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Chapter 4

Massive Stars and their Supernovae

Friedrich-Karl Thielemann1, Raphael Hirschi2, Matthias Liebendörfer3, and

Roland Diehl4

4.1 Cosmic Significance of Massive Stars

Our understanding of stellar evolution and the final explosive endpoints such as

supernovae or hypernovae or gamma-ray bursts relies on the combination of

a) (magneto-)hydrodynamics

b) engergy generation due to nuclear reactions accomanying composition changes

c) radiation transport

d) thermodynamic properties (such as the equation of state of stellar matter).

Hydrodynamics is essentially embedded within the numerical schemes which im-

plement the physics of processes (b) to (d). In early phases of stellar evolution,

hydrodynamical processes can be approximated by a hydrostatic treatment. Nuclear

energy production (b) includes all nuclear reactions triggered during stellar evolu-

tion and explosive end stages, also among unstable isotopes produced on the way.

Radiation transport (c) covers atomic physics (e.g. opacities) for photon transport,

but also nuclear physics and neutrino nucleon/nucleus interactions in late phases

and core collapse. The thermodynamical treatment (d) addresses the mixture of

ideal gases of photons, electrons/positrons and nuclei/ions. These are fermions and

bosons, in dilute media or at high temperatures their energies can often be approx-

imated by Maxwell-Boltzmann distributions. At very high densities, the nuclear

equation of state is required to relate pressure and density. It exhibits a complex be-

havior, with transitions from individual nuclei to clusters of nucleons with a back-

ground neutron bath, homogeneous phases of nucleons, the emergence of hyperons

and pions up to a possible hadron-quark phase transition.

The detailed treatment of all these ingredients and their combined application

is discussed in more depth in textbooks (Kippenhahn and Weigert, 1994; Maeder,
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2 4 Massive Stars and their Supernovae

2009; Arnett, 1996; Iliadis, 2007), and/or the preceding Chapter (3), where the evo-

lution of low and intermediate mass stars is addressed. That chapter also includes

the stellar structure equations in spherical symmetry and a discussion of opacities

for photon transport. Ch. 8 and 9 (tools for modeling objects and their processes) go

into more detail with regard to modeling hydrodynamics, (convective) instabilities

and energy transport as well as the energy generation due to nuclear reactions and

the determination of the latter. Here we want to focus on the astrophysical aspects,

i.e. a description of the evolution of massive stars and their endpoints with a special

emphasis on the composition of their ejecta (in form of stellar winds during the evo-

lution or of explosive ejecta). Low and intermediate mass stars end their evolution

as AGB stars, finally blowing off a planetary nebula via wind losses and leaving a

white dwarf with an unburned C and O composition. Massive stars evolve beyond

this point and experience all stellar burning stages from H over He, C, Ne, O and

Si-burning up to core collapse and explosive endstages. In this chapter we want to

discuss the nucleosynthesis processes involved and the production of radioactive

nuclei5 in more detail. This includes all hydrostatic nuclear-burning stages expe-

rienced by massive stars, and explosive burning stages when a shock wave moves

outward after a successful explosion was initiated, but also final wind ejecta from

the hot proto-neutron star which emerged in the collapse and explosion phase. All

these ejecta will enter the interstellar medium in galaxies, initially appearing as gas

and dust in wind bubbles and supernova remnants, later determining the evolution of

the larger-scale gas composition. The interstellar gas composition will evolve with

time, and the composition of newly formed stars will witness this composition at

the time of their formation.

Massive stars play an important role as contributors to the gas composition of

the interstellar medium via wind losses or explosions. In astronomical terms they

are the progenitors of blue supergiants (BSG), red supergiants (RSG), Wolf-Rayet

(WR) and luminous blue variable (LBV) stars (Maeder and Meynet, 2010). At the

end of their life, they explode as core collapse supernovae (ccSNe), observed as

SNe of type II or Ib,c (Woosley and Bloom, 2006) and also as long soft gamma-

ray bursts (GRBs Piran (2004)). After collapse, their cores become neutron stars or

black holes. They are one of the main sites for nucleosynthesis, which takes place

during both pre-SN (hydrostatic) burning stages and during explosive burning. A

weak s process occurs during core He- (and C-) burning (The et al, 2007; El Eid et al,

2009) and the r process probably occurs during the explosion (Qian and Woosley,

1996). These s(low) and r(apid) neutron capture processes are mainly responsible

for the heavy nuclei beyong the Fe-group. Radioactive isotopes like 26Al and 60Fe

detected by the INTEGRAL satellite are produced by massive stars, plus many more

radioactivities from the final explosive ejecta (like e.g. 44Ti, 56Ni, 56Co etc., see

Sect. 4.4.2 and 4.5). Ch. 2 and 3 discussed also many long-lived heavy nuclei beyond

Fe with half-lives larger than 107 and up to 1011years. As massive stars are probably

not the origin of heavy s-process nuclei (see Ch. 3), we will address here those

nuclei which are clearly identified with the r process ( 232Th, 1.4× 1010y, 235U,

5 We focus especially on long-lived radioactivities which can be observed with gamma-ray satel-

lites, and refractory isotopes which can be observed in dust condensations included in meteorites.
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7× 108y, 236U, 2.3× 107y, 238U, 4.5× 109y, 244Pu, 8× 107y, 247Cm, 1.6× 107y)

and where especially 232Th and 238U, with half-lives comparable to the age of the

Galaxy/Universe, can also serve as chronometers.

Massive stars, even though they are much less numerous than low mass stars,

contribute significantly (about two thirds) to the integrated luminosity of galaxies.

At high redshifts z, or low metallicities Z, they are even more important drivers of

characteristic phenomena and evolution. The first stars formed are thought to be

all massive or even very massive, and to be the cause of the re-ionisation of the

universe. As discussed above, if the final core collapse leads to a black hole, the

endpoint of this evolution can be the origin of the subset of (long, soft) gamma ray

bursts (GRBs). GRBs are the new standard candles for cosmology at high redshifts.

They are visible from higher redshifts than usual SNe (of type I or II) are, and thus

will impose tighter constraints on cosmological models. Massive stars with their

large energy output can be seen out to significant (cosmological) distances – either

directly through their thermal photospheric emission, or indirectly through the im-

pact on their surroundings (ionization, or heated dust). In their collapsar and GRB

extremes, emission is beamed into a jet, which makes them visible even at greater

distances. This can also give us information on the star formation history at a very

early age of the universe (z >10) beyond the reach of galaxy observations. Closer to

home, recent surveys of metal poor halo stars provide a rich variety of constraints

for the early chemical evolution of our Galaxy and thus the nucleosynthesis ejecta

(astro-archeology).

4.2 Hydrostatic and Explosive Burning in Massive Stars

Following the motivation for studying massive stars in the previous section, we now

discuss the ingredients for their modeling. Thermonuclear energy generation is one

of the key aspects: It shapes the interior structure of the star, thus its evolution-

ary time scales, and the generation of new chemical elements and nuclei. Without

understanding these, the feedback from massive stars as it determines the evolu-

tion of galaxies cannot be understood in astrophysical terms.6 Thermonuclear burn-

ing, nuclear energy generation and resulting nuclear abundances are determined by

thermonuclear reactions and weak interactions. The treatment of the required nu-

clear/plasma physics, and a detailed technical description of reaction rates, their

determination and the essential features of composition changes and reaction net-

works is presented in Ch. 9. Here we want to discuss which types of reactions are

involved specifically in the evolution of massive stars and their catastrophic end

stages. Nuclear burning can in general be classified into two categories:

(1)hydrostatic burning stages on timescales dictated by stellar energy loss

(2)explosive burning due to hydrodynamics of the specific event.

6 Empirical descriptions from observations of a multitude of galaxies are often utilized to substitute

such astrophysical models in cosmological simulations.
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Massive stars (as opposed to low and intermediate mass stars) are the ones which

experience explosive burning (2) as a natural outcome at the end of their evolution

and they undergo more extended hydrostatic burning stages (1) than their low- and

intermediate-mass cousins. Therefore, we want to address some of these features

here in a general way, before describing the evolution and explosion in more detail.

The important ingredients for describing nuclear burning and the resulting com-

position changes (i.e. nucleosynthesis) are (i) strong-interaction cross sections and

photodisintegrations, (ii) weak interactions related to decay half-lives, electron or

positron captures, and finally (iii) neutrino-induced reactions. They will now be dis-

cussed7.

4.2.1 Nuclear Burning During Hydrostatic Stellar Evolution

Hydrostatic burning stages are characterized by temperature thresholds, permit-

ting thermal Maxwell-Boltzmann distributions of (charged) particles (nuclei) to

penetrate increasingly larger Coulomb barriers of electrostatic repulsion. These

are (two body) reactions as discussed in Equ. 9.6 and 9.9 of Ch. 9, represent-

ing terms of the type ir j in the network equation (9.1). H-burning converts 1H

into 4He via pp-chains or the CNO-cycles. The simplest pp-chain is initiated by
1H(p,e+ν)2H(p,γ)3He and completed by 3He(3He,2p)4He. The dominant CNO-

cycle chain 12C(p,γ)13N(e+ν)13C(p,γ)14N(p,γ)15O(e+ν)15N(p,α)12C is controlled

by the slowest reaction 14N(p,γ)15O. The major reactions in He-burning are the

3α- reaction 4He(2α,γ)12C and 12C(α,γ)16O. The 3α- reaction, being essentially

a sequence of two two-body reactions with an extremely short-lived intermediate

nucleus 8Be, is an example for the term ir̂ j in Equ. 9.1, which includes the product

of three abundances. The H- and He-burning stages are also encountered in low and

intermediate mass stars, leaving white dwarfs as central objects. They are discussed

in much more detail with all minor reaction pathways in Ch. 3. Massive stars, the

subject of the present Chapter, undergo further burning stages up to those involving

the production of Fe-group nuclei. Table 4.1 lists these burning stages and their typ-

ical central densities and temperatures, their duration and the typical luminosity in

photons (from Woosley and Weaver (1995)), which involve the reaction types given

below. For further details see Sect. 4.3.

• Heavy-ion fusion reactions: In C-burning the reaction 12C(12C,α)20Ne domi-

nates, in O-burning it is 16O(16O,α)28Si. The corresponding reaction rates ir j

(after integrating over a Maxwell-Boltzmann distribution of targets and projec-

tiles) have the form given in Equ. 9.9 of Ch. 9 and contribute to the second term

in Equ. 9.1. Reactions going beyond these key reactions are provided in tables

4.2 and 4.3. Further features as well as the status of nuclear cross sections are

7 A review of the sources for this microphysics input is given for (i) in Ch. 9 and for (iii) in Ch. 8.

We will review some of the required weak interaction rates (ii) in the subsections on late phases of

stellar evolution / core collapse and the description of the explosion.
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Table 4.1 Burning stages of a 20M⊙ star

ρc Tc τ Lphot

Fuel (g cm−3) (109 K) (yr) (erg s−1)

Hydrogen 5.6(0) 0.04 1.0(7) 2.7(38)

Helium 9.4(2) 0.19 9.5(5) 5.3(38)

Carbon 2.7(5) 0.81 3.0(2) 4.3(38)

Neon 4.0(6) 1.70 3.8(-1) 4.4(38)

Oxygen 6.0(6) 2.10 5.0(-1) 4.4(38)

Silicon 4.9(7) 3.70 2 days 4.4(38)

Table 4.2 Major Reactions in Carbon Burning

(a) basic energy generation
12C(12C,α)20Ne 12C(12C,p)23Na
23Na(p,α)20Ne 23Na(p,γ)24Mg 12C(α,γ)16O

(b) fluxes > 10−2×(a)
20Ne(α,γ)24Mg 23Na(α ,p)26Mg(p,γ)27Al
20Ne(n,γ)21Ne(p,γ)22Na (e+ν)22Ne(α ,n)25Mg(n,γ)26Mg
21Ne(α ,n)24Mg 22Ne(p,γ)23Na 25Mg(p,γ)26Al(e+ν)26Mg

(c) low temperature, high density burning
12C(p,γ)13N(e+ν)13C(α ,n)16O(α,γ)20Ne
24Mg(p,γ)25Al(e+ν)25Mg
21Ne(n,γ)22Ne(n,γ)23Ne(e−ν̄)23Na(n,γ)24Na(e−ν)24Mg + s processing

discussed in recent reviews on hydrostatic burning stages (Haxton et al, 2006;

Buchmann and Barnes, 2006; Costantini et al, 2009; Wiescher et al, 2010) and

Ch. 9.

• Photo-disintegrations: The alternative to fusion reactions are photodisintegra-

tions which start to play a role at sufficiently high temperatures T when 30kT ≈ Q

(the Q-value or energy release of the inverse capture reaction). This ensures the

existence of photons with energies >Q in the Planck distribution and leads to

Ne-Burning [20Ne(γ,α)16O, 20Ne(α,γ)24Mg] at T>1.5× 109K (preceding O-

burning) due to a small Q-value of ≈4 MeV and Si-burning at temperatures in

excess of 3×109K [initiated like Ne-burning by photodisintegrations]. Such pho-

todisintegrations (after integrating over a thermal (Planck) distribution of photons

at temperature T ) have the form given in equation (9.4) of Ch. 9 and act similar to

decays with a temperature-dependent decay constant, contributing (like decays)

to the first term iλ j in equation (9.1). In table 4.4 we provide some of the main

reactions of Ne-burning, which is initiated by the photodisintegration of Ne.

• Electron capture reactions: Massive stellar cores eventually lead to electron-gas

degeneracy, i.e. the Pauli exclusion principle for fermions determines the pop-

ulation of energy states rather than the Boltzmann statistics, valid only for low

densities / high temperatures. The Fermi energy of electrons is
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Table 4.3 Major Reactions in Oxygen Burning

(a) basic energy generation
16O(16O,α)28Si 16O(12O,p)31P 16O(16O,n)31S(e+ν)31P
31P(p,α)28Si(α,γ)32S
28Si(γ,α)24Mg(α ,p)27Al(α ,p)30Si
32S(n,γ)33S(n,α)30Si(α,γ)34S
28Si(n,γ)29Si(α ,n)32S(α ,p)35Cl
29Si(p,γ)30P(e+ν)30Si

electron captures
33S(e−,ν)33P(p,n)33S
35Cl(e−,ν)35S(p,n)35Cl

(b) high temperature burning
32S(α,γ)36Ar(α ,p)39K
36Ar(n,γ)37Ar(e+ν)37Cl
35Cl(γ ,p)34S(α,γ)38Ar(p,γ)39K(p,γ)40Ca
35Cl(e−,ν)35S(γ ,p)34S
38Ar(α,γ)42Ca(α,γ)46Ti
42Ca(α ,p)45Sc(p,γ)46Ti

(c) low temperature, high density burning
31P(e−ν)31S 31P(n,γ)32P
32S(e−,ν)32P(p,n)32S
33P(p,α)30Si

Table 4.4 Major Reactions in Neon Burning

(a) basic energy generation
20Ne(γ,α)16O 20Ne(α,γ)24Mg(α,γ)28Si

(b) fluxes > 10−2×(a)
23Na(p,α)20Ne 23Na(α ,p)26Mg(α ,n)29Si

20Ne(n,γ)21Ne(α ,n)24Mg(n,γ)25Mg(α ,n)28Si
28Si(n,γ)29Si(n,γ)30Si
24Mg(α ,p)27Al(α ,p)30Si
26Mg(p,γ)27Al(n,γ)28Al(e−ν̄)28Si

(c) low temperature, high density burning
22Ne(α ,n)25Mg(n,γ)26Mg(n,γ)27Mg(e−ν̄)27Al
22Ne left from prior neutron-rich carbon burning
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EF = h̄2/2me(3π2)2/3n
2/3
e (4.1)

Here ne is the density of the electron gas ne = ρNAYe, ρ denotes the matter density

and NA Avogadro’s number. In late stages of O-burning, in Si-burning (and dur-

ing the later collapse stage) this Fermi energy of (degenerate) electrons, increases

to the level of nuclear energies (MeV). In a neutral, completely ionized plasma,

the electron abundance Ye is equal to the total proton abundance Ye = ∑i ZiYi

(summing over all abundances of nuclei, including protons/hydrogen) and lim-

ited by the extreme values 0 (only neutrons) and 1 (only protons) with typical

values during stellar evolution close to 0.5 or slightly below. Such conditions

permit electron captures on protons and nuclei, if the negative Q-value of the

reaction can be overcome by the electron (Fermi) energy. The general features

for typical conditions are presented in table 4.5, example reactions were already

given in table 4.3. Thus, at sufficiently high densities, electron captures - which

Table 4.5 Electron Capture

p+ e− → νe +n or p(e−,νe)n
(A,Z)+ e− → νe +(A,Z −1) or AZ(e−,νe)

AZ-1

EF (ρYe = 107gcm−3)=0.75 MeV

EF (ρYe = 109gcm−3)=4.70 MeV

are energetically prohibited - can become possible and lead to an enhanced neu-

tronization of the astrophysical plasma, in addition to the role of beta-decays and

electron captures with positive Q-values (Nomoto and Hashimoto, 1988). In de-

generate Ne-O-Mg cores (after core C-burning of stars with 8 < M/M⊙ < 10),

electron captures on 20Ne and 24Mg cause a loss of degeneracy pressure support

and introduce a collapse rather than only a contraction, which combines all fur-

ther burning stages on a short collapse time scale (Nomoto, 1987). In Si-burning

of more massive stars, electron capture on intermediate mass and Fe-group nuclei

becomes highly important and determines the neutronization (Ye) of the central

core. As discussed in Ch. 9, such rates contribute to the one-body reaction terms

iλ j in Equ. 9.1 with the effective decay constants in Equ. 9.5 being a function of

T and ne = ρNAYe, the electron number density.

Table 4.6 Neutrino Reactions

νe +n ↔ p+ e− or n(νe,e
−)p

ν̄e + p ↔ n+ e+ or p((ν̄e,e
+)n

νe +(Z,A)↔ (Z +1,A)+ e− or AZ(νe,e
−)AZ+1

ν̄e +(Z,A)↔ (Z −1,A)+ e+ or AZ(ν̄e,e
+)AZ-1

(Z,A)+ν ↔ ν +(Z,A)∗
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Neutrino cross section on nucleons, nuclei and electrons are minute, by com-

parison to above reactions. It therefore requires high densities of the order

ρ > 1012g cm−3 that also the inverse process to electron/positron capture (neu-

trino capture) can occur on relevant timescales. The same is true for other pro-

cesses such as e.g. inelastic scattering, leaving a nucleus in an excited state which

can emit nucleons and alpha particles. Such neutrino-induced reactions can be

expressed in a similar way as photon and electron captures, integrating now over

the corresponding neutrino distribution. The latter is, however, not necessarily in

thermal equilibrium and not just a function of temperature and neutrino densi-

ties. Neutrino distributions are rather determined by (neutrino) radiation trans-

port calculations (see Ch. 8, where also other neutrino scattering processes are

discussed).

All the reactions presented above and occurring at different times in the sequence

of burning stages, contribute to the three types of terms in the reaction network

equation (Equ.9.1 in Ch. 9). If one is interested to show how nuclear abundances Yi

enter in this set of equations, it can also be written in the form8

dYi

dt
= ∑

j

Pi
j λ jYj +∑

j,k

Pi
j,k ρNA < j,k > YjYk + ∑

j,k,l

Pi
j,k,l ρ2N2

A < j,k, l > YjYkYl .

(4.2)

Core Si-burning, the final burning stage during stellar evolution, which is initi-

ated by the photodisintegration 28Si(γ,α)24Mg close to 3× 109 K - and followed

by a large number of fusion and photodisintegration reactions - ends with nuclear

reactions in a complete chemical equilibrium9 (nuclear statistical equilibrium, NSE)

and an abundance distribution centered around Fe (as discussed in Ch. 9, Equ. 9.14

and 9.15). These temperatures permit photodisintegrations with typical Q-values of

8-10 MeV as well as the penetration of Coulomb barriers in capture reaction. In

such an NSE the abundance of each nucleus Yi is only dependent on temperature T ,

density ρ , its nuclear binding energy Bi, and via charge conservation on ∑i ZiYi =Ye.

