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ABSTRACT

We perform an extensive numerical study of the evolution of massive binary systems to predict the peculiar velocities that stars obtain
when their companion collapses and disrupts the system. Our aim is to (i) identify which predictions are robust against model uncer-
tainties and assess their implications, (ii) investigate which physical processes leave a clear imprint and may therefore be constrained
observationally, and (iii) provide a suite of publicly available model predictions to allow for the use of kinematic constraints from the
Gaia mission. We find that 22+26

−8 % of all massive binary systems merge prior to the first core-collapse in the system. Of the remainder,
86+11
−9 % become unbound because of the core-collapse. Remarkably, this rarely produces runaway stars (observationally defined as

stars with velocities above 30 km s−1). These are outnumbered by more than an order of magnitude by slower unbound companions,
or “walkaway stars”. This is a robust outcome of our simulations and is due to the reversal of the mass ratio prior to the explosion
and widening of the orbit, as we show analytically and numerically. For stars more massive than 15 M⊙, we estimate that 10+5

−8% are
walkaways and only 0.5+1.0

−0.4% are runaways, nearly all of which have accreted mass from their companion. Our findings are consistent
with earlier studies; however, the low runaway fraction we find is in tension with observed fractions of about 10%. Thus, astrometric
data on presently single massive stars can potentially constrain the physics of massive binary evolution. Finally, we show that the
high end of the mass distributions of runaway stars is very sensitive to the assumed black hole natal kicks, and we propose this as a
potentially stringent test for the explosion mechanism. We also discuss companions remaining bound that can evolve into X-ray and
gravitational wave sources.
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1. Introduction

Stars with initial mass larger than about 7.5 M⊙ are the progen-
itors of black holes (BH) and neutron stars (NS). These stars
play an important role in shaping galaxies through their radia-
tive, chemical, and mechanical feedback (e.g., Larson 1974;
Ceverino & Klypin 2009). Most young, unevolved massive stars
have a nearby companion with which they form a close binary
system (e.g., Sana et al. 2012; Chini et al. 2012; Kobulnicky
et al. 2014; Almeida et al. 2017). Binary systems that remain
bound throughout the entire evolution of both stars can give rise
to many exotic phenomena, including X-ray binaries (e.g., Gott
1971; Bolton 1972; Webster & Murdin 1972; van den Heuvel
& Heise 1972), binary neutron stars (e.g., Hulse & Taylor 1975;

⋆ Outcome of the numerical simulations are only available at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/

A66 and at https://sandbox.zenodo.org/record/262858#

.XJoMiEMo9hH

Wijers et al. 1992), gamma-ray bursts (e.g., Izzard et al. 2004a;
Becerra et al. 2016; Abbott et al. 2017a), and gravitational wave
events (Abbott et al. 2016, 2017b). However, only a small frac-
tion of massive stars born in binary systems are expected to stay
together their entire lives. The majority of systems are disrupted
by the first core collapse event, which can separate the newly
formed compact object from its former companion star (e.g.,
Tauris & Takens 1998; Belczyński & Bulik 1999; Belczynski
et al. 2008; Eldridge et al. 2011).

Single NSs can be detected as pulsars or magnetars. Many
of them are observed to have large proper motions (e.g., Gunn
& Ostriker 1970; Lyne & Lorimer 1994; Hobbs et al. 2005,
but see also Verbunt & Cator 2017). Conversely, single BHs
are only detectable under special circumstances, for example
through lensing events when passing in front of a background
star (e.g., Wyrzykowski et al. 2016), or if they accrete gas from
the ambient medium (e.g., Fender et al. 2013; Gaggero et al.
2017). Therefore, to probe the population of stellar-mass black
holes we are limited to X-ray or gravitational wave observations
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that can only target the rare cases that remain bound to their com-
panion and are close enough for the BH to accrete or merge. To
learn more about the black holes that form in less special cases,
it is worth investigating the imprints they may leave on their for-
mer companion star.

The primary focus of this study is the population of unbound
main sequence companions, which can be identified observa-
tionally because of their peculiar spatial velocities compared
to the surrounding population. Their velocities can either be
detected as proper motions (i.e., their motion in the plane of
the sky measured directly from the displacement of the star)
or as radial velocities (i.e., their motion perpendicular to the
plane of the sky, measured from the Doppler shift of the spectral
lines). Large spatial velocities have been inferred for a signifi-
cant sub-population of young massive stars (e.g., Blaauw 1961;
Cruz-González et al. 1974; Gies & Bolton 1986; Gies 1987;
Hoogerwerf et al. 2000, 2001; Tetzlaff et al. 2011; Boubert &
Evans 2018).

Blaauw (1961) introduced the term “runaway stars” for
those in the fast tail of the velocity distribution for a given
spectral type. The typical threshold adopted to define the tail
of this distribution for O and B-type stars is v & 30 km s−1

(e.g., Blaauw 1956; Gies & Bolton 1986; De Donder et al. 1997;
Hoogerwerf et al. 2000, 2001; Dray et al. 2005; Eldridge et al.
2011), although sometimes other values have been considered
(e.g., 40 km s−1 in Blaauw 1961; de Wit et al. 2005; Boubert &
Evans 2018). However, as we will argue based on simulations
presented in this work, the majority of unbound companions
are expected to exhibit velocities well below these thresholds.
We will refer to these slow unbound former companions result-
ing from disrupted binary systems as “walkaway stars” (to our
knowledge first coined by de Mink et al. 2012) to distinguish
them from the faster counterparts.

A proposed explanation for the large spatial velocity of
runaways is that they originate from disrupted binary systems
(Zwicky 1957; Blaauw 1961; Boersma 1961), which naturally
explains the lower number of companions they have, compared
to typical massive stars (e.g., Blaauw 1961; Gies & Bolton 1986;
Sana et al. 2014). Figure 1 sketches the typical evolution of a
massive binary system. Most binaries are disrupted at the time
of the first core-collapse.

An alternative mechanism to produce stars with peculiar spa-
tial velocities is dynamical ejection from a star cluster (e.g.,
Poveda et al. 1967; Leonard 1991). Dynamical interactions with
a supermassive BH can also disrupt a binary, but the ejection
velocities achieved in this scenario are typically much higher
(&103 km s−1, Hills 1988).

Both mechanisms, i.e.,the “binary disruption scenario” and
the “dynamical ejection scenario”, are expected to act in
nature, but their relative importance is not not well constrained
(e.g., Hoogerwerf et al. 2000, 2001; Guseinov et al. 2005).
Hoogerwerf et al. (2001) analyzed the properties of a sample of
56 nearby runaway stars and 9 radio pulsars, and traced back the
runaways to their most likely parent stellar group. From the sub-
sample for which a clear identification of the parent group was
possible, they estimated that the disruption of binaries is respon-
sible for roughly two thirds of observed runaways (see also Gies
& Bolton 1986; Gies 1987; Stone 1991; Hoogerwerf et al. 2000;
Dinçel et al. 2015; Boubert et al. 2017a). However, this claim
could not be confirmed in the re-analysis of the same sample by
Jilinski et al. (2010), who found that most of the runaways in the
sample were bound spectroscopic binaries.

Unbound stars resulting from the disruption of a binary are
of potential interest for several topical questions in astrophysics.
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Fig. 1. Schematic depiction of the evolution of a close massive binary
through stable mass transfer. The evolution forks at the first core-collapse
event in the system: the vast majority of the systems are disrupted and
each produces a runaway or walkaway star which can travel far from its
birth location. The systems remaining bound are possible progenitors of
X-ray binaries and gravitational wave sources. The fraction of binaries
disruptedD comes from the simulations presented in this study.

Their kinematics and stellar properties bear imprints of the
uncertain physical processes that govern the evolution of their
binary progenitor systems, including the expected phase of mass
transfer between the two stars (phase B. in Fig. 1). Detailed
knowledge of the spatial velocity of runaway stars can improve
the accuracy of wind mass-loss rate determinations relying on
their bow shocks (e.g., Gull & Sofia 1979; Kobulnicky et al.
2018). Of particular interest is the question of whether they can
provide any unique constraints on the physics of core-collapse,
in particular the natal kick on the compact objects that they
produce. Such kicks are expected either from asymmetries
in the explosion and/or the neutrino emission (Shklovskii 1970;
Wongwathanarat et al. 2013; Janka 2013, 2017), and they deter-
mine which systems disrupt and eject the companion star and
which systems remain bound and thus have a potential as future
X-ray and gravitational wave sources.

These unbound stars have also been considered for
their potential importance as non-canonical sources of stellar
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feedback (e.g., Larson 1974; Ceverino & Klypin 2009). They
can travel long distances and end their lives tens to hundreds of
parsecs away from their birth location. Because of their motion,
their ionizing photons are less likely to be absorbed by their birth
clouds. Therefore, in the context of the re-ionization of the early
universe, the ionizing radiation of stars ejected from a binary
are more likely to escape and become available for ionization of
hydrogen in the interGalactic medium (e.g., Conroy & Kratter
2012; Kimm & Cen 2014; Ma et al. 2016). Furthermore they are
expected to explode in lower density regions, which may change
the impact they have as sources of turbulence in the ISM (e.g.,
Gatto et al. 2015).

The present and upcoming Gaia data releases provide
an important observational motivation for this study (e.g.,
Perryman et al. 2001). The determination of distances, proper
motions and radial velocities by the Gaia satellite is expected to
drastically increase the available sample of massive stars with
precisely known velocities (Gaia Collaboration 2016a,b).

In this study, we present a systematic theoretical study of the
kinematical signatures of stars ejected from massive binary sys-
tems and how these depend on the uncertain physical processes
governing binary stellar evolution. For this purpose we employ a
rapid binary population synthesis code, which we have updated
to account for the main relevant processes that affect the disrup-
tion of the binary systems (see Sect. 2).

We first provide insight in our simulations by presenting the
results for an individual system in Sect. 3. We present in Sect. 4
an analytic estimate of the typical velocity of ejected compan-
ions expected from the disruption of binaries. Then, in Sect. 5
we describe the results of a fiducial simulation of a full popula-
tion of binary stars, for which we adopt realistic input assump-
tions provided by detailed simulations and/or observations when
available. In addition, we present in Sect. 6 an extensive grid of
models where we vary the most relevant uncertain assumptions.
This allows us to study (i) which predictions are robust against
the model uncertainties and (ii) which uncertain physical pro-
cesses leave a clear imprint on the observables that can be used
to test and constrain them.

Various earlier studies have discussed the evolution and
interaction of populations of massive binary systems. Exa-
mples include, but are not limited to, Vanbeveren (1982), De
Donder et al. (1997), Fryer & Kalogera (1997, 2001), Fryer et al.
(2012), Belczynski et al. (2012), Repetto et al. (2012), Fragos
et al. (2013), Grudzinska et al. (2015), Boubert & Evans (2018).
Most of these studies focus on the minor fraction of systems
that remain bound and are the progenitors of X-ray binaries
and/or gravitational wave sources. A few studies focus specifi-
cally on disrupted systems and unbound stars. Examples are van
Rensbergen et al. (1996), De Donder et al. (1997), Dray et al.
(2005), Eldridge et al. (2011), Bray & Eldridge (2016), Boubert
et al. (2017a), Zapartas et al. (2017a), Boubert & Evans (2018).
We expand on these studies by using updated physical assump-
tions, and by focusing on which physical processes could be
constrained using the Galactic population of unbound stars.
A comparison to previously published results is given in
Appendix A.

Our first main result is that the majority of disrupted bina-
ries eject a slow-moving walkaway star (v < 30 km s−1), rather
than a faster runaway. This result is robust against variations of
uncertain parameters in the model, as we discuss in Sect. 6. This
would imply that the more easily detected runaway stars only
reveal a small subset of the population of unbound stars that are
former companions of disrupted binary systems. We discuss the
implications in Sect. 8.

Our second main result is that the kinematic properties and
absolute number of unbound companions depend sensitively on
assumptions concerning the natal kicks of BHs. We show the
imprints this leaves on the mass distribution and discuss whether
future observations can be used to constrain these processes.

Section 7 briefly describes the population of systems remain-
ing bound after the first core-collapse.

We also find that the fraction of runaways among mas-
sive stars predicted by our simulations is much lower than the
observed value in all our parameter variations. This finding
agrees with the results of Eldridge et al. (2011), but is in poten-
tial contrast with the observational results of Hoogerwerf et al.
(2001), and needs further investigation.

Finally, we discuss how our results could be used to include
the effect of unbound binaries in models for stellar feedback. We
provide our numerical results online1 and at the CDS.

2. Binary population synthesis calculations

We carry out population synthesis calculations of isolated bina-
ries with the rapid binary evolution code binary_c (Izzard et al.
2004b, 2006, 2009, 2018; de Mink et al. 2013; Schneider et al.
2015). This code is based on the algorithms by Tout et al. (1997),
Hurley et al. (2000, 2002), which rely on the analytic fits to the
single stellar evolution models from Pols et al. (1998).

First, we compute a fiducial population using observation-
ally favored assumptions for the free parameters that describe
the initial conditions and physical assumptions. Then, we check
the robustness of our results (or equivalently, to which assump-
tions they are most sensitive) by varying the free parameters
that are most relevant for the velocity distribution of disrupted
binaries. To limit computational costs, we explore variations
in each parameter one-by-one while keeping the other param-
eters fixed to our fiducial choices, following the approach of
Fragos et al. (2013), de Mink et al. (2013, 2014), Zapartas et al.
(2017a,b), Belczynski et al. (2017). Effectively, binary_c treats
each parameter as independent from the others, therefore this
approach does not account for possible correlations between
either initial distributions (e.g., the one between initial period
and mass ratio suggested by Moe & Di Stefano 2017) or uncer-
tain physical processes (e.g., core spin and natal kick amplitude).
Varying two (or more) parameters simultaneously, or chang-
ing the algorithmic representation of the uncertain physical pro-
cesses, might possibly result in larger variations than those we
present in Sect. 6.

2.1. Initial distributions and parameters

Each binary system in our calculations is characterized by a zero
age main sequence (ZAMS) mass for the primary2 MZAMS

1 , ini-

tial mass ratio q
def
= M2/M1, and initial orbital period PZAMS.

binary_c builds a grid in this parameter space and weighs each
system according to the initial distributions described below. We
present our results in terms of probability per binary system. This
can be converted in a probability per unit stellar mass by divid-
ing it by the mean mass of a binary system in the population
(0.42 M⊙ for our fiducial assumptions, assuming there are no
binaries for MZAMS

1 ≤ 2 M⊙, see below).

1 https://sandbox.zenodo.org/record/262858#.

XJoMiEMo9hH
2 Throughout this study, we define the primary star to be the initially
more massive star, even if it becomes the less massive star in the binary
during the evolution.
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We select NM1 primary stars with ZAMS mass MZAMS
1 at log-

arithmically spaced intervals in the range 7.5 M⊙ ≤ MZAMS
1 ≤

100 M⊙. We weigh each primary star with an initial mass func-
tion (IMF) with slope α = −2.3 (Kroupa 2001). In our model
variations, we explore values of α of −1.9 (Schneider et al. 2018)
and −3.

For each primary star of mass MZAMS
1 , we select Nq secon-

daries with mass MZAMS
2 = qMZAMS

1 , taken at regular intervals
in mass ratio q between 0.1 and 1 assuming a flat distribution
(slope κ = 0, e.g., Kouwenhoven et al. 2005). We consider in
Sect. 6 also variations with κ = ±1.

