Massive Quasi-Clique Detection

James Abello!, Mauricio G.C. Resende!, and Sandra Sudarsky?*

L AT&T Labs Research, Florham Park, NJ 07032 USA
{abello,mgcr}@research.att.com
2 Siemens Corporate Research, Inc, Princeton, NJ 08540 USA
sudarsky@scr.siemens.com

Abstract. We describe techniques that are useful for the detection of
dense subgraphs (quasi-cliques) in massive sparse graphs whose vertex
set, but not the edge set, fits in RAM. The algorithms rely on efficient
semi-external memory algorithms used to preprocess the input and on
greedy randomized adaptive search procedures (GRASP) to extract the
dense subgraphs. A software platform was put together allowing graphs
with hundreds of millions of nodes to be processed. Computational re-
sults illustrate the effectiveness of the proposed methods.

1 Introduction

A variety of massive data sets can be modeled as very large multi-digraphs
M with a special set of edge attributes that represent special characteristics
of the application at hand [I]. Understanding the structure of the underlying
digraph D(M) is useful for storage organization and information retrieval. The
availability of computers with gigabytes of RAM allows us to make the realistic
assumption that the vertex set (but not the edge set) of D(M) fits in main
memory. Moreover, it has been observed experimentally, in data gathered in the
telecommunications industry, the internet, and geographically based information
systems, that D(M) is a sparse graph with very skewed distribution and low
undirected diameter [1]. These observations have made the processing of D(M)
feasible. We present here an approach for discovering large dense subgraphs
(quasi-cliques) in such large sparse multi-digraphs with millions of vertices and
edges. We report a sample of our current experimental results.

Before proceeding any further let us agree on the following notational con-
ventions.

Let G = (V, E) be a graph where V is the set of vertices and F is the set
of edges in G. A multi-graph M is just a graph with an integer multiplicity
associated with every edge. Whenever it becomes necessary to emphasize that
the underlying graph is directed we use the term multi-digraph.

For a subset S C V', we let Gg denote the subgraph induced by S.

A graph G = (V, E) is y-dense if |E(G)| > 7(|V(2G)‘). A ~-clique S, also called
a quasi-clique, is a subset of V such that the induced graph Gg is connected

* Work completed as an AT&T consultant and DIMACS visitor.

S. Rajsbaum (Ed.): LATIN 2002, LNCS 2286, pp. 598612, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Massive Quasi-Clique Detection 599

and y-dense. The maximum ~-clique problem is to find a y-clique of maximum
cardinality in a graph G.
For a graph G = (V,E), SCV,E' C E,and z € V, let

— deg(z) = |N()| where N(z) = {y € V(G)|(z,y) € E(G)};
deg()| 4 = [N (2)| 5| where N'(z)|g = N(z) N S;

E(S) ={(z,y) € E(G) 1z € S,y € Sk

Gy = (5, B(9))

For S,R C V(G), E(S,R) = {(z,y) € E(G) : z € S,y € R};

Finding a maximum 1-clique is a classical NP-hard problem and therefore
one can expect exact solution methods to have limited performance on large
instances. In terms of approximation, a negative breakthrough result by Arora
et al. [4l5] together with results of Feige et al. [6], and more recently Hastad
[9], prove that no polynomial time algorithm can approximate the maximum
clique size within a factor of n¢ (e > 0), unless P = NP. Given this current
state of knowledge, it is very unlikely (with our current models of computation)
that general heuristics exist which can provide answers with certifiable measures
of optimality. A suitable approach is then to devise heuristics equipped with
mechanisms that allow them to escape from poor local optimal solutions. These
include heuristics such as simulated annealing [11], tabu search [8], and genetic
algorithms [10], that move from one solution to another, as well as the multistart
heuristic GRASP [7J12], which samples different regions of the solution space,
finding a local minimum each time.

In this paper, we use the concept of quasi-cliques as a unifying notion that
drives heuristics towards the detection of dense subgraphs in very large but
sparse multi-digraphs. (It is assumed here that the vertex set of the graph, but
not the edge set, fits in RAM. These graphs are termed semi-external in [2]).