Ye is altered by weak interactions on longer timescales. A quasi-equilibrium (QSE)

can occur, if localized nuclear mass regions are in equilibrium with the background

of free neutrons, protons and α particles, but offset from other regions of nuclei and

thus their NSE values (Hix and Thielemann, 1996, 1999b; Hix et al, 2007). Different

quasi-equilibrium regions are usually separated from each other by slow reactions

8 The formal difference to Equ. 9.1 is that one does not sum here over the reactions but rather

over all reaction partners (see also the equation following Table 3.2 in Ch. 3). However, in total,

all the terms which appear are identical. Due to the different summation indices, the P’s have a

slightly different notation, λ ’s denote decay rates called L in Ch. 9, and < j,k > correspond to

< σ∗v > of reactions between nuclei j and k, while < j,k, l > includes a similar expression for

three-body reactions (Nomoto et al, 1985). A survey of computational methods to solve nuclear

networks is given in Hix and Thielemann (1999a); Timmes (1999). (Like for electron abundances

Ye, the abundances Yi in Eq.(4.2) are related to number densities ni = ρNAYi and mass fractions of

the corresponding nuclei via Xi = AiYi, where Ai is the mass number of nucleus i and ∑Xi = 1.)
9 all strong (thermonuclear) and photodisintegration reactions are equilibrized, while weak inter-

action reactions, changing Ye, may occur on longer timescales.



4.2 Hydrostatic and Explosive Burning in Massive Stars 9

with typically small Q-values. Such boundaries between QSE groups, which are

due to slow reactions, can be related to neutron or proton shell closures, like e.g.

Z = N = 20, separating the Si- and Fe-groups in early phases of Si-burning.

All reactions discussed above, occurring during all stellar burning stages, are

essentially related to nuclei from H to the Fe-group, and not much beyond.

• Neutron capture processes: Through neutron capture reactions, also during reg-

ular stellar evolution, there is a chance to produce heavier nuclei. During core

and shell He-burning specific α-induced reactions can liberate neutrons which

are responsible for the slow neutron capture process (s process). A major neutron

source is the reaction 22Ne(α,n)25Mg, with 22Ne being produced via succesive

α-captures on the H-burning CNO product 14N(α,γ)18F(β+)18O(α,γ)22Ne. If

occurring, the mixing of 12C into H-burning shells can produce an even stronger

neutron source 13C(α,n)16O via 12C(p,γ)13N(β+)13C. In massive, rotating, low

metallicity stars, mixing can lead to the production of primary 14N and 22Ne, i.e.

a neutron source which does not reflect the initial metallicity of 14N in the CNO-

cycle, and can thus be much stronger. Ch. 3 discusses in full detail the strong

s process via a combination of 13C and 22Ne in He-shell flashes of low and inter-

mediate mass stars. In a similar way mixing processes can also occur in massive

stars due to rotation or convective instabilities. Without such mixing processes

only secondary (metallicity-dependent) 22Ne is available for 22Ne(α,n)25Mg and

core He-burning as well as shell C-burning lead to a weak s process (The et al,

2007). The s process can in principle form elements up to Pb and Bi through a se-

ries of neutron captures and β−-decays, starting on existing heavy nuclei around

Fe (Käppeler and Mengoni, 2006). Weak s processing, based on secondary 22Ne,

does not proceed beyond mass numbers of A = 80−90. The production of heav-

ier nuclei is possible in massive stars if primary 14N and 22Ne are available.

4.2.2 Explosive Burning

Many of the hydrostatic nuclear-burning processes occur also under explosive con-

ditions at higher temperatures and on shorter timescales (see Fig.4.1), when often

the β -decay half-lives are longer than the explosive timescales, producing signif-

icant abundances of unstable isotopes as burning proceeds. This requires in gen-

eral the additional knowledge of nuclear reactions for and among unstable nu-

clei. The fuels for explosive nucleosynthesis consist mainly of N=Z nuclei like
12C, 16O, 20Ne, 24Mg, or 28Si (the ashes of prior hydrostatic burning), resulting

in heavier nuclei, again with N≈Z. At high densities also electron captures on nu-

clei e−+A Z →A Z-1+ν can occur at substantial rates due to energetic, degenerate

electrons when Fermi energies are high, as already discussed for late hydrostatic

burning stages.

Explosive Si-burning differs strongly from its hydrostatic counterpart and can

be divided into three different regimes: (i) incomplete Si-burning and complete Si-

burning with either (ii) a normal (high density, low entropy) or (iii) an α-rich (low
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Fig. 4.1 Burning timescales in (log10) seconds for fuel exhaustion of He-, C-, and O-burning (top)

and Ne- and Si-burning (buttom), as a function of temperature. Density-dependent timescales are

labeled with a chosen typical density (in g cm−3). They scale with 1/ρ for C- and O-burning

and 1/ρ2 for He-burning. Ne- and Si-burning, initiated by photodisintegrations, are not density-

dependent. The almost constant He-burning timescale beyond T9=T/109K=1 permits efficient de-

struction on explosive timescales only for high densities.
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density, high entropy) freeze-out of charged-particle reactions during cooling from

NSE. At initially-high temperatures or during a normal freeze-out, the abundances

remain in a full NSE. The full NSE can break up in smaller equilibrium clusters

(quasi-equilibrium, QSE), for a detailed discussion see Hix and Thielemann (1996,

1999b); Hix et al (2007). An example for such QSE-bevavior is an α-rich freeze-out,

caused by the inability of the 3α- reaction 4He(2α,γ)12C, and the 4He(αn,γ)9Be

reaction to keep light nuclei like n, p, and 4He, and nuclei beyond A=12 in an NSE

during declining temperatures, when densities are low. This causes a large α-particle

abundance after freeze-out of nuclear reactions. This effect, most pronounced for

core collapse supernovae, depends on the entropy of the reaction environment, being

proportional to T 3/ρ in a radiation dominated plasma (see Fig. 4.2).

10

W7(SN Ia)

normal freeze-out

incomplete

burning

alpha-rich freeze-out

core collape SNe

Fig. 4.2 Final results of explosive Si-burning as a function of maximum temperatures and densi-

ties attained in explosions before adiabatic expansion. For temperatures in excess of 5×109K any

fuel previously existing is photodisintegrated into nucleons and α particles before re-assembling

in the expansion. For high densities this is described by a full NSE with an Fe-group composi-

tion, favoring nuclei with maximum binding energies and proton/nucleon ratios equal to Ye. For

lower densities the NSE breaks into local equilibrium groups (quasi-equilibrium, QSE) with group

boundaries determined by reactions with an insufficiently fast reaction stream. Alpha-rich freeze-

out (insufficient conversion of α particles into nuclei beyond carbon) is such a QSE-behavior. Lines

with 1% and 10% remaining α-particle mass fraction are indicated as well as typical conditions

for mass zones in type Ia and core-collapse supernovae.
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r-process nucleosynthesis (rapid neutron capture) relates to environments of ex-

plosive Si-burning, either with low or high entropies, where matter experiences a

normal or α-rich freeze-out. The requirement of a neutron to seed-nuclei ratio of

10 to 150 after freeze-out of charged particle reactions10 translates into Ye=0.12-0.3

for a normal freeze-out. For a moderate Ye>0.40 an extremely α-rich freeze-out is

needed (see the disussion in Section 4.4). Under these conditions the large mass

fraction in 4He (with N = Z) permits ratios of remaining free neutrons to (small)

abundances of heavier seed nuclei, which are sufficiently high to attain r-process

conditions. In many cases QSE-groups of neutron captures and photodisintegra-

tions are formed in the isotopic chains of heavy elements during the operation of the

r process.

4.3 Evolution of Massive Stars up to Core Collapse

In Section 4.2 we have discussed nuclear burning processes in detail, including also

individual reactions which are of relevance during the evolution of massive stars.

This relates to the main focus of this book, the production of (radioactive) nuclei

in astrophysical environments. In the present section we will discuss the physics

of stellar evolution and major related observational features; but we refer to review

articles or textbooks for technical descriptions of treatments of mass, energy, and

momentum conservations equations as well as energy transport (via radiation or

convective motions) (Maeder, 2009; Maeder and Meynet, 2010; Heger et al, 2003;

Limongi et al, 2000; Limongi and Chieffi, 2003, 2006; Ohkubo et al, 2008; El Eid

et al, 2009) (but see also the hydrostatic stellar struture / evolution equations in

spherical symmetry, as presented in Ch. 3). Stellar-evolution calculations as dis-

cussed here are based on the Geneva code of A. Maeder and G. Meynet and their

students (Maeder, 2009; Maeder and Meynet, 2010). This numerical implementa-

tion of stellar evolution includes (i) an adaptative reaction network for the advanced

burning stages, which is capable to follow the detailed evolution of Ye and a large set

of nuclei; (ii) a discretization of the stellar-structure equations, modified in order to

damp instabilities occurring during the advanced stages of evolution; (iii) the treat-

ment of dynamical shear in addition to the other mixing processes (such as, e.g.,

horizontal turbulence, secular shear and meridional circulation); and (iv) the treat-

ment of convection as a diffusive process from O-burning onwards. This allows to

follow the evolution of massive stars from their birth until the stage of Si-burning,

including all nuclear burning stages discussed in Sect. 4.2, for a wide range of initial

masses, metallicities and stellar rotation. Here the treatment of rotation and mixing

effects still utilizes methods based on spherical symmetry. Full multi-dimensional

calculations of mixing processes during stellar evolution have recently been estab-

lished (Meakin and Arnett, 2007; Arnett et al, 2009) and might open up a new era

for our understanding of the evolution of stars.

10 Such neutron/seed ratio is required in order to produce all, including the heaviest, r-process

nuclei via neutron capture from seed nuclei at their abundances before freeze-out.
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4.3.1 Stellar Evolution with Rotation

The evolution of all stars (including massive stars discussed here) is initiated by

core H-burning, during which the star is found on the so-called main sequence

(MS) in the Hertzsprung-Russell (HR) diagram, which relates the stellar luminos-

ity to the stellar surface temperature (color). The observational appearance of a star

after the completion of core H-burning is affected by the fact that the H-burning

region continues to move outward as a burning shell. The He-core contracts and

ignites core He-burning in the center, which produces mainly C and O. The star’s

trajectory in the HR diagram leaves the main sequence, and its radius increases

due to the increased radiation pressure. Depending on the resulting surface temper-

ature it becomes a blue or red supergiant (BSG or RSG). Radiation pressure can

rise to such extreme values that stars (more massive than 20-30 M⊙) blow off their

outer parts through strong stellar winds of velocities up to 2000 km s−1, exposing

the more-interior parts of the star, the helium (or in some cases, the carbon) shell.

Such a Wolf-Rayet (WR) star loses between 10−6 and a few times 10−5 M⊙ per

year, in comparison to our Sun losing 10−14 of its M⊙ per year through its solar

wind. For non-rotating stars, the transition to the WR phase appears through the so-

called Luminous Blue Variable stars (LBVs). LBVs are massive, intrinsically bright

stars which display different scales of light and color variability, ranging from rapid

microvariations to rare outbreaks of catastrophic mass loss. They represent a very

short-lived (perhaps as little as 40,000 years) strongly mass-losing phase in the evo-

lution of massive stars, during which they undergo deep erosion of the outer lay-

ers before they enter the Wolf-Rayet phase. For rotating stars, the WR phase may

start before the star ends its main sequence, since rotation enhances mass loss and

rotation-induced mixing further reduces the hydrogen content at the surface (Meynet

and Maeder, 2003, 2005). In the following we discuss how these evolutionary phases

depend on the initial properties of a star. Late burning phases progress much more

rapidly than the H burning of the main sequence state. This is because the carriers of

the star’s energy loss, which drives the evolution of a star, change from photons to

neutrinos, which escape immediately at the densities discussed here, while photons

undergo a multitude of scattering processes until they finally escape at the photo-

sphere11. The characteristics of late-burning stages are essentially identified by the

size of a star’s C+O-core after core He-burning.

The evolution of stars is governed mainly by three initial parameters: (1) its mass

M, (2) its metallicity (Z, i.e. the mass fraction of pre-existing elements heavier than

He from earlier stellar generations), and (3) the rotation rate or surface rotation

velocity vrot . Solar metallicity corresponds to12 Z = 0.02. The evolution can also

be influenced by interior magnetic fields, and by a close binary companion. Rota-

tion significantly affects the pre-supernova state, through the impact it has on the

11 It takes a photon about 105 years to reach the surface, after it has been launched in the hot core

of, e.g., our Sun.
12 The current value of solar metallicity is believed to be Z=0.014, see Ch. 1; the value of Z=0.02,

which had been established before and was in common use till∼2005, remains a reference for

comparisons, though.
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Fig. 4.3 Stellar structure (Kippenhahn) diagrams, which show the evolution of the structure as a

function of the time left until the core collapses after the completion of core Si-burning. The initial

parameters of the models are given on the top of each plot. Coloring (shading) marks convective

zones, and the burning stages are denoted below the time axis. Non-rotating and moderately rotat-

ing 20 M⊙ star models are shown, for different metallicities Z. vrot indicates the rotation velocity

at the surface of the star.
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H and He-burning evolution. Two mass groups are distinguishable: Either rotation-

ally induced mixing dominates (for M <30 M⊙), or rotationally increased mass loss

dominates (for M >30 M⊙). For massive stars around solar metallicity, mass loss

plays a crucial role, in some cases removing more than half of the initial mass. Inter-

nal mixing, induced mainly by convection and rotation, also has a significant effect

on the evolution of stars. An important result is the production of primary 14N (via

the CNO-cycle) and 22Ne (via α-captures in He-burning), due to mixing of burning

products (such as 12C) with hydrogen or α’s, respectively (see the discusssion in

Sect. 4.2).

The general impact of metallicity can be summarized in the following way:

Lower metallicity implies a (slightly) lower luminosity due to the lack of CNO-

cycling in hydrogen burning, which leads to slightly smaller convective cores. A

lower metallicity also implies a lower opacity due to the lack of heavier elements

with their many spectral lines, reducing therefore also radiation pressure and hence

mass loss (as long as the chemical composition has not been changed by burn-

ing or mixing in the part of the star under consideration). This results in lower

metallicity stars being more compact and experiencing less mass loss. Prescrip-

tions for mass loss as used in the Geneva stellar evolution code are described in

detail in Meynet and Maeder (2005). Mass loss rates depend on metallicity as

dM/dt ∝ (Z/Z⊙)
0.5...0.86, where Z is the mass fraction of heavy elements at the

surface of the star. The effects can be seen in Fig.4.3 which shows the interior struc-

ture of stars through so-called Kippenhahn diagrams of 20 M⊙ models for different

metallicities and rotation velocities of the stars. These diagrams indicate regions

(in radial mass coordinates) where matter is unstable against convection; here the

energy transport is dominated by transporting hot matter rather than through the

propagation of photons. The implications of such a behavior have already been de-

scribed in Ch. 3, the evolution of low and intermediate mass stars, and the physical

origin and treatment of these effects are addressed in Ch. 8.

With the exception of the outer convection zone, convective regions in most cases

indicate burning zones, such as core H-burning, core He-burning, core C-burning

etc.. They testify also the ignition of outward moving burning shells of the same

nuclear burning stages. When comparing models for decreasing metallicities (with-

out rotation, left column of Fig.4.3) one notices only minute reductions of the core

sizes, but it is clearly seen that the outer (H-)burning shell moves further in towards

smaller radial mass zones. In the third figure in this column we see merging of the H-

and He-burning shells due to this effect, which leads to a largely-increased energy

generation and extension of these combined burning zones.

How does rotation change this picture, and how do rotation-induced processes

vary with metallicity? At all metallicities, rotation usually increases the core sizes

via rotational mixing. The supply of more H-fuel leads to more energy generation

and therefore a higher luminosity. The higher luminosity increases the radition pres-

sure and stellar mass loss. The effect of increased core sizes (and smaller density

gradients) can be viewed in all models with vrot=300 km s−1 in the second col-

umn of Fig.4.3. Clearly the convective core sizes are increased and the shell burning

zones have moved outward. In the lowest metallicity case, the H/He-layers are sep-
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arated again. In the intermediate metallicity case Z = 10−5, the outer convection

zone reaches the surface, and the star becomes a red supergiant. For metallicities

Z = 0.001 (top row), the increased luminosity causes a sufficient increase in radia-

tion pressure so that the mass loss is substantially enhanced (see the decrease of the

stellar mass indicated by the top line). Mass loss becomes gradually unimportant for

decreasing metallicities. For the rotating 20 M⊙ models the stellar fraction lost is

more than 50% for solar metallicities, 13% at Z = 0.001, less than 3% for Z = 10−5,

and less than 0.3% for Z = 10−8.

This can be different for more massive stars (Meynet et al, 2006). In Fig.4.4,

we show results for low metallicity stars with Z = 10−8 and fast rotation (500-

800 km s−1) from 9 to 85 M⊙. The surface layers of massive stars usually accelerate

due to internal transport of angular momentum from the core to the envelope. Since

at low Z, stellar winds are weak, this angular momentum dredged up by meridional

circulation remains inside the star, and the star reaches critical rotation more easily.

At the critical limit, matter can be launched into a Keplerian disk which probably

dissipates under the action of the strong radiation pressure of the star. Such an effect

can be seen for the 85 M⊙ star, which loses in total more than 75% of its initial

mass, and initially about 10% due to critical rotation. The remaining mass loss oc-

curs during the red supergiant phase after rotation and convection have enriched the

surface in primary CNO elements. We can also see that this effect becomes vanish-

ingly small for stars with masses M < 30M⊙. The two 20 M⊙ models with varying

metallicities and degrees of rotation again indicate the influence of metallicity and

rotation on the compactness and mass loss of stars. In both cases the mass loss is

negligible.

We have not shown here the evolution of extremely low metallicity stars. Below

a metallicity of about Z = 10−10, the CNO cycle cannot operate when H-burning

starts after the star has been formed. The star therefore contracts until He-burning

ignites, because the energy generation rate of H burning through the pp-chains can-

not balance the effect of the gravitational force. Once enough C and O is produced,

the CNO cycle can operate, and the star behaves like stars with Z > 10−10 for the

rest of the main sequence. Metal-free stellar evolution models are presented in Chi-

effi and Limongi (2004); Heger and Woosley (2002); Umeda and Nomoto (2005);

Ekström et al (2008).

Including the effects of both mass loss and rotation, massive star models re-

produce many observables of stars with metallicities around solar Z. For example,

models with rotation allow chemical surface enrichments already on the main se-

quence of core hydrogen burning (MS), whereas without the inclusion of rotation,

self-enrichment is only possible during advanced burning evolution such as the red

supergiant RSG stage (Heger and Langer, 2000; Meynet and Maeder, 2000). Ro-

tating star models also better reproduce the ratio of star types, for the ones which

retain their hydrogen surface layer (O stars), which lose the hydrogen layer com-

pletely (WR stars), and which even lose their helium layer. The latter affects also

the appearance of later core collapse supernova explosions of massive stars. Indeed,

rotation changes the supernova type due to the mass loss of the hydrogen envelope

(turning such an event in optical observations from a type II supernova with a strong
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Fig. 4.4 The same as Fig. 4.3. Stellar structure diagrams for rapidly rotating stars of metallicity

Z = 10−8, over a mass range from 9 to 85 M⊙. We see the drastically increasing amount of mass

loss with increasing mass (enhancing mixing of burning products to the surface, and increasing

opacities, i.e. acting like increased metallicities, plus some mass loss from critical rotation for the

most massive stars). The two metallicity cases shown for the 20 M⊙ star show again that stars are

less compact and show more and enhanced mass loss for higher metallicities (becoming a RSG

which leads to the appearance of a large convective envelope).
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plateau phase to a IIb event with a smaller plateau, or even a Ib event for the case

of complete loss of the hydrogen envelope, and a Ic event with the additional loss

of the He-envelope). This is discussed in more detail in Sect. 4.4. Both aspects, the

chemical surface enrichment in MS stars as well as the ratio of type Ib+Ic to type II

supernovae, as a function of metallicity, are drastically changed compared to non-

rotating models, which underestimate these ratios (Georgy et al, 2009; Meynet and

Maeder, 2005). The value of 300 km s−1, used as the initial rotation velocity at solar

metallicity, corresponds to an average velocity of about 220 km s−1 on the main se-

quence (MS), which is close to the average observed value (Fukuda, 1982; Meynet

et al, 2008). Observed ratios of stars of different types in the Magellanic clouds, as

compared to our Galaxy (Maeder et al, 1999; Martayan et al, 2007), point to stars

rotating faster at lower metallicities. Fast initial rotation velocities in the range of

600 – 800 km s−1 (Hirschi et al, 2005) are supported by observations of very low-Z

stars (Chiappini et al, 2006).