Finally, for each pair of masses (MZAMS
1 ,MZAMS

2 ) we choose
Np different periods PZAMS equally spaced in log10(PZAMS/days)
between 0.15 and 5.5. We weigh the birth probability of each
binary system with a mass-dependent distribution for the ini-
tial orbital period: if M1 < 15 M⊙ we assume a flat distribution
in log10(PZAMS/days) (Öpik 1924; Kobulnicky & Fryer 2007);
while for M1 ≥ 15 M⊙ we assume a powerlaw distribution in
log10(PZAMS/days) with exponent π = −0.55 (Sana et al. 2012).
We explore values of π = 0 and π = −1 (for all values of MZAMS

1 )
in our model variations. We chose our upper-limit on the initial
period, 105.5 days, to include wide systems in which the stars
effectively evolve as single stars (de Mink & Belczynski 2015).

To limit the dimensions of the parameter space, we assume
all orbits to be initially circular (i.e., eccentricity e = 0). Because
we focus on the population of stars resulting from the disrup-
tion of post-interaction binaries this assumption is not critical
(de Mink & Belczynski 2015): orbits are expected to circular-
ize because of tides before or during mass transfer (Belczyński
& Bulik 1999; Hurley et al. 2002, but see also Eldridge 2009
for arguments against circularization of the orbit in post-main
sequence mass transfer).

In our fiducial model, we assume a canonical metallicity
(i.e., mass fraction of elements heavier than helium) Z = 0.02.
This value is slightly above the most recent determination for
solar neighborhood Asplund et al. (2009), but it should gener-
ally describe young population of massive stars in the Milky-Way.
The models from Pols et al. (1998), which serve as input for our
computations, adopt the isotopic mixture of Anders & Grevesse
(1989). In Sect. 6, we also consider Z = 0.0002, 0.0047, 0.008,
and 0.03.

We initialize the stellar rotation rate with a mass-dependent
equatorial velocity according to Hurley et al. (2000), assum-
ing alignment between the stellar spins and the orbital angular
momentum. In one of our parameter variations, we draw the initial
spin velocity randomly from the distribution given by Ramírez-
Agudelo et al. 2015 (R-A15, see last line in Table 1), but main-
tain the assumption of alignment. However, changing the initial
rotation rate has almost no impact on our results because binary
interaction processes overwrite it (de Mink et al. 2013).

We build a grid in the initial parameter space, and initialize a
binary system in each cell of such grid. Each system is assigned
a probability which can then be multiplied by the amount of
time spent by the system in that cell to obtain a quantity com-
parable to observed number counts. See Appendix B for more
details.

For each set of parameters, the total size of our model grid
is NM1 × Nq × Np = 50 × 50 × 100 = 250 000 binary systems3.
Increasing this resolution to NM1 × Nq × Np = 100 × 100 × 200
introduced no significant variation in our results.

3 This number is then multiplied by the number of natal kicks that we
draw for each core-collapse, see Sect. 2.3.

2.2. Physical assumptions

We follow the evolution of each binary system until the first core-
collapse (CC) event or until they merge. Stellar winds can have
a dramatic effect on the evolution of single stars (e.g., Renzo
et al. (2017)) and impact significantly the orbital evolution in
a binary. We include wind mass loss in our single star models
as implemented by de Mink et al. (2013), i.e. we use a combi-
nation of mass loss rates from Vink et al. (2000, 2001) for hot
hydrogen-rich stars, Nieuwenhuijzen & de Jager (1990) for cool
stars, including a luminous blue variable (LBV) enhancement as
in Hurley et al. (2000), and from Hamann & Koesterke (1998)
reduced by a factor of 10 for Wolf-Rayet stars. We also include
the wind mass loss enhancement for fast rotating stars following
Maeder & Meynet (2000).

We include the effects of tides on the spins and orbital angu-
lar momentum using the algorithm from Hurley et al. (2002)
based on the calculations of Zahn (1977) and Hut (1981).

When the radius of one star exceeds the Roche radius, (calcu-
lated using Eggleton 1983 fitting formula) we use the algorithm
of Claeys et al. (2014) to determine the mass transfer rate (see
their Eq. (10)).

In our fiducial simulation, we assume a variable mass trans-
fer efficiency. We limit the accretion rate of the accretor to 10
times its Kelvin-Helmholtz timescale, i.e., we assume a mass-
transfer efficiency βRLOF = βth. Larger rates are likely to drive
the accretor out of thermal equilibrium4 and lead to unstable
mass transfer (Neo et al. 1977; Hurley et al. 2002). For a large
portion of the parameter space, βth results in a rather conserva-
tive mass transfer (Schneider et al. 2015). Since the efficiency of
mass transfer is a major uncertainty in binary evolution (de Mink
et al. 2007), we also consider parameter variations with β =
0, 0.5, and 1, respectively, which bracket the range of physical
possibilities.

Matter that is not accreted is assumed to leave the system
with the specific angular momentum of the orbit of the accre-
tor (e.g., Soberman et al. 1997; van den Heuvel et al. 2017),
h = γRLOFJorb/(Mdon + Macc), with γRLOF = Mdon/Macc,
where Jorb is the orbital angular momentum, Mdon and Macc the
donor and accretor masses, respectively. In our model variations,
we also explore a scenario where the mass that is not accreted
leaves the binary from the outer Lagrangian point L2 and is
assumed to form a circumbinary disk (i.e., γRLOF =

√
2(Mdon +

Macc)2/(MaccMdon) ≡ γdisk, Artymowicz & Lubow 1994). We fur-
ther consider the assumptions that the mass that is not accreted
leaves the system with the orbital specific angular momen-
tum, i.e. γ = 1, which is the standard model of Belczynski et al.
(2008), Dominik et al. (2012, 2013).

If, by the time the first star fills its Roche lobe, the mass ratio
of the accretor to the donor is smaller than a certain threshold
(Macc/Mdon < qcrit), we assume that the system enters a com-
mon envelope phase. The threshold value qcrit is uncertain and
depends on the evolutionary stage of the donor. In our fidu-
cial simulation qcrit,A = 0.65 for a main sequence (MS) donor
(de Mink et al. 2007), qcrit,B = 0.4 for a Hertzsprung gap donor
(Hurley et al. 2002), and qcrit,RSG = 0.25 for core-helium burning
and red supergiant donors (Claeys et al. 2014). We also consider
values of qcrit,A = 0.25, 0.8, qcrit,B = 1, 0.5, 0, and qcrit,RSG = 1.0
in our model variations.

We treat common envelope evolution using the αCEλ-
formalism (Webbink 1984; Livio & Soker 1988; de Kool 1990;

4 We do not model the internal structure of the stars, therefore, we
do not follow its possible bloating during mass transfer, which could
potentially enhance its mass loss and related spin down.
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Hurley et al. 2002). In all variations, we use an analytic fit to
the λg values of Dewi & Tauris (2000) for the binding energy
parameter λ. Those values do not include the energy stored in
thermal motions and the ionization state of the material within
the envelope. It is unknown what fraction of that internal energy
is useful in unbinding the envelope (see, e.g., Dewi & Tauris
2000; Ivanova et al. 2013, and references therein). We assume
αCE = 1 for our fiducial simulation, i.e., perfectly efficient use
of the liberated gravitational potential energy from the orbit but
without additional energy sources. We explore variations with
αCE = 0.1, i.e., inefficient use of the orbital energy to eject the
common envelope, and αCE = 10, intended as indicative of a
fairly extreme case of additional energy input. We also test the
combination of αCE = 0.1 and 10 with qcrit,RSG = 1.0, to test
the influence of the efficient use of energy in common envelope
ejection in cases when a common envelope is more likely. For
binaries that interact while neither star has a well-defined core-
envelope structure, such as MS stars and helium-MS stars, we
assume that the common envelope phase leads to a merger as
described in de Mink et al. (2013), Schneider et al. (2015).

2.3. Natal kick

When a CC event happens in a binary system three different
physical ingredients contribute to the possible disruption of the
system and the ejection of the companion star.

i) The orbit is modified by the sudden change in gravitational
potential, because of the mass lost through ejecta (the so-called
“Blaauw kick”, Zwicky 1957; Blaauw 1961; Boersma 1961).
However, this is not the dominant effect, because the typical
evolution of a massive close binary system involves mass trans-
fer through Roche lobe overflow (RLOF) before the first CC
(cf. Fig. 1). RLOF removes the envelope of the initially more
massive star, limiting the amount of mass that can be ejected
by the SN. The Blaauw kick alone rarely unbinds the system
(Huang 1963; Tutukov & Yungelson 1973; Leonard et al. 1994).

ii) The SN shock can interact with the companion star. (e.g.,
Wheeler et al. 1975; Liu et al. 2015; Rimoldi et al. 2016; Hirai
et al. 2018). The shock can dynamically remove mass from the
companion (stripping), heat the envelope of the secondary, thus
enhancing its own mass loss (ablation), and deposit mass and
momentum on the secondary. The injection of energy can inflate
the companion and make it look redder for a duration compa-
rable to its thermal timescale. Our treatment of accretion only
changes the mass of the companion, without checking for struc-
tural readjustments of the star. However, the interaction between
the ejecta and the secondary is typically a small effect (e.g., Liu
et al. 2015).

iii) The natal kick of the compact object changes its kinetic
energy and momentum. This kick is caused by asymmetries in
the SN ejecta and/or neutrino flux at the explosion, possibly
seeded by the late core and shell burning phases of stellar evo-
lution (see e.g., Wongwathanarat et al. 2013; Holland-Ashford
et al. 2017; Grefenstette et al. 2017; Katsuda et al. 2018). It is
typically parametrized using a kick velocity uk, drawn from a
distribution of amplitude vk ≡ |uk| and directions (see below).
The natal kick is the dominant reason for the disruption of
binaries.

We have updated the treatment of binary disruptions by a
CC event in binary_c, following Tauris & Takens (1998; here-
after TT98). To re-calculate the post-CC orbital parameters, their
algorithm assumes instantaneous loss of the ejecta, because the
ejecta velocity vej is much larger than the orbital velocity vorb

(vorb . 102 km s−1≪ vej ∼ 104 km s−1). This algorithm considers

the motion of the compact object within the pre-CC orbit, and
the interaction between the ejecta and the companion star. We
set the relative change of mass of the secondary due to stripping,
ablation, and accretion of SN ejecta following a fit to the three-
dimensional hydrodynamical simulations of Liu et al. (2015) for
the impact of the ejecta on a M2 = 3.5 M⊙ star, which is the
most massive companion they considered. We also assume an
efficiency of momentum transfer5 from the ejecta to the com-
panion star of 0.5 (TT98). The contribution of the interactions
between the SN ejecta and the secondary star to the total natal
kick is typically small, .10 km s−1 (TT98; Liu et al. 2015; Hirai
et al. 2018).

In our fiducial run, the kick direction is assumed to be
isotropically distributed in the frame of the collapsing star
(Wongwathanarat et al. 2013; Bear & Soker 2017), although
Johnston et al. (2005) and Kaplan et al. (2008) suggest that
there is weak evidence for kick-spin alignment in well observed
pulsars such as the Crab or Vela. Johnston et al. (2005) also
underlined that the direction of the pulsar spin does not nec-
essarily match the direction of the pre-CC spin of the stel-
lar core, if significant torques develop during the CC (e.g.,
Kazeroni et al. 2016). In our model variations, we also consider
kicks constrained in a cone with an opening angle of α = 10◦

oriented along the spin of the exploding star (which we assume
to be perpendicular to the orbital plane), and kicks constrained
at angles from the orbital plane 90 − α ≤ 45◦. The kick ampli-
tude |uk| ≡ vk is drawn from a Maxwellian distribution with one-
dimensional root mean squared dispersion σkick = 265 km s−1

(Hobbs et al. 2005). Such distribution is motivated by the obser-
vation of the proper motions of pulsars in Hobbs et al. (2005)
(see also Lyne & Lorimer 1994). We also compute populations
with σkick = 0, 300, 1000 km s−1 in our model variations.

The value of vk drawn is then reduced to consider the amount
of matter that falls back after the successful launch of the SN
shock, i.e. vk → vk(1 − fb), were fb is the fallback fraction
taken from6 Eq. (16) in Fryer et al. (2012), corresponding to
their “rapid SN engine” which reproduces the NS-BH mass
gap between ∼2−5 M⊙ (e.g., Farr et al. 2011, however see also
Wyrzykowski et al. 2016 regarding the existence of this mass
gap). The inclusion of fallback also determines the mass of the
compact remnant obtained after each CC event, and we set the
mass boundary between NSs and BHs to 2.5 M⊙.

The fallback fraction is highly uncertain in BH forma-
tion. The algorithm we use here assumes a large amount of
fallback, implying close to zero BH kick amplitudes, some-
times referred to as a “BH momentum kick” (Belczynski et al.
2008; Stevenson et al. 2017). Whether this is realistic is sub-
ject of debate in the literature. Evidence for non-zero BH
natal kicks comes from the observed Galactic latitude of BH
X-ray binaries (e.g., Fragos et al. 2009; Repetto et al. 2012,
2017; Repetto & Nelemans 2015, although see also Mandel
2016), the possibility of retrograde BH spin (e.g., Morningstar
et al. 2014), eccentric orbits in these systems (e.g., Remillard
& McClintock 2006), the small number of Wolf-Rayet star-BH
binaries (e.g., Dray et al. 2005) and the gravitational wave con-
straints on BH spins (e.g., O’Shaughnessy et al. 2017; Wysocki
et al. 2018). Recently, multi-dimensional calculations of fallback
in CC resulting in the formation of a BH found that large natal
kicks might be possible (Chan et al. 2018). Therefore, we also
consider a model without the rescaling of the kick amplitude, but

5 η = 0.5 in the algorithm from TT98.
6 We correct for a missing parenthesis in their equations, which can be
found by dimensional analysis (Belczynski et al. 2017).
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still including fallback for the remnant mass calculation. This
variation is effectively equivalent to a so-called “velocity kick”
for the BHs. To test an intermediate BH kick, we run a simu-
lation using σkick = 100 km s−1 and no fallback down scaling of
the kick amplitude for the CC resulting in BH formation, and our
fiducial kick (σkick = 265 km s−1, including fallback scaling) for
CC resulting in NS formation.

Another debated issue is whether the CC of low-mass iron
(or oxygen-neon-magnesium) cores produces small natal kicks,
possibly resulting in a bi-modal kick distribution (Katz 1975;
Arzoumanian et al. 2002; Pfahl et al. 2002; Podsiadlowski et al.
2004; Knigge et al. 2011; Beniamini & Piran 2016; Tauris et al.
2017; Verbunt & Cator 2017; Verbunt et al. 2017). To explore
the possibility of low kicks for low mass collapsing cores, we
run one model variation reducing the natal kick for NSs less
massive than 1.35 M⊙ (Schwab et al. 2010; Knigge et al. 2011)
drawing the natal kicks for these NSs from a Maxwellian with
σkick = 30 km s−1 creating a double peaked distribution. For
more massive NSs and BHs the kick is drawn from a Maxwellian
with σkick = 265 km s−1.

In all our simulations, we draw Nkick = 20 intrinsic natal
kick directions and amplitudes for each CC in our population,
effectively increasing the size of our sample by this factor. Con-
vergence tests showed no significant variations of our results
increasing Nkick to 50.

2.4. Caveats

In addition to the limitations discussed earlier in this section
there are a few more caveats that should be kept in mind when
comparing our simulations with observations (aside from the
possible effects of biases).