Our main contributions include the introduction of a very intuitive notion of
potential of a vertex set (edge set) with respect to a given quasi-clique (bi-clique),
the use of edge pruning and an external memory breadth first search (BFS)
traversal to decompose a disk resident input digraph into smaller subgraphs
to make the search feasible. We remark that the techniques described here are
being applied to very large daily telecommunications traffic graphs containing
hundreds of millions of vertices.

The paper is organized as follows. In Section] we consider several graph
decomposition schemes and pruning approaches used in our computations to re-
duce the search space. Section[3 and Section Bl present basic quasi-clique notions
and define the potential function that is central to our approach for discov-
ering maximal quasi-cliques. Section [contains a brief discussion of the main
ingredients necessary to design greedy randomized adaptive search procedures
(GRASP). Section [l uses the machinery presented in the preceeding sections to
describe a GRASP tailored for finding maximal quasi-cliques in both bipartite
and non-bipartite graphs. Section [7lcontains the description of our semi-external
approach to handle very large sparse multi-digraphs. Sample computational re-
sults and concluding remarks appear in Section 8 and Section [d.

600 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky
2 Graph Decomposition and Pruning

We introduce in this section two decomposition schemes that make the processing
of very large graphs feasible.

First, we identify sources, sinks and transmitter vertices in the input graph.
Namely, consider the underlying directed graph

D(M) ={(z,y) | (z,y) is an edge in M}
and the corresponding underlying undirected graph
UM) ={{z,y} | (x,y) is an edge in D(M) }.

It is worthwhile recalling here that for data gathered in certain telecommu-
nications applications (such as phone calls), internet data (such as URL links),
and geographical information systems, U(M) is a sparse graph with very low
diameter [1].

For a vertex u € M, let

out(u) = {z | (u,z) € D(M)} and in(u) = {y | (y,u) € D(M)}.

Furthermore, let outdeg(u) = |out(u)|, and indeg(u) = |in(u)|.

In a preprocessing phase, we use efficient external memory algorithms for
computing the undirected connected components of U(M) [2]. For each con-
nected component, consider the sub-digraph of D(M) induced by its vertex set
and classify its vertices as sources (indeg = 0), sinks (outdeg = 0) and transmit-
ters (indeg and outdeg > 0). We then partition the edge set of each connected
component by traversing the corresponding subgraph in a breadth first search
manner. The assumption that the vertex set fits in main memory together with
the fact that U(M) has low diameter allow us to perform the Breadth First
Search in few passes over the data. We store each connected component as a col-
lection of subgraphs according to the BFS order. Namely, the subgraphs induced
by vertices at the same undirected distance, from the root of the corresponding
BF'S tree, are stored contiguously. The edges between vertices at adjacent levels
are also stored contigously. Clearly, 1-cliques can appear only in these subgraphs.
We explot this fact to localize (and parallelize) the quasi-clique search by using
maximal 1-cliques as seeds.

A complementary but very effective processing scheme that also helps to
localize quasi-clique detection, consists in pruning those edges that do not con-
tribute to a better solution. These edges are called peelable. In the case of 1-
cliques, if a lower bound k on the cardinality of maximum clique is known, we
can delete all those edges incident with a vertex of degree less than k. This pro-
cess affects the degrees of other vertices, hence, further simplification is possible
by reapplying the same reduction scheme. To control the pruning we recursively
delete edges incident to vertices of degree i, from i = 1 to £ — 1, in that order,
updating the degree of both endpoints.

Massive Quasi-Clique Detection 601

When 7 is less than one, we use the notion of yk-peelable vertices. Namely, a
vertex v is yk-peelable if v and all its neighbors have degree smaller than vk. vk-
peelable vertices cannot be added to a quasi-clique of density v and cardinality
at least k to obtain a larger quasiclique with density greater than or equal to 7.
Because of this, if we know the existence of a quasi-clique of density + and of
cardinality at least k, then we can prune all those edges incident to vk peelable
vertices, in increasing degree order, updating every time the degrees of both
endpoints.

We want to remark here that designing a good and efficient peeling schedule
is by itself a problem that could be useful in the exploration of massive data
sets. Our experimental results indicate that the proposed approach works well
for sparse and low diameter graphs that are reducible to trees by a sequence
of dense subgraph contractions. In Section [§ we report results obtained by a
combination of these techniques when applied to multi-graphs extracted from
telecommunications data sets. From now on, we assume that we have an index
structure to the subgraphs induced by vertices on the same level of the BF'S
and to the subgraphs induced by the union of the vertices in two consecutive
BEFS levels.