Rotation affects all burning stages and the resulting Fe-core (we will discuss this

issue further in the next subsection, see also Fig. 4.6). The size of the Fe-core in turn

determines the final fate, whether a supernova explosion with neutron star forma-

tion or the collapse to a black hole occurs. The effects of rotation on pre-supernova

models are most spectacular for stars between 15 and 25 M⊙. It changes the total

size/radius of progenitors (leading to blue instead of red supergiants) and the he-

lium and CO core (bigger by a factor of ∼ 1.5 in rotating models). The history of

convective zones (in particular the convective zones associated with shell H-burning

and core He-burning) is strongly affected by rotation induced mixing (Hirschi et al,

2005). The most important rotation induced mixing takes place at low Z while He

is burning inside a convective core. Primary C and O are mixed from the convec-

tive core into the H-burning shell. Once the enrichment is strong enough, the H-

burning shell is boosted (the CNO cycle depends strongly on the C and O mixing

at such low initial metallicities). The shell becomes convective and leads to an im-

portant primary 14N production while the convective core mass decreases, leading

to a less massive CO-core after He-burning than in non-rotating models. Convective

and rotational mixing brings the primary CNO to the surface with interesting con-

sequences for the stellar yields. The yield of 16O, being closely correlated with the

mass of the CO-core, is reduced. At the same time the C yield is slightly increased

(Hirschi et al, 2005), both due to the slightly lower temperatures in core He-burning.

This is one possible explanation for the high [C/O] ratio observed in the most metal-

poor halo stars (see Fig. 14 in Spite et al (2005) and Fabbian et al (2009)) and in

damped Lyman-α systems DLAs (Pettini et al, 2008).

The fate of rotating stars at very low Z is therefore probably the following:

M < 30− 40 M⊙ : Mass loss is insignificant and matter is only ejected into the

ISM during the SN explosion. 30-40 M⊙ < M < 60M⊙ : Mass loss (at critical

rotation and in the RSG stage) removes 10-20% of the initial mass of the star.

The star probably dies as a black hole without a SN explosion and therefore the

feedback into the ISM is only due to stellar winds. M > 60 M⊙: A strong mass

loss removes a significant amount of mass and the stars enter the WR phase.

These stars therefore end as type Ib/c SNe and possibly as GRBs. This behavior



4.3 Evolution of Massive Stars up to Core Collapse 19

Fig. 4.5 Abundance profiles for the 40 (top), 60 (middle) and 85 (bottom) M⊙ models. The pre–

SN and wind (yellow shaded area) chemical compositions are separated by a vertical dashed line

located at the pre–SN total mass (Mfinal), given below each plot.
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Table 4.7 Stellar Properties (Limongi & Chieffi 2006)

Mini/M⊙ M f in/M⊙ MHe/M⊙ MCO/M⊙

11 10.56 3.47 1.75

15 13.49 5.29 2.72

20 16.31 7.64 4.35

30 12.91 12.68 8.01

40 12.52 16.49 8.98

60 17.08 25.17 12.62

80 22.62 34.71 17.41

is displayed in Fig. 4.5. At a metallicity Z = 10−8, corresponding to an Fe/H ra-

tio log10[(Fe/H)/(Fe/H)⊙] =[Fe/H]∼ −6.6, C and O are shown in models to be

mixed into the H-burning shell during He-burning. This raises the importance of the

shell, and leads to a reduction of the CO-core size. Later in the evolution, the H-shell

deepens and produces large amounts of primary nitrogen. For the most massive stars

(M > 60 M⊙), significant mass loss occurs during the red supergiant stage, caused

by the surface enrichment in CNO elements from rotational and convective mixing.

The properties of non-rotating low-Z stars are presented in Heger et al (2003);

Hirschi et al (2008), and several groups have calculated their stellar yields (Heger

and Woosley, 2002; Chieffi and Limongi, 2004; Tominaga et al, 2007). All results

for the non-rotating stars (whether at solar metallicity or for low-Z models) are

consistent among these calculations, differences are understood from the treatments

of convection and the rates used for 12C(α,γ)16O. The combined contributions to

stellar yields by the wind and the later supernova explosion (see Sect. 4.4) will be

provided separately. The results for stellar models with metallicities Z close to solar

can be described as follows: Rotating stars have larger yields in their stellar winds

than the non-rotating ones, because of the extra mass loss and mixing due to rotation,

for masses below ∼ 30M⊙. The 12C and 16O yields are increased by a factor 1.5–2.5

by rotation. At high mass loss rates (above ∼ 30 M⊙), the rotating and non-rotating

models show similar yield values. When the wind and explosive contributions are

added, the total metal production of rotating stars is larger by a factor 1.5-2.5 (see

Sect. 4.4). For very massive stars, the situation varies due to the extreme mass loss,

as shown in Fig.4.5.

In order to give a quantitative impression of the influence of initial mass, metal-

licity and rotation on the evolution of stars, we present in Tables 4.7 and 4.8 results

for (a) non-rotating solar metallicity stars (Limongi and Chieffi, 2006) and (b) ro-

tating stars for varying metallicities (Hirschi, 2007). Table 4.8 corresponds to the

models shown in Figs. 4.3, 4.4, and 4.5. Given are the initial and final mass (in

order to give an impression of the mass loss), as well as the core size after central

H-burning (the He-core) and after central He-burning (the CO-core), and in table 4.8

also the metallicity Z and initial rotational surface velocity in km s−1. As all burn-

ing stages after He-burning occur on significantly shorter timescales than the earlier

burning phases, the CO-core size is the important quantity in order to determine the

final outcome/fate of the star.



4.3 Evolution of Massive Stars up to Core Collapse 21

Table 4.8 Stellar Properties (Hirschi et al. 2007)

Mini/M⊙ Z vrot M f in/M⊙ MHe/M⊙ MCO/M⊙

9 1×10−8 500 9.00 1.90 1.34

20 2×10−2 300 8.76 8.66 6.59

20 1×10−3 0 19.56 6.58 4.39

20 1×10−3 300 17.19 8.32 6.24

20 1×10−5 300 19.93 7.90 5.68

20 1×10−5 500 19.57 7.85 5.91

20 1×10−8 300 20.00 6.17 5.18

20 1×10−8 600 19.59 4.83 4.36

40 1×10−8 700 35.80 13.50 12.80

60 1×10−8 800 48.97 25.60 24.00

85 1×10−8 800 19.87 19.90 18.80

After this general discussion of stellar evolution, as it varies with initial mass,

metallicity and rotation, we now focus on two long-lived isotopes 26Al and 60Fe,

which have important contributions from the earlier burning stages in explosion

ejecta.

26Al

Long-lived 26Al is produced in core and shell H-burning via the NaMgAl-cycle (see

Ch. 3) in the 25Mg(p,γ)26Al reaction and will be eventually ejected in the stel-

lar wind during the WR-phase. Gamma-ray observations of the 1.809 MeV decay

line of 26Al in systems like the Wolf-Rayet binary system γ2 Vel, being the closest

known Wolf-Rayet (WR) star, serve as a constraint to nucleosynthesis in Wolf-Rayet

stars. From observations of the γ2 Vel binary system including a WR star, Oberlack

et al (2000) claimed that such WR stars must emit of the order 6×10−5M⊙ of 26Al

by stellar winds. The amount of 26Al ejected into the interstellar medium is very

sensitive to metallicity, initial stellar mass, rotation and mass loss rate, related to

one or more of the physical effects discussed above. Results of detailed calculations

can be found in Langer et al (1995); Meynet et al (1997); Palacios et al (2005);

Limongi and Chieffi (2006); Tur et al (2009). Limongi and Chieffi (2006) provide

an extended overview for the contribution from 11 to 120 M⊙ stars. The dominant

source for the 26Al production during stellar evolution is the 25Mg(p,γ)26Al reac-

tion. Therefore the resulting abundance depends (i) on this reaction rate converting
25Mg into 26Al, (ii) on the amount of 25Mg available, i.e. the total amount of matter

in the NeNaMgAl-cycle (either in terms of the abundance/metallicity or in terms of

the H-core size), and finally (iii) on the amount of 26Al distruction. In the part of

the He-core (after H-burning) which undergoes He-burning, neutrons are produced

via (α,n)-reactions which destroy 26Al via 26Al(n, p)26Mg and 26Al(n,α)23Na. A

further question is related to the amount of matter being ejected in winds (i.e. mass
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loss) during stellar evolution before 26Al can decay inside the star via β+-decay

with a half-life of 7.17×105 y.

He-burning, with its neutrons released, is destructive for 26Al, but shell C-burning

is again a source of 26Al, also via 25Mg(p,γ)26Al, which is effective due to pro-

tons released in 12C(12C,p)23Na (see table 4.2 in Sect. 4.2). Convection in the C-

burning shell brings in fresh 12C fuel and 25Mg which has been also produced in

prior He-burning in the 22Ne(α,n)25Mg reaction. 26Al production may be effective

also in Ne-burning, based on 25Mg left over from C-burning and protons released

via 23Na(α, p)26Mg (see table 4.4). This 26Al only survives if rapidly convected

outwards to lower temperature environments (26Al may decay rapidly in hot regions

due to thermal population of its short-lived isomeric state; see Fig. 1.3 in Ch. 1).

A fraction of the 26Al produced during stellar evolution will again be destroyed,

when a shock front is released in a supernova explosion and propagates through the

stellar envelope; in particular, material from C and Ne-burning, being close to the

Fe-core, will be affected. But there are also source processes for explosive 26Al pro-

duction. The total yields, hydrostatic-evolution yields combined with the destruction

and contribution from explosive burning, are given in Sect. 4.5.

60Fe

60Fe is produced by neutron captures on 59Fe, and destroyed again via 60Fe(n,γ)61Fe,

i.e. during the s process. Generally, slow capture of neutrons released from the
22Ne(α,n)25Mg reaction in core He-burning leads to the so-called weak s pro-

cess, producing nuclei up to nuclear mass numbers of around A=90. 59Fe is beta-

unstable, thus in order for neutron capture to compete with this reaction branch-

ing (equating the neutron capture and beta-decay rates) requires a typcial neutron

density of about 3× 1010cm−3. These are relatively high neutron densities for an

s process, which also ensure that the destruction of 60Fe via neutron captures dom-

inates over its decay with its half-life of 2.6 × 106y (Fig. 7.22 in Ch. 7, Rugel

et al (2009)). Core He-burning will not provide sufficiently high-temperatures for

the 22Ne(α,n)25Mg reaction to produce such high neutron densities. It requires the

conditions in shell He-burning to do so. Apparently conditions are most favorable

during shell He-burning at late evolutionary times when central O-burning has al-

ready active and a C-burning shell is existent as well (see Woosley and Weaver,

1995; Rauscher et al, 2002; Limongi and Chieffi, 2006; Tur et al, 2009). 60Fe yields

are very sensitive to uncertainties in He-destruction reactions (such as the 3α-rate

and 12C(α,γ)16O) which compete with the neutron source reaction 22Ne(α,n)25Mg

and neutron(-capture) poisons which compete with the production and destruction

rates of 60Fe via neutron captures (Rauscher et al, 2002; Tur et al, 2009; Giron et al,

2010; Uberseder et al, 2009). Such uncertainties amount to factors of up to 5 from

present rate uncertainties. Another possible effect which has not really been looked

into, yet, is the amount of 22Ne available in He-burning. An important effect in low

metallicity stars is the production of primary 14N (not enherited from CNO of pre-

vious stellar generations, but produced inside the star due to mixing of He-burning
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products with H). This causes the production of 22Ne in He-burning and can at low

metallicities (with small seed abundances of Fe) permit sizable s processing, affect-

ing again the abundance of 60Fe.

4.3.2 Late Burning Stages and the Onset of Core Collapse

Stars more massive than about 8 M⊙ will, after finishing core and shell H- and He-

burning, lead to CO-cores which exceed the maximum stable mass of white dwarfs

(the Chandrasekhar mass). For later burning stages, when the partial or full degen-

eracy of the electron gas is important, this critical limit MCh(ρYe,T ) decides upon

further contraction and the central ignition of subsequent burning stages, i.e. C-, Ne-

, O- and Si-burning. Dependent on the Fermi energy of the degenerate electron gas,

electron capture on the C-burning products 20Ne and 24Mg can initiate a collapse,

leading directly via nuclear statistical equilibrium to a central Fe-core. This evolu-

tion path occurs for stars in the range 8-10 M⊙ (Nomoto, 1987). More massise stars

will proceed through all burning stages until Si-burning will finally produce an Fe-

core. All burning stages after core H- and He-burning proceed on timescales which

are shorter by orders of magnitude. The reason is that the energy carried away by

freely escaping neutrinos dominates over radiation losses by photons which undergo

a cascade of scattering processes before their final escape. Most of these neutrinos

are created when central densities and temperatures permit neutrino production via

new particle reactions, different from beta-decay or electron capture on nuclei. Fol-

lowing neutrino production reactions are relevant: (i) e−+e+-pair annihilation (pair

neutrinos), (ii) electron-photon scattering with neutrino-antineutrino pair creation

(photo neutrinos), and (iii) neutrino-antineutrino pair creation from plasma oscilla-

tions (plasmon neutrinos). Neutrinos dominate the energy loss in stellar evolution

from this point on, and lead to increasingly shorter burning timescales, although the

photon radiation luminosity of the star remains roughly constant. The timescales for

the individual burning stages are given in table 4.1 in section 4.2; these values refer

to a 20 M⊙ star with solar metallicity and no mass loss (Weaver and Woosley, 1993).

Effects of mass loss, rotation and metallicity can change these timescales somewhat

(up to 20%). Due to the large difference in evolution timescales, the dominant mass

loss by stellar winds occurs during H- and He-burning, and the final outcome of stel-

lar evolution is determined by the CO-core size after He-burning. Therefore, given

all dependencies of stellar evolution via initial metallicities and rotation, the initial

main sequence mass of a star is less indicative for the final outcome than the size of

its CO-core.

In the late phases of O- and Si-burning (discussed in Sect. 4.2), electrons are

moderately to strongly degenerate, dependent on the initial stellar mass, and will be

characterized by increasing Fermi energies. This will allow for electron captures on

burning products, and will make matter more neutron-rich, i.e decrease Ye, the elec-

tron or proton to nucleon (neutrons plus protons) ratio. In high density O-burning

(ρ > 2× 107 g cm−3) two electron capture reactions become important and lead
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to a decrease in Ye, 33S(e−,ν)33P and 35Cl((e−,ν)35S. Such effects become more

extensive at even higher densities in Si-burning and a large range of nuclei has been

identified to be of major importance 55−68Co, 56−69Ni, 53−62Fe, 53−63Mn, 64−74Cu,
49−54Sc, 50−58V, 52−59Cr, 49−54Ti, 74−80Ga, 77−80Ge, 83Se, 80−83As, 50−58V, and
75Zn (Aufderheide et al, 1994). The amount of electron capture and the resulting

Ye has consequences for core sizes. (The core sizes of the late burning stages are

shown in Figs. 4.3 and 4.4). The final size of the inner Fe-core represents the max-

imum mass which can be supported by the pressure of the degenerate electron gas.

It is a function of Ye, but also reflects temperature effects if the electron gas is not

completely degenerate (Bethe, 1990), with Se being the entropy in electrons per

baryon

MCh(Ye,Se) = 1.44(2Ye)
2[1+(

Se

πYe

)2]M⊙. (4.3)

Stars with masses exceeding roughly 10 M⊙ reach a point in their evolution

where their Si-burning core (which will turn eventually into their Fe-core) exceeds

this critical mass. At this point they collapse and bounce, if not too massive, to ex-

plode in spectacular core collapse events known as type II or Ib/c supernovae. These

explosions create a neutron star or black hole at the end of the life of a star. They

play a preeminent role in the nucleosynthesis and chemical evolution of a galaxy.

The collapse is initiated by the capture of degenerate electrons on nuclei, which

reduces the dominant contribution of the pressure (i.e. the one from the degenerate

electron gas). Alternatively, for lower densities and higher temperatures (in more

massive stars), the pressure supporting the core is reduced by endoergic photodis-

integrations of nuclei, reducing the thermal energy. The evolution in the core is

determined by the competition of gravity (that causes the collapse of the core) and

weak interaction (that determines the rate at which electrons are captured and the

rate at which neutrinos are trapped during the collapse).

The early phases of this final stage of stellar evolution are known as presupernova

evolution. They follow the late-stage stellar evolution, and proceed until core den-

sities of about 1010 g cm−3 and temperatures between 5 and 10×109K are reached.

Until this point, modeling stellar evolution requires the consideration of extensive

nuclear reaction networks, but is simplified by the fact that neutrinos need only be

treated as a sink of energy and lepton number (due to their immediate escape). At

later time and towards the collapse, this is no longer valid: As the weak interaction

rates increase with the increasing density, the neutrino mean free paths shorten, so

that the neutrinos eventually proceed from phases of free streaming, towards dif-

fusion, and trapping. An adequate handling of the transitions between these trans-

port regimes necessitates a detailed time- and space-dependent bookkeeping of the

neutrino distributions in the core (see Ch. 8). During collapse, electron capture, ac-

companied by νe neutrino emission, dominates over electron antineutrino emission

because the positron abundance is very low under electron-degenerate conditions.

Later in the evolution the electron degeneracy is partially lifted, and in addition to

the electron flavor neutrinos, also heavy neutrinos, νµ and ντ and their antiparti-
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cles, are usually included in numerical simulations of core collapse and postbounce

evolution.

Advantageously, the temperature during the collapse and explosion are high

enough that the matter composition is given by nuclear statistical equilibrium

(NSE), i.e. without the need of reaction networks for the strong and electromag-

netic interactions. The transition from a rather complex global nuclear reaction net-

work, involving many neutron, proton and α fusion reactions and their inverses, to a

quasi-statistical equilibrium, in which reactions are fast enough to bring constrained

regions of the nuclear chart into equilibrium, to final and global nuclear statistical

equilibrium is extensively discussed by Hix and Thielemann (1996, 1999b); Hix

et al (2007). In the late stages of Si-burning and the early collapse phase, weak

interactions are dominated by electron captures on protons and nuclei. These are

important equally in controling the neutronization of matter Ye and, in a large por-

tion, also the stellar energy loss. Due to their strong energy dependence ∝ E5
e , the

electron capture rates increase rapidly during the collapse while the density and the

temperature increase (the electron Fermi energy EF scales with ρ2/3, see 4.2).

The main weak interaction processes during the final evolution of a massive star

are electron capture and β -decays. Their determination requires the calculation of

Fermi and Gamow-Teller (GT) transitions. While the treatment of Fermi transitions

(important only for β -decays) is straightforward, a correct description of the GT

transitions is a difficult problem in nuclear structure physics. In astrophysical en-

vironments, nuclei are fully ionized. Therefore, electron capture occurs from the

continuum of the degenerate electron plasma, and energies of the electrons are high

enough to induce transitions to the Gamow-Teller resonance. Shortly after the dis-

covery of this collective excitation, Bethe et al (1979) recognized its importance for

stellar electron capture. β−-decay converts a neutron inside the nucleus into a proton

and emits an electron. In a degenerate electron gas, with fully populated levels up to

the Fermi energy EF , all decays which would produce electrons with smaller ener-

gies than EF are not possible (blocked). Then, the decay rate of a given nuclear state

is greatly reduced or even completely blocked at high densities. However, there is

another pathway, as high temperatures populate a distribution of nuclear states: If an

excited and thermally populated state of the decaying nucleus is connected by large

GT transition probabilities to low-lying states in the daughter nucleus, producing

electrons above the Fermi energy, such transition path can contribute significantly

to the stellar β -decay rates. The importance of these states in the parent nucleus for

β -decay in astrophysical environments was first recognized by Fuller et al (1980,

1982, 1985).

Recent experimental data on GT distributions in iron group nuclei, measured

in charge exchange reactions, show that the GT strength is strongly quenched (re-

duced), compared to the independent-particle-model value, and fragmented over

many states in the daughter nucleus. An accurate understanding of these effects is

essential for a reliable evaluation of the stellar weak-interaction rates, particularly

for the stellar electron-capture rates (Fuller et al, 1980; Langanke and Martı́nez-

Pinedo, 2000). The nuclear shell-model is the only known tool to reliably describe

GT distributions in nuclei. When comparing the shell-model based rates (by Lan-
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ganke and Martinez-Pinedo) with the those from Fuller et al., one finds that the

shell-model based rates are almost always smaller at the relevant temperatures and

densities, caused by the above mentioned quenching of the Gamow-Teller strength,

and by a systematic misplacement of the energy of the Gamow-Teller resonance.
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Fig. 4.6 Comparison of the center values of Ye (left), the iron core sizes (middle) and the central

entropy (right) for 11–40 M⊙ stars between the WW models and the ones using the shell model

weak interaction rates (LMP) (Heger et al, 2001a). The lower parts define the changes in the 3

quantities between the LMP and WW models.