We only consider runaways and walkaways resulting from
the disruption of binary systems at the first stellar collapse.
Observational samples of runaway stars also include another
sub-population, coming from cluster ejection (e.g., Poveda et al.
1967; Leonard 1991) Similarly, walkaway stars produced by
the disruption of binaries will add to slow-moving stars gen-
erated by the dissolution of clusters which did not go through
binary interactions, see e.g. Allison (2012). In Sect. 8, we con-
sider how spectroscopic measurements may allow to disen-
tangle binary products from the outcome of purely dynamical
processes.

All the calculations presented here implicitly assume a con-
stant star formation history (SFH) for a duration longer than
the longest stellar lifetime of interest. However, a recent change
in the SFH of a region will affect the ratio of runaways and
walkaway stars over the number of normal stars. For example,
a recent increase in the SFH leads to an increase of systems
that did not yet have time to interact. For a binary to be dis-
rupted, a CC event is needed, and it can only happen after the
lifetime of the primary star is over. This introduces a delay cor-
responding to at least the lifetime of the most massive stars
(∼3 Myr, Zapartas et al. 2017b), between a SFH event and the
first binary disruption. A recent increase in the SFH can there-
fore decrease the fraction of runaway and walkaway stars in a
population.

Finally we warn about the possible effects of stochasticity
(Justham & Schawinski 2012; Eldridge 2012). We have aimed to
simulate sufficient binary systems such that our results are con-
verged, but it should be kept in mind that the fastest runaways
come from relatively rare channels. In a relatively low mass stel-
lar population one will not fully sample these rare events and
stochastic effects can be large.

3. Example of the evolution of a binary system

We first describe the typical evolution of a binary system that
produces an unbound companion as a result of the disruption
of the system by the first CC event. The aim is to provide the
reader with some insight in to our simulations. As a represen-
tative example, we consider a MZAMS

1 = 20 M⊙ primary star,
a MZAMS

2 = 15 M⊙ secondary with PZAMS = 100 days (corre-
sponding to a separation aZAMS ≃ 300 R⊙). Figure 2 shows the
evolution of the masses, orbital period, and orbital velocity of the
secondary (and ejection velocity, after the CC of the primary) as
a function of time. The labels on the top axis correspond to the
phases depicted in the cartoon shown in Fig. 1.

3.1. Binary evolution until first CC

Our example system remains detached during the MS evolution
of the primary (phase A. in Fig. 2). Because of wind mass loss,
the period increases by about 7%.

After ∼8.8 Myr, the primary leaves the MS, and starts
expanding on a thermal timescale as it burns hydrogen in a shell.
Shortly after, at the vertical dashed line B. in Fig. 2, the pri-
mary fills its Roche lobe initiating case B RLOF (Kippenhahn &
Weigert 1967). For a system which has initial mass ratio close
to one (qZAMS = 0.75 in this example), RLOF is almost conser-
vative in our calculations, i.e. nearly all the mass lost by the pri-
mary is accreted by the companion (cf. Schneider et al. 2015).
The secondary star accretes ∆M2 ≃ 14 M⊙, and becomes the
more massive star, now with a mass of about 28 M⊙ (red line in
the top panel of Fig. 2). It is also spun up to near to breakup
rotation (Packet 1981; de Mink et al. 2009), and it is rejuvenated
because of the increased mass and consequent growth of its con-
vective core (Hellings 1983; Schneider et al. 2016). The primary
becomes a ∼5.3 M⊙ helium star (Götberg et al. 2017, 2018), and
the orbits widens during mass transfer, reaching a period longer
than 600 days (phase C. in Fig. 2).

After about 10 Myr, the primary reaches CC (dot-dashed ver-
tical line D. in Fig. 2). Just before the core-collapse of the pri-
mary, the orbit is circular with a period of about 700 days. The
secondary has a mass of about 28 M⊙ and a pre-SN orbital veloc-
ity of about v2 = (M1/(M1 + M2))vorb ≃ 12.5 km s−1.

If the system is disrupted at the first CC event, the final spa-
tial velocity of the secondary is nearly equal to its pre-explosion
orbital velocity (e.g., Blaauw 1961; Eldridge et al. 2011). For
comparison, similar initial masses but a shorter initial period of
PZAMS = 7 days would experience a very similar evolutionary
path, but it would only widen to a pre-CC period of ∼45 days,
resulting in a pre-CC orbital velocity of the secondary slightly
larger than 30 km s−1.

Because of the rejuvenating effect of mass accretion, the sec-
ondary remains on the MS for another ∼3.6 Myr after the CC of
the primary.

3.2. Effects of the natal kick on the post-CC orbit

In our example system, the CC of the primary results in
a stripped-envelope SN of type7 IIb/Ib/Ic (Filippenko 1997),
which forms a NS of about MNS = 1.6 M⊙, with a fallback frac-
tion fb = 0.13. The SN ejecta mass is ∆MSN = M

pre−CC
1 −MNS ≃

3.7 M⊙, where M
pre−CC
1 is the primary mass just before the CC,

and MNS is the mass of the resulting NS. Because the ejecta

7 We do not attempt to distinguish between stripped SN types (IIb, Ib
or Ic depending on the presence or lack of He lines in the spectrum).
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Fig. 2. Evolution of an example binary system with MZAMS
1 = 20 M⊙, MZAMS

2 = 15 M⊙ with PZAMS = 100 days, described in Sect. 3 (see also the
cartoon in Fig. 1). Top panel: primary, secondary, and total mass. Bottom panel: orbital velocity of the secondary (left y-axis) and period of the
binary (right y-axis). The labels indicate the following phases: A. the MS of the primary, B. case B RLOF, emphasized by the vertical dashed line,
C. the binary is made of a He star (possibly looking like a Wolf-Rayet star) and a rejuvenated MS secondary; D. (and the vertical dot-dashed line)
marks the explosion of the primary in a SNIb/Ic which unbinds the NS and its companion. During the phase E1. the secondary is a slow moving
walkaway star, traveling for a duration of about half the main sequence lifetime of the primary.

mass is less than half of the total pre-CC mass of the system,
M

pre−CC
1 + M

pre−CC
2 ≃ 33 M⊙, the loss of the SN ejecta alone is

insufficient to unbind the system (Blaauw 1961). Whether the
system is disrupted depends on the amplitude and direction of
the natal kick imparted to the newly formed NS.

We distinguish three cases: (i) a large kick with vk ≫ vorb
results in disruption of the binary regardless of the direction, (ii)
an intermediate kick vk ≃ vorb disrupts the system only if the
kick orientation is favorable, while (iii) a small kick, vk ≪ vorb,
never unbinds the binary, although it can still modify its orbit
(e.g., Brandt & Podsiadlowski 1995; Kalogera 1996, TT98).

To illustrate each case, we consider here three different fixed
natal kick amplitudes vk ≃ 870, 230, and 43 km s−1 (respectively
corresponding to 1000, 265, and 50 km s−1 before the rescal-
ing of the kick amplitude with the fallback fraction). For com-
parison, the pre-CC orbital velocity in our example system is
v

pre−CC
orb ≃ 100 km s−1 (corresponding to vpre−CC

2 ≃ 12.5 km s−1).
For each kick amplitude vk, we draw 10 000 different directions,
isotropically distributed in the frame of the exploding star (e.g.,
Wongwathanarat et al. 2013).

For large natal kicks, our example system is disrupted in
99.9% of all the directions drawn. In the remaining 0.1%, the
compact object is shot into the envelope of the secondary (see
Sect. 7 for a brief discussion). In the case of disruption, the
ejected star acquires a velocity vdis ≃ vpre−SN

2 = 12.5 km s−1. With
vdis < 30 km s−1, it is below the threshold to be observationally
classified as runaway, and thus it is an example of what we refer
to as a walkaway star.

In the case of intermediate kick amplitudes (here we use
230 km s−1), the angle θ between the kick direction and the
pre-CC orbital velocity of the primary, given by cos θ = uk ·
u

pre−SN
1 /(vk v

pre−SN
1 ), determines whether the kick disrupts the

system. Kicks that are roughly aligned with the pre-CC orbital

velocity, i.e. 0 . θ . π/4, successfully disrupt the binary.
Conversely, kicks that are roughly oriented opposite to the pre-
CC orbital velocity of the exploding star just tend to slow the
orbital motion: the system will remain bound on an eccentric
orbit. In our example, we find that about 84% of the kick direc-
tions result in disruptions and produce a walkaway star with
vdis ≃ vpre−SN

2 .
With small kick amplitudes (here vk . 50 km s−1), our exam-

ple system is never disrupted. The post-SN eccentricity, sepa-
ration, and systemic velocity of the binary vary with the kick
direction (e.g., Brandt & Podsiadlowski 1995; Kalogera 1996;
Tauris & Takens 1998). We discuss the population of binaries
surviving the first CC (and hosting a compact object) in Sect. 7.

In wide pre-CC systems, small kicks have a larger relative
impact on the velocity of the unbound secondary. The reason is
that in wide pre-CC orbits, smaller kicks result in a longer time
for the compact object to exit the orbit and exert a gravitational
pull on the other star. Conversely, for short pre-SN period sys-
tems (unlike the example considered here) the effects of large
kicks are more important. This is because the time for the com-
pact object to exit the pre-CC orbit is short, but larger kicks are
more likely to result in the disruption of the system than small
kicks.

4. Analytic estimates

The key quantity to define runaway and walkaway stars is their
velocity. As the example described above demonstrates, the
final velocity obtained at the binary disruption is of the order
of its final (pre-CC) orbital velocity vdis ≃ vpre−CC

2 (Blaauw
1961; Eldridge et al. 2011). Therefore, using a few simplify-
ing assumptions, we can estimate the ejection velocity for sys-
tems that have experienced stable mass transfer, and express it
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Fig. 3. Analytic estimates of the final-to-ZAMS ratio of the specific orbital angular momentum h (left panel), the orbital separation a (center panel),
and orbital velocity of the secondary v2 (right panel), assuming qZAMS = 0.75 and µenv = 0.75, which are representative for the example system of
Sect. 3. Blue colors correspond to a decrease, red to an increase. The mass transfer efficiency βRLOF and the angular momentum parameter γRLOF

are assumed constant throughout the evolution.

in terms of the initial parameters of the binary. In particular, we
will express the final orbital velocity as a function of the ini-
tial orbital velocity in the binary, and use it as a proxy for the
ejection velocity. This gives insight on the possible outcomes of
the binary evolution since we can estimate the typical velocity at
ZAMS from observational constraints on the binary populations,
(e.g., Sana et al. 2012).

Using Kepler’s third law, we can write the orbital velocity v2
of the secondary star in the frame of the center of mass at any
time during the binary evolution as

v2 =
M1

M1 + M2
vorb ≡

M1

M1 + M2

√

G(M1 + M2)
a

, (1)

where G is the gravitational constant, a is the semimajor axis
of the orbit (assumed to be circular), and M1, M2 are the two
masses.

If we assume that a constant fraction βRLOF = |Ṁacc|/|Ṁdon|
of the mass transferred is accreted by the secondary star, and that
the mass not accreted leaves the binary system with a constant
fraction γRLOF of the total specific orbital angular momentum,
we can relate the final and initial separations with

apre−CC

aZAMS
=















MZAMS
1

M
pre−CC
1

MZAMS
2

M
pre−CC
2















2 













M
pre−CC
1 + M

pre−CC
2

MZAMS
1 + MZAMS

2















2γRLOF+1

. (2)

The parameter βRLOF enters implicitly in the values of the
final pre-CC masses (see Eq. (3)). Equation (2) neglects for sim-
plicity all other processes that can remove mass from the binary,
such as stellar winds (see Soberman et al. 1997, for a more elab-
orate expression).

The most common type of binary interaction is case B RLOF
(Kippenhahn & Weigert 1967). During stable case B RLOF, the
donor star typically loses nearly all its hydrogen-rich envelope
(Götberg et al. 2017, 2018; Yoon et al. 2017). We parametrize the
fraction of the total mass in the envelope as µenv = Menv/M, or
in other words 1−µenv is the fraction of mass in the helium core.
The parameter µenv is dependent on the overshooting assumed
in the underlying stellar evolution models. The single massive
star models from Pols et al. (1998) give values in the range
0.6 . µenv . 0.8 with the larger values corresponding to less
massive (and thus more common) stars. More recent models

(e.g., Brott et al. 2011) typically adopt larger values for the over-
shooting parameter, resulting in smaller values of µenv. Using this
parametrization, we can relate the final masses of the two star in
the binary to their ZAMS masses as

M
pre−CC
1 ≃ MZAMS

1 − µenvMZAMS
1 ,

M
pre−CC
2 ≃ MZAMS

2 + βRLOFµenvMZAMS
1 . (3)

We can now express the final orbital velocity of the sec-
ondary vpre−CC

2 in terms of the initial vZAMS
2 . Introducing q ≡

qZAMS = MZAMS
2 /MZAMS

1 , β ≡ βRLOF, µ ≡ µenv, and γ ≡ γRLOF to
simplify the notation, we can write

v
pre−CC
2

vZAMS
2

=

(

q + βµ − µq − βµ2

q

)2 (

1 + q

q + 1 + βµ − µ

)γ+1

· (4)

In Fig. 3 we visualize the outcome of these analytic estimates
for different assumptions for the mass transfer efficiency β ≡
βRLOF and the angular momentum loss parameter γ ≡ γRLOF. To
make this figure, we adopt the parameters of the example system
of Sect. 3 (q = 0.75, µenv = 0.75).

The left panel of Fig. 3 shows the relative variation in the

specific orbital angular momentum h
def
= Jorb/(M1 + M2) =

M1M2

√
Ga/(M1 +M2)3/2. For fully conservative evolution (β =

1, white region on the right of this panel), h stays constant. Also
assuming γ = 1 (e.g., Dominik et al. 2012) keeps the specific
angular momentum constant, since this corresponds to losing
mass and angular momentum at the same relative rate. Con-
versely, low values γ . 1 result in a net increase of the specific
orbital angular momentum because mass is lost relatively faster
than angular momentum, while very large γ & 1.5 values result
in a loss of specific angular momentum.

The central panel of Fig. 3 shows how the evolution affects
the ratio of the final-to-initial separation (cf. Eq. (2)). The vast
majority of the parameter space results in significant orbital
widening (red colors), with only rather extreme angular momen-
tum losses (γ & 2) in non-conservative (β . 0.6) systems result
in orbital shrinking.

The right panel in Fig. 3 shows the main parameter of inter-
est, the ratio of the final-to-initial orbital velocity of the initially
less massive star in the system (cf. Eq. (4)). Most assumptions
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Fig. 4. Overview of the binary evolution scenarios up to the first CC event. The branching ratios shown are from our fiducial simulation, and we
highlight in red the disruption fraction D. The errors on each fraction exclude the run without SN kicks (σkick = 0 km s−1), which produces an
unrealistically low disruption fraction (cf. Table 1 and Sect. 6).

for β and γ result in a decrease in the orbital velocity of the sec-
ondary (blue colors). This is the combined effect of (i) the orbital
widening, and (ii) the increase mass of the secondary because of
mass transfer. Only for very non-conservative systems (β . 0.3)
experiencing large angular momentum losses (γ & 4, corre-
sponding to non-accreted mass removing four times the specific
orbital angular momentum of the binary) the final velocity of the
secondary is higher than its initial value.

