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the overlap of two massless and one massive wavefunctions. The overlap integral receives

contributions from only a small patch around a point of symmetry enhancement thereby

allowing the wavefunctions to be determined locally on flat space, drastically simplifying

the calculation. The cubic coupling between two MSSM fields and one of the massive

coloured Higgs triplets present in SU(5) GUTs is calculated using a local eight-dimensional

SO(12) gauge theory. We find that for the most natural regions of local parameter space

the coupling to the triplet is comparable to or stronger than in minimal four-dimensional

GUTs thereby, for those regions, reaffirming or strengthening constraints from dimension-

five proton decay. We also identify possible regions in local parameter space where the

couplings to the lightest generations are substantially suppressed compared to minimal

four-dimensional GUTs. We further apply our results and techniques to study other phe-

nomenologically important operators arising from coupling to heavy modes. In particular

we calculate within a toy model flavour non-universal soft masses induced by integrating

out heavy modes which lead to FCNCs.
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1 Introduction

Although string theory is primarily motivated as a fundamental unified theory because of

its ultraviolet behaviour, phenomenological model building within string theory often con-

cerns only the infrared spectrum. This is a natural first step given the expected hierarchy

between the string and electroweak scales. However, heavy modes play a crucial role in

our understanding of much of the physics which is relevant to the Standard Model and

extensions of it, for example by inducing higher dimension operators in the infrared. The

fact that studying such modes explicitly requires a good understanding of the ultraviolet

physics means that this is one of the subjects where string phenomenology can play an

important role. Heavy modes are particularly important in the case of Grand Unified The-

ories (GUTs). For instance, the result of gauge coupling unification at the GUT scale is

sensitive to threshold corrections from heavy modes, and one of the classic constraints on

GUTs comes from dimension-five proton decay operators that are induced by integrating

out heavy modes.

Studying detailed properties of these fields, such as their wavefunction profile, is typi-

cally a difficult prospect because of the complicated geometry associated to realistic models

of particle physics in string theory. String modes can only be concretely studied in simple

geometries where a world-sheet description is available. Kaluza-Klein (KK) modes, and the

closely related Landau-levels,1 are typically difficult to solve for within some complicated

Calabi-Yau (CY) geometry. However, in some models, and in particular F-theory (or type

IIB) GUTs, many important operators of the theory are associated to only a small patch

within the full geometry. The extreme example of this are Yukawa couplings, which are

associated to just a single point in the geometry. Analogous to the Yukawa couplings there

are triple couplings between heavy modes and massless modes which can be locally studied

within a small region around a point. Since locally the complicated global CY geometry

is decoupled and essentially we can work on flat space, many properties of heavy modes

become accessible. In this paper we use this local approach to study the coupling of heavy

modes to massless modes through such a triple coupling operator. This is done by solving

for the local form of wavefunctions of massive and massless modes and calculating their

triple overlap.

The particular operator that we study, coupling one heavy mode to two massless

ones, plays a key role in GUTs. One of the general features of SU(5) GUTs is that

associated to the MSSM Higgs doublets there are coloured triplets which complete a GUT

representation. These modes have to obtain a mass, leading to the so called doublet-

triplet splitting problem. Similarly, associated to the Yukawa couplings there are also triple

couplings between one heavy triplet and two MSSM fields. Once the heavy triplets are

integrated out these couplings induce dimension-five baryon and lepton number violating

operators that lead to proton decay. Thus, understanding such couplings and their flavour

structure is of crucial importance for placing constraints on GUT models. In minimal

field-theory SU(5) GUTs these couplings are the same as Yukawa couplings and therefore

are exactly known. However, in string theory GUTs this is not the case and the couplings

1These are sometimes referred to as gonions in the intersecting brane literature [1].
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can be completely different in nature. This means that without knowledge of how the

triplets couple to the matter fields and in particular whether the coupling to the lightest

generations is suppressed in a manner similar to the Yukawa couplings it is not possible

to use dimension-five proton stability to constrain model building. The primary aim of

this paper is to study the nature of the triplet couplings within a realistic string setup

thereby performing this crucial step in imposing phenomenological constraints on string

theory GUTs.

