was
in average about two orders faster than the execution on multicore CPU environment. The median
speedups of the CUDACCER in relation to the multicore CPU DACCER when the radius is equal
to zero are shown on the table 1:

Table 1. Median GPU Speedup for radius equal to zero

Minimum Degree=1 Minimum Degree=2 Minimum Degree=3 Minimum Degree=4

 152x faster 125x faster 121x faster 84x faster

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

33

Figure 11. Results using radius equal to 0.

5.2. Results using radius equal to one

The results prove that, on the tested networks, the execution for radii equal to one on a GPU was
in average about two orders faster than the execution on multicore CPU environment. The median
speedups of the CUDACCER in relation to the multicore CPU DACCER when the radius is equal
to one are shown on the table 2:

 Table 2. Median GPU Speedup for radius equal to one

Minimum Degree=1 Minimum Degree=2 Minimum Degree=3 Minimum Degree=4

 142x faster 135x faster 130x faster 136x faster

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

34

Figure 12. Results using radius equal to 1.

5.3. Results using radius equal to two

The results prove that, on the tested networks, the execution for radii equal to two on a GPU was
in average about 5x slower than the execution on multicore CPU environment. The median
speedups of the CUDACCER in relation to the multicore CPU DACCER when the radius is equal
to two are shown on the table 3:
[

Table 3. Median GPU Speedup for radius equal to two

Minimum Degree=1 Minimum Degree=2 Minimum Degree=3 Minimum Degree=4

 3x slower 5x slower 6x slower 7x slower

Using Nvidia Profiler (nvprof) it's possible to notice that kernel FillEakD consumes up to 98% of
execution time when radius equals to two is selected. This disproportional distribution is the main
cause of the poor performance result.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

35

Figure 13. Results using radius equal to 2.

6. CONCLUSIONS

Parallel programming allows one to obtain a gain of performance for many problems as it makes
use of multi or many simultaneous threads. CUDA programming allows parallelism to reach a
high level speedup as it's based on manycore concept and DACCER is a particular problem
benefited from parallelism. This work presents strategies for the development of an algorithm to
evaluate the node centrality in complex networks using Nvidia CUDA parallel programming
model. We show that the strategies improves algorithm´s speed-up in two orders of magnitude on
one NVIDIA Tesla k20 GPU cluster node, when compared to the hybrid OpenMP/MPI algorithm
version, running in the same cluster, with 4 nodes 2 Intel(R) Xeon(R) CPU E5-2660 each, for
radius zero. The CUDA implementation of DACEER proposed in this paper has speedup by two
orders of magnitude for radius zero and radius one, but poor results for radius equals two because
the FillEakD kernel function, which presents high computing complexity. There is also a high
memory occupation for Cumulative Compact k-Adjacency List. These two issues are to be
studied in order to improve speedup results for those cases in future works.

ACKNOWLEDGEMENTS

1The authors are thankful to the SINAPAD network (http://www.lncc.br/sinapad) for providing
the HPC resources to the experiments described herein.
2Authors are thankful to Nvidia for all support.
3Partially supported by the “Conselho Nacional de Desenvolvimento Científico e Tecnológico”
(CNPq) Brazilian agency.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

36

REFERENCES

[1] Scardoni, Giovanni & Laudanna, Carlo, (2012) “Centralities Based Analysis of Complex Networks”,

New Frontiers in Graph Theory, Dr. Yagang Zhang Edition, InTech, pp323-349.
[2] Newman, M. E. J., (2003) “The structure and function of complex networks”, SIAM Review, Vol. 45

pp167–256.
[3] Albert, Reka & Barabási, Albert-László, (2002) “Statistical mechanics of complex networks”,

Reviews of Modern Physics Vol. 74, No. 01, pp47-97.
[4] Albert, Reka & Jeong, Hawoong & Barabási, Albert-László, (2000) “Error and attack tolerance of

complex networks”, Nature Vol. 406, pp378–382.
[5] Kermarrec, A. M. & Le Merrer, E. & Sericola, B. & Trédan, G., (2011) “Second order centrality:

distributed assessment of nodes criticity in complex networks”, Computer Communications Vol. 34,
Issue 5, pp619–628.