In our numerical simulations we adopt physically motivated
model for the efficiency of mass transfer instead of constant
parameters, β and γ, as we assumed in these analytical consider-
ations. As we will argue later, most of the massive unbound com-
panions result from nearly conservative mass transfer. Therefore,
it is instructive to consider the analytical solution for β = 1. The
expression for the final orbital velocity of the secondary (Eq. (4))
simplifies to

v
pre−CC
2

vZAMS
2

=

(

(1 − µ)(q + µ)
q

)2

=

(

3 + 4q

16q

)2

, (5)

where we use as a typical value µ = 3/4 = 0.75 in the last
step. Equation (5) gives a final-to-initial orbital velocity ratio
for the secondary always smaller than one for initial mass ratios
q > 0.25. In other words, for all systems with initial mass ratios
of interest evolving through stable and nearly conservative mass
transfer, the secondary always slows down substantially, by up
to a factor of 5 for an initially equal mass system. We emphasize
that we have ignored the additional effect of mass loss by stellar
winds.

These cause the orbit to widen further and lead to a further
slow down of the secondary star.

Using the typical values of our example system discussed in
Sect. 3 (q = 0.75), we find vpre−CC

2 ≃ 0.25 vZAMS
2 ≃ 20 km s−1.

Our numerical model for this system gives an even lower value,
primarily because of the additional effect of widening as a
result of mass loss through stellar winds. As a sanity check we
recomputed the evolution of the example system, but artificially
switching off the stellar wind mass loss for both stars. This gives
v

pre−CC
2 ≃ 22 km s−1, in good agreement with the analitycal esti-

mate. The remaining difference is due to the fact that the mass
transfer is not fully conservative.

For the analytic estimates presented in this section, we only
considered the case of stable mass transfer. Binary evolution
through unstable mass transfer takes place for a limited range
of the initial distributions (e.g., Soberman et al. 1997; Schneider
et al. 2015). It is expected to result in a common-envelope phase,
followed by substantial shrinking of the orbit either leading to a
merger or the formation of a compact binary system if the enve-
lope is ejected successfully. While this is a very interesting path-
way to create very fast runaway stars, the numerical simulations
presented later indicate that this channel produces primarily low
mass runaway stars. This is because it typically concerns system
with extreme initial mass ratios in which the secondary does not
significantly gains mass. This means that the secondaries in these
systems are typically not very massive and therefore this chan-
nel does not significantly contribute to the production of massive
early type runaways, at least in our simulations. We return to this
in Sect. 8.

5. Ejected companions

In this section, we present the results obtained from our numeri-
cal simulations for a full population computed with our fiducial
assumptions (cf. Sect. 2). We describe the robustness of our find-
ings against model assumptions in Sect. 6. Our main goal is to
characterize the velocity acquired by the companion stars ejected
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Fig. 5. Velocity distribution of MS stars ejected from a binary system at the time of the first CC. Top panel: corresponding cumulative distributions.
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MS stars more massive than 7.5 M⊙ (i.e., roughly those that might experience CC), and only MS stars more massive than 15 M⊙ (i.e., roughly
the O-type stars), respectively. The mass considered here is taken right after the CC of the primary star. The dashed lines show the distribution
of walkaways and runaways that have gone through RLOF (or common envelope evolution) before being ejected. Almost all massive runaways
and walkaways, and the majority of the ejected stars at large velocities, have gone through RLOF. The inset plot magnifies the runaway regime
vdis ≥ 30 km s−1. See also Fig. C.2 for a wider velocity range, Fig. C.1 for a figure accounting for the remaining lifetime as walkaway or runaway
star, and Fig. 12 for an example of how the velocity dispersion of a star forming region affects these distributions.

at the time of the first CC in the binary. Therefore, we ignore all
binaries that merge, which constitute ∼22% of our fiducial pop-
ulation (cf. Fig. 4), in good agreement with Sana et al. (2012), de
Mink et al. (2014), Zapartas et al. (2017a,b); see also Kochanek
et al. (2014).

Once the merging systems are excluded, the first CC hap-
pens in the presence of a companion. The CC can result in either
the disruption of the binary (D = 86% in our fiducial run), or
the newly formed compact object remains bound to the compan-
ion star. In Sect. 5.1 we focus on the population of ejected MS
companions, which are 75% of all the ejected companions in our
fiducial run. We consider companions that have already evolved
off the MS at the time of the first CC in Sect. 5.3.

For completeness, we describe the systems with a MS com-
panion remaining bound in Sect. 7.

5.1. Ejected main sequence companions

The fraction of CC events occurring with a MS companion in our
fiducial run is ∼76% (and it ranges from 69−90% in our param-
eter variations). The vast majority of these binaries which host a
MS companion are disrupted at the time of the first CC. Figure 5
shows the distribution of velocities of the ejected companions.
The three different colors subdivide the population based on the
mass of the ejected companion. The gray histogram shows all
ejected MS companions. The blue histogram shows only mas-

sive MS companions, M
post−CC
2 ≥ 7.5 M⊙, where M

post−CC
2 is the

mass of the secondary just after the collapse of the primary. This
group roughly corresponds to all secondaries that will experi-
ence CC at the end of their lifetime. The red histogram shows
the velocity distribution of companions with mass larger than
M

post−CC
2 ≥ 15 M⊙, corresponding roughly to O-type stars. In

the rest of this section, we quote the ratios for the population of
massive stars (i.e. M

post−CC
2 ≥ 7.5 M⊙) unless otherwise stated,

see also Table 1 for more information.
Although we do produce runaways, the majority of the sys-

tems eject a star slower than 30 km s−1, i.e., a walkaway star. We
find that the CC of a star with a MS binary companion is about
twenty times more likely to produce a walkaway than a runaway.
In the first line of Table 1, we list the ratio R of walkaway to run-
away stars produced per CC event in a binary. From our fiducial
simulation, we obtain R7.5 ≃ 20 for massive companions. As
shown in Table 1, considering progressively larger masses, the
number of walkaways produced per each runaway from a binary
increases. In Sect. 8.3, we address the impact of the velocity dis-
persion within a star forming region on this result.

Runaways resulting from the disruption of binaries rarely
exceed 60 km s−1: about 99.8% of the massive unbound com-
panions we simulate are slower than this threshold. We note that
higher velocity are not strictly forbidden, but extremely unlikely
(cf. Fig. C.2 which shows the velocity distribution on a logarith-
mic scale). Low mass runaways can reach much tighter pre-CC
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orbits through common envelope evolution (without significant
accretion), and thus reach higher ejection velocities, but typi-
cally not in excess of 400 km s−1. Massive stars significantly
faster than this are likely produced by different mechanisms (see
Boubert et al. 2017a; Brown 2015 for a review). However, in
extremely rare cases where a very short pre-CC binary is formed
and also successfully disrupted, much higher velocities can be
achieved. The absolute maximum velocity we obtain is about
1110 km s−1, in good agreement with Tauris (2015).

The slowest stars come from the widest pre-CC binaries: the
low-velocity drop-off of the distribution in Fig. 5 is thus an effect
of the upper-limit on our period distribution (corresponding to an
upper-limit on the pre-CC period).

The velocity distribution peaks at vdis ≃ 6 km s−1.
Ejected MS companions with such velocity typically origi-
nate from systems with qZAMS & 0.5 and long initial peri-
ods (log10(PZAMS/days) ≃ 3), regardless of the stellar masses.
These systems experience late case B or case C mass transfer
(Lauterborn 1970), but owing to the sufficiently high mass ratio,
the mass transfer remains conservative and the system widens.

Among low and intermediate mass walkaways with vdis ≃
6 km s−1, there is also a contribution from wide systems which
do not experience mass transfer. This contribution is almost neg-
ligible for ejected stars more massive than 15 M⊙. This can
be seen from the dashed distributions in Fig. 5, which show
that the majority of massive runaways and walkaways have
accreted mass from their companion before its CC. Over the
entire velocity range shown (i.e., considering both runaways
and walkaways), 71% of ejected MS secondaries more mas-
sive than 7.5 M⊙, and 91% of those more massive than 15 M⊙
have accreted from their companion in the previous evolution.
Among low mass ejected companions, 50% have experienced
either RLOF or common envelope evolution before their ejec-
tion from the binary. From the inset in Fig. 5, where the blue
and red dashed lines representing post-interaction systems over-
lap with the full distribution, it is clear that all massive runaways
from binary disruption have experienced mass transfer.

The majority of the ejected massive MS companions are
not usual single stars, and this remains true for a very large
fraction of the low mass MS ejected companions. Before the
binary disruption, they have accreted mass from their compan-
ion. Mass transfer also causes the convective core of the accre-
tor to grow, resulting in rejuvenation of the accreting star (e.g.,
Hellings 1983; Schneider et al. 2016). The fact that most ejected
MS stars are accretors is the result of a combination of assump-
tions. For disruption to be possible, the primary needs to be mas-
sive enough to collapse. We assume a flat mass ratio distribution,
implying that on average MZAMS

2 ≃ 0.5 MZAMS
1 , and we also

assume that mass transfer is unstable and leads to mergers if the
mass ratio is too extreme (Macc/Mdon < qcrit), therefore binaries
that can eject a star have initial mass ratios closer to one than an
average system. Finally, when stable mass transfer occurs, our
fiducial assumption for the accretion efficiency results in rather
conservative mass transfer over most of the period range consid-
ered (Schneider et al. 2015).

To make an estimate of the ratio of walkaways per runaway
existing at a given time requires us to consider the finite MS life-
time of the ejected stars. Assuming that the star formation rate in
the Galaxy is constant and therefore that the Galactic population
is in a steady state, the ratio of walkaways per runaway is ∼13
for masses larger 7.5 M⊙.

Accounting for the durations of each evolutionary phase, we
can also quantify the fraction of MS stars more massive than
15 M⊙ that are runaway or walkaway stars. In our fiducial simu-
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Fig. 6. Distribution of the maximum distance L that ejected MS sec-
ondaries can reach, neglecting any gravitational potential. The blue
and red histograms are for ejected stars more massive than 7.5 M⊙ and
15 M⊙, respectively. The vertical dashed lines mark the mean values of
the distributions.

lation, we find a runaway fraction for masses larger than 15 M⊙
of about ∼0.5% and a walkaway fraction of ∼10%. We only sim-
ulate binaries with primaries more massive than 7.5 M⊙, there-
fore we do not have in our population intermediate-mass binaries
which could contribute through mass transfer and/or mergers to
the normalization factor for the runaway and walkaway fraction
at lower masses (Zapartas et al. 2017b). We show in Fig. C.1 the
distribution in velocity accounting for the lifetime of the stars in
each bin. This can be directly compared to observations assum-
ing that the effects of the Galactic potential can be neglected.

Figure 6 shows the distribution of distances traveled by mas-
sive, unbound stars, calculated by multiplying their velocity vdis
by their remaining lifetime on the MS, which includes rejuve-
nation if the star has accreted mass, plus 10% of the MS dura-
tion of a star with the same helium core mass, to account for
the duration of the helium core burning phase in the rejuvenated
star8. This approach neglects the effect of an external poten-
tial on the trajectory of the stars (see Boubert et al. 2017b;
Boubert & Evans 2018, for how this could be done), so it is effec-
tively an upper limit to the distance they can travel. Considering
both runaway and walkaway stars with masses Mdis ≥ 7.5 M⊙,
we find the mean distance 〈L〉 they travel before experiencing CC
to be 126 pc, see the blue vertical dashed line in Fig. 6 and also
Table 1. This number rises to 〈Lrun〉 = 584 pc considering only
runaways (faster than 30 km s−1) more massive than 7.5 M⊙, but
it remains 〈Lwalk〉 = 103 pc considering massive walkaways only
(slower than 30 km s−1). For comparison, the typical size of OB-
associations is on the order of tens of pc, while the Galactic thin
and thick disks have a vertical scale height of∼300 and∼1500 pc,
respectively (e.g., Gilmore & Reid 1983).

8 The duration of the helium core burning depends on the helium core
mass, and thus the overshooting parameter. The value of 10% of the MS
duration is typical for overshooting values larger than what assumed in
Pols et al. (1998).
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Fig. 7. Equatorial velocity at the time of ejection for massive (Mdis ≥ 7.5 M⊙) companions as a function of the ejection velocity. Brighter colors
indicate location of the parameter space more populated by our fiducial simulation. All the massive runaway stars spin with an equatorial velocity
of ∼500 km s−1, close to breakup rotation, since they have accreted mass from their companion before being ejected. The spread is due to wind
spin down before the binary disruption. We do not include the effect of projecting on the line of sight, or post-ejection wind spin down in this plot.
The vertical dot-dashed line marks the threshold to define runaway stars.

5.2. Spin of the main sequence ejected companions

Figure 7 shows the equatorial rotational velocity veq
dis for the

ejected MS companions with Mdis ≥ 7.5 M⊙. The top panels
show the normalized one-dimensional distribution of ejection
velocity for the whole sample (the same as the blue distribu-
tion in Fig. 5), and for the runaways only, respectively. The side
panels show the normalized equatorial rotational velocity distri-
bution for the whole sample, and for the runaways only, respec-
tively. We do not include in Fig. 7 any projection effects due to
the inclination of the stellar spin axis with respect to the line
of sight, nor the wind spin down due to the evolution after the
binary disruption. The combination of these two effects would
systematically decrease the rotational velocities, allowing any
physically possible projected equatorial rotational velocity to be
observable.

The main feature at the top of the central panel (also visible
in the rightmost panel) indicates that almost all the massive run-
aways are spinning nearly at breakup rotation at the time of the
ejection, because of the relatively recent spin-up during the mass
transfer phase(s).

The walkaways (vdis < 30 km s−1) instead can have a broader
range of rotational velocities: this is because a subset of them
comes from wide, non-interacting binaries. The right panel
including both the walkaway and runaway population shows two
peaks for veq

dis ≃ 200 and 500 km s−1. The former is due to the
combination of the accretion-induced spin up and the wind spin
down before the ejection, which can be more efficient for walk-
aways experiencing early mass transfer and with longer delay
between the mass transfer and the disruption of the binary. The
former peak is not related to tidal locking, which is efficient only

for tight orbits that would result in much larger ejection veloc-
ities vdis. The latter is populated by secondaries ejected after
a mass transfer phase (analogous to the peak in the equatorial
velocity distribution for the runaways).

5.3. Ejected post-main sequence companions

Figure 8 shows the velocity distribution of companion stars
which have evolved off the MS by the time of the first CC in the
binary. All together, these correspond roughly to 25% of the pop-
ulation of disrupted binaries (cf. Fig. 4). Other kind of systems
and evolutionary channels not considered here can also produce
post-MS ejected companions (e.g., Justham et al. 2009; Zapartas
et al. 2017b). We distinguish three sub-populations: hydrogen-
rich non-degenerate secondaries (mostly of red-supergiant
secondaries, corresponding to ∼4% of the entire simulated pop-
ulation, including mergers and non-disrupted binaries), white
dwarfs (WD, ∼8% of the total), and helium stars which have lost
their hydrogen-rich envelope because of previous binary interac-
tions (∼4% of the total).

For the first group, characterized by large stellar radii, the
velocity distribution resembles closely that of the MS ejected
companions, with a large number of walkaways compared to the
runaways (roughly corresponding to 96% of the hydrogen-rich
non-degenerate ejected companions).