3 Quasicliques

Quasicliques are subgraphs with specified edge density. Two optimization prob-
lems related to quasicliques arise naturally. In the first, we fix an edge density
and seek a quasiclique of maximum cardinality with at least the specified edge
density. In the other, we specify a fixed cardinality and seek a quasiclique of
maximum edge density. In this section, we describe general properties about
quasicliques in an undirected graph G = (V, E). We denote by S the set of ver-
tices of the subgraph G'g we wish to find, i.e. the subgraph induced by S on G.
Let v be a real parameter such that 0 < v < 1. Recall that a set of vertices
S C V(G) is a y-clique if Gg is connected and |E(Gg)| > 7('“;'). We also refer
to y-cliques as quasicliques. A vertex x € S is called a y-vertex, with respect to
a y-clique S, if Gsuys) is a y-clique. Similarly, a set of vertices R C S is called a
v-set with respect to S if SU R is a vy-clique. The set of y-vertices with respect
to S is denoted by N, (S). Notice that N, (S) is not necessarily a ~-clique.
One basic property of y-cliques is the following.

Lemma 1. Let S and R be disjoint y-cliques with
|E(Gs)
%)
2

S UR is a y-clique, if and only if

E
— g ana EGRI

(')

B =R - Gr-('y) 6= (5). @

602 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

The proof of this simple but fundamental lemma follows easily from the
definitions. It provides a general framework to find quasicliques. Namely, given
a y-clique S, find another y-clique R with SN R = 0, such that (@) holds. In
order to guarantee that the joint condition () is satisfied one can restrict R to
be a v-clique in N, (S). More generally, the objective is to find large y-sets with
respect to S. One approach to achieve this is to use the notion of set potential.
Define the potential of a set R to be

o) = 1) -5

and the potential of a set R with respect to a disjoint set S to be

¢s(R) = ¢(SUR).

Sets with nonnegative potential are precisely y-sets. We seek ~y-sets R with large
potential ¢g(R). Ideally, in a construction algorithm, one would prefer sets R
of maximum cardinality. Finding such sets is computationally intractable. Our
approach is to build a maximal -clique incrementally. In the next section, we
describe such an algorithm.

4 Finding Maximal Quasicliques

Assume S is a 7-clique. We seek a vertex x € N, (S) to be added to S. One
strategy for selecting x is to measure the effect of its selection on the potential
of the other vertices in AV (S). To accomplish this, define the potential difference
of a vertex y € N, (S) \ {z} to be

0s.2(y) = dsutay ({y}) — ds({y}).

It follows from the definitions that
0s,0(y) = deg(z)|g + deg(y)|,y — (S| +1).

The above equation shows that the potential of -neighbors of x does not de-
crease with the inclusion of z. On the other hand, the potential of the non-v-
neighbors of x may decrease when the potential of the y-neighbors of x increases
by less than a unit. If the increase in the potential of a y-neighbor is exactly one
unit, there is no change in the potential of the non-vy-neighbors. It also follows
that if x and y are adjacent ~v-vertices and z is added to S, then y remains a
~-vertex with respect to S U {z}.

The total effect on the potentials, caused by the selection of x, on the re-
maining vertices of N, () is

Ase= Y, dsu(y) = N ({z})] + [NV (S)] (deg(@)]g — (S| +1)) -
YEN, (S)\ (o}
()

Massive Quasi-Clique Detection 603

Note that ‘./\/l,({:z:})’ = deg(a:)‘N)" The vertex z that maximizes Ag , is one
with a high number of ~ neighbg)rs and with high degree with respect to S. A
greedy algorithm that recursively selects such a vertex will eventually terminate
with a maximal ~y-set.