The influence of these shell-model rates on the late-stage evolution of massive

stars has been investigated by Heger et al (2001a,b) , and compared to earlier cal-

culations (Woosley and Weaver, 1995). Fig. 4.6 illustrates the consequences of the

shell model weak interaction rates for presupernova models in terms of the three de-

cisive quantities: the central electron or proton to nucleon ratio Ye, the entropy, and

the iron core mass. The central values of Ye at the onset of core collapse increased

by 0.01-0.015 for the new rates. This is a significant effect. For example, a change

from Ye = 0.43 in the Woosley & Weaver model for a 20 M⊙ star to Ye = 0.445 in the

new models increases the respective Chandrasekhar mass by about 0.075 M⊙ (see

Equ.4.3). The new models also result in lower core entropies for stars with M < 20

M⊙, while for M > 20 M⊙, the new models actually have a slightly larger entropy.

The Fe-core masses are generally smaller, where the effect is larger for more mas-

sive stars (M > 20 M⊙), while for the most common supernovae (M < 20 M⊙) the

reduction is by about 0.05 M⊙ (the Fe-core is here defined as the mass interior to the

point where the composition is dominated by more than 50% of Fe-group elements

with A ≥ 48). This reduction seems opposite to the expected effect due to slower

electron capture rates in the new models. It is, however, related to changes in the

entropy profile during shell Si-burning which reduces the growth of the iron core

just prior to collapse.

The evolution of Ye during the presupernova phase is plotted in Fig. 4.7. Weak

processes become particularly important in reducing Ye below 0.5 after oxygen de-

pletion (≈ 107 s and 106 s before core collapse for the 15 M and 25 M stars, re-

spectively) and Ye begins a decline, which becomes precipitous during Si-burning.
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Fig. 4.7 Evolution of the Ye value in the center of a 15 M⊙ star (left panel) and a 25 M⊙ star (right

panel) as a function of time until bounce. The dashed line shows the evolution in the Woosley and

Weaver models (WW) (Woosley and Weaver, 1995), while the solid line shows the results using

the shell-model based weak-interaction rates of Langanke and Martı́nez-Pinedo (LMP). The two

most important nuclei in the determination of the total electron-capture rate, for the calculations

adopting the shell model rates, are displayed as a function of stellar evolution time.

Initially electron captures occur much more rapidly than beta-decays. As the shell

model rates are generally smaller, the initial reduction of Ye is smaller in the new

models. The temperature in these models is correspondingly larger as less energy

is radiated away by neutrino emission. An important feature of the new models is

shown in the left panel of Fig. 4.7. For times between 104 and 103 s before core col-

lapse, Ye increases due to the fact that β -decay becomes competitive with electron

capture after Si-depletion in the core and during shell Si-burning. The presence of

an important β -decay contribution has two effects (Aufderheide et al, 1994). Ob-

viously it counteracts the reduction of Ye in the core, but also acts as an additional

neutrino source, causing a stronger cooling of the core and a reduction in entropy.

This cooling can be quite efficient, as often the average neutrino energy from the

β -decays involved is larger than for the competing electron captures. As a conse-

quence the new models have significantly lower core temperatures. At later stages

of the collapse β -decay becomes unimportant again as an increased electron Fermi

energy blocks/reduces its role. The shell model weak interaction rates predict the

presupernova evolution to proceed along a temperature-density-Ye trajectory where

the weak processes involve nuclei rather close to stability which will permit to test

these effects in the next-generation radioactive ion-beam facilities.

Fig. 4.7 identifies the two most important nuclei (the ones with the largest value

for the product of abundance times rate) for the electron capture during various

stages of the final evolution of 15 M⊙ and 25 M⊙ stars. An exhaustive list of

the most important nuclei for both electron capture and beta-decay during the fi-

nal stages of stellar evolution for stars of different masses is given in Heger et al

(2001b). In total, the weak interaction processes shift the matter composition to
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smaller Ye values and hence more neutron-rich nuclei, subsequently affecting the

nucleosynthesis. Its importance for the elemental abundance distribution, however,

strongly depends on the location of the mass cut in the supernova explosion. It is

currently assumed that the remnant will have a larger baryonic mass than the Fe-

core, but smaller than the mass enclosed by the O-shell (Woosley et al, 2002). As

the reduction of Ye occurs mainly during Si-burning, it is essential to determine how

much of this material will be ejected.

4.4 Supernovae from Massive Stars and the Role of Radioactivity

4.4.1 The Explosion Mechanism

Supernova explosions are an application of numerical astrophysical modelling that

has a long tradition. Continued improvements of the models are motivated by the

following points: (i) open questions regarding the explosion mechanism; (ii) avail-

ability of observations for inidividual supernova explosions; (iii) interesting input

physics that tests matter under conditions that are not accessible on earth; (iv) visi-

bility in light and other photon wavelengths, cosmic rays, neutrino emission, decay

gamma-rays of radioactive products, perhaps gravitational wave emission; (v) visi-

bility on cosmological distances with improving statistical information on the events

and (vi) their impact on the interstellar matter (e.g. abundances of metal-poor stars)

and Galactic evolution.

As discussed in the previous sections, the death of massive stars ≈ 8− 40 M⊙

proceeds through several evolutionary and dynamical phases. At first, the modeling

of a star must include the evolution through all nuclear burning stages until the re-

sulting inner iron core grows beyond the maximum mass which can be supported by

the dominant pressure of the degenerate electron gas. At this point, the inner stellar

core enters a dynamical phase of gravitational collapse, during which it compact-

ifies by ∼ 5 orders of magnitude. The nuclear saturation density (i.e. the density

of stable nuclei ≈ 2× 1014g cm−3) is exceeded at the center of the collapse and

a protoneutron star (PNS) is formed. The dynamical time scale reduces from a few

hundreds of milliseconds at the onset of collapse to a few milliseconds after the core

has bounced back at nuclear densities (see Fig. 4.8 from Liebendörfer et al (2003).

The ensuing accretion phase onto the protoneutron star with fluid instabilities and

radiative transfer phenomena, like the transport of neutrinos, is not well understood.

It may last 0.5− 10 seconds and can therefore be interpreted as a second evolu-

tionary stage (much longer than the dynamical or transport time scale). Eventually

it will lead to the observed vigorous supernova explosion, a dynamic phase where

heavy elements are produced by explosive nucleosynthesis in an outward propagat-

ing shock wave. The processed matter is mixed by fluid instabilities and ejected into

the interstellar medium, where it contributes to Galactic evolution. The remaining

PNS at the center enters another evolutionary phase during which it cools by neu-
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Fig. 4.8 A sequence of density profiles of a 13 M⊙ star before and after core bounce. For such a

relatively low mass supernova with a small Fe-core the bounce occurs at a maximum density of less

than twice nuclear matter density. At the bounce one recognizes the size of the homologous core

(with roughly constant density). Thereafter the emergence of an outward moving density (shock)

wave can be witnessed.

trino emission and contracts or even collapses to a black hole in a last dynamical

phase.

While initially such calculations were performed in spherical symmetry and

therefore lacked the consistent treatment of turbulent motion, presently performed

research is done with multidimensional supernova models (Hix et al, 2003; Liebendörfer

et al, 2005; Marek et al, 2005; Burrows et al, 2006a; Sumiyoshi et al, 2007; Lan-

ganke et al, 2008; Marek and Janka, 2009). The main ingredients are radiation (neu-

trino) transport, (relativistic) hydrodynamics, and the nuclear equation of state at

such high densities. Recent progress has been made in the exploration of multidi-

mensional hydrodynamics with idealized input physics. A refreshing view on the

supernova mechanism has recently been suggested by pointing out that in certain

axisymmetric simulations vibrational (so called PNS g-)modes are excited so that

sound waves are emitted into the heating region. These sound waves are postulated

to revive the stalled shock by dissipation of sound energy (Burrows et al, 2006a).

Other efforts explore the role of magnetic fields and rotation in two-dimensional

simulations with simplified input physics. One kind of proof-of-principle models is

carried out in spherically symmetric approaches. The assumption of spherical sym-

metry is for many supernovae not compatible with observational constraints. How-

ever, one important advantage of spherically symmetric models is that sophisticated

treatments of the neutrino-matter interactions can be included and that the neutrino
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spectra and transport are correctly treated in general relativistic space-time. Models

of this kind try to address the question of how many neutrinos are emerging from the

compactification of an inner stellar core, how is their emission distributed as a func-

tion of time and how do these neutrino fluxes generically affect the cooling, heating,

or nucleosynthesis in the outer layers of the star without the complication of 3D

dynamical fluid instabilities (Liebendörfer et al, 2003, 2004; Fischer et al, 2009b,a).

The attempt to combine all these aspects with forefront methods is ongoing in order

to achieve the final goal of understanding the multi-D explosion mechanism with up

to date microphysics from the equation of state to all neutrino and nuclear interac-

tions13.

The phase of stellar core collapse has intensively been studied in spherically sym-

metric simulations with neutrino transport. The crucial weak processes during the

collapse and postbounce evolution are ν +(A,Z) ↔ ν +(A,Z), ν + e± ↔ ν + e±,

p+ e− ↔ n+νe, (A,Z)+ e− ↔ (A,Z −1)+νe , ν +N ↔ ν +N, n+ e+ ↔ p+ ν̄e,

(A,Z)+ e+ ↔ (A,Z +1)+ ν̄e, ν +(A,Z)↔ ν +(A,Z)∗, (A,Z)∗ ↔ (A,Z)+ν + ν̄ ,

N +N ↔ N +N +ν + ν̄ , νe + ν̄e ↔ νµ,τ + ¯νµ,τ , e++ e− ↔ ν + ν̄ . Here, a nucleus

is symbolized by its mass number A and charge Z, N denotes either a neutron or a

proton and ν represents any neutrino or antineutrino. We note that, according to the

generally accepted collapse picture (Bethe 1990; Bethe et al (1979)), elastic scat-

tering of neutrinos on nuclei is mainly responsible for the trapping, as it determines

the diffusion time scale of the outwards streaming neutrinos. Shortly after trapping,

the neutrinos are thermalized by energy downscattering, experienced mainly in in-

elastic scattering off electrons. The relevant cross sections for these processes are

discussed in Martı́nez-Pinedo et al (2006). The basic neutrino opacity in core col-

lapse is provided by neutrino scattering off nucleons. Depending on the distribution

of the nucleons in space and the wavelength of the neutrinos, various important co-

herence effects can occur: Most important during collapse is the binding of nucleons

into nuclei with a density contrast of several orders of magnitude to the surrounding

nucleon gas. Coherent scattering off nuclei dominates the scattering opacity of neu-

trinos (and scales with A2). Moreover, these neutrino opacities should be corrected

by an ion-ion correlation function, this occurs if the neutrino wavelength is compara-

ble to the distances of scattering nuclei and quantum mechanical intererence effects

appear (Sawyer, 2005; Burrows et al, 2006b). Even if current core collapse models

include a full ensemble of nuclei in place of the traditional apprach with one repre-

sentative heavy nucleus, it remains non-trivial to adequately determine correlation

effects in the ion mixture. Depending on the Q-value of an electron-capturing nu-

cleus, neutrinos are emitted with a high energy of the order of the electron chemical

potential/Fermi energy. As the neutrino opacities scale with the squared neutrino

energy, the initially trapped neutrinos will downscatter to lower energies until the

diffusion time scale becomes comparable to the thermalization time scale. The ther-

malization in current collapse models occurs through neutrino-electron scattering

because the energy transfer per collision with the light electron is more efficient

than with the heavier nucleons. The contribution of inelastic scattering of neutrinos

13 For a review of the corresponding tools see Ch. 8.)
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off heavy nuclei depends on the individual nuclei and affects only the high-energy

tail of the neutrino spectrum.

Goldreich and Weber (1980) have shown that only the inner MCh(Ye) (see the

definition in Eq. 4.3) undergo a homologous collapse (vcollapse(r) ∝ r), while at the

edge of this core the velocity becomes supersonic and a fraction of the free-fall

velocity. The inner core, falling at subsonic velocities where matter can communi-

cate with sound speed, cannot communicate with the free-falling envelope. After

the neutrinos are trapped, electron captures and neutrino captures are in equilibrium

(e−+ p ↔ n+νe) and the total lepton fraction YL = Ye +Yν stays constant. Ye stops

to decrease and MCh stops shrinking. Typical values (with the most recent electron

capture rates (Langanke et al, 2003) of YL ≈ 0.3 are found in numerical collapse cal-

culations (Hix et al, 2003; Marek et al, 2005) which correspond to MCh ≈ 0.5M⊙. As

soon as nuclear densities are reached at the center of the collapsing core, repulsive

nuclear forces dominate the pressure in the equation of state. The collapse comes

to a halt and matter bounces back to launch an outgoing pressure wave through

the core. It travels through the subsonic inner core and steepens to a shock wave

as soon as it faces supersonic infall velocities. Hence the matter in the PNS re-

mains at low entropy ∼ 1.4 kB per baryon while the supersonically accreting layers

become shock-heated and dissociated at entropies larger than ∼ 6 kB per baryon.

Numerical simulations based on standard input physics and accurate neutrino trans-

port exclude the possibility that the kinetic energy of the hydrodynamical bounce at

nuclear densities drives a prompt supernova explosion because of dissociation and

neutrino losses.

This can be seen in Fig. 4.8 presenting spherically symmetric calculations of a

13 M⊙ star. The inner core contains about 0.6 M⊙ of the initial Fe-core. The transi-

tion to free nucleons occurred only in this inner, homologous core and the outward

moving shock runs through material consiting of Fe-group nuclei. The dissocia-

tion takes 8.7 MeV/nucleon or 8× 1018erg g−1. Based on initial shock energies of

(4− 8)× 1051erg, this is sufficient for passing through 0.25-0.5 M⊙ and leads in

essentially all cases to a stalling of the prompt shock. Only recently a possible ex-

ception was found (Sagert et al, 2009). If a hadron-quark phase transition occurs in

the collapsed core at the appropriate time, releasing additional gravitational binding

energy in the form of neutrinos from this second collapse, prompt explosions can be

attained.

While core collapse determines the state of the cold nuclear matter inside the

PNS, the mass of the hot mantle around the PNS grows by continued accretion. The

infalling matter is heated and dissociated by the impact at the accretion front and

continues to drift inward. At first, it can still increase its entropy by the absorption

of a small fraction of outstreaming neutrinos (heating region). Further in, where the

matter settles on the surface of the PNS, neutrino emission dominates absorption and

the electron fraction and entropy decrease significantly (cooling region). The tight

non-local feedback between the accretion rate and the luminosity is well captured

in computer simulations in spherical symmetry that accurately solve the Boltzmann

neutrino transport equation for the three neutrino flavors. All progenitor stars be-

tween main sequence masses of 13 and 40 M⊙ showed no explosions in simulations



32 4 Massive Stars and their Supernovae

of the postbounce evolution phase (Liebendörfer et al, 2003). This indicates that the

neutrino flux from the PNS does not have the fundamental strength to blow off the

surrounding layers for a vigorous explosion.

Improved electron capture rates on heavy nuclei overcame the idealized blocking

of Gamow-Teller transitions in the traditionally applied single-particle model. In the

single-particle picture of nuclei the so-called pf-shell is filled for Z = 40 or N = 40

for protons or neutrons respectively. Neutron numbers beyond N = 40 require a fill-

ing of the gd-orbits. If during core collapse nuclei (Ye) become so neutron-rich that

nuclei with Z < 40 and N > 40 dominate the NSE composition, electron capture

would require the conversion of an f p proton to a gd neutron as all p f neutron

orbits are filled. This Pauli-blocked transition would lead to the dominance of elec-

tron capture on free protons rather than nuclei and under such conditions. The recent

finding, that configuration mixing and finite temperature effects result in unfilled p f

neutron orbits, removes this Pauli-blocking and results in the fact that under these

condition electron capture rates on nuclei dominate those on free protons (Langanke

et al, 2003). Thus, there are two effects due to the new set of electron capture rates:

1. at low densities for less neutron-rich nuclei the total amount of electron cap-

ture is reduced with an improved description of Gamow-Teller transitions (see the

discussion of the early collapse phase in Sect. 4.3), 2. at high densities in the late

collapse phase the total amount of electron capture is enhanced, leading to smaller

Ye and YL values than before. Such changes caused a reduction of homologous core

sizes down to MCh = 0.5 M⊙ (see discussion above and Hix et al (2003)). This faster

deleptonization in the collapse phase in comparison to captures on free protons alone

thus resulted in a 20% smaller inner core at bounce.

Taking all this improved physics into acount leads in the entire simulations (i.e.

all mass zones invoved) to conditions in densities ρ , electron abundance Ye and en-

tropy s per baryon, where properties like the equation of state or other microscopic

physics is needed in current supernova simulations. Fig. 4.9 provides this informa-

tion for a simulation of a 20 M⊙ star (Liebendörfer et al, 2009).

Moreover, a comparison of the effects of the only two publicly available equa-

tions of state by Lattimer and Douglas Swesty (1991) and Shen et al (1998b,a) is

required. In simulations of massive progenitors that do not explode and exceed the

maximum stable mass of the accreting neutron star in the postbounce phase, it was

demonstrated that the neutrino signal changes dramatically when the PNS collapses

to a black hole (Fischer et al, 2009b). Depending on the stiffness of the equation

of state or the accretion rate from the external layers of the progenitor star, this can

happen at very different time after bounce. Hence, the neutrino signal carries a clear

imprint of the stiffness of the equation of state and the accretion rate to the observer

of neutrinos.

The detailed treatment of the neutrino transport and interactions is of great im-

portance for the nucleosynthesis. This has been shown in several recent studies

(Fröhlich et al, 2006a,b; Pruet et al, 2005, 2006; Wanajo, 2006). This also opens

an opportunity to investigate neutrino flavor oscillations among electron, muon and

tau neutrinos. On the one hand side the long term explosion runs achieve (low) den-

sity structures that allow for MSW (Mikheyev-Smirnov-Wolfenstein effect) neutrino
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Fig. 4.9 Overview of the conditions attained in a simulation of the collapse, bounce, and explosion

(artificially induced) of a 20 M⊙ star. Shown are two histograms of the occurrence of conditions

as a function of density ρ , specific entropy s and electron fraction Ye . The shading of a given bin

corresponds to log10(
∫

dmdt) in arbitrary units, where the integral over mass is performed over

the mass dm of matter whose thermodynamic state at a given time falls into the bin. The integral

over time extends over the duration of a simulation. Hence, regions of dark shading correspond to

states that are experienced by considerable mass for an extended time, while light or absent shading

corresponds to conditions that are rarely assumed in the supernova simulation. The vertical black

line indicates the nuclear density. The horizontal black line indicates an entropy of 3 kB /baryon

beyond which ions are dissociated. It clearly separates the conditions of cold infalling matter on

the lower branch from the conditions of hot shocked matter on the upper branch.

flavor oscillations in the outer layers (Wolfenstein, 1978; Mikheyev and Smirnov,

1985). These may give additional hints on the expansion velocity and density dis-

tribution in case that the neutrinos can be observed from a near-by supernova. On

the other hand, collective flavor transitions have recently been postulated in regions

where the neutrino density exceeds the electron density (Duan et al, 2006, 2007;

Fogli et al, 2007). This condition will be achieved in the evacuated zone that sur-

rounds the PNS after the onset of an explosion. The impact of these collective neu-

trino flavor oscillations on the neutrino heating during the shock expansion, the neu-

trino wind, and the nucleosynthesis are important open points that require a detailed

investigation under consideration of accurate neutrino transport and spectra.

The difficulty to reproduce explosions in spherically symmetric models of core-

collapse and postbounce evolution stimulated the consideration of numerous modifi-

cations and alternatives to this basic scenario, mostly relying on multi-dimensional

effects that could not be treated in spherical symmetry. It was discussed whether

convection inside the PNS could accelerate the deleptonization and increase the

neutrino luminosity (Wilson and Mayle, 1993). The convective overturn between

the PNS and shock front was shown to increase the efficiency of neutrino energy

deposition (Herant et al, 1994). Asymmetric instabilities of the standing accretion

shock (Blondin et al, 2003; Foglizzo, 2009) may help to push the shock to larger

radii and g-mode oscillations of the PNS may contribute to neutrino heating by the

dissipation of sound waves between the PNS and the shock (Burrows et al, 2006a).