Ejected WDs and helium stars come from different evolu-
tionary paths. Mass transfer during the primary MS can reduce
the helium core mass thus slowing its evolution, while accre-
tion of mass speeds up the evolution of the companion. In ∼23%
of our full population (excluding stellar mergers), this leads to
a reversal of the CC order, with the secondary exploding first
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Fig. 8. Velocity distribution of companions ejected after their MS.
Helium stars and white dwarfs (WD) can have much shorter pre-CC
orbits because of their smaller radii, and thus they can reach much
higher ejection velocities. Conversely, the number of non-degenerate,
hydrogen-rich post-MS stars is dominated by red supergiants with very
large radii, which can only exist at large separation from the exploding
companion, and thus typically have much slower velocities. Top panel:
corresponding cumulative distributions.

(Pols 1994). In these cases the star that is ejected is the ini-
tially more massive, which has become, by the time of the CC, a
helium star or a WD.

WDs and helium stars are what is left of the initial donor and
they are thus less massive than their companion after the mass
transfer phase, therefore they can reach velocities much larger
than (super-)giant stars. The ejection velocities of the WDs span
a range 15 . vdis/(km s−1). 90, and helium stars are even faster
with 70 . vdis/(km s−1). 120. This difference arises because it
takes longer for a star to become a WD than its helium core burn-
ing duration. WDs are ejected by systems where the rejuvenation
of the secondary is not extreme. This suggests that these systems
have a less conservative mass transfer phase than binaries eject-
ing a helium star, which corresponds to less rejuvenation of the
secondary and more orbital widening, and thus lower velocity of
the WD at ejection. Moreover, if the companion star at pre-CC
stage is a WD, there is a longer time for the binary to widen,
e.g., because of winds, than if it is a helium star.

Conversely, if the ejected star is a non-degenerate helium
star, then the entire evolution of the rejuvenated secondary needs
to be faster than the remaining lifetime of the primary (which
now has a reduced mass): the time delay between the RLOF
phase and the first CC ejecting the helium star is much shorter
and there is not enough time for significant orbital widening.

Figure 8 also shows a small population of slow (vdis <
30 km s−1) helium stars. These are very massive (M2 & 30 M⊙
after mass accretion) stars characterized by large Wolf-Rayet
wind mass loss rates, which cause significant orbital widening
before the first CC, resulting in the slow ejection velocity. We
emphasize that Fig. 8 shows the velocity of stars ejected while
in the corresponding evolutionary stage, and stars ejected dur-

ing their MS will then evolve into post-MS hydrogen-rich, or
possibly Wolf-Rayet stars, creating a more complicated velocity
distribution of massive Wolf-Rayet stars (see, e.g., Dray et al.
2005; Eldridge et al. 2011).

6. Impact of model variations

Our predictions depend on a set of parametrized assumptions.
We perform a systematic study of the impact of these uncertain-
ties by varying the values of the free parameters one-by-one, as
we describe in Sect. 2. In each variation, all the other parameters
are set to their fiducial value.

Table 1 summarizes our results for binaries with a collaps-
ing star and a MS companion. If our extreme assumptions do not
change significantly our synthetic population, then the outcome
is robust and independent of the particular physical process.
Conversely, strong dependence on any one parameter indicates
that this particular parameter could be constrained by comparing
to observed samples, and therefore allow for physical tests of
the process it represents. Overall, our results are robust and rela-
tively insensitive to uncertain physical processes, at least within
the framework of parametrizations we assume.

6.1. Robust predictions

The fraction of binaries that are disrupted by the first CC is
always larger than 75%, with two notable exceptions. These
concern the natal kick distribution assumed. With a double
Maxwellian kick distribution with σkick = 30 km s−1 for NSs
less massive than 1.35 M⊙ (and our fiducial kick for more mas-
sive remnants), the disruption fraction decreases to D = 65%
even though this changes the kick only for a small range of the
parameter space. Low mass NSs are the typical result of progen-
itors with small total and core masses, which are favored by the
IMF.

If instead we make the extreme assumption of zero natal kick
in all CC (σkick = 0 km s−1), then only D = 16% of the bina-
ries are disrupted. In these cases the disruption is only due to
the mass loss at the moment of the explosion (Blaauw kick).
Since the ejecta mass must be larger than half of the total mass
of the system to disrupt the binary (Blaauw 1961), and since
after mass transfer the primary is typically less massive than the
companion, only very wide binaries which did not experience
mass transfer might be disrupted in such a way. Therefore, in this
extreme assumption, the ejected stars are on average less massive
and slower compared to calculations including a natal kick. We
emphasize that this parameter variation is in contrast with the
observed distribution of pulsar velocities, and we include it for
insight only. This variation does not produce any massive run-
aways, which is also in contrast with observations.

We obtain the largest disruption fraction when we do not
rescale the natal kick with the fallback fraction: in this model, up
to 97% of the systems are disrupted. This assumption is equiv-
alent to assuming a “BH velocity kick” (e.g., Belczynski et al.
2008; Fryer et al. 2012): BHs and NSs receive the same kick
amplitude at birth, despite the differences in their masses. There-
fore, many CC events resulting in the formation of a massive BH
with large fallback fractions (up to fb = 1) still result in the dis-
ruption of the binary.

Despite the overall large disruption fraction in all our param-
eter variations, the predicted runaway fraction f RW

15 for masses
larger than 15 M⊙ is low for all our parameter variations and
never exceeds a few percent. Similarly, the walkaway fraction
f WA
15 is also robust, and is generally around 10%. In other words,
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the walkaways outnumber the runaways by a factor of 10–30
(smaller for larger masses), regardless of the physical assump-
tions we make. The most notable exceptions are computations at
lower metallicity (see Sect. 6.3). Another case producing slightly
smaller R is fully non-conservative mass transfer (βRLOF = 0):
more systems are in a very close pre-CC orbits and the average
velocity of an ejected secondary is higher than in our fiducial
assumptions.

It is worth noting that variations in the common envelope
efficiency (αCE) do not have a large influence on this result. The
most likely reason for this is the combination of our assumptions
on the stability of late case B and case C RLOF and whether mas-
sive stars develop deep convective envelopes. The models from
Pols et al. (1998), underlying the fitting formulae of binary_c,
barely ascend the Hayashi track for MZAMS & 15 M⊙, and the
qcrit,RSG assumed in our fiducial simulation is rather conservative
in assessing the stability of late RLOF. Both these assumptions
contribute in making the parameter space leading to common
envelope, significant orbital shrinking, and subsequent ejection
of a fast and massive9 runaway relatively small. Allowing for
less stable late RLOF (higher qcrit,RSG) increases the average
speed of ejected companions, and decreases the relative number
of walkaways. however, extreme variations in this parameter (in
combination with the common envelope efficiency αCE) are not
sufficient to reconcile our predictions with commonly-accepted
inferences from observations (see Sect. 8.2).

The mean value of the mass of the walkaways, runaways,
and all ejected secondaries (〈Mwalk

2 〉, 〈Mrun
2 〉, and 〈M2〉, respec-

tively) exceeds 7.5 M⊙ in almost all our parameter variations.
With fully non-conservative mass transfer (βRLOF = 0), the sec-
ondary accretes no mass. This makes them on average less mas-
sive than in our fiducial assumptions at the moment of the first
CC, and also allows for less orbital widening (the donor has
to lose more mass before the mass ratio inverts), resulting in a
faster population of disrupted stars with lower masses compared
to our fiducial case. If we assume that case B mass transfer is
unstable whenever the accretor is less massive than the donor
(qcrit,B = 1), or if we take a negative slope of the mass ratio dis-
tribution (κ = −1), then the fraction of binary systems that merge
after the end of the primary MS increases compared to our fidu-
cial case. When a binary system merges, it cannot eject a walk-
away or runaway. Finally, assuming no natal kicks (σkick = 0),
the only systems disrupted are those where the SN ejecta consist
of more than half of the total mass of the binary at the pre-
explosion stage. This requirement naturally biases the popula-
tion of ejected companions towards low masses. If we assume
that the kick velocity is not scaled down by the amount of fall-
back (“velocity kick” for BHs), CC events from more massive
primaries can also disrupt the system. On average, this produces
more massive ejected secondaries compared to our fiducial case.
Since the remaining lifetimes are shorter, the distance traveled by
the population of ejected secondaries is also decreased, despite
their higher velocity.

Our assumptions about the stability of case B RLOF
(assumed to be stable if the accretor-to-donor mass ratio is
larger than qcrit,B) impact the velocity and mass distribution
of the ejected stars. The sequence from more stable to more
unstable qcrit,B = 1, 0.5, 0.4 (fiducial value), 0 shows progres-
sively higher R indicating relatively fewer runaways, but higher
average velocity 〈v〉 (and consequently also a larger 〈L〉). The
increase in velocity and decrease in average mass of the ejected

9 The inspiraling star is assumed not to accrete significantly during a
common envelope event, which prevents its growth by mass.

companions for higher qcrit,B indicates an increased importance
of evolutionary channels involving a common-envelope evolu-
tion leading to tighter pre-CC orbits without significant accretion
of mass from the companion.

The average distance traveled by walkaways and runaways
is also a robust prediction. The entire population of ejected stars
typically travels slightly farther than 〈L〉 ≃ 120 pc, which cor-
responds to an average distance for the runaways of 〈L〉run &

500 pc, while the walkaways alone reach 〈L〉run & 100 pc.
These distances are significantly shortened only assuming

fully conservative mass transfer (βRLOF = 1), or assuming
higher angular momentum loss (e.g., through a circumbinary
disk, γRLOF = γdisk). The former results in higher masses of the
ejected secondaries and thus smaller velocities and shorter life-
times, while the latter results in more orbital shrinking and merg-
ers. Another variation resulting in small 〈L〉walk ≃ 66 pc is that
with zero natal kicks (σkick = 0 km s−1). As mentioned above,
only the widest pre-CC binary can be disrupted in this case, so
producing a much slower population of ejected MS stars.

The predicted rotational velocity of the ejected companions
is also a prediction robust against parameter variations. The vast
majority of massive (Mdis ≥ 7.5 M⊙) main sequence runaways
accrete mass from their companions, and thus spin up to critical
rotation, before being ejected. Visual inspection of plots like the
one shown in Fig. 7 for our fiducial simulation show no variation
when changing the initial rotation rate of the stars, confirming
that mass transfer in binaries overwrites the initial rotation of
the accretor.

6.2. The mass function of massive runaways as probes for
black hole kicks

We find that the mass distribution of runaways carries infor-
mation about the BH kicks. With a sufficiently large sample, it
might be used to discriminate between BH velocity or momen-
tum kicks, at least in a statistical sense. We focus on the mass
function of massive (Mdis ≥ 7.5 M⊙) and fast runaways (vdis ≥
30 km s−1) only, i.e., not including the more common walka-
ways, since we expect upcoming observational distributions to
provide cleaner samples for these. Ejected companions with
high masses are more likely to come from binaries with an ini-
tially very massive primary, so resulting in BH formation at the
end of its evolution. The constraints on the amplitude of BH
kicks from unbound companions are complimentary to those
from binaries surviving the first CC, and Gaia might be able
to probe both populations of bound and ejected companions
(Breivik et al. 2017).

Figure 9 shows the mass distribution of runaways (vdis >
30 km s−1) more massive than 7.5 M⊙ for three BH formation
scenario. The bottom panel shows our fiducial simulation, in
which natal kicks are damped by fallback (effectively, this is
equivalent to a BH “momentum kick”). In this case, the 90th
percentile of the massive runaway mass function is ∼25 M⊙. In
this model, the amount of fallback and the amplitude of the BH
natal kicks are degenerate parameters. Because of the large fall-
back fraction prescribed by the Fryer et al. (2012) algorithm,
the runaway mass function produced by this model is practically
indistinguishable from that with no BH natal kicks: almost all
the runaways produced come from NS-forming supernovae.

The central panel of Fig. 9 shows the mass distribution
assuming no fallback downscaling, but a smaller kick amplitude
distribution characterized by σkick = 100 km s−1 for the BHs
(while we keep the same fiducial assumptions for NSs). Com-
pared to our fiducial simulation, BHs receive larger kicks, and
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Fig. 9. Mass function of massive (Mdis ≥ 7.5 M⊙), runaway (faster than
≥30 km s−1) stars depends on the assumptions for the BH kick. Bottom
panel: our fiducial simulation with σkick = 265 km s−1, including the
fallback downscaling of the kick both for NSs and BHs. The fallback is
an important effect only for BHs. Central panel: mass function for inter-
mediate BH kicks (σkick = 100 km s−1, no fallback downscaling) and
our fiducial kick for NSs. Top panel: distribution with our fiducial kick
amplitude, but without fallback downscaling (i.e., BH velocity kick).
The dashed lines indicate the 90th percentiles of the mass distributions.

thus the runaways produced are also generally more massive,
and the 90th percentile of the mass distribution shifts to ∼30 M⊙.

The histogram in the top panel of Fig. 9 instead corresponds
to a scenario in which the natal kick is not decreased by the
amount of fallback (e.g., if the natal kick is entirely due to asym-
metries in the neutrino emission). In this case BHs and NSs
receive the same kick amplitude (BH “velocity kick”) and this
results in a larger number of massive runaways characterized by
a mass function skewed towards larger values. In this scenario,
the 90th percentile of the mass distribution is as high as ∼50 M⊙.

In summary, the tail of the mass function of massive run-
aways carries information about the BH natal kicks: finding run-
aways of large masses would support the possibility of large BH
natal kicks. We do not expect large contamination of this tail
from dynamical ejection of runaway stars, since dynamical chan-
nels tend to eject the least massive star among those interacting
(although see also Fujii & Portegies Zwart 2011; Banerjee et al.
2012; Oh & Kroupa 2016).

Our result allow us to check also for a correlation between
the mass of the ejected companions and its velocity. Figure 10
shows this comparison for the three BH kick variations of Fig. 9.
As expected, there is a correlation between the maximum veloc-
ity that can be achieved because of the binary disruption, and
the mass of the ejected MS companion. This can be seen by
the shape of the colors in each panel. More massive companions
have more inertia, or, in other words, more massive companion
have slower pre-CC orbital velocity because of the mass depen-
dent factor in Eq. (1).

From left to right, the BH kick amplitude increases (while
effectively keeping the same NS kick, since the fallback fraction

is small for CCSNe resulting in NS formation), and so does the
maximum mass of the ejected companions. There is an sharp
drop in the number of ejected companions for Mdis & 70 M⊙.
There is a set of plausible reasons to explain this. First of all,
stars in this mass range are intrinsically rare because of the IMF.
Also, the lifetimes of very massive stars become very similar
(∼3 Myr) above ∼50 M⊙. This means that by the time the primary
collapses, the secondary is also an evolved star that has finished
burning hydrogen in its core, and it does not appear in the panels
of Fig. 10. Finally, these stars tend to have large wind mass loss
rates, which can be enhanced significantly when the star is spun
up by the accretion: the combination of the wind enhancement
with already large wind mass loss rates limits the growth in mass
of the companions.

In an observed population, the short post-ejection lifetime
would also make very massive ejected companions rare. How-
ever, the upperlimit of ∼70 M⊙ is not strict, and it is possible
to produce walkaways in this mass range through binary inter-
actions, although at a negligible rate compared to less massive
walkaways.

6.3. Effects of metallicity

We find that, other than the natal kick distribution, metallicity is
the most important parameter influencing our results. Decreas-
ing the metallicity from super-solar, Z = 0.03, to Z = 0.02 ≃ Z⊙
(fiducial run), to Z = 0.008, Z = 0.0047 to Z = 0.0002 ≃ 10−2 Z⊙
a clear trend emerges from Table 1. At lower metallicity, the frac-
tionD of binaries disrupted by the first CC is lower (77% for the
lowest metallicity, cf. 88% at the highest), but the stars ejected
are on average faster. This can be seen from the average velocity
〈v〉, which goes from 11.2 km s−1 to 21.6 km s−1, but also from
the progressive decrease of the ratio of walkaways per runaway
R, regardless of the lower mass cut. Nevertheless, walkaways
outnumber runaways at all the metallicities we explore.