A construction procedure builds a quasiclique, one vertex at a time. Ideally,
the cardinality of the set of y-neighbors of a given partial solution S should not
increase. This could occur in the case that a vertex with nonpositive potential
gains enough potential with the inclusion of a vertex to make it a ~y-vertex. To
insure that the set of 7-neighbors does not increase, we use a control variable
v* > ~ that corresponds to the density of the current partial solution. The
construction procedure, whose pseudo-code is shown in Figure [Il, incorporates
this idea. Its time complexity is O(|S| [V|?), where S is the set of vertices of the
constructed maximal quasiclique.

procedure construct_dsubg(L:v,V,E,0:5)
7 =1
Select x € V;
S ={=z};
while v* > v do
S =87
if (My+(S) # 0) then
Select z € N+ (9);
else
if (W(S)\ S = 0) return(S);
10 Select z € N(S)\ S;
11 end;
12 S* = SuU{z};
13y = |BS)/()):
14 end while;
15 return(S);
end construct_dsubg;

00 I O U W

©

Fig. 1. Pseudo-code of construction procedure for maximal dense subgraphs

Notice that by modifying the stopping criterion of the while loop (to |S| <
K), the procedure can be used to find a K cardinality quasiclique of large density.
Given a maximal v-clique S and an objective function f(.5), define

H(S;f)={XCS; YCS|f(S\X)UuY)> f(S)}

to be the set of subset exchanges that improve the objective function. A local im-
provement procedure that makes use of this neighborhood structure can further
improve the quasiclique. A restricted version of this local search with |X| =1
and |Y| = 2 called a (1,2) local exchange procedure, is used to potentially im-

604 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

prove the y-clique in the case that f(S) = |S|. When f(S) = |E(S)|/(|§|), we use
local search with | X| = |Y| = 1 to try to find a denser K cardinality quasiclique.

This local search, coupled with a greedy randomized version of the con-
struction procedure construct.-dsubg is described in Section [6l That type of
algorithm is called a greedy randomized adaptive search procedure (GRASP),
and we review the overall idea in the next section.

5 GRASP

A GRASP, or greedy randomized adaptive search procedure [7], is a multi-start
or iterative process, in which each GRASP iteration consists of two phases, a
construction phase, in which a feasible solution is produced, and a local search
phase, in which a local optimum in the neighborhood of the constructed solu-
tion is sought. The best overall solution is kept as the result. The pseudo-code
in Figure [illustrates a GRASP procedure for maximization in which maxitr
GRASP iterations are done. For a recent survey of GRASP, see [12].

procedure grasp(f(-),g(-),maxitr,z*)
1 ff=—o;

2 for k=1,2,... ,maxitr do

3 grasp-construct(g(-),x,z);
4 local(f(:),z);

5 if f(z)> f* do

6 ¥ =

7 fr=f@);

9 end if;

10 end for;

end grasp;

Fig.2. GRASP pseudo-code

In the construction phase, a feasible solution is iteratively constructed, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements (i.e. those that can
be added to the solution) in a restricted candidate list (RCL) C with respect to
a greedy function g : C' — R, and randomly choosing one of the candidates in
the list. Let a € [0,1] be a given real parameter. The pseudo code in Figure B
describes a basic GRASP construction phase. The pseudo-code shows that the
parameter « controls the amounts of greediness and randomness in the algo-
rithm. A value o = 1 corresponds to a purely greedy construction procedure,
while o = 0 produces a purely random construction.

A solution generated by a GRASP construction is not guaranteed to be lo-
cally optimal with respect to simple neighborhood definitions. It is almost always

Massive Quasi-Clique Detection 605

procedure grasp_construct(g(:),a,z)

1 z=0;

2 Initialize candidate set C}

3 while C # 0 do

s =min{g(t) | t € C};
s=max{g(t) |t € C}

RCL={s € C|g(s) > s+ a(5—s)};
Select s, at random, from the RCL;
r=xU{s}h

Update candidate set C

10 end while;

end grasp_construct;

© 0~ O O

Fig. 3. GRASP construction pseudo-code

beneficial to apply a local improvement procedure to each constructed solution.
A local search algorithm works in an iterative fashion by successively replacing
the current solution by a better solution in the neighborhood of the current so-
lution. It terminates when no better solution is found in the neighborhood. The
neighborhood structure N for a problem P relates a solution s of the problem to
a subset of solutions N(s). A solution s is said to be locally optimal if there is
no better solution in N(s). The pseudo-code in Figure [4] describes a basic local
search procedure.

procedure local(f(:),N(:),z)

1 H={yeN()|fly) > fl@)}

2 while |H| > 0 do

3 Select = € H;

4 H={yeN(@)|f(y) > flx)}
5 end while;

end local;

Fig.4. GRASP local search pseudo-code

6 GRASP for Finding Quasicliques

In this section, we describe a GRASP for finding ~-cliques. First, we describe
a procedure for the nonbipartite case. Then, we describe a procedure for the
bipartite case.