[6] Kim, J.Y., (2010) “Information diffusion and δ-closeness centrality”, Sociological Theory and
Methods, Vol.25, Issue 1, pp95–106.

[7] Kim, H. & Yoneki, E., (2012) “Influential neighbours selection for information diffusion in online
social networks”, IEEE International Conference on Computer Communication Networks (ICCCN),
pp. 1–7

[8] Wehmuth, Klaus & Ziviani, Artur, (2013) “Distributed Assessment of the Closeness Centrality
Ranking in Complex Networks”, Computer Networks, Vol. 57, No. 13, pp2536-2548.

[9] Freeman L., (1979) “Centrality in social networks conceptual clarification”, Social Networks Vol.1,
Issue 3, pp215–239.

[10] Cormen, Thomas H. & Leiserson, Charles E. & Rivest, Ronald L. & Stein, Clifford, (2009)
Introduction to Algorithms 3ª Ed. The MIT Press.

[11] Harish, Pawan & Vineet, Vibhav & Narayanan, P. J., (2009) “Large Graph Algorithms for Massively
Multithreaded Architectures”, International Institute of Information Technology Hyderabad. Report
No: III T/TR/74.

[12] Quinn, M. J., (2004) Parallel Programming in C with MPI and OpenMP, McGrawHill.
[13] Kirk, David B. & Hwu, Wen-mei W, (2013) Programming Massively Parallel Processors: A Hands-

on Approach 2nd Ed, Elsevier, Morgan Kaufmann.
[14] Hagberg, Aric A. & Schult, Daniel A., & Swart, Pieter J. NetworkX. https://networkx.lanl.gov.
[15] Barabási, A. & Albert R., (1999) “Emergence of scaling in random networks”, Science, Vol. 286

Issue 5439, pp509–512.

Authors

Frederico Luís Cabral received his M.Sc in Computer Science at Universidade
Federal Fluminense in 2001 and his B.Sc. at Universidade Católica de Petrópolis.
During his graduation worked as assistant researcher in mathematics teaching
through computers. His actual interests are in the areas of cluster computing, hybrid
computing with CPU/GPU, high performance scientific computing applications,
parallel programming and numerical methods for PDEs. He is currently a fellow
researcher at the National Laboratory for Scientific Computing (LNCC).

Carla Osthoff, received her B.S. in Electronics Engineering at Pontifícia
Universidade Católica do Rio de Janeiro, a M.S. and a Ph.D. in Computer Science
from COPPE / Universidade Federal do Rio de Janeiro. Her research interests are in
the areas of cluster computing, hybrid computing with CPU/GPU, high
performance scientific computing applications and parallel programming. Is
currently a researcher at the National Laboratory for Scientific Computing (LNCC)
and LNCC High Performance Computing Center coordinator.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 3, June 2014

37

Rafael Nardes received his B.S. in Computer Science at UNIFESO, Teresopolis,
Brazil. Nowadays he is a student for the M.Sc degree in Scientific Computing at the
National Laboratory for Scientific Computing (LNCC), which is a research unit of
the Brazilian Ministry of Science, Technology and Innovation (MCTI) located in
Petropolis. His research interests are high performance scientific computing
applications, GPU computing, problems involving large graphs and Oil & Gas
simulations.

Daniel Ramos is an undergraduate senior student in Computer Science at Unifeso,
a college located in Teresopolis, Brazil. He is also a scholarship student of
scientific initiation at the National Laboratory for Scientific Computing (LNCC), a
research unit of the Brazilian Ministry of Science, Technology and Innovation
(MCTI) located in Petropolis, Brazil. His current research interest is the use of high
performance computing on problems involving large graphs.