Moreover, it has been suggested that magnetic fields have an impact on the explo-

sion mechanism (Kotake et al, 2006). Most of the above-mentioned modifications of
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Fig. 4.10 Illustration of the early accretion phase in a three-dimensional simulation with a res-

olution of 6003 zones and the isototropic diffusion source approximation for 3D neutrino trans-

port (Liebendörfer et al, 2009). Shown are density contours as black lines for a 15 M⊙ star from

Woosley and Weaver (1995). Left: The color indicates the specific entropy and the cones the di-

rection of the velocity. Right: The color refers to the magnetic field strength and the cones to its

direction. The cool high-density interior of the PNS and the hot low-density accreted matter behind

the standing accretion front are clearly distinguishable.

the explosion mechanism are essentially of a three-dimensional nature. In order to

illustrate the complexity of the crucial accretion phase we show in Fig. 4.10 a slice

through a three-dimensional simulation of core-collapse and postbounce evolution

of a recent run (Liebendörfer et al, 2008). Its input physics uses the Lattimer-Swesty

equation of state (Lattimer and Douglas Swesty, 1991) and a parameterization of the

neutrino physics for the collapse phase (Liebendörfer et al, 2005). The treatment of

neutrino cooling and heating in the postbounce phase is based on multi-group diffu-

sion (the isotropic diffion source approximation of Liebendörfer et al (2009)).

Initially, spherically symmetric supernova models were the most realistic among

all feasible computer representations of the event. With increasing observational ev-

idence for the complexity of the explosions (Hamuy, 2003) their primary purpose

shifted from a realistic representation to the identification and understanding of the
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basic principles of the explosion mechanism. After the emergence of axisymmet-

ric simulations with sophisticated and computationally intensive spectral neutrino

transport (Buras et al, 2003; Walder et al, 2005) spherically symmetric models still

have several assets. In the following subsection we will first describe purely phe-

nomenological calculations based on artificially induced explosions via a “piston”

or energy deposition in terms of a “thermal bomb”, purely in order to discuss nu-

cleosynthesis effects. We will then also discuss still artificial explosions in spherical

symmetry, however resulting from a “self-consistent” treatment including neutrino

transport, which permits to analyse the effect of neutrinos on the nucleosynthesis of

the innermost ejecta.

4.4.2 Nucleosynthesis in Explosions

Major Explosive Burning Processes

Despite considerable improvements of stellar models and numerical simulations in

recent years, some fundamental problems remain in nucleosynthesis predictions. It

has become evident that certain evolution aspects can only be followed in models

going beyond one-dimensional simulations, such as convection, rotation, and the ex-

plosion mechanism. However, it is still not feasible to directly couple full reaction

networks, containing several thousand nuclei, to multi-dimensional hydrodynamic

calculations due to the lack of required computing power, even in modern com-

puters. Thus, postprocessing after explosion models with parameterized networks

still remains an important approach. One-dimensional models can directly accom-

modate increasingly larger networks but they cannot capture all of the necessary

physics. As outlined in the previous subsection, it has become apparent that a self-

consistent treatment of core collapse supernovae in 1D does not lead to successful

explosions when using presently known input physics while 2D models show some

promise. There are strong indications that the delayed neutrino mechanism works

combined with a multi-D convection treatment for unstable layers (possibly with the

aid of rotation, magnetic fields and/or still existent uncertainties in neutrino opac-

ities). Therefore, hybrid approaches using certain parameterizations or approxima-

tions have been and are still necessary when predicting the nucleosynthetic yields

required for the application described above.

Supernova nucleosynthesis predictions have a long tradition. All of these predic-

tions relied on an artificially introduced explosion, either via a piston or a thermal

bomb introduced into the progenitor star model. The mass cut between the ejecta and

the remnant does not emerge from this kind of simulations but has to be determined

from additional conditions. While the usage of artificially introduced explosions is

justifiable for the outer stellar layers, provided we know the correct explosion energy

to be dumped into the shock front (on the order of 1051 erg seen in observations), it

clearly is incorrect for the innermost ejected layers which should be directly related

to the physical processes causing the explosion. This affects the Fe-group composi-



36 4 Massive Stars and their Supernovae

Fig. 4.11 Mass fractions of a few major nuclei after passage of the supernova shockfront through

a star with an intial mass of 20 M⊙. Matter outside 2M⊙ is essentially unaltered. Mass zones

further in experience explosive Si, O, Ne, and C-burning. For ejecting 0.07M⊙ of 56Ni the mass

cut between neutron star and ejecta is required to be located at 1.6M⊙.

tion, which has been recognized as a clear problem by many groups (Woosley and

Weaver, 1995; Thielemann et al, 1990, 1996; Nakamura et al, 1999, 2001; Nomoto

et al, 2006). The problem is also linked to the so-called neutrino wind, emitted

seconds after the supernova explosion, and considered as a possible source of the

r process to produce the heaviest elements via neutron captures (Qian and Woosley,

1996), as will be discussed below.

Given the above detailed discussion of the physics, problems and options re-

garding core collapse supernovae, we will adopt the following approach in order to

predict the most reliable nucleosynthesis predictions for the ejecta in a 1D spheri-

cally symmetric treatment. The multiplication of neutrino capture cross sections on

nucleons with a free parameter in 1D spherically symmetric calculations can mimic

the enhanced energy deposition which multi-D models show. The free parameter

is tuned to give correct explosion energies and 56Ni yields for a number of well

known supernovae. This approach provides clear predictions for the mass cut be-

tween the remaining neutron star and the ejecta. It also includes the effect neutrinos

can have on the correct Ye in the ejecta and the related nucleosynthesis. In the outer

explosively burning layers, essentially only the energy in the shock front matters.

The behavior of these zones can be easily understood from the maximum tempera-
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Fig. 4.12 Mass fractions of the dominant nuclei in zones which experience α-rich freeze-out.

Notice the relatively large amounts of Zn and Cu nuclei, which originate from α-captures on Ni

and Co. One can recognize their strong decrease beyond 1.66M⊙, which goes parallel with the

decrease of the 4He-abundance and other α-nuclei such as 40Ca, 44Ti, 48Cr, and 52Fe. Nuclei

which would dominate in a nuclear statistical equilibrium like 56,57,58Ni stay constant or increase

even slightly. The increase of all nuclei with N = Z at 1.63M⊙ and the decrease of nuclei with

N>Z is due to the change in Ye in the original stellar model before collapse (see also Fig.4.11)

tures attained in the radiation bubble and for a first discussion we will just focus on

these features, which can also be obtained with an artifically induced thermal bomb

treatment.

For a given/known Ye and density ρ , the most significant parameter in explo-

sive nucleosynthesis is the temperature, and a good prediction for the composition

can already be made by only knowing Tmax, without having to perform complex

nucleosynthesis calculations. Weaver and Woosley (1980) already recognized, that

matter behind the shock front is strongly radiation dominated. Assuming an almost

homogeneous density and temperature distribution behind the shock (which is ap-

proximately correct, one can equate the supernove energy with the radiation energy

inside the radius r of the shock front

ESN =
4π

3
r3aT 4(r). (4.4)
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Fig. 4.13 Mass fractions of nuclei in the zones of incomplete Si-burning M<1.74M⊙ and explo-

sive O-burning M<1.8M⊙. The Si-burning zones are are characterized by important quantities of

Fe-group nuclei besides 28Si, 32S, 36Ar, and 40Ca. Explosive O-burning produces mostly the latter,

together with more neutron-rich nuclei like 30Si, 34S, 38Ar etc.

This equation can be solved for r. With T = 5×109K, the lower bound for explo-

sive Si-burning with complete Si-exhaustion, and an induced thermal bomb energy

of ESN = 1051erg, the result is r ≈ 3700km. For the evolutionary model by Nomoto

and Hashimoto (1988) of a 20M⊙ star this radius corresponds to 1.7M⊙, in excellent

agreement with the exact hydrodynamic calculation. Temperatures which character-

ize the edge of the other explosive burning zones correspond to the following radii:

incomplete Si-burning (T9=4, r=4980km), explosive O-burning (3.3, 6430), and ex-

plosive Ne/C-burning (2.1, 11750). This relates to masses of 1.75, 1.81, and 2.05M⊙

in case of the 20M⊙ star. The radii mentioned are model independent and vary only

with the supernova energy. In the following we present a number of plots which

show the different mass fractions Xi = AiYi as a function of radial mass M(r)/M⊙,

passing outwards through a 20M⊙ star through all explosive burning regions.

Matter between the mass cut M(r)=Mcut and the mass enclosed in the radius cor-

responding to explosive Si-burning with complete Si-exhaustion is indicated with

M(ex Si-c). Then follows the zone of incomplete Si-burning until M(ex Si-i), ex-

plosive O-burning until M(ex O), explosive Ne/C-burning until M(ex Ne), and un-

processed matter from the C/Ne-core is ejected until M(C-core). The zones beyond

explosive Ne/C-burning (Tmax < 2.1×109K) are essentially unaltered and the com-

position is almost identical to the pre-explosive one. When performing such calcu-

lations for a variety of progenitors over a range of initial stellar masses, one can

analyze the dependence of the mass involved in these different burning regimes as a

function initial stellar mass (see Sect. 4.5).
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Fig. 4.14 Composition in mass zones of explosive Ne and C-burning. The dominant products

are 16O, 24Mg, and 28Si. Besides the major abundances, mentioned above, explosive Ne-burning

supplies also substantial amounts of 27Al, 29Si, 32S, 30Si, and 31P. Explosive C-burning contributes

in addition the nuclei 20Ne, 23Na, 24Mg, 25Mg, and 26Mg.

Results for a 20M⊙ star (Nomoto and Hashimoto, 1988) are given as examples

for the abundance behavior in a series of Figs 4.11, 4.12, 4.13, 4.14. It should be

mentioned here that this still uses a simplified thermal bomb treatment for the pre-

collapse model rather than the results from a 1D spherically symmetric simulation

with enhanced neutrino capture rates, which insures an explosion also in 1D. The

explosion energy used corresponds to a supernova energy of 1051erg. As mentioned

before, this treatment cannot predict a self-consistent explosion and the position of

the mass cut between neutron star and ejecta. Only the observation of 0.07±0.01M⊙

of 56Ni in SN1987A (a 20M⊙ star) gives an important constraint, because 56Ni

is produced in the innermost ejected zones. The explosive nucleosynthesis due to

burning in the shock front is shown in Fig. 4.11 for a few major nuclei. Inside 1.7M⊙

all Fe-group nuclei are produced in explosive Si-burning during the SN II event. At

1.63M⊙ Ye changes from 0.494 to 0.499 and leads to a smaller 56Ni abundance

further inside, where more neutron-rich Ni-isotopes share the abundance with 56Ni.

This is an artifact of the Ye gradient in the pre-collapse model which can be changed

in a consistent explosion treatment via neutrino interactions with this matter.

In explosive Si-burning only α-rich freeze-out and incomplete Si-burning are

encountered. Contrary to SNe Ia, densities in excess of 108gcm−3, which would

result in a normal freeze-out, are not attained in the ejecta of this 20M⊙ star (see

also Fig.4.2). The most abundant nucleus in the α-rich freeze-out is 56Ni. For the

less abundant nuclei the final α-capture plays a dominant role transforming nuclei

like 56Ni, 57Ni, and 58Ni into 60Zn, 61Zn, and 62Zn (see Fig.4.12).
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The region which experiences imcomplete Si-burning starts at 1.69M⊙ and ex-

tends out to 1.74M⊙. In the innermost zones with temperatures close to 4× 109K

there exists still a contamination by the Fe-group nuclei 54Fe, 56Ni, 52Fe, 58Ni, 55Co,

and 57Ni. Explosive O-burning occurs in the mass zones up to 1.8M⊙ (see Fig.4.13).

The main burning products are 28Si, 32S, 36Ar, 40Ca, 38Ar, and 34S. With mass frac-

tions less than 10−2 also 33S, 39K, 35Cl, 42Ca, and 37Ar are produced. Explosive Ne-

burning leads to an 16O-enhancement over its hydrostatic value in the mass zones

up to 2M⊙ (see Fig.4.14).

Explosive Burning off Stability

The p-Process

Up to now we discussed the production of heavy nuclei beyond the Fe-group

only via slow neutron captures (the s process) in hydrostatic stellar evolution. A

number of proton-rich (p-)isotopes of naturally occurring stable heavy nuclei can-

not be produced by neutron captures along the line of stability. The currently most

favored production mechanism for those 35 p-isotopes between Se and Hg is photo-

disintegration (γ process) of intermediate and heavy elements at high temperatures

in late (explosive) evolution stages of massive stars (Woosley and Howard, 1978;

Rayet et al, 1990). However, not all p-nuclides can be produced satisfactorily, yet.

A well-known deficiency in the model is the underproduction of the Mo-Ru re-

gion, but the region 151<A<167 is also underproduced, even in recent calculations

(Rauscher et al, 2002; Arnould and Goriely, 2003; Rapp et al, 2006; Dillmann et al,

2008). There exist deficiencies in astrophysical modeling and the employed nuclear

physics. Recent investigations have shown that there are still considerable uncer-

tainties in the description of nuclear properties governing the relevant photodisinte-

gration rates. This has triggered a number of experimental efforts to directly or indi-

rectly determine reaction rates and nuclear properties for the p/γ process (Rauscher,

2006). Here it is important to investigate the sensitivity of the location of the γ-

process path with respect to reaction rate uncertainties.

Concerning the astrophysical modeling, only a range of temperatures has to be

considered which are related to the explosive Ne/O-burning zones of a supernova

explosion (see Figs.4.13 and 4.14), where partial (but not complete) photodisinte-

gration of pre-existing nuclei occurs (from prior hydrostatic evolution or inherited

metallicity), i.e. at ≈ 2−3×109K. The γ process starts with the photodisintegration

of stable seed nuclei that are present in the stellar plasma. During the photodisinte-

gration period, neutron, proton, and α-emission channels compete with eachother

and with beta-decays further away from stability. In general, the process, acting like

“spallation” of pre-existing nucei, commences with a sequence of (γ,n)-reactions,

moves the abundances to the proton-rich side. At some point in a chain of isotopes,

(γ, p) and/or (γ,α)-reactions become faster than neutron emissions, and the flow

branches and feeds other isotopic chains. At late times photodisintegrations become

less effective, when decreasing temperatures shift the branching points and make

beta-decays more important. Finally the remaining unstable nuclei decay back to
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stability. The branchings established by the dominance of proton and/or α-emission

over neutron emission are crucial in determining the radioactive progenitors of the

stable p-nuclei and depend on the ratios of the involved reaction rates. Numerous

experimental and theoretical efforts have been undertaken to improve the reaction

input, especially with respect to open questions in optical potentials for α particles

and protons (Gyürky et al, 2006; Kiss et al, 2007, 2008; Yalçın et al, 2009).
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Fig. 4.15 Normalized overproduction factors of p-process nuclei derived with the Rapp et al

(2006) (open squares) and Dillmann et al (2008) (full squares) reaction library. In addition, the

results from a range of stellar models (10-25M⊙) from Rayet et al (1995) are given for compari-

son. A value equal to unity corresponds to relative solar abundances.

Applications of p-process network calculations to the temperature profiles of

initiated explosions have been performed by Rayet et al (1995); Rapp et al (2006);

Dillmann et al (2008). Here, in Fig. 4.15 we present the results of a 25M⊙ mass

model (Dillmann et al, 2008) with two reaction rate libraries without and with in-

clusion of all experimental improvements, existing at that point. It is noticed that

the nuclear uncertainties cannot change the underproduction of especially the light

p-nuclei. Another process seems to be required to supply these missing abundances.

The νp-Process

Neutron-deficient nuclei can also be produced by two other astrophysical nucle-

osynthesis processes: the rp process in X-ray bursts (which, however, does not eject

matter into the interstellar medium (Wallace and Woosley, 1981; Schatz et al, 1998;

Fisker et al, 2008) and the recently discovered ν p process in core collapse super-

novae (Fröhlich et al, 2006a,b; Pruet et al, 2006; Wanajo, 2006). The ν p process
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Fig. 4.16 Ye of the innermost ejecta due to neutrino interactions with matter. At high temperatures

electrons are not degenerate, thus the reduction of Ye due to electron captures is ineffective. For

similar neutrino and antineutrino spectra the neutron-proton mass difference favors νe+n↔ p+e−

over ν̄e + p ↔ n+ e+.

occurs in explosive environments when proton-rich matter is ejected under the in-

fluence of strong neutrino fluxes. This includes the innermost ejecta of core-collapse

supernova (Buras et al, 2006; Thompson et al, 2005; Liebendörfer et al, 2008) and

possible ejecta from black hole accretion disks in the collapsar model of gamma-ray

bursts (Surman et al, 2006). The discussion of these innermost ejected mass zones

has been skipped above, when discussing the results for explosive nucleosynthesis

in a 20 M⊙ star, utilizing a thermal bomb but the pre-collapse stellar conditions

with the corresponding Ye. Here, as discussed in the beginning of this subsection,

we have boosted the energy deposition efficiencies by enhancing the neutrino and

anti-neutrino captures on neutrons and protons in a 1D simulation. While this is not

a fully self-consistant treatment, no external (artificial) energy is required to pro-

duce a successful explosion with a consistently emerging mass cut between neutron

star and ejecta. Moreover, this treatment guarantees provides a Ye that is consis-

tently determined by all weak interactions processes. The result is that explosions

are obtained and the neutrino interaction with matter leads to a Ye enhanced beyond

0.5 (see Fig. 4.16) which overcomes nucleosynthesis problems for the Fe-group en-

countered previously.
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The matter in these ejecta is heated to temperatures well above 1010 and be-

comes fully dissociated into protons and neutrons. The ratio of protons to neutrons

is mainly determined by neutrino and antineutrino absorptions on neutrons and pro-

tons, respectively. Similar neutrino and antineutrino energy spectra and fluxes pro-

duce proton-dominated matter in the reactions νe+n↔ p+e− and ν̄e+ p↔ n+e+,

due to the n-p mass difference. When the matter expands and cools, the free neu-

trons and protons combine into α-particles. Later, at temperatures around 5×109K,

α-particles assemble into heavier nuclei via unstable intermediate nuclei, e.g. the

triple-α reaction via unstable 8Be, but - depending on the entropy and the expan-

sion of matter - only a fraction of those form iron-group nuclei ( α-rich freeze-out).

In case of a proton-rich environment, there are also still free protons available at

the time of the alpha freeze-out. Once the temperature drops to about 2×109K, the

composition of the ejecta consists mostly of 4He, protons, and iron group nuclei with

N≈Z (mainly 56Ni) in order of decreasing abundance. Without neutrinos, synthesis

of nuclei beyond the iron peak becomes very inefficient due to bottleneck (mainly

even-even N = Z) nuclei with long beta-decay half-lives and small proton-capture

cross sections. Such a nucleus is 64Ge. Thus, with the Ye determined by neutrino in-

teractions with free neutrons and protons in the early very hot phase of dissociated

nuclei, the nucleosynthesis leads to an α- and proton-rich freeze-out which does not

stop at 56Ni but continues up to 64Ge (which later decays to 64Zn. This part of the

story enables core collapse yeads which produce Fe-group nuclei up to essentially
64Zn. The effect is seen in the upper portion Fig. 4.17.

However, the matter is subject to a large neutrino/antineutrino flux from the

proto-neutron star. While neutrons are bound in neutron-deficient N = Z nuclei and

neutrino captures on these nuclei are negligible due to energetics, antineutrinos are

readily captured both on free protons and on heavy nuclei on a timescale of a few

seconds. As protons are more abundant than heavy nuclei, antineutrino captures oc-

cur predominantly on protons, leading to residual neutron densities of 1014−−1015

cm−3 for several seconds. These neutrons are easily captured by heavy neutron-

deficient nuclei, for example 64Ge, inducing (n, p) reactions with time scales much

shorter than the beta-decay half-life. This permits further proton captures and allows

the nucleosynthesis flow to continue to heavier nuclei (see lower part of Fig. 4.17).

The ν p process (Fröhlich et al, 2006b) is this sequence of (p,γ)-reactions, followed

by (n, p)-reactions or beta-decays, where the neutrons are supplied by antineutrino

captures on free protons.