606 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

6.1 Nonbipartite Case

This GRASP uses a greedy randomized version of the construction procedure
construct_dsubg described in Section lland a (2, 1)-exchange local search.

First, we consider the problem of finding a high cardinality quasiclique of
specified density v. We need to specify how the selections are made in lines 2, 7,
and 10 of the procedure construct_dsubg. In line 2, the greedy function used is
the vertex degree g(z) = deg(x ’V In line 7, we use the total potential difference
g(x) = Ag , as given in equation (). In line 10, the greedy function is the vertex
degree with respect to the current solution S, i.e. g(x) = deg(z |S

For the problem of finding a high density quasiclique of specified cardinality
K, the only difference is that in line 7 the greedy function becomes the vertex

degree with respect to the current solution S, i.e. g(x) = deg(z |S

6.2 Bipartite Case

For a bipartite graph G = (V, E), where V(G) = LU R and LN R = (), the
procedure builds a quasiclique one edge at a time. A balanced bipartite quasi-
clique (v-biclique) is a subgraph Gg such that V(Gg) = S1US3 and S1NSy =
such that |S1| = |S2| and |E(S1,S2)| > v|L||R|. We seek a balanced bipartite
quasiclique with large cardinality.

In this case, we consider the following potential function that takes as argu-
ments the pair of disjoint sets of vertices L and R. The potential ¢((L, R)) =
|E(L, R)|—~|L||R|. The potential of a y-biclique is nonnegative. For a y-biclique
S with V(S) = LUR and LNR = 0, an edge (z,y) € E(N,(S)\S is a y-neighbor
of § if [B(S U {a,y})| = 2((IL| + 1)(|R| + 1)).

The notions of potential and potential difference of an edge, and the total
effect on the potentials of the remaining edges by the inclusion of an edge can
be extended to this case using the modified potential given above. Likewise, the
construction procedure construct_dsubg can be adapted to find large balanced
bipartite quasicliques. The edge selection greedy function is now

g(x,y) = deg(x)| . 5 deg(v)] . 5/ (deg()] . o)+ deg(®)] . ()

The complexity in this case becomes O(|Ma||V|?) where |Mal is the size of a
maximum matching in G.

7 A Semi External Memory Approach for Finding
Quasicliques

The procedure described in the previous sections requires access to the edges and
vertices of the input graph. This limits its use to graphs small enough to fit in
memory. We now propose a semi-external procedure [23] that works only with
vertex degrees and a subset of the edges in main memory, while most of the edges
can be kept in secondary disk storage. Besides enabling its use on smaller memory

Massive Quasi-Clique Detection 607

machines, the procedure we describe below also speeds up the computation. We
assume that very large graphs appearing in massive datasets are sparse. The
approach described next takes advantage of this situation in two respects. First,
the largest cardinality clique is bounded from above by approximately the square
root of the number of edges. Second, exploring the vertices of the graph in a
breadth first search manner will eventually get to a maximal y-clique.

In order to proceed, we first define a peel operation on a graph. Given a
parameter g, peel(G, q) recursively deletes from G all vertices having degree
less than q, along with their incident edges. This peeling operation is used in the
case of cliques, i.e. quasicliques with v = 1.

In the case of v cliques when ~ is strictly less than 1, we use a more con-
strained peeling operation localpeel.

localpeel(G,q) recursively deletes from G only those vertices with degree
less than g, all of whose neighbors have also degree less than g, along with their
incident edges.

We proceed now with the details for cliques and later on we discuss how to
extend them to general quasicliques.