In our lowest metallicity run, the runaways (vdis ≥ 30 km s−1)
travel, on average, as far as 706 pc from their birth location, and
the walkaways reach, on average, 163 pc. The mean distance
travelled by population of disrupted stars is 279 pc for the lowest
metallicity.

The reduced likelihood of disrupting a system and increased
velocity of the stars ejected can be understood in terms of the
effect of metallicity on stellar radii. At lower Z stars of a given
mass and evolutionary stage have smaller radii. This means that a
given binary will enter into a mass transfer phase later, resulting in
less conservative mass transfer and less orbital widening, making
the binary harder to disrupt and the pre-CC orbital velocity of the
secondary faster. This is corroborated by the fact that the average
mass of walkaways and runaways decreases slightly with metal-
licity, which is indicative of a less conservative mass transfer.
Moreover, at lower metallicity, the post-interaction orbital widen-
ing due to stellar winds is less important.

Another important physical effect, presently not included in
our simulations, is that, at the end of the RLOF, the primary
remains more massive at lower metallicity (owing again to the
smaller radii, e.g., Götberg et al. 2017; Yoon et al. 2017). This
should contribute to the reduction of orbital widening for inter-
acting binaries, and make the collapsing star more massive and
thus the disruption harder.

7. Systemic velocities of NS and BH binaries

Our simulations also provide predictions for the systemic veloc-
ities of binary systems that remain bound after the first CC (e.g.,
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Fig. 10. Mass-velocity correlation for the three BH kick variations discussed in Sect. 6.2. The brighter colors indicate where the probability per
system is higher on this plane, the colors have a logarithmic scale. Left panel: our fiducial distribution, central panel: case for intermediate BH
kicks (σkick = 100 km s−1 and no fallback), and right panel: large BH kicks (same as for NSs). The NS kick is effectively the same in all panels,
since the amount of fallback is very small for SNe producing a NS.
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Fig. 11. Normalized distribution of systemic velocities of binaries with a MS star remaining bound after the CC of the first star. The distributions
in both panels are normalized to unity. Left panel: distribution for NS companions. Right panel: only binaries with a BH companion. The blue
histogram represents our fiducial simulation. The orange solid line gives the distribution when the kick is not rescaled because of fallback, which
changes the BH kicks, but not the NS kicks. The red distribution corresponds to a double Maxwellian kick distribution, which changes the NS
kicks but not the BH kicks. Top panels: corresponding cumulative distributions.

van Oijen 1989). The results of our simulations, which will be
made available upon publication, also provide pre-CC and post-
CC separations, eccentricities, and mass ratios.

The systems with a MS star and a compact object remaining
bound are only 1 − D = 14+14

−10% of the total (see Sect. 6 for a
discussion of model variations). These are of large interest since
they can give rise to X-ray binaries if the compact object starts to
accrete from the companion, and later possibly double compact

objects. They typically originate from systems where the newly
formed compact object received a small natal kick. This bias limits
the extent to which these special systems can be used to infer con-
clusions about the properties of the general population of NS and
BH. For comparison, the average effective natal kick for the com-
pact objects formed in systems that remain bound is ∼66 km s−1,
much lower than the average of ∼330 km s−1 (as drawn from our
standard Maxwellian after rescaling to account for fallback).
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Systems that remain bound also obtain a systemic velocity,
because of mass lost during the supernova explosion while orbit-
ing around the center of mass. We define the newly obtained sys-
temic velocity vsys as the velocity of the new center of mass (of
the compact object plus the secondary star) in the frame of the
old center of mass (e.g., Brandt & Podsiadlowski 1995; Kalogera
1996, TT98).

Figure 11 shows the normalized distribution of systemic
velocities vsys for different natal kick assumptions. The left
(right) panel shows NS+MS (BH+MS) binaries, with the cumu-
lative distributions in the top panels, respectively. We find that
the distribution of systemic velocities are very insensitive to the
model variations that we considered, except for the natal kicks.
We only show the distributions for variations that show large
deviations from the fiducial simulation.

For NS+MS binaries our fiducial simulation shows a median
systemic velocity of ∼20 km s−1, for nearly all assumptions that
we consider. The strongest deviation is found with a run in which
we adopt a double Maxwellian distribution, where low mass pro-
genitors are assumed to form neutrons stars with very low kick
velocities. This substantially increases the fraction of systems
that remain bound to 1 − D ≃ 35%. It primarily adds systems
with low systemic velocities. The median of the normalized dis-
tribution for this simulation lies near 7 km s−1.

In our fiducial simulations for BH+MS binaries we obtain
a bimodal distribution with a large peak at 0 km s−1 account-
ing for nearly 80% of all systems and a second broader com-
ponent peaking at ∼10 km s−1. The peak near zero results from
progenitors that experience complete fallback ( fb = 1 accord-
ing to the algorithm from Fryer et al. 2012). They receive no
kick at all, and no mass is lost from the system (we neglect
here, as elsewhere, the mass possibly lost to neutrinos during the
CC, which is an ∼10% effect). For these systems we also find
no changes in the separation and/or eccentricity after the CC of
the first star. The sharp peak at vsys ≃ 0 km s−1 would likely be
smeared out by the velocity dispersion of the region where the
system formed.

Nearly all variations considered give indistinguishable
results. However, we find large deviations from the simulation
where we used the extreme assumption that compact objects get
kicks of a similar velocity amplitude regardless of their mass
(no fallback downscaling, orange in Fig. 11). This effectively
results in much larger kicks for black holes and is sometimes
referred to as “velocity kick”. Only 1 − D ≃ 3% of systems
remain bound in this simulation. The few resulting BH binaries
typically have large systemic velocities: we find a broad distri-
bution with a median at 50 km s−1.

Our simulations also provide predictions for the distributions
of further properties of the bound systems. If we exclude sys-
tems with fb = 1, i.e. if we consider only NSs and BHs formed
via fallback but still producing ejecta, we find an anti-correlation
between the maximum post-CC separation and systemic veloc-
ity: the wider the system, the slower the maximum systemic
velocity it can reach (see also Brandt & Podsiadlowski 1995).

Most systems remaining bound come from initially relatively
tight pre-CC orbits. Typically, they have a reversed mass ratio
(i.e., at the time of the first CC M

pre−CC
2 > M

pre−CC
1 ) because

of the previous mass transfer phase. In our fiducial run, for
the systems remaining bound the average pre-CC mass ratio is
〈qpre−CC〉 ≡ 〈Mpre−CC

2 /M
pre−CC
1 〉 ≃ 2.9. The majority of the bound

systems, about 60% for all variations with non-zero natal kicks,
have separations of less than about 500 R⊙. This suggests that
these systems will evolve through a phase during which they
might be detectable as X-ray sources, and possibly even through

a mass transfer phase. The tail of the distribution at large sepa-
rations extends to post-CC separation as large as ∼6000 R⊙.

We do not consider cases in which the compact object is
shot within the Roche lobe of the secondary. A prompt collision
between the newly formed compact object and the companion
star could lead to the formation of a Thorne-Zytkow object (if the
compact object is a NS, Thorne & Zytkow 1975, 1977; Leonard
et al. 1994), or a transient, possibly involving the disintegration
of the companion. For a given binary system, the probability of
a prompt collision caused by the natal kick (whose direction is
isotropically distributed in the frame of the collapsing star) can
be estimated as the solid angle subtended by the companion at
the position of the collapsing star. For our fiducial population,
excluding systems that do not receive a natal kick because of
the fallback rescaling, we obtain that roughly 1 out of 10 000
CC events in a binary would result in a prompt collision (i.e., a
probability per binary system of about 10−4). For this estimate,
we exclude from the normalization systems merging before the
first CC.

8. Astrophysical Implications

8.1. Other possible contributions to the inferred velocity

Throughout this study, we have used velocities calculated in
the rest frame of the initial binaries. In reality, the progenitor
massive binaries are likely to form in high-mass star forming
regions with a certain velocity dispersion, typically smaller than
10 km s−1 (de Bruijne 1999; Steenbrugge et al. 2003; Kiminki
& Smith 2018). Moreover, the high-mass star forming regions
have been observed to have a systematic lag velocity of about
∼5 km s−1 compared to the rotation of the Galactic disk (Reid
et al. 2014).

In an observed sample using the putative parent associa-
tion to define a frame of reference, the “thermal” velocity of
the progenitor binary within the star-forming region will add
to the velocity resulting from the disruption. To illustrate how
this affects the velocity distribution of Fig. 5, we numerically
convolve the distribution for ejected stars more massive than
15 M⊙ (red) with a Gaussian distribution with full-width-half-
maximum of 10 km s−1, assumed to be an upperlimit of the typ-
ical velocity dispersion of OB associations (de Bruijne 1999;
Steenbrugge et al. 2003; Kiminki & Smith 2018). We note that
both the orientation of the thermal velocity of the parent binary,
and the velocity acquired by the ejected star are randomly ori-
ented, and the latter depends on the binary inclination and phase
at the first CC event.

Figure 12 shows the re-sampled distribution and the result
of the convolution with a Gaussian velocity dispersion distribu-
tion with dispersion of 10 km s−1, which we consider an over-
estimate for OB-associations. While adding a dispersion velocity
smears out the peak of the distribution and increases the contri-
bution of the runaways faster than 30 km s−1, the effect is insuffi-
cient to reconcile the observed runaway fraction with our results
(see Sect. 8.2). The ratio of walkaways to runaways more mas-
sive than 15 M⊙ remains RSFH

15 ∼ 15 even accounting for the
velocity dispersion of the parent association (cf. R15 ∼ 27 before
accounting for it).

For observed samples using the Galactic disk rotation to
define a reference frame, the peculiar lag velocity of the high-
mass star-forming region could potentially contribute to over-
estimating the ejection velocity of the stars. If the lag velocity
of the parent association is not removed from the measures,
it would introduce a systematic shift in one component of the
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Fig. 12. The yellow histogram shows the convolution of the distribution
of ejected MS stars more massive than 15 M⊙ (red histogram, cf. Fig. 5)
with a Gaussian with full-width-half-maximum of 10 km s−1 represent-
ing (an upper limit to) the velocity dispersion of a star forming region
(shown in the inset plot). In this figure, the red histogram is normalized
so that its surface area is one.

velocity of the star (corresponding to the direction of the pecu-
liar motion of the parent association). This can be modeled with
a convolution of our distributions with a Dirac’s δ-distribution
with a velocity ulag = (vlag, 0, 0) for an appropriate choice of
the orientation of the (Cartesian) frame. The direction of the lag
velocity is in this case fixed, and only the ejection velocity is
randomly oriented.

The convolution with a δ-distribution would also shift the
peak of Fig. 5 to higher velocities, but would smear it out much
less. Adopting a lag velocity of vlag ≃ 5 km s−1 (Reid et al. 2014)
would barely change the fraction of apparent O-type runaways
we predict. To infer an O-type runaway fraction of ∼10%, the
true lag velocity of high-mass star forming regions would need
to be larger than &15 km s−1, and would need not to have been
corrected when making inferences from observations.

We note that for O-type runaways with lifetimes of .15 Myr,
it is likely possible to locate the parent association and correct for
its possible peculiar motion. The possible lag velocity of high-
mass star forming regions only affects stellar velocities measured
using a frame co-rotating with the Galactic disk.

8.2. On the runaway fraction

Our results predict a runaway fraction among O type stars of
at best a few percent, in agreement with Eldridge et al. (2011),
but in tension with the observational result that ∼10−20% of O
type stars are runaways (Blaauw 1961; Gies 1987; Stone 1991;
Tetzlaff et al. 2011; Maíz Apellániz et al. 2018; Sana et al., in
prep.), and the claim that roughly two-thirds of runaways come
from the disruption of binaries (Hoogerwerf et al. 2001). The
latter has also been challenged by the more recent observations
from Jilinski et al. (2010). As a consistency check we can esti-
mate the runaway fraction with:

f RW ≃ fbin × (1 − fmergers) ×D × (1 + facc)α × fv>30, (6)

where we can assume a binary fraction fbin = 1, reasonable for
the population of O type stars considering initial periods as large
as 105.5 days, the fraction of binaries that do not merge is 1 −
fmergers ≃ 0.8 (Sana et al. 2012), the disruption fraction is D ≃
0.8 (this study, but also, e.g., Eldridge et al. 2011), the fraction
of material accreted, for which we assume facc ≃ 0.2 (Packet
1981), and the fraction of ejected companions fast enough to
be a runaway which we can estimate10 from D and R15, and is
fv>30 ≃ D/(1 + R15) ≃ 0.04 for our fiducial run. Assuming an
IMF slope α = −2.3 we obtain a runaway fraction of f RW ≃
0.01, in reasonable agreement with our results.

The tension between our results and the observed runaway
fraction suggests that either (i) binaries tend to evolve towards
shorter pre-CC orbits, corresponding to higher ejection veloci-
ties, but are still disrupted easily by the CC event, (ii) the con-
tribution of dynamical ejections to the runaway population is
presently underestimated, (iii) other ejection mechanisms exists
and are presently overlooked, (iv) the fast runaways might be
easier to detect since they likely move away from their gas-rich
birth environment (leading to typically lower extinction, Maíz
Apellániz et al. 2018), (v) the velocities of observed O type run-
aways are overestimated (cf. Sect. 8.1), or any combination of
the previous.

Since vdis ≃ vpre−CC
2 ∝ vpre−CC

orb ∝ Jorb, with Jorb orbital angular
momentum, to shift the peak of the velocity distribution in Fig. 5
from ∼6 km s−1 to vdis & 30 km s−1, the binaries would need to
lose about five times more orbital angular momentum during the
evolution before the collapse of the primary. This discrepancy
deserves to be revisited once the runaway fraction can be eval-
uated from the homogeneous Gaia datasets. If the contribution
from dynamical ejections can robustly be quantified, the popula-
tion of runaways might provide new constraints on the mass and
angular momentum losses during mass transfer in binaries.

A mechanism to remove angular momentum and mass from
the binary presently not included in our population are eruptive
mass loss events for which there is growing evidence from early
observations of SNe (e.g., Khazov et al. 2016). Such mass loss
events might be much more common than previously thought.
One possible physical cause for these event are gravity waves
excited by late shell burning depositing energy at the base of
the envelope (Quataert & Shiode 2012; Fuller 2017; Fuller &
Ro 2018). It is possible that the mechanism driving these mass
loss events might also result in pre-CC binary interactions which
might significantly change the pre-CC orbit. SN-impostor events
happening earlier in the evolution might also lead to similar
effects on the orbital evolution, which we presently do not
model.

Another speculative possibility to increase the angular
momentum losses could be magnetic braking. If non conserva-
tive mass transfer can simultaneously generate a magnetic field
and eject some mass from the system, this might result in torques
on the binary much larger than we consider here.