More generally the paper aims to show that much important physics can be extracted

by similar calculations of couplings to heavy modes. Indeed, in section 5 we present a

toy model where such a calculation allows to extract Flavour-Changing-Neutral-Current

(FCNC) terms which, like proton stability, form one of the important observational con-

straints on ultraviolet physics. We also discuss how our calculations apply to string the-

oretic realisations of the Froggatt-Nielsen mechanism for generating flavour structure this

being yet another mechanism which relies on higher dimension operators.

Our focus is on local F-theory GUTs [2–13]. Within this framework a 7-brane carry-

ing an SU(5) gauge group wraps a 4-dimensional surface S inside a CY four-fold. Other

7-branes intersecting this brane are locally modeled by an enhancement of the gauge sym-

metry over loci in S: along complex curves on S the group enhances by rank 1, to SU(6)

or SO(10), while on the points where complex curves intersect it enhances by at least rank

2, to SU(7), SO(12) or E6. We are particularly interested in a point of enhancement to

SO(12) as it is there that the down-type Yukawa interaction is localised. To describe the

physics near such point we consider an 8-dimensional gauge theory, which is just super

Yang-Mills twisted to account for the embedding into the CY four-fold [7, 8, 19], with

SO(12) gauge group broken down to SU(5)×U(1)×U(1) by a spatially varying Higgs field.

Matter localises onto complex curves where the Higgs vev vanishes and at the SO(12) en-

hancement point three such matter curves intersect giving rise to a cubic coupling in the

4-dimensional effective theory. This coupling can be calculated directly from dimensional

reduction of the 8-dimensional theory by integrating the overlap of the internal wavefunc-

tions of localised fields. Yukawa couplings are calculated by overlaps of wavefunctions of

three massless modes [14] and have been extensively studied in [15–21] (see also [22–25]

in the context of magnetised D-branes). In this paper we calculate the wavefunctions for

massive modes around an SO(12) point. Similar calculations of massive mode wavefunc-

tions for other models were performed in [21, 26, 27]. Once we obtain the wavefunctions for

massive modes we can study their overlap with massless wavefunctions, thereby probing

the cubic coupling discussed above.

An important property of the dimension-five proton decay operator we are studying

is that it is a superpotential operator. Since in type IIB string theory and F-theory the

superpotential does not receive α′ corrections, and since integrating out massive string

oscillator modes induces α′ corrections, we do not expect the operator to be induced by

exchanging massive string oscillator modes. Thus, all the relevant heavy modes which

participate in dimension-five proton decay are captured within the effective gauge theory

described above.

– 3 –
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The calculation of the coupling to massive modes at an SO(12) point is only a part of

the full calculation required to understand dimension-five proton stability. It is therefore

worth discussing how the present calculation fits within the full picture of dimension-five

proton stability in F-theory SU(5) GUTs. We begin by reviewing the constraints on the

relevant operators. The effective superpotential couplings take the schematic form

W ⊃ Y u
ijH

uQiUj + Y d
ijH

d (QiDj + LiEj) + Ŷ u
ijT

u (QiQj + UiEj)

+ Ŷ d
ijT

d (QiLj + UiDj) + MT uT d . (1.1)

Here Y u
ij and Y d

ij denote the up- and down-type Yukawa couplings with the MSSM super-

fields expressed in standard notation. The coloured triplets are denoted by T u and T d

and their associated triple couplings are Ŷ u
ij and Ŷ d

ij . In minimal 4-dimensional GUTs we

have Y u,d
ij = Ŷ u,d

ij .2 The scale M is related to the mass of the triplets and is expected

to be at or below the GUT scale, MGUT. Integrating out the heavy triplets leads to

dimension-five operators

W ⊃
Ŷ u
ij Ŷ

d
kl

M
(QiQjQkLl + UiEjUkDl) . (1.2)

There are a number of diagrams that lead to proton decay and involve these operators.3