First, we sample a subset € of edges of E such that | £ | < 7, where 7¢ is a
threshhold function of the graph G. The subgraph corresponding to £ is denoted
by G = (V, &), where V is the vertex set of G. The procedure grasp is applied to
G to produce a clique Q. Let the size of the clique found be ¢ = |@Q]. Since ¢ is
a lower bound on the largest clique in G, any vertex in G with degree less than
q cannot possibly be in a maximum clique and can be therefore discarded from
further consideration. This is done by applying peel to G with parameter q.
Procedures grasp and peel are reapplied until no further reduction is possible.
The aim is to delete irrelevant vertices and edges, allowing grasp to focus on
the subgraph of interest. Reducing the size of the graph allows the GRASP to
explore portions of the solution space at greater depth, since GRASP iterations
are faster on smaller graphs. If the reduction results in a subgraph smaller than
the specified threshhold, the GRASP can be made to explore the solution space
in more detail by increasing the number of iterations to maxitr;. This is what
usually occurs, in practice, when the graph is very sparse. However, it may be
possible that the repeated applications of grasp and peel do not reduce the
graph to the desired size. In this case, we partition the edges that remain into
sets that are smaller than the threshhold and apply grasp to each resulting
subgraph. The size of the largest clique found is used as parameter ¢ in a peel
operation and if a reduction is achieved the procedure clique is recursively
called. Figure [3] shows pseudo-code for this semi-external approach.

In procedure clique, edges of the graph are sampled. As discussed earlier,
we seek to find a clique in a connected component, examining one component at
a time. Within each component, we wish to maintain edges that share vertices
close together so that when they are sampled in clique those edges are likely to
be selected together. To do this, we perform a semi-external breadth first search
on the subgraph in the component and store the edges for sampling in the order
determined by the search.

608 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

procedure clique(V ,F maxitr,, maxitr;,7¢,Q)
1 Let G = (V, &) be a subgraph of G = (V, E) such that | £ | < 7g;

2 while G # G do

3 Gt =g;

4 grasp(V, £, maxitr,, Q);

5 q=1Q;

6 peel(V, F,q);

7 Let G = (V, &) be a subgraph of G = (V, E) such that | £ | < Tg;
8 if GT == G break;

9 end while;

10 Partition F into Ei,...,Eg such that | E; | < 7g, for j=1,... k;
11 for j=1,... ,k do

12 Let V; be the set of vertices in Ej;

13 grasp(V;, Ej,maxitr;, Q;);

14 end for;

15 Gt =g;

16 ¢=max {|Q1],|Q2],...,[Qxkl};

17 peel(V,E,q);

18 if GT # G then

19 clique(V,E maxitr,maxitr;, 7¢,Q);
20 end if;

end clique;

Fig. 5. Semi-external approach for maximum clique

A semi-external procedure similar to the one proposed for finding large cliques
can be derived for quasi-cliques. As before, the procedure samples edges from
the original graph such that the subgraph induced by the vertices of those edges
is of a specified size. The GRASP for quasi-cliques is applied to the subgraph
producing a quasi-clique Q of size k and density . In the original subgraph,
edges adjacent to at least one yk-peelable vertex are removed in increasing degree
order as justified in Section 2. To prevent the peeling process from bypassing a
large portion of the search space, we generate disjoint maximal v-cliques, using
the construct-dsubg procedure of Figure 1. In this case, we set the peeling
parameter

q= min{ql’yla q272y -« 5 qiYiy .- - aq*7}7

where ¢; and ~y; denote the cardinalities of the obtained maximal quasi-cliques
and their densities, respectively, and ¢* is the minimum cardinality of the max-
imal quasi-cliques under consideration. Therefore, lines 16 and 17 of Figure 5,
are modified to adapt the clique semi-external approach to general quasi-cliques.
Namely, the peeling parameter ¢ is chosen more conservatively (as indicated
above) and the procedure peel is substituted by the procedure localpeel. Re-
call that in this case a vertex is peeled only if its degree and that of all its
neighbors is smaller than ¢. It is important to point out that we use different

Massive Quasi-Clique Detection 609

threads on the different subgraphs obtained by the external memory BFS. In
general, different quasi-cliques are obtained by starting the construction from
different vertices in an independent manner. It is with regard to maximality
within the local vicinity of the current solution that peeling becomes very ef-
fective. Global peeling as proposed above, i.e. with respect to the current set
of obtained quasi-cliques, becomes a necessity, specially when we are dealing
with graphs with hundreds of millions of vertices. The main idea is to use the
obtained quasicliques as a guide to the exploration of the remaining portions of
the graph. In the case of 1-cliques, information among the threads is used to peel
off vertices that do not satisfy the lower bound degree. In this case, the peeling
can be done in a more aggressive manner specially if the aim is to maximize
cardinality.