8.3. How to identify walkaway stars

The velocity dispersion of OB stars in our Galaxy is .10 km s−1

(e.g., Blaauw 1956; Gies 1987; TT98; Hoogerwerf et al. 2001),
and it is typically lower for OB associations (de Bruijne 1999;
Steenbrugge et al. 2003; Kiminki & Smith 2018). We emphasize

10 We neglect here thatD is the disruption fraction including also bina-
ries with no MS stars at the pre-CC stage.
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also that the velocity dispersion increases going from samples
of OB stars in clusters, in associations, and in the field (Gies
1987). The average velocity of ejected secondaries is typically
higher than this value (cf. Table 1), and if considering only
the post-binary interaction secondaries (i.e., removing all the
ejected secondaries from very wide and non-interacting binaries,
cf. dashed distributions in Fig. 5) it increases further, especially
for Mdis ≥ 7.5 M⊙. Therefore, the companions ejected after a
mass transfer episode might form a distinct population in the
Gaia data. Moreover, regardless of their previous history, the
walkaway and runaway stars from binary disruptions do not need
to follow the local Galactic rotation curve, and their motion can
bring them to locations in which they are more easily observed
(e.g., Boubert & Evans 2018; Maíz Apellániz et al. 2018).

Tetzlaff et al. (2011), following Stone (1991), proposed to fit
the velocity distribution of young (.50 Myr) stars within 3 Kpc
of the Solar neighborhood using two Maxwellians: one for the
“low-velocity” (v . 30 km s−1) and one for the “high-velocity”
group. Our findings suggest that ∼10% of the O-stars in the low
velocity group might still be the result of binary disruptions.

Because of the binary interactions taking place before the
first CC, these stars carry observational signatures which might
make them recognizable even if they do not stand out from a
kinematic point of view. For instance, if there is a mass trans-
fer phase during the previous binary evolution, the ejected star
will be spun up (e.g., Packet 1981; Pols et al. 1991; Boubert
& Evans 2018) and possibly chemically polluted with He-rich
and/or N-rich material (e.g., Blaauw 1993). Mass transfer might
also be responsible for the presence of strong magnetic fields,
(e.g., Schneider et al. 2016). These features should in principle
leave observable signatures in the spectra of these stars (e.g.,
Maíz Apellániz et al. 2018). However, the effects of the metal-
licity gradient in the radial direction of the Galaxy complicates
the spectral identification of binary products, as pointed out by
McEvoy et al. (2017).

Characterizing the population of stars ejected from isolated
binary disruptions is necessary to reduce the number of false pos-
itive detections of hypervelocity stars in current and upcoming
astrometric catalogues (e.g., Marchetti et al. 2017).

Stars ejected by a successful SN explosion recently (i.e.,
less time ago than the lifetime of the SN remnant) can be con-
nected to the SN location, and the associated NS can sometimes
also be found. Assuming a typical visible lifetime of the SN
remnant of τSNR ≃ 104 years, the typical distance traveled by
an ejected companion is of order D ≡ vdis × τSNR ≃ 0.1 pc.
Therefore runaways, but especially walkaways are expected
to still reside within the SN remnant while it is still observ-
able. This strategy has been successfully applied to search for
runaways by van den Bergh (1980), Guseinov et al. (2005),
Tetzlaff et al. (2013, 2014), Dinçel et al. (2015), Boubert et al.
(2017b). Kerzendorf et al. (2019) also used the predicted kine-
matics of disrupted binaries to search for companions of the
star that exploded producing the supernova remnant Cas A.
Tetzlaff et al. (2011) also suggested that, with precise astrom-
etry, it might be possible to relate the ejected companion to the
remnant of the companion up to ∼5 Myr after the SN explosion,
provided that the compact remnant of the former companion is
visible (e.g., as a pulsar).

The results of Banerjee et al. (2012) and Perets & Šubr
(2012) suggest there might be a spatial distinction between
dynamically ejected stars and post-binary runaways and walka-
ways. Dynamical interactions in a cluster are most efficient early
in the cluster evolution (e.g., Oh & Kroupa 2016), well before
the first stellar CC event happens. Moreover, the median velocity

of cluster ejection is higher than the typical walkaway velocity:
Banerjee et al. (2012) derived a median velocity of dynamically
ejected stars of 50 km s−1 after 3 Myr of evolution. This value
is significantly higher than what we find from binary disrup-
tions. The combination of these two effects would suggest that
walkaways and runaways from binary disruptions would gener-
ally be closer to their parent cluster than dynamically ejected
stars. However, this simplistic prediction is complicated by the
fact that binaries can eject stars from the parent cluster outskirts,
while most dynamical interactions produce runaways from the
center of the cluster. Another complication is the possible ejec-
tion of stars as tidal tails in a cluster merger process, (e.g., Lucas
et al. 2018).

Evans & Massey (2015) and Neugent et al. (2018) have
reported the first discovery of extraGalactic post-MS massive
runaways. They reported the observation of a red super giant
in M31 and a yellow super giant in the SMC, respectively. They
inferred peculiar space velocities larger than ∼400 km s−1 and
∼150 km s−1 for these stars, and proposed a binary origin at least
for the yellow supergiant in the SMC. Our fiducial population
can hardly reach such high peculiar velocities, unless the veloc-
ity of the system as a whole binary itself was already high. Even
if these stars were ejected from a massive binary during their
main sequence, velocities in excess of a few hundred km s−1

are only marginally reached in our simulations (cf. Figs. 5, 8
and C.2). If our present understanding or binary physics is cor-
rect, this discrepancy might suggest a different ejection mech-
anism (or combination of mechanisms) for these two stars.
Evans & Massey (2015) also report that vast majority of O/B
stars and red super giant stars in the Milky-Way have radial
velocities lower than ∼70 km s−1, in very good agreement with
our results.

8.4. X-ray binaries and gravitational wave sources

Binaries remaining bound after the CC of the primary are a
minority. Selecting from our results only bound systems consist-
ing of a BH and a MS star, we obtain the systemic velocity dis-
tributions for BH binaries with different BH kick scenarios (see
right panel of Fig. 11). Gaia will give astrometric constraints on
the 19 known BH X-ray binary in the Galaxy: if the effect of the
Galactic potential can be singled out from these data, the com-
parison with our distribution might shed light onto the typical
amplitude of BH kicks (e.g., Fragos et al. 2009, 2013; Repetto
et al. 2012; Mandel 2016).

The binaries surviving the first CC can become X-ray
sources if their separation is short enough for the compact object
to accrete during the subsequent evolution. For all our natal kick
assumptions, the post-CC separation peaks at ∼300 R⊙, and most
bound system have separations smaller than ∼500 R⊙, indicating
that the majority of the systems remaining bound will become
X-ray sources, and potentially even go through a common enve-
lope evolution phase because of the large mass ratio between the
compact object and the secondary star (which has accreted mass,
cf. Sect. 3).

However, observed X-ray sources more likely have relatively
short orbital periods, or, in other words, the energy released at
the CC of the first star did not widen significantly the binary
and instead contributed mostly to the kinetic energy of the sys-
tem. This could mean that the observed sample of Galactic BH
X-ray binaries is biased towards the high velocity tail of our
distributions.

System that might become X-ray sources have systemic
velocities of a few tens of km s−1, and since the secondary star
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is also an accretor and rejuvenated, they are able to travel a dis-
tance comparable to 〈Lwalk〉. This can also change their contri-
bution as feedback engines (e.g., Justham & Schawinski 2012;
Fragos et al. 2013).

If a bound system is not disrupted by the first CC and does
not merge during the evolution of the secondary star, it is less
likely to be disrupted by the second CC (e.g., Stevenson et al.
2017; O’Shaughnessy et al. 2017), and therefore more likely to
become a gravitational wave source (if the separation is small
enough). This is because the impact of the kick on the orbit
scales as vk/vorb, and the orbit of bound systems is likely to
shrink during the evolution after the first CC: the donor star
needs to become less massive than the compact object for the
system to widen as described in Sects. 3 and 4. We also empha-
size that typically RLOF has a larger impact than stellar winds
on the orbital separation.

8.5. Runaways and walkaways as feedback engines

The large majority of binary systems are disrupted at the first CC
(with a few notable exceptions, see also Sect. 6): systems that
can become X-ray sources and/or gravitational wave sources are
the exception rather than the rule. The constraints on binary evo-
lution coming from the much more common evolutionary path
should be considered together with those coming from the more
rare channels.

Because of their motion, both walkaways and runaways can
reach significant distances from their birth location, see Table 1
and Fig. 6. The typical distances traveled by the ejected secon-
daries (cf. Fig. 6) are sufficient to get massive stars out of their
parent cluster or association, but only the fastest runaways would
get beyond the thick disk in our Galaxy, especially if considering
the distribution of relative inclinations between the trajectories
of the stars and the disk itself. As noted by Boubert & Evans
(2018), this introduces a bias in observed samples that favors the
detection of the fastest runaways.

The motion of the ejected stars effectively spreads the mas-
sive stars and their (possible) SN explosions in a larger volume,
enhancing their impact on the composition of galaxies (more
efficient mixing of nuclear yields), on the ionization of their
surroundings (enhanced escape fraction, e.g. Conroy & Kratter
2012; Kimm & Cen 2014; Ma et al. 2016), but it might possi-
bly decrease the efficiency of their mechanical feedback because
of the lower density of the surrounding gas. The large number
of walkaways formed per each runaway R suggests that walk-
away stars might change massive stars feedback more signifi-
cantly than the faster runaways, although they cannot reach as
far out as the latter because of their lower velocity.

As a consequence of the typical evolutionary scenario
described in Sect. 3, the first CC event in a typical binary sys-
tem will result either in a stripped SN or a failed SN with lit-
tle or no electromagnetic signature. The second CC will instead
be from the accretor star, which could again result in a SNIb/Ic
(if the star becomes a Wolf-Rayet because of its own stellar
wind), but, because of the IMF and the possibly non-fully con-
servative accretion rate, the secondary is more likely to remain
H-rich until its CC. As already pointed out by Eldridge et al.
(2011), this suggests that stripped SNe should preferentially
happen in star forming regions, while type II SN should show
a larger spatial spread (because of the motion of the ejected
star).

In this study, we did not consider the effects of the back-
ground cluster and/or Galactic potential on the motion of the
ejected secondaries. These can in principle be used as test par-

ticles to probe the potential itself, and consequently allow for
testing the local and/or Galactic dark matter distribution (e.g.,
Rossi et al. 2014; Marchetti et al. 2017).

While runaways have peculiar kinematic characteristics that
make them recognizable, walkaway stars might more easily be
mistaken for genuine single stars. Especially for masses larger
than 7.5 M⊙ and velocities larger than vdis & 20 km s−1, the walk-
aways and runaways accrete mass before being ejected. There-
fore, the disruption of binaries can pollute observed samples of
present-day single stars with binary evolution by-products pop-
ulating the field of the Galaxy (Gvaramadze et al. 2012; de Mink
et al. 2014).

As an example, the runaway star ζ Puppis has been consid-
ered to be a canonical O-type star (e.g., Ramiaramanantsoa et al.
2018), and it was used to calibrate the free parameters in the
Castor et al. (1975) (CAK) theory of stellar winds (Pauldrach
et al. 1994) widely applied to model single stars. However,
this object is likely to be an accretor ejected from a binary,
(van Rensbergen et al. 1996; Ramiaramanantsoa et al. 2018).

Massive walkaway stars ejected from a binary might also
appear in isolation. The origin of massive stars observed in isola-
tion is an open problem: did they form in isolation? or could they
possibly have reached that location, if ejected from a binary?
Bestenlehner et al. (2011) identify an isolated ∼150 M⊙ star
(VFTS682) in the 30 Doradus field. Such a massive object is
unlikely to be the result of a binary disruption, but might have
been ejected from the massive young cluster R136. Bestenlehner
et al. (2011) suggest that if this star was not ejected from this
cluster, it might be a direct indication of isolated star formation.
Walkaway massive stars can pose similar problems if not recog-
nized as rejuvenated binary products.

This might also connect to the evolutionary path of LBV
stars. These are massive stars that experience extreme and yet
unexplained outbursts of mass loss. In the classical picture of
massive stellar evolution (so-called Conti scenario), LBVs are
an intermediate evolutionary stage between O-type and Wolf-
Rayet stars, during which the bulk of the H-rich envelope is
lost (e.g., Conti 1975; Maeder & Conti 1994; Maeder 1996).
However, Smith & Tombleson (2015) pointed out that LBV and
LBV-candidates are farther from the nearest O-type star than
Wolf-Rayet stars, and suggested that LBVs might be rejuvenated
products of binary evolution11 (accretors or merger products).
The follow-up study of Aghakhanloo et al. (2017) suggested that
partial rejuvenation during mass transfer coupled to a walkaway
(or runaway) velocity might be sufficient to explain the isolation
observed by Smith & Tombleson (2015).

9. Summary and conclusion

We have carried out a suite of numerical simulations to pro-
vide predictions for the kinematics and properties of massive
stars ejected from binary systems disrupted by the supernova
explosion of the companion star. Our aim with this study
was three-fold: (i) identify which theoretical predictions are
robust against model uncertainties and discuss their astrophys-
ical implications (ii) investigate theoretically which uncertain
physical processes affect the kinematics of the population of
unbound stars in such a way that their imprints would be
observable and (iii) provide a framework of models that can be
used for comparison against observations or as input for other
simulations.

11 This idea has also been questioned by Humphreys et al. (2016),
Davidson et al. (2016), see also Smith (2016).
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We summarize our main findings below. When we quote per-
centages or fractions, the error bars given indicate the maximum
variations that we encountered in our model variations for dif-
ferent physical assumptions (excluding the unphysical variation
with zero natal kicks for all newly born compact objects).

– Nearly a quarter, 22+26
−8 %, of all binary systems with at least

one star more massive initially than 7.5 M⊙ merges prior to
the explosion of the first star (see Fig. 4 and Table 1).

– The large majority of binary systems are disrupted at the
moment of core collapse of the first star, D = 86+11

−9 % in
our simulations, consistent with earlier studies. This predic-
tion is robust against variations in the treatment of the evo-
lutionary and interaction processes, but it is sensitive to the
choices concerning the natal kicks of neutron stars and black
holes.

– The disruption of the binary system produces an unbound
stellar companion. Remarkably, we find that these events
only rarely produce runaway stars (i.e., stars with pecu-
liar motions larger than 30 km s−1). The velocity distribution
peaks at ∼6 km s−1, with a 90th percentile around 20 km s−1

well below the typical threshold for runaway stars.
– The slow-moving unbound companions, which we call walk-

away stars, outnumber the runaway stars by at least an order
of magnitude in nearly all our models. This is a robust out-
come of the models and is primarily due to the reversal of
the mass ratio prior to the explosion as we show numerically
and analytically. This finding has been noted in earlier stud-
ies (e.g., De Donder et al. 1997; Eldridge et al. 2011), but we
believe this result (and its potential implications) is underap-
preciated.

– We also produce runaway stars but we rarely find them to
be faster than 60 km s−1, which corresponds to 98.9th per-
centile of our fiducial population. This is much lower than
the theoretical maximum set by the finite size of the stars and
their orbit, which is in the range 400–1000 km s−1 depending
on their masses and evolutionary state. We expect that stars
with larger peculiar velocities result from dynamical ejec-
tions from clusters, capture from another Galaxy, or (most
exotically) interaction with an intermediate mass or super-
massive black hole.