In Fig.4.18 we also show ν p process nucleosynthesis results from the innermost

early neutrino wind ejecta produced in the explosion of a 15M⊙ star (Janka et al,

2003), also utilized in (Pruet et al, 2006; Fisker et al, 2009), which synthesizes effi-

ciently nuclei even for A > 90. Two sets of astrophysical reaction rates were used in

the reaction network, both based on theoretical rates from the NON-SMOKER code

(Rauscher and Thielemann, 2000, 2004), but once with the latest excited state infor-

mation and masses from the AME2003 compilation (Audi et al, 2003) and another

set also with the latest mass measurements (Weber et al, 2008). Fig.4.18 shows the

final abundances normalized to solar abundances after decay to stability for these

two sets of thermonuclear reaction rates. Only nuclei produced in the p-rich ejecta
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Fig. 4.17 Final abundances in mass zones in the innermost ejecta which experienced neutrino

irradiation, leading to proton-rich conditions (Ye > 0.5). The upper part of the figure shows the

neucleosynthesis results in the innermost ejecta of explosive, after α-rich and proton-rich freeze-

out from Si-burning, normalized to solar after decay. The bottom part of the figure also includes

the interaction of anti-electron neutrinos with protons (ν̄e + p → n+ e+) which produces neutons,

permitting the late change of 64Ge via 64Ge(n, p)64Ga. This feature permits further proton captures

to produce havier nuclei (the so-called ν p process. Here matter up to A = 85 is produced.

are shown. As is clearly seen, there is no difference in the yields for the two different

sets of rates except for a few nuclei in the mass range 85 < A < 95, namely 87,88Sr,
89Y, and 90,91Zr. This can be directly traced back to the large change in the mass of
88Tc (∆M= -1031 keV). This change in mass leads to an increase in the reaction rate

for 88Tc(γ, p)87Mo at the relevant temperatures and therefore a relative suppression

of the opposite capture rate. These results show that the ν p process can easily pro-

duce the light p-nuclei of Mo and Ru, which are deficient in p-process calculations.

Further processing depends on the expansion (speed) of matter and the overlying

mass of ejecta.

The r-Process

A rapid neutron-capture process (r process) in an explosive environment is tradi-

tionally believed to be responsible for the nucleosynthesis of about half of the heavy

elements above Fe. While in recent years the high entropy (neutrino) wind (HEW)

of core-collapse supernovae has been considered to be one of the most promising

sites, hydrodynamical simulations still encounter difficulties to reproduce the as-

trophysical conditions under which this process occurs. The classical waiting-point
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Fig. 4.18 Final abundances in mass zones experiencing the ν p process, i.e. the innermost ejecta of

explosive, α-rich freeze-out Si-burning, normalized to solar after decay for two sets of thermonu-

clear reaction rates/masses. Matter up to A = 100 can be produced easily.

approximation, with the basic assumptions of an Fe-group seed, an (n,γ)− (γ,n)-
equilibrium for constant neutron densities nn at a chosen temperature T , over a pro-

cess duration τ , and an instantaneous freezeout, has helped to gain improved insight

into the systematics of an r process in terms of its dependence on nuclear-physics

input and astrophysical conditions (Cowan et al, 1991; Kratz et al, 1993, 2007). This

corresponds to a set of quasi-equilibria with each QSE group being represented by

an isotopic chain. Taking a specific seed nucleus, the solar r-process pattern peaks

can be reproduced by a variation/superposition of neutron number densities nn and

durations τ . Whether the solar r-process abundances are fully reproduced in each

astrophysical event, i.e., whether each such event encounters the full superposition

of conditions required, is a matter of debate (Wasserburg et al, 1996; Pfeiffer et al,

2001; Sneden et al, 2003; Honda et al, 2006; Qian and Wasserburg, 2007; Farouqi

et al, 2009, 2010). In realistic astrophysical environments with time variations in

nn and T , it has to be investigated whether at all and for which time duration τ
the supposed (n,γ)− (γ,n)-equilibrium of the classical approach will hold and how

freeze-out effects change this behavior. In general, late neutron captures may al-

ter the final abundance distribution. In this case neutron capture reactions will be

important. Also β -delayed neutrons can play a role in forming and displacing the

peaks after freeze-out.

For many years since Woosley et al (1994); Takahashi et al (1994); Qian and

Woosley (1996) the high entropy wind has been considered as the most promis-

ing (realistic?) environment, expelled from newly formed (hot) neutron stars in
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core-collapse supernovae, which continue to release neutrinos after the supernova

shock wave is launched. These neutrinos interact with matter of the outermost proto-

neutron star layers which are heated and ejected in a continuous wind. The late neu-

trino flux also leads to moderately neutron-rich matter (Qian and Woosley, 1996)

via interactions with neutrons and protons and causes matter ejection with high

entropies. (However, there are recent studies (Fischer et al, 2009a) from collapse

calculations which predict a proton-rich wind composition for more than the first

10s after collapse.) Problems were encountered to attain entropies sufficiently high

in order to obtain high neutron/seed ratios which can produce the heaviest r process

nuclei (Thompson et al, 2001; Wanajo et al, 2001; Terasawa et al, 2002). Recent

hydrodynamic simulations for core-collapse supernovae support the idea that these

entropy constraints can be fulfilled in the late phase (after the initial explosion)

when a reverse shock is forming (Fryer et al, 2006; Arcones et al, 2007; Burrows

et al, 2007; Janka et al, 2007; Panov and Janka, 2009).

The question is whether such high entropies occur at times with sufficiently high

temperatures when an r process is still underway (Kuroda et al, 2008). Exploratory

calculations to obtain the necessary conditions for an r process in expanding high-

entropy matter have been undertaken by a number of groups (Hoffman et al, 1997;

Meyer and Brown, 1997; Otsuki et al, 2000; Wanajo et al, 2001; Terasawa et al,

2002; Wanajo et al, 2004; Yoshida et al, 2004; Wanajo, 2007; Kuroda et al, 2008).

Recent investigations (Farouqi et al, 2009, 2010) focussed (a) on the effects of vary-

ing nuclear physics input [mass models FRDM (Finite Range Droplet Model, Möller

et al (1995)), ETFSI-1 (Extended Thomas-Fermi with Strutinsky Integral) (Abous-

sir et al, 1995), ETFS-Q with quenching of shell closures far from stability (Pearson

et al, 1996), the mass formula by Duflo & Zuker (DUFLO-ZUKER, Duflo and Zuker

(1995)) and HFB-17 (a rencent Hartree-Fock-Bogoliubov approach) (Goriely et al,

2009a)] and (b) the detailed understanding of the nuclear flow through the chart of

nuclides, testing equilibria, freeze-out and delayed neutron capture. To investigate

these effects we have applied a full network containing up to 6500 nuclei and the

corresponding nuclear masses, cross sections and β -decay properties.

The calculations presented here are based on trajectories for densities and tem-

peratures originating from expansions with a complete parameter study in terms of

entropy S, electron fraction Ye and expansion velocity Vexp, the latter being related to

the expansion timescale τexp (Freiburghaus et al, 1999a; Farouqi et al, 2010). Here

we only show the results utilizing the Duflo-Zuker mass model for a range of en-

tropies. It is assumed that in the late phases of the neutrino wind of a deleptonized

neutron star conditions with Ye < 0.5 prevail (but see the discussion above).

Either higher entropies than obtained by the simulations discussed above or con-

ditions with intrinsically high neutron densities (like expanding neutron star matter

with Ye ≈ 0.1− 0.2) can lead to neutron/seed ratios which are sufficiently high to

reach fissionable nuclei in the r process. The fission fragments can again capture

neutrons and produce fissionable nuclei, leading to an r process with fission re-

cycling (Rauscher et al, 1994; Martı́nez-Pinedo et al, 2007). This requires reliable

fission barriers (and fission fragment distributions) to test the possibility for the pro-

duction of superheavy elements. It was shown recently that neutron-induced fission
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Fig. 4.19 High entropy neutrino wind results for the mass model by Duflo and Zuker (1995),

expansion parameters and proton/nucleon ratio Ye as given in the label, for a variation in extropies

per baryon and kB. (Farouqi et al, 2010)

is more important in r-process nucleosynthesis than beta-delayed fission (Panov and

Thielemann, 2003; Martı́nez-Pinedo et al, 2007). Thus, the need to provide a com-

pilation of neutron-induced fission rates is obvious and has been performed recently

(Panov et al, 2005; Goriely et al, 2009b; Panov et al, 2009). Comparison of rates

obtained with different sets for mass and fission barrier predictions give a measure

of the uncertainties involved.

4.4.3 Exotic SN Types: Hypernovae and GRBs

As was outlined in various parts of the preceeding sections, massive stars in the

range of 8 to ∼ 130M⊙ undergo core-collapse at the end of their evolution and

become Type II and Ib/c supernovae unless the entire star collapses into a black

hole with no mass ejection (Heger et al, 2003). These Type II and Ib/c supernovae

(as well as Type Ia supernovae, see Ch. 5) release large explosion energies and eject

matter which underwent explosive nucleosynthesis, thus having strong dynamical,

thermal, and chemical influences on the evolution of interstellar matter and galaxies.

They have been the main focus of the present chapter up to now. The explosion

energies of core-collapse supernovae are fundamentally important quantities, and

an estimate of E ∼ 1×1051 erg has often been used in calculating nucleosynthesis

and the impact on the interstellar medium. (Here we use the explosion energy E for
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the final kinetic energy of the explosion.) A good example is SN1987A in the Large

Magellanic Cloud, whose energy is estimated to be E = (1.0 - 1.5) × 1051 ergs from

its early light curve

One of the most interesting recent developments in the study of supernovae (SNe)

is the discovery of some very energetic supernovae (see e.g. Nomoto et al (2006),

whose kinetic energy (KE) (in spherically symmetric analysis, see also Piran (2004))

exceeds 1052 erg, about 10 times the KE of normal core-collapse SNe (hereafter

E51 =E/1051 erg). The most luminous and powerful of these objects, the Type Ic su-

pernova (SN Ic) 1998bw, was probably linked to the gamma-ray burst GRB 980425,

thus establishing for the first time a connection between gamma-ray bursts (GRBs)

and the well-studied phenomenon of core-collapse SNe. However, SN 1998bw was

exceptional for a SN Ic: it was as luminous at peak as a SN Ia, indicating that it

synthesized ∼ 0.5M⊙ of 56Ni, and its KE was estimated at E ∼ 3×1052 erg.

There is another class of supernovae which appears to be rather faint with appar-

ently almost vanishing 56Ni ejection. Thus, the question emerges how these different

objects are related, whether they correspond to different initial masses and how the

explosion mechanism changes. The questions to be answered are the following:

• do 8-10 M⊙ stars which produce an Fe-core in a collapse initiated via electron

capture after core He-burning (electron capture supernovae) have a different ex-

plosion mechanism after core collapse than more massive stars? Is here only a

small amount of material involved outside the collapsing C-core and litte Ni-

ejection occurring?

• for which stellar progenitor masses do we have a transition from the formation

of neutron stars to the formation of black holes after collapse?

• to which extent is this transition region shifted by the nuclear equation of state?

• for which transition region are initially neutron stars formed, causing a regular

supernova explosion, and only fall back by the reverse shock swallows inner

matter, leading to a small final Ni-ejection and faint light curves?

• for which progenitor masses are black holes formed directly during collapse and

how can this be observed?

• what is the role of rotation and magnetic fields to cause gamma-ray bursts?

• can we give reliable nucleosynthesis yields for such events?

Before going into a too involved discussion of the causes of these events, let

us first consider the possible effect which higher energy explosions have on the

ejecta, i.e. nucleosynthesis products. Here we use the term ’hypernova’ to describe

an extremely energetic supernova with E ≥ 1052 erg without specifying the explo-

sion mechanism (Nomoto et al, 2001). Following SN 1998bw, other hypernovae

of Type Ic have been discovered or recognised. Nucleosynthesis features in such

hyper-energetic supernovae must show some important differences in comparison

to normal supernova explosions. The higher explosion energies could lead to larger

ejected 56Ni masses, as observed in such explosions. They also cause higher en-

tropies in the innermost ejecta, which result in a more extreme α-rich freeze-out

from explosive Si-burning. Such conditions permit the sizable production of Fe-

group nuclei beyond 56Ni, up to 64Ge which decays to 64Zn (Nakamura et al, 2001).
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This feature could have an influence on abundance patterns observed in extremely

metal-poor halo stars. In fact, the observational finding that Zn behaves like an Fe-

group element in galactic evolution - and was underproduced in existing supernova

models (which were not including the ν p process) - was used as a strong argument

that a large fraction of massive stars explode as hypernovae (Nomoto et al, 2006;

Kobayashi et al, 2006).

The observed frequency of type Ib supernovae is about 20% of SNe II at solar

metallicity (Cappellaro et al, 1999). In four cases the typical spectrum of type Ic su-

pernovae has been observed, associated with long soft gamma-ray bursts (Woosley

and Bloom, 2006), indicating a link between SNe Ic and long soft GRBs. Prantzos

and Boissier (2003) found an increase in the ratio of SNe Ibc / SNe II with metal-

licity. In order to understand this trend one has to understand stellar models as a

function of metallicity, from the first stars in the Universe, i.e., metal-free, Popula-

tion III (Pop III) stars which were born in a primordial hydrogen-helium gas cloud

to present metallicities. This is one of the important challenges of current astron-

omy and relates to Sect. 4.2, where we have discussed the evolution of massive

stars from lowest metallicities to solar values, including rotation and metallicity-

dependent winds. In fact Meynet and Maeder (2003) could reproduce this observed

trend metallicity trend. On the other hand different groups (Podsiadlowski et al,

1992; Vanbeveren et al, 2007; Eldridge et al, 2008) provide models from binary

evolution with mass transfer (removing the H-rich envelope) which seems to re-

produce this trend as well. Recent observations (Prieto et al, 2008) provide for the

first time the individual ratios of SNe Ib / SNe II and SNe Ic / SNe II, rather than

only the combined SNe Ibc / SNe II ratio. Georgy et al (2009) have studied stel-

lar evolution in detail as a function of initial mass, metallicity and rotation, based

on the Geneva evolution models. As a full understanding of the GRB mechanism

is pending, two options have been considered for the cases where the Fe-core is

massive enough that the formation of a black hole in the collapse is expected: (i)

nevertheless a supernova-type explosion is assumed, (ii) a black hole forms without

a supernovae. They find that current models of stellar evolution can account for the

observed number ratios of SNe Ib / SNe II and SNe Ic / SNe II and their variation

with metallicity. In case (ii), i.e. when no supernova occurs after black holes are

formed, single-star models can still account for more than one half of the combined

SNe Ibc / SNe II ratio for metallicities above solar, however, low metallicity SNe

Ic events have to come from binary evolution. If black hole formation is identified

with the occurrance of GRBs, the resulting number is too large, indicating that only

a fraction of such events, most probably very rapid rotators, result in GRBS after

collapse (MacFadyen and Woosley, 1999).

As mentioned earlier in this subsection, the explanation of SN Ic SN1998bw is

based on a very large progenitor mass M and explosion energy E. The type Ic hy-

pernovae 1998bw and 2003dh were clearly linked to the gamma-ray bursts GRB

980425 and GRB 030329, thus establishing the connection between long GRBs

and core-collapse supernovae (SNe). SNe 1998bw and 2003dh were exceptional

for SNe Ic: they were as luminous at peak as a SN Ia, indicating that they synthe-

sized 0.3 - 0.5 M⊙ of 56Ni, and their kinetic energies (KE) were estimated in the
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range E51 = E/1051 erg ∼ 30 - 50. Other hypernovae have been recognized, such

as SN 1997ef and SN 2002ap. These hypernovae span a wide range of properties,

although they all appear to be highly energetic compared to normal core-collapse

SNe. The mass estimates, obtained from fitting the optical light curves and spectra,

place hypernovae at the high-mass end of SN progenitors.

In contrast, SNe II 1997D and 1999br were very faint SNe with very low kinetic

energy. This leads to a diagram with the explosion energy E or the ejected 56Ni

mass M(56Ni) as a function of the main-sequence mass Mms of the progenitor star

which shows two branches. Therefore, one is led to the conclusion that SNe from

stars with Mms ∼
> 20-25 M⊙ have different E and M(56Ni), show a bright, energetic

hypernova branch at one extreme and a faint, low-energy SN branch at the other

extreme. For the faint SNe, the explosion energy was so small that most 56Ni fell

back onto the compact remnant. Thus the faint SN branch may become a failed SN

branch at larger Mms. Between the two branches, there may be a variety of SNe.

This trend could be interpreted as follows. Stars more massive than ∼ 25 M⊙

form a black hole at the end of their evolution. Stars with non-rotating black holes

are likely to collapse quietly ejecting a small amount of heavy elements (Faint su-

pernovae). A preceding stage could be the temporary formation of a neutron star and

a supernova explosion, but fallback of matter leads to an increase of the neutron star

mass beyond its maximum stable value. (The combination of mixing processes in

the innermost ejecta and fallback can influence the ejecta composition.) In contrast,

stars which formed rotating black holes are likely to give rise to hypernovae. Here

disk and jet formation seems to be a necessary ingredient to understand the explo-

sion. (An option is that hypernova progenitors might form from the rapidly rotating

cores after spiraling-in of a companion star in a binary system).

4.5 The Aftermath of Explosions

In the preceding sections we have given an overview of hydrostatic and explosive

burning processes in massive stars, the individual phases of stellar evolution, the

endstages like core collapse, explosive nucleosynthesis products from supernovae

explosions and possible variations in outcome if core collapse ends in black hole

formation, related possibly to hypernovae or gamma-ray bursts. What remains to

be done is to (i) get a complete picture from stellar models and simulations how

hydrostatic/wind and explosive contributions add up to the complete yields ob-

served in such events, (ii) verify such models with individual observations, e.g. from

lightcurves and from remnants, (iii) finally to integrate all these events/stellar yields

over a mass distribution and metallicity evolution of galaxies, in order to make com-

parisons with overall galactic oberservations of very long-lived radioisotopes which

average over several stellar generations.
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4.5.1 Massive Stars and Their Complete Yields

In section 4.4 we have introduced in Eq. (4.4) a simplified rule which determined

at which radius certain temperatures are attained in the explosion, assuming that

the explosion energy is distributed at all times in a homogenous bubble within the

radius of the present shock front position. If one knows the radial mass distribution

M(r) in pre-explosion models through which the shock front passes, one knows the

amount of matter which encountered certain burning conditions. In table 4.5.1 we

provide this information for different initial stellar masses (still based on models

from Nomoto and Hashimoto (1988)), at (up to) which radial mass position explo-

sive (complete and incomplete) Si-burning, O-burning, Ne/C-burning are occurring

(upper portion) and the size of these regions (in M⊙) involved (lower portion). In

addition, we give the size of the CO-core of prior He-burning in stellar evolution. To

first order matter between explosive C/Ne-burning and the stellar surface is ejected

unchanged. As this simplified treatment does not know anything of the explosion

mechanism which produced this explosion energy, the position of the mass cut is

not known and therefore also not the total amount of complete Si-burning mate-

rial. The core sizes given (e.g. CO-core after He-burning) also make no difference

whether this matter resulted from initial core burning of this burning stage or subse-

quent outward propagating shell burning (e.g. shell He-burning of shell C-burning)

which produce specific isotopes of interest (e.g. 26Al, 60Fe as discussed in Sect. 4.3).

Initially we want to focus here on the explosive burning phases. We also want

to add that table 4.5.1 includes always two values for the radial masses involved,

(a) from the simplified Eq.(4.4) applied to the appropriate stellar model (M(r)) and

(b) resulting from an actual explosion calculation (initiated via a thermal bomb), as

obtained in Thielemann et al (1996). When comparing these numbers, we see a quite

close agreement, except for the most massive star where non-negligible deviations

are encountered.