8 Experiments with a Large Graph

In this section, we report typical results obtained with telecommunications data
sets. The experiments were done on a Silicon Graphics Challenge computer
(20 MIPS 196MHz R10000 processors with 6.144 Gbytes of main memory). A
substantial amount of disk space was also used. Our current data comes from
telecommunications traffic. The corresponding multi-graph has 53,767,087 ver-
tices and over 170 million edges. We found 3,667,448 undirected connected com-
ponents out of which only 302,468 were of size greater than 3 (there were 255 self-
loops, 2,766,206 pairs and 598,519 triplets). A giant component with 44,989,297
vertices was detected. The giant component has 13,799,430 Directed Depth First
Search Trees (DFSTs) and one of them is a giant DFST (it has 10,355,749 ver-
tices and 19,072,448 edges). Most of the DFSTs have no more than 5 vertices.
The interesting trees have sizes between 5 and 100. Their corresponding induced
subgraphs are most of the time very sparse (|E| < |V log|V|), except for some
occasional dense subgraphs (|[E| > V| 1/[V]) with 11 to 32 vertices. By counting
the edges in the trees, one observes that there are very few edges that go between
trees and consequently it is more likely that cliques are within the subgraphs
induced by the nodes of a tree. To begin our experimentation, we considered
10% of the edges in the large component from which we recursively removed
all vertices of degree one by applying peel(V, E,1). This resulted in a graph
with 2,438,911 vertices and 5,856,224 edges, which fits in memory. In this graph
we searched for large cliques. The GRASP was repeated 1000 times, with each
iteration producing a locally optimal clique. Because of the independent nature
of the GRASP iterations and since our computer is configured with 20 proces-
sors, we created 10 threads, each independently running GRASP starting from
a different random number generator seed. It is interesting to observe that the
cliques found, even though distinct, share a large number of vertices. Next, we
considered 25% of the edges in the large component from which we recursively
removed all vertices of degree 10 or less. The resulting graph had 291,944 vertices
and 2,184,751 edges. 12,188 iterations of GRASP produced cliques of size 26.

610 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

1000

freq 100

10

Fig. 6. Frequency of clique sizes found on entire dataset

30—

25 -

20 -

10 -

10 15 20
clique size

T LI IR T
PRSI S, I

AHRRRLE- L - T e Y

FACE ¥ 5 B
LA 1 RN
e

PR N
LS 3 1 A -
RAERDS S L Ml e
L AL Loet A

Sl w . :

KTy -]

6w -
[
il
b

il

5%
LEET Rt A 4
PRI

FRA¥RI -

.BERaY . ¥

-HRERY

5

1] |
L]]

L

[[[[[
5 10 15 20 25
constructed solution

Fig. 7. Local search improvement

25

30

30

Massive Quasi-Clique Detection 611

Having found cliques of size 26 in a quarter of the graph, we next intensified
our search on the entire giant connected component. In this component, we re-
cursively removed all vertices of degree 20 or less. The resulting graph has 27,019
vertices and 757,876 edges. Figure [6] shows the frequencies of cliques of different
sizes found by the algorithm. Figure [7] shows the statistics of the improvement
attained by local search. Over 20,000 GRASP iterations were carried out on the
27,019 vertex — 757,876 edge graph. Cliques of 30 vertices were found. These
cliques are very likely to be close to optimal. The local search can be seen to
improve the constructed solution not only for large constructed cliques, but also
for small cliques. In fact, in 26 iterations, constructed cliques of size 3 were im-
proved by the local search to size 30. To increase our confidence that the cliques
of size 30 were maximum, we applied peel(V, E,30), resulting in a graph with
8724 vertices and about 320 thousand edges. We ran 100,000 GRASP iterations
on the graph taking 10 parallel processors about one and a half days to fin-
ish. The largest clique found had 30 vertices. Of the 100,000 cliques generated,
14,141 were distinct, although many of them share one or more vertices. Finally,
to compute quasi-cliques on this test data, we looked for large quasi-cliques with
density parameters v = .9,.8,.7, and .5. Quasi-cliques of sizes 44, 57, 65, and 98,
respectively, were found.