At TeV scale the diagrams involve a 4-point interaction coming from (1.2) which has

two fermions and two scalar superpartners, and a loop factor involving wino or Higgsino

exchange to turn the scalars into fermions (cf. figure 1). This results in nucleon decay

to kaons primarily (due to the need for a strange quark because of the anti-symmetric

colour index). To discuss the constraints on the operators (1.2) let us fix M = MGUT and

quote limits on Ŷ u
ij Ŷ

d
kl for different generation indices.4 The precise constraints depend on a

number of factors such as the soft masses, the size of the µ-term and tan β (with small tan β

and large soft masses giving generally weaker constraints). Instead of going into the details

of these studies, we can concentrate on the most relevant aspect for the study in this paper:

the difference between the Higgs and the coloured triplet couplings. In 4-dimensional field-

theory analysis these couplings are taken as equal and this leads to an approximate bound

MGUT/M . 10−2 − 10−4. Thus, if coloured triplet couplings are suppressed with respect

to Yukawa couplings by a factor larger than the 4-dimensional constraint on MGUT/M ,

dimension-five proton stability constraints can be satisfied for triplet masses of the order of

2This relation and the above superpotential may be slightly modified by more complicated theories

where the cubic couplings arise after fields in non-trivial GUT representations obtain a vev, as proposed

for example in [28] to fix the GUT mass relations.
3There are a large number of papers which study nucleon decay in 4-dimensional supersymmetric GUTs.

We refer to [29–41] for a subset. Note that a number of these papers were using old experimental results

on the proton lifetime which has since increased by 2-3 orders of magnitude.
4Note that using the results of [42] that higher dimension superpotential operators are expected to be

suppressed by the winding scale, and those of [43–45] showing that the winding scale is also the unification

scale, implies that MGUT is a quite natural suppression scale. Of course the arguments given are simply

scaling arguments and should not be taken to hold to significant accuracy. Nevertheless a suppression mass

scale larger than MGUT seems unlikely given that there are always some heavy modes at or below this scale.
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Figure 1. Schematic structure of Feynman diagrams leading to proton decay through the

dimension-five effective operators (1.2). Similar diagrams exist involving right-handed states.

the GUT scale or above. We can estimate the relevant parameters involving the down-type

triplet couplings in the minimal 4-dimensional field-theory analysis,

Ŷ d
t̃b

Y d
bb

= 1 ,
Ŷ d
t̃s

Y d
bb

∼ 10−1 ,
Ŷ d
t̃d

Y d
bb

∼ Ŷ d
c̃s

Y d
bb

∼ 10−2 ,
Ŷ d
c̃d

Y d
bb

∼ Ŷ d
ũd

Y d
bb

∼ 10−3 . (1.3)

This simply comes from using the 4-dimensional field-theory equalities, for example Ŷ d
c̃s =

Y d
ss, and the measured quark masses and mixings. We will calculate precisely these ratios

for local F-theory SU(5) GUTs and compare to the above values to see if there is enough

additional suppression to avoid proton decay or, alternatively, if there is an enhancement

thereby making proton decay constraints more severe.5

Calculating the parameters in (1.3) manifestly requires a theory of flavour. The study

of flavour structures within F-theory GUTs has been an active research area in the recent

years [9, 15–21, 46–53]. We make use of the theory of flavour first proposed in [15] and

subsequently elucidated in [16–19, 21, 47].6 The structure is such that all three generations

are localised on a single matter curve and arise from the degeneracy of massless Landau-

levels in the presence of flux. This theory of flavour, however, requires ingredients which are

not present in our setup. More precisely, it was shown in [18, 19, 47] that to generate non-

vanishing Yukawa couplings for anything other than the heaviest generation requires a non-

commutative deformation of the theory induced by closed string fluxes or non-perturbative

effects. We discuss this in more detail in section 5 but for now it is sufficient to state
5It is important to note that in order to suppress proton decay all the ratios in (1.3) must be suppressed

since, probing a superpotential coupling, we are working in a weak eigenstate basis. A single large coupling

in the weak basis can lead to several large couplings in the mass eigenstate basis. Thus, to enhance the rate

of proton decay it is sufficient that only one of the ratios is larger than in minimal 4-dimensional GUTs.