Table 4.9 Masses and products in explosive and hydrostatic burning

M(r) Burning site 13M⊙ 15M⊙ 20M⊙ 25M⊙

Fe-core hydr. Si-burning 1.18 1.28 1.40 1.61

mass cut (expl. mechanism) ? ? ? ?

ex Si-c expl. compl. Si-burning 1.42 1.40 1.46 1.44 1.70 1.69 1.79 1.80

ex Si-i expl. incompl. Si-burning 1.48 1.47 1.52 1.51 1.75 1.75 1.85 1.89

ex O expl. O-burning 1.54 1.54 1.57 1.57 1.81 1.81 1.92 2.00

ex C/Ne expl. Ne-burning 1.66 1.65 1.73 1.70 2.05 2.05 2.26 2.40

CO-core hydr. He-burning 1.75 2.02 3.70 5.75

∆M (Main) products, major radioactivities

ex. Si-c ”Fe”, He; 56,57Ni, 61,62Zn, 59Cu, 52Fe, 48Cr ? ? ? ?

ex. Si-c 44Ti, ν p process, r process? ? ? ? ?

ex. Si-i Si, S, Fe, Ar, Ca; 55Co, 52Fe, 48Cr 0.06 0.07 0.06 0.07 0.05 0.06 0.06 0.09

ex. O O, Si, S, Ar, Ca 0.06 0.07 0.05 0.06 0.06 0.06 0.07 0.11

ex. C/Ne O, Mg, Si, Ne; 26Al, p process 0.12 0.11 0.16 0.13 0.24 0.24 0.34 0.40

hydr. He O, Ne, Mg, Si, s process 0.09 0.10 0.29 0.32 1.65 1.65 3.49 3.35
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Based on this information we want to discuss complete nucleosynthesis yields,

including explosive processing (also the ν p process, affected by neutrinos in the

innermost ejecta, as well as the p process in explosive Ne/O-burning), hydrostatic

yields from the outer layers (including s process) which are ejected unaltered, and

prior wind yields lost during stellar evolution. Then we concentrate on the long-

lived radioactivities 26Al, 60Fe, 44Ti, other Fe-group and lightcurve-determining nu-

clei, including their origin which is e.g. important for 26Al and 60Fe, which have

hydrostatic burning as well as explosive origins. The r process in the neutrino wind

or possibly polar jets has been presented qualitatively with entropy, Ye and expan-

sion timescale as free parameters or expansion timescale of neutron star matter as

a free parameter. Presently no realistic explosion models are available to discuss

this matter in a real stellar context, but a short discussion of long-lived radioactive

chronometers is presented.

Table 4.5.1 provides the following conclusions: The amount of ejected mass from

the unaltered (essentially only hydrostatically processed) CO-core varies strongly

over the progenitor mass range. The variation is still large for the matter from ex-

plosive Ne/C-burning, while the amount of mass from explosive O- and Si-burning

is almost the same for all massive stars. Therefore, the amount of ejected mass from

the unaltered (essentially only hydrostatically processed) CO-core and from explo-

sive Ne/C-burning (C, O, Ne, Mg) varies strongly over the progenitor mass range,

while the amount of mass from explosive O- and Si-burning (S, Ar, and Ca) is al-

most the same for all massive stars. Si has some contribution from hydrostatic burn-

ing and varies by a factor of 2-3. The amount of Fe-group nuclei ejected depends

directly on the explosion mechanism which also affects the Ye in these inner zones.

Thus, we have essentially three types of elements, which test different aspects of

supernovae, when comparing with individual observations. The first set (C, O, Ne,

Mg) tests the stellar progenitor models, the second (Si, S, Ar, Ca) the progenitor

models and the explosion energy in the shock wave, while the Fe-group (beyond Ti)

probes clearly in addition the actual supernova mechanism. Thus, we require that all

three aspects of the predicted abundance yields are based on secure modeling (stel-

lar evolution, explosion energy, and explosion mechanism) in order to be secure for

their application in lightcurve modeling, radioactivities in remnants as well as the

the in chemical evolution of galaxies.

r-process ejecta

The biggest uncertainty exists for the absolutely innermost ejecta, i.e. the possible

r process ejection in the neutrino wind. This matter escapes after the supernova

explosion shock wave was launched and the continuing neutrino escape from the

remaining neutron star leads to its surface erosion/evaporation, i.e. a neutron-rich

wind which could trigger an r process (Qian and Woosley, 1996). Early modelling

seemed to lead to a full r-process abundance distribution (Woosley et al, 1994),

which was, however, already then questioned by other investigations (Takahashi

et al, 1994), when utilizing the entropies obtained from their calculations. Results

with present neutrino physics and detailed transport modeling seem to find the op-

posite behavior, i.e. proton-rich conditions for more than the first 10s after the explo-
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sion (Fischer et al, 2009a; Marek and Janka, 2009), as noticed first by Liebendörfer

et al (2003) and discussed in Sect. 4.4 together with the ν p process. A major ques-

tion is if and how this turns to be neutron-rich in later phases, what physics causes

this change (the nuclear EoS or neutrino properties?), and how very high entropies

can be attained to produce also the heaviest nuclei. Present observations of low

metallicity stars show huge variations in heavy r-process content and indicate that

in most explosions the latter is not taking place, making the full r process a rare

event. Then typical supernovae would only provide a weak r-process environment.

Whether either high entropies are only attained in exceptional cases or other origins

of low entropy, highly neutron-rich matter (neutron star mergers or neutron-rich

jets from rotating core collapse supernovae, Freiburghaus et al (1999b); Cameron

(2001, 2003)) cause the main r process has to be explored, in parallel with the still

remaining challenges of nuclear physics far from stability.

In the preceding sections we have shown that there exists a principle understand-

ing about the nuclear working of the r process and that it is possible to reproduce

solar system r-process abundances by superpositions of components with varying

environment conditions. What seems not possible, yet, is to clearly identify, without

doubt, the responsible astrophysical site. Taking, however, such r process super-

position fits as zero-age abundances with e.g. production ratios for 232Th/238U or

other actinide (chronometer) nuclei, one can predict such ratios also as a function

of decay time (present-age abundances) and identify ages of very metal-poor stars

which were born with a fresh pollution of an r process pattern (see e.g. Cowan et al

(1991, 1999); Thielemann et al (2002); Kratz et al (2007) and references therein).

The typical result is that these chronometers indicate an age of the oldest stars in

our Galaxy in the range of 14-15 Gyr with an uncertainty of about 3-4 Gyr. A more

complex utilization of long-lived r-process radioactivities in terms of a continuing

enrichment in galactic evolution is given in Ch. 2.

Fe-group and beyond

The neutrino wind works via evaporation of the neutron star surface after the super-

nova shock wave emerged and caused the explosion. The innermost matter which

experienced the shock is thus ejected earlier and a typical example for its composi-

tion is seen in Fig. 4.12, which shows the zones of complete Si-burning with α-rich

freeze-out. The change in abundances at M = 1.63M⊙ is due to a change in Ye in the

original stellar model, which was utilzed for explosive nucleosynthesis predictions

just by introducing a thermal bomb of 1051erg. If one accounts correctly for the neu-

trino interactions during the collapse and explosion, this turns matter even slightly

proton-rich (Ye > 0.5), see the discussion of the ν p process in Sect. 4.4 and Figs.

4.16, 4.17 and 4.18 (Fröhlich et al, 2006a,b; Pruet et al, 2005, 2006; Wanajo, 2006).

This results also in substantial fractions of 64Ge (decaying to 64Zn via 64Ga, both of

short half-life in the minute to second regime and therefore not of interest in terms of

radioactivities with long half-lifes), but within the ν p process also to the production

of Sr and heavier nuclei. The isotopic ratios 58Ni, 60,61,62Zn change strongly. Alpha-

nuclei such as 40Ca, 44Ti, 48Cr, and 52Fe are affected as well. Higher entropies and

Ye-values close to 0.5 increase the fraction of these α-nuclei (and would in hyper-
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novae also cause a substantial production of 64Ge as discussed in Sect. 4.4 in the

context of the ν p process (see also Arcones and Montes, 2010; Roberts et al, 2010).

It was also discussed there that probably only a small fraction of black-hole produc-

ing events actually lead to hypernovae (not 50% as assumed in some cases (Nomoto

et al, 2006; Kobayashi et al, 2006)). However, this reduction in the 64Ge production

can well be balanced by the larger 64Ge production in regular supernovae due to the

correct inclusion of neutrino-interactions and their effect on increasing Ye to values

larger than 0.5.

Other explosive burning zones, 44Ti, 26Al

While such a discussion is of general interest for the composition of the Fe-group

and filling in of lighter p-process nuclei, which are underproduced in the classical

picture (see Sect. 4.4), we would like to concentrate here on long-lived radioactivi-

ties. The nucleus which is mainly produced in the complete Si-burning regime with

α-rich freeze-out is 44Ti. As discussed above, its total amount depends on the mat-

ter experiencing this burning outside the mass cut (which is in principle unknown

without successful explosion calculations). Several authors have made assumptions

on its position, either based on total 56Ni ejecta in thermal bombs (Thielemann

et al, 1996; Nomoto et al, 2006) or entropy jumps in the pre-collapse models in

piston-induced explosions (Woosley and Weaver, 1995,?). Based on these assump-

tions different authors find somewhat different predictions, which are, however, a

relatively flat function of the stellar progenitor mass. The values of Thielemann et al

(1996) range between 2× 10−5 and 1.5× 10−4 M⊙. The interesting point here is

that variations in the Ye-structure can lead to changes up to a factor of 2. Here ei-

ther the initial pre-collapse distribution was assumed (with possible Ye-dips in the

innermost parts from shell O-burning) or a smoothed flat Ye-distributions closer to

0.5 (which also reproduces the solar 56Fe/57Fe-ratio). This latter case leads to the

higher values and will also be closer to reality when neutrino interactions are taken

into account during the explosion (see discussion above on the ν p process and Ye).

Rauscher et al (2002) and Tur et al (2009) find smaller values (either 1.5−5×10−5

and 3.5 − 6 × 10−5 M⊙). The latter is based on a readjustment of the 3α- and
12C(α,γ)16O-rates to most recent experimental values, which does not have a dras-

tic influence, however. Indirectly, core sizes and other stellar properties, including

explosion energies, can enter.
44Ti is only made in the explosive phase of complete Si-burning with α-rich

freeze-out from charged particle equilibrium. There have been investigations on

the reactions producing (40Ca(α,γ)44Ti) and distroying (44Ti(α, p)47V) reactions

as well as the half-life of 44Ti. Due to the fact, that this is a freeze-out from equilib-

rium, Hoffman et al (1999) found that even rate changes by a factor of 6 change the
44Ti production only by a factor of 1.3 What is different between both approaches,

leading to productions either larger or smaller than 5×10−5 M⊙, is the introduction

of the explosion (i) a thermal bomb, (ii) a piston. This apparently leads to higher en-

tropies in the first case and a more intense α-rich freeze-out. It should also be men-

tioned that non-spherical explosions can lead to larger 44Ti-production than spher-
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ical models (Nagataki et al, 1998; Nagataki, 2000). A comparison to observations

from either SN 1987A or the SNR Cas A is discussed in the following subsection.

Complete explosive nucleosynthesis predictions for a range of progenitor stars

with induced explosions have been given by a number of authors in recent years

(Rauscher et al, 2002; Woosley et al, 2002; Nomoto et al, 2006; Limongi and Chieffi,

2006; Woosley and Heger, 2007; Umeda and Nomoto, 2008), updating some of

the discussions made above, based on earlier models (Woosley and Weaver, 1995;

Thielemann et al, 1996). Also specific investigations were undertaken for Pop III

low metallicity stars (Umeda and Nomoto, 2005; Tominaga et al, 2007). We limit

the present discussion to stars below 130 M⊙ which still undergo core collapse and

do not explode via explosive O-burning like the so-called pair-creation supernovae

(Heger et al, 2003). While such explosions seem theoretically possible, provided

that these massive cores can result from stellar evolution, the apparent absence of

predicted abundance patterns in low metallicity stars plus our present understanding

of massive stars with rotation (Maeder and Meynet, 2010), seem to exclude this

outcome.

Then, the basic pattern given in table 4.5.1 always applies. The abundances from

incomplete Si-burning and explosive O-burning can explain Galactic chemical evo-

lution. As mention in Sect. 4.4, the classical p process takes place in explosive

Ne-burning via photodisintegrations of pre-existing heavy nuclei, but even with the

best nuclear input the underproduction of light p-nuclei cannot be solved. The so-

lution can be obtained by adding a light (heavy) element primary process (LEPP,

(Travaglio et al, 2004) where the best candidate is the ν p process. Thus, the clas-

sical p-process isotopes have to be explained by a superposition of the innermost

proton-rich complete Si-burning ejecta with those of explosive Ne-burning in outer

zones.

The scheme indicated in table 4.5.1 is a bit too simplified when considering the

ejecta of outer layers, whose composition was produced during stellar evolution and

ejected essentially unaltered during the explosion. However, the CO-core scheme

is not sufficient to describe massive-star yields. While it includes all matter which

underwent He-burning, it does not differentiate between core He-burning and shell

He-burning. The latter occurs at higher temperatures and has specific features differ-

ent from core He-burning. In a similar way, the NeO-core contains all matter which

underwent C-burning during stellar evolution, but also here, no difference is made

between core C-burning and higher temperature shell C-burning. The same is true

for Ne-burning.
26Al production during stellar evolution was discussed in Sect. 4.3; now we in-

clude also the explosive production of 26Al. It occurs in the regions of explosive

Ne/C-burning. Under these conditions 25Mg is produced via 24Mg(n,γ)25Mg and

the protons arise from 23Na(α, p)26Mg, similar to the reaction pattern shown in

table 4.4 for hydrostatic Ne-burning (and partially also C-burning). Under explo-

sive conditions at temperatures of the order 2.3× 109K, these burning stages act

explosively in a combined way, and the temperatures are also suffuciently high to

utilize the released protons for the 25Mg(p,γ)26Al reaction. However, as also seen

from table 4.4, neutrons are abundantly produced. They act as the main destructive
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Fig. 4.20 The 26Al yields from wind ejections and from the explosive release in the supernova, as

a function of the initial mass of the star (as assembled by Diehl et al, 2006, (in their appenix).

species via (n, p) and (n,α) reactions. As can be seen from table 4.5.1, the mass

involved in explosive Ne/C burning is strongly dependent on the progenitor mass.

Thus, we expect a dramatic increase with increasing initial stellar masses, which

is exactly what we see. Limongi and Chieffi (2006) have analyzed in detail the

contributions from (i) wind ejecta during stellar evolution, (ii) hydrostatic burning

products ejected during the explosion, and (iii) explosive Ne/C-burning. The latter

dominates up to about 60 M⊙ and increases from initially about 2× 10−5 M⊙ per

event to 2−3×10−4 M⊙. Then wind ejecta start to take over and flatten out close to

10−3 M⊙ at initial stellar masses of 120-140 M⊙. The latter are subject to rotational

effects (Langer et al, 1995; Meynet et al, 1997; Palacios et al, 2005) and increase in

fact with higher rotation rates (see Sect. 4.3). Tur et al (2009) have reanalyzed this

behavior in the lower mass range from 15-25 M⊙ and confirmed this trend. They

also did not find a strong dependence of the result on the He-burning reactions 3α-

and 12C(α,γ)16O. They show nicely how 26Al is produced starting in H-burning,

but the final explosion produces close to a factor of 10 more of it. Yields from dif-

ferent studies have been assembled in Fig. 4.20.

60Fe

Massive-star yields for 60Fe are summarized in Fig. 4.21 and should only be

mentioned here for completeness, although not produced in explosive nucleosythe-

sis. It is entirely produced in the s process during shell He-burning and thus a pure

product of stellar evolution. The explosion only acts to eject the corresponding lay-

ers. As 60Fe is produced via neutron capture of beta-unstable 59Fe, a relatively high

neutron density of about 3×1010cm−3 is required in order for its efficient produc-



4.5 The Aftermath of Explosions 57

Fig. 4.21 The 60Fe yields from the explosive release in the supernova, as a function of the initial

mass of the star (as assembled by ?).

tion. This is only attained in shell He-burning during late evolution stages after core

C-burning. The production ranges from 2× 10−6 to 8× 10−5 M⊙ for initial stellar

masses between 10 and 40 M⊙. This result is dependent on the He-burning reac-

tions 3α- and 12C(α,γ)16O, as they compete with the neutron producing reaction
22Ne(α,n)25Mg. There exist also uncertainties in 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe,

which cause yield uncertainties by a factor of up to 5. If the star experiences strong

mass loss, the He-burning shell does not encounter the higher density conditions re-

quired for the high neutron density of 3×1010cm−3. Thus for initial stellar masses

in excess of 40 M⊙, the mass loss treatment can also lead to variations in predicted

yields of more than a factor of 10. Apparently a high mass loss rate is required to

not overproduce 60Fe in high mass stars M > 40 M⊙ (Limongi and Chieffi, 2006)

with respect to γ-ray line constraints (see Wang et al, 2007, and Ch. 7).

4.5.2 Observational Diagnostics: Lightcurves, Spectra and SNR

Lightcurves

Supernova light curves are powered by radioactive decays. Very early interpretations

of supernova lightcurves related them to the radioactive decay of 254Cf (Burbidge
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Fig. 4.22 Total energy release due to the decay of long-lived radioactive species (dashed lines)

and due to the release in terms of thermalized decay photons (solid lines). The ejected masses of

radiactive species are takem from a 20 M⊙ model for SN 1987A (Thielemann et al, 1990, 1996) .

et al, 1957). In fact, a strong r process (with fission-cycling) would cause observ-

able features based on the decay of heavy radioactive nuclei. (This question was

addressed very recently with respect to r-process ejecta from neutron star mergers

(Metzger et al, 2010)). Supernova lightcurves, however, are dominated by Fe-group

ejecta. In addition to abundant 56Ni, there are a number of radioactive nuclei which

will decay on time scales of ms up to 107y. Here we only want to concentrate on

a few nuclei, which by a combination of their abundances and half-lives, can be of

importance. These nuclei are 56Co (56Ni), 57Co (57Ni), 55Fe (55Co), 44Ti, and 22Na.

For a 20 M⊙ star like SN 1987A they were predicted with total masses of 0.07,

3.12×10−3, 3.03×10−4, 1.53×10−4, and 1.33×10−7M⊙ (Thielemann et al, 1990,

1996).

Observations of light curves in radiation which reflects the thermalized energy

of this radioactivity constrained these values to M(56 Ni)≈ 0.071 M⊙ (e.g. Suntzeff

and Bouchet (1990)) and M(57 Ni)≈ 3.3× 103 M⊙ (Fransson and Kozma (1993)

and references therein). Only more recently a very careful analysis confirmed an

upper limit on 44Ti of the order 1.1×10−4M⊙ (Lundqvist et al, 2001).

Generally, after beta-decay or electron capture, a daughter nucleus is produced in

an excited state ( 55Fe is a notable exception, see below). The ground state is reached

by one or several gamma transitions, observable by current gamma-ray detectors for

nearby sources (see Sect. 10.1). Photons, positron-electron annihilations following
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β+-decays, and the kinetic energy given to the decay products can contribute to the

light curve at later times.

The number of photons released for each of the transitions, occuring in the

daughter nucleus after beta-decay, is equal to the number of decays Nd , multiplied

with the appropriate percentage of the occurrance (branching ratio) for the specific

transition. The total energy released corresponds to the product of the number of

decays with the decay Q-value:

Nd(t) =−
dN

dt
(t) = λNoexp(−λ t)

dE

dt
(t) = QNd(t) = QλNoexp(−λ t), (4.5)

where λ = ln2/t1/2 is the decay rate of the nucleus. The initial number of ra-

dioactive nuclei can be calculated from their total mass by No = M/Amu, with A

being the nucleon number of the nucleus, mu the atomic mass unit, and M the mass

given above. When using the radioactivity half-lives of relevant isotopes expected in

supernova ejecta (i.e., 78.76d, 271.3d, 2.7y, 54.2y, and 2.602y, and atomic Q-values

of 4.566, 0.835, 0.232, 3.919, and 2.842 MeV) we can estimate radioactive-energy

generation rates in erg s−1 and the total number of decays per sec. The Q-value

used for 44Ti combines the subsequent decays of 44Ti and 44Sc. Q-values include

all available energies, i.e. the kinetic energy of the decay products, the energy in

photons, the annihilation energy of positron-electron pairs in β+-decays, and the

neutrino energy. At densities prevailing in the expanding remnant, neutrinos will

escape freely and their energy has to be subtracted, which leaves corrected values

for the appropriate energy deposits of 3.695, 0.136, 0.0, 2.966, and 2.444 MeV. Be-

cause the electron capture on 55Fe does only lead to an energetic neutrino, there is

no local energy deposition from this isotope14. Gamma transitions following the de-

cays of the other isotopes under consideration obtain candidate γ-rays at (rounded

to full percent values): 56Co, 847 keV (100%), 1038 keV (14%), 1238 keV (68%),

1772 keV (16%), 2599 keV (17%); 57Co, 122 keV (86%), 136 keV (11%); 44Ti,

78 keV (93%), 68 keV (88%), 147 keV (9%), 1157 keV (100%); 22Na, 1275 keV

(100%; branching ratios given as percentages per dcay). If positrons from β+-decay

slow down and annihilate with electrons locally within the supernova envelope, the

full neutrino-loss corrected energy corresponding to the reaction Q-value will be de-

posited in the envelope. Observable signatures include high energy photons such as

the ones from the gamma transitions, and their Compton scattered and completely

thermalized descendants15.