9 Concluding Remarks

We introduced a very intuitive notion of potential of a vertex set with respect
to a given quasi-clique. This potential is used to devise a local search procedure
that finds either a larger quasi-clique with the same density or a denser quasi-
clique with the same cardinality. Iterating this procedure eventually produces
maximal quasi-cliques. In a similar vein, a potential function of a set of edges
with respect to the set of edges in a given bi-clique was used to find balanced
and maximally dense subgraphs of a given bipartite graph.

In order to make these procedures applicable to very large but sparse multi-
digraphs, we used a specialized graph edge pruning and an external memory
breadth first search traversal to decompose the input graph into a smaller col-
lection of subgraphs on which the detection of quasi-cliques becomes possible.

We presented a sample of our experimental results when the algorithms were
applied to very large graphs collected in the telecommunications industry. Our
main intention was to show the feasibility of massive multi-digraph processing.
In fact, our platform is currently being used to experimentally process phone
data. We expect to be able to report, in the full journal version, our quasi-clique
analysis of the largest AT&T telephone traffic day in history which occurred
on September 11, 2001. Given the similarities exhibited by telephone traffic and
internet data (i.e. skew distribution, sparsity and low diameter) we are currently
applying the techniques described here to internet routing data.

There are many natural questions being raised by the processing of massive
multi-digraphs. One is how to devise a greedy randomized adaptive search pro-
cedure when the input is a semi-external but weighted multi-digraph. Similarly,

612 James Abello, Mauricio G.C. Resende, and Sandra Sudarsky

it is tantalizing to study the case when the input graph is fully external, i.e. not
even the vertex set fits in RAM.

10 Acknowledgements

We thank the members of the Network Services Research Center at AT&T Labs
Research for maintaining a reservoir of challenging research problems. We also
acknowledge the suggestions made by three anonymous referees that helped to
improve the paper presentation.

References

1. J. Abello, P. Pardalos and M. Resende, editors. Handbook of Massive Data Sets,
Kluwer Academic Publishers, 2002.

2. J. Abello, A. Bushbaum, and J. Westbrook. A functional approach to external
memory algorithms. In European Symposium on Algorithms, volume 1461 of Lec-
ture Notes in Computer Science, pages 332-343. Springer-Verlag, 1998.

3. J. Abello and J. Vitter, editors. Ezternal Memory Algorithms, volume 50 of DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science. Amer-
ican Mathematical Society, 1999.

4. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
hardness of approximation problems. Proc. 33rd IEEE Symp. on Foundations of
Computer Science, pages 14-23, 1992.

5. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of
NP. J. of the ACM, volume 45, pages 70-122, 1998.

6. U. Feige, S. Goldwasser, L. Lovész, S. Safra, and M. Szegedy. Approximating the
maximum clique is almost NP-complete. In Proc. 32nd IEEE Symp. on Founda-
tions of Computer Science, pages 2-12, 1991.

7. T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, volume 8, pages 67-71,
1989.

8. F. Glover. Tabu search. Part I. ORSA J. Comput., volume 1, pages 190-206, 1989.

9. J. Hastad, Clique is hard to approximate within n'~¢. Acta Mathematica, volume
182, pages 105-142, 1999.

10. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

11. S. Kirkpatrick, C. D. Gellat Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, volume 220, 671-680, 1983.

12. L.S. Pitsoulis and M.G.C. Resende. Greedy randomized adaptive search proce-
dures. In P. M. Pardalos and M. G. C. Resende, editors, Handbook of Applied
Optimization. Oxford University Press, pages 168—-182, 2002.

	Introduction
	Graph Decomposition and Pruning
	Quasicliques
	Finding Maximal Quasicliques
	GRASP
	GRASP for Finding Quasicliques
	Nonbipartite Case
	Bipartite Case

	A Semi External Memory Approach for Finding Quasicliques
	Experiments with a Large Graph
	Concluding Remarks
	Acknowledgements