– Isolated binary evolution produces a runaway fraction among
stars more massive than 15 M⊙ between 0.2 and 2.6%. None
of the combination of parameters that we consider pro-
duces a runaway fraction approaching the observed value of
∼10% for O-type stars. This result is consistent with previ-
ously published theoretical studies (see also Appendix A),
and might indicate that (i) the observed fraction of O-type
stars that are runaways is overestimated, possibly because
of biases favoring the observation of fast and isolated mas-
sive stars or because of the difficulties in defining the frame
of reference in which to measure the velocity, or (ii) con-
trary to previous claims, it is not correct that the majority
of observed O-type runaways come from the disruption of
binaries, or (iii) massive binary evolution models are lacking
some physical process allowing them to produce short pre-
collapse orbits which would result in faster ejection veloci-
ties if disrupted.

– We find a mild trend for runaway stars to be faster and more
common at lower metallicity, caused by the fact that stars are
on average smaller and the reduced effects of stellar winds.
Gaia should in principle be able to test these predictions
by identifying the fastest runaway stars in the Magellanic
clouds. In our most metal poor simulations for Z = 0.0002,
which may have relevance for the earliest stellar populations,

we find five times more runaway stars with masses larger
than 7.5 M⊙, if we keep all other assumptions for the ini-
tial distributions the same. The sensitivity of our results to
the assumed metallicity also suggests that binary evolution
might create systematic trends in the stellar feedback with
metallicity and galaxy size.

– Both runaways and walkaways typically accrete mass from
their companion prior to the disruption, This is especially
true for those more massive than 7.5 M⊙ at the time they
are ejected. They typically also gain angular momentum and
nuclearly processed material in the process. These features
might make walkaway stars recognizable as binary products
even if they do not stand out from a kinematic point of view.
Their further evolution and structure may also differ from
that of non-rotating single stars, as has been speculated in
the context of the LBV phenomenon.

– We suggest that the high mass tail of the runaway mass
function could provide insight on the formation mechanism
of black holes from the core-collapse of the primary star,
and in particular on whether these receive a “velocity” or
a “momentum” kick. So far, studies have focused on the sur-
viving X-ray binaries, but we propose using their unbound
counterparts since they are more common and should be
identified by Gaia.

– By ejecting secondaries, the disruption of binaries can
enhance the role of massive stars as feedback engines. The
average distance they travel, calculated neglecting any exter-
nal potential, is of order &100 pc, and up to &500 pc if
considering only the faster runaways. These values suggest
that both runaways and walkaways can exit the dust cloud
embedding their birth location, thus changing the escape
fraction for their ionizing radiation. If they are massive
enough, the ejected star will explode far from other stars and
gas overdensities, with potential implications for the driving
of turbulence and star formation.

The results for each parameter variation are available online12

and at CDS link.
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Appendix A: Comparison to selected previous

population studies

Various earlier studies have simulated the production of binaries
containing a compact object and/or ejecting runaway stars. We
briefly discuss a selection that focuses on estimates for unbound
companions and comment briefly on how our findings compare.

De Donder et al. (1997) presented an extensive binary
evolution study discussing predictions for the O-type runaways
as well as the systems that remain bound. They consider a variety
of assumptions for the initial distributions and the uncertain
physical parameters concerning the efficiency of mass trans-
fer, angular momentum loss and the common envelope ejection.
Generally, we find that our results agree well. They find that
16–23% of systems remain bound after the SN explosion of the
primary, which is consistent with our findings 1 − D = 14+22

−10%.
They find that between 6% and 27% of the O-type are unbound
former companions that are now single, which is also agree-
ment with our walkaway fraction (one but last column in their
Table 1).

The find that 2–7% of the O-type stars have velocities large
than 30 km s−1 (final column in their Table 1), which is slightly
larger but still consistent with what we find. We expect that this
difference may be in part the result of a difference the treat-
ment of mass transfer and angular momentum loss, although the
combined effect of further differences in our assumptions will
also contribute. Their default assumption is that a fixed frac-
tion βRLOF = 0.5 of the material transferred during Roche-lobe
overflow leaves the system through the outer L2 Lagrangian
point forming a ring around the binary system, which leads to
larger angular momentum loss, shrinking the orbit further. This
is somewhat similar to our model variation where we assumed
γRLOF = γdisk although our results cannot be compared one to
one, since we adopt a different, physically motivate, assumption
for the mass transfer efficiency. In our simulations, we find that
this assumption is not increasing the number of runaway stars,
because the fraction of system that merges increases too.

Eldridge et al. (2011) perform population synthesis sim-
ulations with a detailed stellar evolutionary evolutionary code
to investigate O and early B type runaway stars. Their primary
aim is the predict the spatial distribution of different types of
CCSN and gamma-ray bursts. They find a disruption fraction,
D = 80%, in good agreement with our results, D = 86+10

−22%.
In their study, they use the term runaway to refer to all unbound
companions with velocities larger than 5 km s−1, which encloses
the large majority of what we refer to as walkaway stars, but
they also quote estimates for stars faster than 30 km s−1 which
corresponds to our definition of runaway stars. They predict a
walkaway (runaway) fraction of 2.2% (0.5%) for O type stars
in their simulations for Z = 0.02. For comparison, for stars
more massive than 15 M⊙, which roughly corresponds to O type
stars, we estimate a walkaway (runaway) fraction of 10+4.7

−8.5%
(0.5+1.0

−0.3%). Our runaway fraction agrees very well. We find a
somewhat larger walkaway fraction, but we consider this a fairly
good agreement, given the uncertainties and differences in def-
initions that we have adopted. Also the distance they estimate
that ejected stars can reach is in good agreement with our pre-
dictions and they also note that the majority unbound com-
panions accrete mass from their companions before the first
core-collapse. Our predictions for the velocities of bound sys-
tems are slightly lower compared to Eldridge et al. (2011): the
vast majority of our bound post-core-collapse systems are slower
than 30 km s−1, and there is a high-velocity tail barely extending
beyond about 100 km s−1.

Very recently, Boubert & Evans (2018) published a study
investigating the hypothesis that Be stars are products of mass
transfer in binary systems (e.g., Pols et al. 1991; de Mink et al.
2013). They compare the kinematics of a flux-limited sample
of Galactic Be stars with binary population synthesis simula-
tions. These simulations were obtained with a different version
of the binary evolutionary code that we use. Generally, our find-
ings are in agreement, despite the minor differences in the model
assumptions. They also find a large fraction of unbound compan-
ions, many of which are rapidly rotating and moving at velocities
slower than 30 km s−1 (e.g., their Figs. 6 and 7b), in good agree-
ment with our Fig. 7. They also find that the natal kick distri-
bution does not greatly affect the resulting velocity distribution
and/or the runaway fraction and that the maximum distance trav-
eled by ejected Be stars is likely to be smaller than the vertical
scale height of the thin disk, in agreement with our findings.

We find some disagreement in the provided explanations of
the theoretical results. For example, the authors state in their
Sect. 3.2 that that mass transfer shrinks the orbit and acceler-
ates the secondary star. While this the case initially, upon the
onset of mass transfer, we find that the orbit generally widens
after the reversal of the mass ratio. The widening and the inver-
sion of the mass ratio both slow down the orbital velocity as we
verified both analytically Sect. 4 and by detailed inspection of
representative example systems, e.g., Sect. 3. In their Sect. 3.3,
they state that “whether a binary is disrupted by a supernova is
principally determined by whether the primary loses more than
half its mass (Blaauw 1961), and the kick on the compact object
is only a second order effect”. We find instead that mass loss dur-
ing the explosion is rarely responsible for unbinding of a binary
system that can produce a runaway star. The amount of mass lost
needs to exceed half of the total mass of the system (and not half
of the primary star), which is rarely achieved in our simulations.
This is because the CC progenitor loses most of its mass dur-
ing the preceding mass transfer phase. We find that the Blaauw
kick due to rapid mass loss is only important of initially very
wide binaries, in which the two stars have not exchanged mass
prior to CC. This difference may be in part due to the differences
in the assumptions for the range of initial orbital periods. The
authors consider systems with initial orbital periods up to 1010

days in their simulations, which means that the majority of their
progenitors should effectively evolve as single stars. We consider
instead systems up to 105.5 days, which is more appropriate for
the more massive progenitors that we are interested in.

Many further studies investigated the populations of bina-
ries in the context of the formation of X-ray binaries and binary
neutron stars and black holes. Providing a complete overview
and detailed comparison is beyond our present scope. We dis-
cuss below a comparison to a limited set of studies.

Brandt & Podsiadlowski (1995) focus on binary systems
remaining bound at the first CC, with the aim of understanding
the effects of natal kicks on X-ray binaries. They estimate a dis-
ruption fraction in their calculations ofD ≃ 73−81% (depending
on the companion mass), in good agreement with our results.

Kalogera (1996) presented a similar analytic study of the
effects of natal kicks on the systemic velocities of X-ray bina-
ries. Our population synthesis results agree in predicting sys-
temic velocities of bound post-CC systems generally lower than
the pre-explosion orbital velocity, except with σkick ≫ vpre−CC

orb
(corresponding to large ξ in the notation used by Kalogera 1996).

Fryer et al. (1998) investigated the impact of NS natal kicks
on the formation of NS X-ray binaries and NS-NS binaries, but
also present results for the unbound companions. Assuming a
bimodal kick distribution, they find that most O/B-type ejected
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companion move slower than about 50 km s−1, consistent with
our findings.

Dray et al. (2005) focus on high-mass runaways, which
become Wolf-Rayet stars during or before their post-disruption
evolution. They argue in favor of significant BH kick amplitudes
to explain the rarity of BH-WR binaries and the observed veloc-
ity distribution of WR runaways. We reach similar conclusions
based on our simulations for different assumptions for the BH
kicks. The systemic velocities we find for bound systems are also
in reasonable agreement with those found by Dray et al. (2005)

Recently, Tauris et al. (2017) presented a detailed study of
the evolutionary processes leading to the formation of NS NS
binary systems. They also find that the majority of binaries host-
ing a NS after the first CC have systemic velocities smaller than
∼30 km s−1, in good agreement with the results shown in the left
panel of Fig. 11.

Appendix B: Output files

The outcome of our population synthesis calculations are avail-
able online13 and at CDS link. Each file corresponds to one
parameter variation (see Sects. 2 and 6), and logs the following
information for each binary system where a star goes CC14.

– primary ZAMS, pre-CC, and post-CC (corresponding to the
NS or BH mass if the primary is the star collapsing) masses
in M⊙ units: M1zams, M1preCC, M1postCC;

– secondary ZAMS, pre-CC, and post-CC masses in M⊙ units:
M2zams, M2preCC, M2postCC;

– fallback fraction fb for each star (set to zero for the star that
is not collapsing): fb1, fb2;

– evolutionary stage before and after CC (stellar types
listed according to Hurley et al. 2000): type1preCC,
type1postCC, type2preCC, type2postCC;

– post-CC velocities of the 2 stars in the original frame, in
km s−1: v1postCC, v2postCC;

– pre-CC and post-CC eccentricity (the latter is -1 for mergers
and disrupted systems): e_preCC, e_postCC;

– pre-CC and post-CC separation in R⊙ units (the latter is set to
0 for mergers and disrupted systems): a_preCC, a_postCC;

– ZAMS, pre-CC, and post-CC periods in days: Pzams,
PpreCC, PpostCC;

– kick amplitude in km s−1: v_kick;
– kick direction, with θ angle between the collapsing star

orbital velocity and the kick (see also TT98 for notation):
theta, phi;

13 https://sandbox.zenodo.org/record/262858#

.XJoMiEMo9hH
14 We stop our computations at the first CC event.

– systemic velocity in km s−1: v_sys;
– age of the system at the time of CC in Myr: t_explosion;
– time left in the current evolutionary stage in Myr:
t_remaining;

– time spent by the system with at least one star more massive
than 15 M⊙: duration_*;

– system probability (see below): Prob.
The system probability corresponds to the hyper-volume of the
initial parameter space (MZAMS

1 , qZAMS, PZAMS) represented by
each binary system in our model grid. In other words, the prob-
ability of each system is the statistical weight of the system
seen as sampling point for the initial distributions. To construct
distributions of the output quantities (e.g., those presented in
Figs. 5–11), the properties of each system should be weigh with
the corresponding probability. Similarly, the mean value of a
quantity 〈x〉 (e.g., 〈v〉 in Table 1) should be calculated using:

〈x〉 =
∫

xP(x) dx
∫

P(x) dx
≡

∑

i xiPi
∑

i Pi

, (B.1)

where P is the probability, and the index i runs over all the binary
systems in a population.

To calculate the average distance traveled by stars ejected by
the binary disruption, we use:

〈L〉 ≡ 〈v × ∆t〉

=

∑

i v2postCC × [t_remaining + 0.1 × τMS(M2)] × Pi
∑

i Pi

,

(B.2)

where the second term in squared brackets accounts, albeit in
a simplified way, for the helium core burning duration of the
rejuvenated star.

Appendix C: Observable velocity distribution

Figure C.1 shows the velocity distribution of MS stars ejected by
the disruption of binaries that can be directly compared to obser-
vations provided that (i) the contribution of dynamical ejection
can be separated in the observed sample and (ii) the effects of the
Galactic potential can be neglected, i.e. effectively each ejected
star moves in a straight line at constant velocity for the remain-
ing duration of its MS. This is the same information of Fig. 5, but
each bin is populated considering also the remaining MS lifetime
of the ejected star (τMS).
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Fig. C.1. Velocity distribution of ejected stars, including the finite MS lifetime to populate the bins (see also Fig. 5).
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Fig. C.2. Same as Fig. 5, but using a logarithmic scale for the velocity. The use of a logarithmic scale allows for the display of a wider range of
velocities. A minor peak in the grey histogram can be seen between 100 . vdis/km s−1

. 400, but is absent in the histograms for massive ejected
stars. Such high ejection velocities are reached through a common envelope evolution without accreting mass.
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Appendix D: Pre-collapse distributions

We present in this appendix the pre-CC distribution in
separation, mass of the collapsing star, and mass of the com-
panions for all the binaries with a MS companion to the collaps-
ing star in our fiducial simulation. Similar distributions can be
derived for all our parameter variations from the data files that
will be made available. These distributions can inform studies of
the interaction of the SN shock with the companion star (e.g.,
Wheeler et al. 1975; Liu et al. 2015; Rimoldi et al. 2016; Hirai
et al. 2018).

We show in Fig. D.1 the pre-CC separation distribution. The
colors indicate indicate the minimum mass of the MS compan-
ion (i.e., not of the collapsing star). Roughly speaking, the two
peaks shown in Fig. D.1 correspond to the orbital widening due
to conservative (case A and early case B) and non-conservative
(late case B and case C) mass transfer phase. For all pre-CC
separations shorter than 103 R⊙, the dashed and solid histograms
coincide, indicating that all these binaries have experienced a
direct interaction previously during the evolution.

Figure D.2 shows the mass distribution for the exploding
star and the MS companion (MCC, and M2, respectively), at the
pre-CC stage. The combination of the distributions shown in
Figs. D.2 and D.1, together with the effects of the natal kick dis-
tribution results in the ejection velocities in Fig. 5 which is our
main result.
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Fig. D.1. Pre-CC separation distribution for binaries with a collapsing
star and a main sequence companion. Colors indicate the pre-CC mass
of the MS companion according to the legend. Dashed histograms indi-
cate post-interaction (RLOF or common envelope) binaries. Top panel:
corresponding cumulative distributions.
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Fig. D.2. Pre-CC mass distribution for the exploding star (MCC) and the
companion (M2). We plot all systems where the companion is a MS star
at the time of the explosion, regardless of whether the binary is disrupted
or not. Dashed histograms indicate post-interaction (RLOF or common
envelope) binaries. Top panel: corresponding cumulative distributions.
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