14 This situation was recently re-evaluated by Seitenzahl et al (2009). The electron capture occurs

from an electron in an atomic orbit, leaving a hole which can be filled by other electrons cascading

down to fill this hole, thus emitting photons - X-rays - or depositing the energy in ejecting outer

electrons - Auger electrons. Thus, in cases where only ground-state to ground-state electron cap-

ture occurs and the energy is emitted in an escaping neutrino only Auger electrons or X-rays can

contribute to local energy deposition.
15 Deposition of energy from radioactive decay involves absorption of high-energy photons, slow-

ing down of ∼MeV-type energy electrons and positrons, and proper treatment of temporary energy

reservoirs such as ionization and inhibited radioactive decay from completely-ionized nuclei (see,

e.g., Sim et al, 2009; Mochizuki et al, 1999; Woosley et al, 2007)
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Then the sum of all individual contributions discussed above would make up

the bolometric lightcurve of the supernova (see Fig.4.5.2). The light curve, i.e. the

brightness as a function of time, will be dominated first by the decay of 56Co, and

then 57Co and 44Ti, if one neglects possible radiation from a pulsar. 22Na never plays

a dominant role for the lightcurve. At lower densities (and later times), escaping

high energy photons or positrons lead to a reduction of the brightness of bolometric

emission. This can be seen in late time observations as shown e.g. in Leibundgut and

Suntzeff (2003) (see Fig.4.23). An important consistency check would be to com-

pare this bolometric light curve (which includes only optical, UV and IR emission,

hence thermalized gas and dust components) to the high-energy photons more di-

rectly reflecting radioactive decays. At late times, those high energy photons escape

freely.

The γ-ray detections of SN1987A were the first to identify γ-rays from 56Co de-

cay. Later improved observations by CGRO for 56Co and 57Co were a direct proof

of these unstable species in the right amounts. It turned out that Ni decay γ-ray

lines were seen with the Gamma-Ray Spectrometer on the Solar Maximum Mission

(Matz et al, 1988; Leising and Share, 1990) significantly earlier than expected from

a spherically stratified distribution of elements, where the Fe-group nuclei are pro-

duced in the center. This is understood from deviations from spherical symmetry in

the expanding remnant, bringing Ni-rich clumps to the surface earlier by convec-

tive instabilities, mixing 56Ni/56Co to outer layers at early times. Gamma-ray line

profiles measured with high spectral resolution indicated Doppler broadening of the

lines from their ejecta motion (Tueller et al, 1990).
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Many supernova remnants (such as the 300-year old Cas A remnant) show mix-

ing in their ejecta (Vink, 2005). While there existed some theoretical indications that

this is due to instabilities of the propagating shock wave, it is generally and more

plausibly associated with the expansion of the supernova into an inhomogeneous

medium. SN1987A observations showed clearly that mixing is part of the supernova

explosion itself. Several independent reasons lead to such a conclusion. The super-

nova produces large amounts of unstable long-lived nuclei, the dominant abundance

is found in the doubly-magic nucleus 56Ni, which is produced in the innermost part

of the ejecta. 56Ni decays with half-lives of 6.1 days to 56Co and 77.8 days to 56Fe.

After the beta-transition, deexcitations to the ground state of the daughter nucleus

lead to the emission of high energy gamma-rays. While these gamma-rays would

escape freely at low densities, Compton scattering will reduce their energies into

the X-ray and even thermal regime at higher densities. With decreasing densities

during the expansion, initially only thermalized photons will escape, then X-rays

and finally gamma-rays. For SN1987A X-ray observations with GINGA, HEXE,

and balloons and gamma-ray observations with the SMM-satellite and balloons ac-

tually agreed with this general behavior (e.g. Sunyaev et al, 1990; Leising and Share,

1990). The main problem was that the predicted time scales did not agree with the

observations, where X-rays and gamma-rays appeared earlier than predicted. An

agreement could only be obtained when part of the 56Ni, being produced initially

in the inner parts of the ejecta, was mixed out to larger distances (Fu and Arnett,

1989). Mixing is also required to explain the spread of expansion velocities seen

in line widths of infrared observations for various elements and in the gamma ray

lines of 56Co. The inferred velocities differ strongly from the much smaller ones,

expected from an expanding remnant, which maintains the stratified composition

from explosive and hydrostatic nuclear burning. Other indications came from the

modeling of the optical light curve. The best agreement between calculated and ob-

served light curves were obtained for a composition which mixed a small fraction

of Ni all the way into the 10M⊙ hydrogen envelope and hydrogen into the deeper

layers, containing mostly heavy elements (see e.g. Benz and Thielemann (1990)).

The lightcurve from SN1987A could be reproduced with theoretical modelling,

including the effects of X-ray and γ-ray escape, as well as mixing of 56Ni. SNe Ib

and Ic events, believed to be core collapse events without an overlying hydrogen

envelope have to be treated accordingly. The combination of small masses involved

(only He-cores or C-cores without H-envelope) and the assumption of mixing can

reproduce the steeper decline than found in massive SNe II. A typical case of a type

Ic supernova is SN 1998bw, associated with GRB 980425. The straight-forward

modeling of the observed lightcurve (Sollerman et al, 2002), similar to the discus-

sion in the beginning of this subsection (Nakamura et al, 2001), led to interpretations

of a largely non-solar 56Ni/Fe to 56Ni/Fe ratio. The inclusion of internal conversion

and Auger electrons, as suggested by Seitenzahl et al (2009) could naturally explain

the observed slowdown of the lightcurve without invoking such extreme abundance

ratios.

We note that in recent years photon transport calculations have reached major

improvements, and are now able to consistently reproduce both light curves and
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spectra from SNIa, and also from core collapse supernovae (e.g. Sim et al, 2009, for

a description o the method). Presently, systematic uncertainties of the method are

being investigated, and appear rather well understood (at least for SNIa (see, e.g.,

Woosley et al, 2007). As optical-to-IR light curves and spectra will be collected

in abundance through large telescope survey programs for cosmological studies, it

is likely that those (more indirect) measurements of core-collapse supernova nucle-

osynthesis will generate the tightest constraints to learn more about these events and

their internal nuclear processes.

Optical/IR Spectra and Dust Formation

In the preceding subsection we laid out the framework of understanding supernova

lightcurves. What is missing here, is the evolution of supernova spectra. The receed-

ing photosphere in terms of radial mass in an expanding, radiation-filled bubble can

give clear indications of the element composition (as a function of time equivalent

to declining Lagrangian mass). The problem of type II supernovae is that the huge

H-envelope does not really contain much information in terms of nucleosynthesis.

Type Ib and Ic supernovae, which lost their H- and possibly He-envelope, reveal

much more information of the compact inner part, which experienced explosive

processing (Matheson et al, 2001; Branch et al, 2002; Sauer et al, 2006). This is

similar to type Ia supernovae, originating from exploding white dwarfs, which have

been extensively utilized for abundance diagnostics.
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Fig. 4.24 (a) Scanning electron microscope image of a presolar graphite grain following isotopic

measurement with an ion microprobe (from Nittler et al, 1996). The arrow indicates TiC sub-grain

originally enclosed in graphite but revealed by the ion-probe sputtering. (b) Calcium isotopic com-

position of graphite grain shown in a. The 44Ca/40Ca ratio is 137 times the solar ratio, whereas the

other Ca-isotopic ratios are normal within 2−σ errors (the error bar in the isotope 44 abundance is

smaller than the symbol size). This is a clear signature of in situ decay of live 44Ti, originally con-

densed in the TiC sub-grain, and demonstrates that the grain formed in the ejecta of a supernova.
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Another issue, which has been discussed already in the subsection on supernova

lightcurves is related to convective instabilities and mixing of nucleosynthesis prod-

ucts. The extent of mixing is responsible for the element mixture in the expanding

and cooling remnant when chemical reactions and dust formation set in. For which

compositions and conditions does this environment lead to presolar grains with high

melting temperatures which can survive the interstellar medium and formation of

the solar system in order to be detected today in meteoritic inclusions? When do

we form oxides, diamonds, hybonites, carbides ... and how selectively do they in-

clude matter from the regions where they form? How can we relate 26Mg and 44Ca

excesses in presolar grains to initially embedded 26Al and 44Ti? Fig. 4.24 shows

an example of a grain attributed to supernova condensation. A discussion of these

questions can be found in Sect. 10.3.

26Al in the Vela Region

The Vela region appears prominent in several astronomical images of our Galaxy: It

includes the Gum nebula and the Vela Supernova Remnant, both prominent agents

to form nearby structures of the interstellar gas and bright in X- and radio emissions,

and it includes the Vela pulsar where bright gamma-ray pulsations teach us about

particle acceleration in neutron star magnetospheres, and furthermore with Vela X-

1 a remarkable X-ray source and prototype of a binary system where a neutron

star accretes wind material from a high-mass companion star. All those objects are

relatively nearby, mostly in the foreground of the Vela molecular ridge which is one

of the nearest star-forming regions and located in about 700 (±200) kpc distance

(Massi et al, 2007).

Three prominent sources have been discussed in the context of measuring 26Al

production for individual objects – all related to massive star and explosive nucle-

osynthesis, respectively (26Al observations are discussed in Chap. 7 otherwise): The

Vela supernova remnant, a recently-discovered supernova remnant called Vela Ju-

nior, and a Wolf-Rayet binary system γ2Velorum.

The Vela supernova remnant is relatively nearby at 250 pc, about 10,000 y old,

and spans an area of about 8◦diameter on the southern sky. It hosts the Vela pul-

sar and a plerionic pulsar nebula at its center. Such a nearby supernova explo-

sion in the recent past seems a unique opportunity to calibrate the 26Al yield of

a core-collapse supernova. With COMPTEL, diffuse and extended emission had

been recognized from this direction (Diehl et al, 1995). But possibly-underlying ex-

tended 26Al emission limits the precision of this measurement, the 26Al gamma-ray

flux attributed to this supernova remnant is 0.5–2.7 10−5ph cm−2s−1. This is well

within expectations (an 26Al yield of 10−4 M⊙ would result in a gamma-ray flux of

∼2 10−5ph cm−2s−1). INTEGRAL could not detect the supernova remnant, how-

ever, despite sufficient exposure. This may be due to the low surface brightness of

this extended source and line broadening from the remaining ejecta motion of this

young supernova remnant.
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Fig. 4.25 The 26Al gamma-ray flux estimated from ejection of 26Al-rich envelope material during

the Wolf-Rayet phase (Mowlavi et al, 2005) . Shown are two different stellar models, with and

without stellar rotation. In addition to delaying the WR phase, rotation also increases the 26Al

production. Shown are gamma-ray fluxes for different distances, not including the more recent and

larger distance of 330–390 pc.

In refined X-ray imaging analysis of the Vela supernova remnant, a new super-

nova remnant was discovered being superimposed with a diameter of ∼2◦and named

RXJ0852.0-46.22 or Vela Junior for short (Aschenbach, 1998). Early speculations

about its 26Al emission were stimulated from hints for 44Ti emission, which would

have implied that this supernova remnant would be both young and nearby; these

could not be substantiated by additional measurements and studies. Now absence of
26Al emission from Vela Jr. appears plausible, as the supernova remnant is probably

older than 1000 y and more distant than 740 pc (Katsuda et al, 2009).

The γ2Velorum binary system is yet another tantalizing 26Al source: It consists

of a Wolf Rayet star (WR11) and an O-star companion. If the binary interactions

can be ignored for 26Al production of the WR11 star, this would be the opportu-

nity to calibrate the 26Al ejection during the Wolf-Rayet phase of a massive star, as

the distance to this object has been derived from Hipparcos measurements as only

258 pc. The Wolf-Rayet star currently has a mass of ∼9 M⊙, with a 30 M⊙ O star

companion (De Marco et al, 2000). Modeling the Wolf-Rayet star evolution in de-

tail, and also accounting for possibly rapid rotation as it delays the wind ejection

phase, Mowlavi et al (2005) show that the upper limit on 26Al emission from WR11

would be hard to understand (Fig. 4.25). But doubts have appeared on the Hipparcos

distance measurement, and current belief is that the system is part of the Vela OB2

association and rather at a distance of 330–390 pc (see Eldridge, 2009, and refer-

ences therein). Additionally, the system’s age may also be somewhat higher than

estimated earlier (beyond 5 My, rather than 3–5 My) (Eldridge, 2009), and part of

the 26Al ejected in the earlier wind phase may now be spread over a shell extended

by up to 6◦(Mowlavi and Meynet, 2006), hence of lower surface brightness and still

consistent with the non-detection by COMPTEL and INTEGRAL gamma-ray tele-

scopes. Note, however, that binary mass transfer may have altered the evolution of
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the Wolf-Rayet star substantially; this mutual impact on stellar evolution in close

binaries is still very uncertain, but could lead to orders of magnitude increases of
26Al production in rare cases (de Mink et al, 2009; Langer et al, 1998).

Supernova Remnants

An expanding supernova as it interacts with circumstellar matter gives rise to ther-

mal X-ray line emission, for remnants of ages between ∼hundreds to several 10000

years. Although in principle circumstellar and ejecta materials are both contributing

to such emission, and such atomic-shell emission carris uncertainties of ionization

degrees and local temperature (to define a local thermodynamic equilibrium), abun-

dance determinations for specific ejecta species can be made, and also have been

explored for determinations both of supernova types and of nucleosynthesis yields

(Hughes et al, 1995; Nymark et al, 2006). Even an (unsuccessful) search for X-ray

line emission of radioactive 44Sc from the decay of 44Ti had been performed for the

presumably young and nearby Vela Junior SNR (Hiraga et al, 2009, and references

herein). More directly, the very late phases of the expansion into the interstellar

medium permits the detection of long-lived radioactivities by detecting its decay

photons of specific γ-ray energies, when these can escape freely from the expanding

debris. Such detections can then be identified with the amount of matter existing in

radioactive isotopes.

The discovery of the 1157 keV 44Ti γ-ray line emission from the youngest

Galactic SNR Cas A with COMPTEL (Iyudin et al, 1994) was the first direct

proof that this isotope is indeed produced in SNe. This has been strengthened

by the BeppoSAX/PDS detection of the two low-energy 44Ti lines (Vink et al,

2001). By combining both observations, Vink et al (2001) deduced a 44Ti yield

of (1.5± 1.0)× 10−4 M⊙. This value seemed higher than the predictions of most

models (see the previous subsection), although it is not outside the error bars. Sev-

eral aspects have been considered to explain this large value: a large energy of the

explosion (≈ 2× 1051 erg), asymmetries (Nagataki et al, 1998) currently observed

in the ejecta expansion, and a strong mass loss of the progenitor consistent with the

scenario of a Type Ib SN (Vink, 2004).

If 44Ti ejection as seen in the Cas A event was typical for core-collapse events, the

gamma-ray surveys made with COMPTEL(Dupraz et al, 1997; Iyudin et al, 1999)

and with INTEGRAL(Renaud et al, 2006) should have seen several objects along

the plane of the Galaxy through their 44Ti decay emission (see Sect. 7.6 for a detailed

discussion of Galactic supernovae and 44Ti). From this, it had been concluded that
44Ti ejection is rather a characteristic of a rare subclass of core-collapse supernovae

(The et al, 2006).

From the three different γ-ray lines resulting from the 44Ti decay chain, con-

straints for kinematic Doppler broadening can be derived: The Doppler broadening

being a linear function of energy, it would broaden the 1157 keV line to values in

the few to tens of keV range, which can be measured with Ge spectrometers; the

lower-energy lines at 68 and 78 keV would not show significant kinematic broaden-
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ing. Martin et al (2009) have exploited INTEGRAL/SPI spectrometer data to show

that 44Ti ejecta as seen by above measurements need to be faster than 500 km s−1,

as the 1157 keV line is not found with SPI and assumed to be broadened such as to

disappear in instrumental background.

Ejecta from a Supernova Remnant on Earth

Knie et al. 2004 

Fig. 4.26 Ocean crust sample as analyzed by Knie et al (2004) for 60Fe content. The insert graph

shows their result, i.e. the number of 60Fe nuclei versus age as determined from cosmic-ray pro-

duced Be radioactivity.

60Fe has been discovered through accelerator-mass spectroscopy (AMS) analy-

ses of ocean crust material (Knie et al, 2004) (Fig. 4.26). If taken from places on

Earth which are remote from any antropogeneous contamination, such as in deep

parts of the Pacific ocean, they provide a record of past composition of ocean water.

Manganese crusts grow very slowly from sedimentation. Therefore, a rather small

sample will cover tens of My of sedimentation history within a few cm of depth. 60Fe

production from cosmic ray irradiation in the atmosphere is unlikely, other system-

atic contaminations also seem low. The age of each depth layer can be determined

from Be isotopes produced by cosmic rays in the atmosphere of the Earth, also in-

gested into ocean water with other atmospheric gas and dust. The AMS method is

one of the most-sensitive techniques to detect small amounts of specific isotopes,

reaching a sensitivity of 10−16. Evaporization of chemically-prepared Fe-enriched

crust samples and successive ion acceleration and mass spectrometry obtained the

result shown in Fig. 4.26. This discovery was taken as evidence that debris from

a very nearby supernova event must have been deposited on Earth about 3 million

years ago. Unclear remain the deposition and crust uptake efficiencies, such that

the quantitative estimation of interstellar 60Fe flux or supernova distance is uncer-

tain; distances in the 10–30 pc range have been discussed. Studies of other sediment
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samples are underway to estimate these effects, and to confirm this exciting record

of nearby supernova activity. Supernova nucleosynthesis of radioactivities appears

close to our lives, indeed.
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Popov AV, Rahaman S, Rauscher T, Rauth C, Rissanen J, Rodrı́guez D, Saastamoinen A, Schei-

denberger C, Schweikhard L, Seliverstov DM, Sonoda T, Thielemann F, Thirolf PG, Vorobjev

GK (2008) Mass measurements in the vicinity of the rp-process and the νp-process paths with

the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys. Rev. C78(5):054,310–+, DOI

10.1103/PhysRevC.78.054310, 0808.4065

Wiescher M, Görres J, Pignatari M (2010) Experimental Status of Reactions in H- and He-Burning.

Annual Review of Nuclear and Particle Science 60:175–251, DOI 10.1146/annurev.nucl.60.1.

175

Wilson JR, Mayle RW (1993) Report on the progress of supernova research by the Livermore

group. Phys. Rep.227:97–111, DOI 10.1016/0370-1573(93)90059-M

Wolfenstein L (1978) Neutrino oscillations in matter. Phys. Rev. D17:2369–2374, DOI 10.1103/

PhysRevD.17.2369

Woosley SE, Bloom JS (2006) The Supernova Gamma-Ray Burst Connection. ARA&A44:507–

556, DOI 10.1146/annurev.astro.43.072103.150558, arXiv:astro-ph/0609142

Woosley SE, Heger A (2007) Nucleosynthesis and remnants in massive stars of solar metal-

licity. Phys. Rep.442:269–283, DOI 10.1016/j.physrep.2007.02.009, arXiv:astro-ph/

0702176

Woosley SE, Howard WM (1978) The p-process in supernovae. ApJS36:285–304, DOI 10.1086/

190501

arXiv:astro-ph/0107468
arXiv:astro-ph/0412187
arXiv:astro-ph/0602488
0706.4360
arXiv:astro-ph/0102261
arXiv:astro-ph/0401412
arXiv:astro-ph/0401412
0704.3895
0808.4065
arXiv:astro-ph/0609142
arXiv:astro-ph/0702176
arXiv:astro-ph/0702176


80 4 Massive Stars and their Supernovae

Woosley SE, Weaver TA (1995) The Evolution and Explosion of Massive Stars. II. Explosive

Hydrodynamics and Nucleosynthesis. ApJS101:181–+, DOI 10.1086/192237

Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The r-process and neutrino-

heated supernova ejecta. ApJ433:229–246, DOI 10.1086/174638

Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Reviews

of Modern Physics 74:1015–1071, DOI 10.1103/RevModPhys.74.1015

Woosley SE, Kasen D, Blinnikov S, Sorokina E (2007) Type Ia Supernova Light Curves.

ApJ662:487–503, DOI 10.1086/513732, arXiv:astro-ph/0609562
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