Note also that some of the couplings may vanish through other selection rules such as additional symmetries

or the fact that the colour index in the dimension-five operator must be anti-symmetric and so it cannot

involve all the same generation. In such cases the ratios involving those operators would not be constrained

and it would suffice to suppress only the other ratios.
6There are two key motivations for studying this proposal as opposed to say that of [48] which was based

on a Froggatt-Nielsen mechanism with additional U(1) symmetries. The first is a practical one: it is not

possible to study the flavour structure of [48] locally near an SO(12) point. The second is that within the

structure of [48] the relations (1.3) are always at least as strong as in minimal field-theory GUTs since the

suppression by the U(1) symmetries acts on the triplets in the same way as on the Higgs doublets.

– 5 –
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that this does not affect the calculation we are performing. Unlike Yukawa couplings, the

coupling of one massive mode to two massless ones is non-vanishing even in the absence of

the required non-commutative deformation. Turning on the additional, necessarily small,

such deformation will only perturb slightly our present calculation thereby maintaining its

validity. Note that the fact that in the concrete setup we are using the Yukawa couplings

are rank one in generation space while the triplet couplings are rank three highlights the

fundamental difference between these couplings.

The computation that we perform is a necessary one to understand a number of phe-

nomenological issues. Regarding the particular problem of dimension-five proton stability,

it is worth discussing some alternative solutions that have been proposed within the con-

text of F-theory. One way to avoid inducing proton decay is by having a symmetry which

forbids it. One such candidate symmetry is a U(1) symmetry, which we label as U(1)PQ.

Such a (massive) symmetry has been studied in detail in F-theory GUT models, see for

example [48, 50, 54–66]. Although at the GUT level it was found that many models can

exhibit such a symmetry, it was shown in a series of papers [48, 50, 58, 59, 63, 64] that

the use of hypercharge flux to break the GUT group and induce doublet-triplet splitting

is incompatible with such a symmetry.7 The precise statement is that the presence of

a U(1)PQ symmetry necessarily implies the presence of exotic non-MSSM states in the

massless spectrum. The mass of the exotic states is set by the scale at which the U(1)PQ
symmetry is broken and therefore the constraints coming from dimension-five proton decay

translate to constraints on the mass of the exotic states. The phenomenology associated

to different masses for the exotic states was studied in detail for a number of models

in [50, 64, 65]. Since the exotic states do not form complete GUT multiplets, the most

immediate constraints on their masses come from gauge coupling unification. The tension

between a large exotics mass to maintain gauge coupling unification and a small mass to

preserve an approximate U(1)PQ symmetry implies that it is difficult to practically realise

the full suppression necessary for dimension-five proton stability using such a symmetry

alone. The suppression due to a U(1)PQ symmetry is additive to that studied in this work

and therefore whether we find additional suppression or alternatively an enhancement of

coupling to massive modes can allow for or rule out a number of proposed models.

An alternative possibility for suppressing dimension-five proton decay even without a

U(1)PQ is keeping the matter curves associated to the up and down Higgs fields in the same

homology class but still geometrically separated. The interaction between the up and down

triplets may then be suppressed by their small wavefunction overlap, although explicitly

studying this would require a calculation of massive wavefunctions similar to that presented

in this paper. Apart from the fact that this rather complicated setup has yet to be realised

explicitly, there are a number of phenomenological problems with such a setup. The first is

that the use of hypercharge flux for doublet-triplet splitting is difficult since it acts in the

same way on both the Higgs curves. Another problem is that the theory of flavour of [15]

is based on local geometric symmetries which means that in order to correlate the up- and

down-type Yukawas, as is required by a realistic CKM matrix, the geometric separation

between them should be small. Indeed this is one of the primary motivations presented

in [57] for a proposed point of E8 unification.

7As pointed out in [67], the same problem arises for Wilson-line GUT breaking.
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The outline of this paper is as follows. In section 2 we introduce the effective theory

that we will be using. Following this, in sections 3 and 4 we present the actual calcula-

tions of the relevant wavefunctions and their overlaps. In section 5 the results and their

phenomenological applications are discussed in detail. We summarise our findings in sec-

tion 6. In appendix A we present the wavefunctions and overlaps for a more general set of

background fluxes, consisting also of oblique fluxes. In appendix B we study in more detail

the normalisation of the wavefunctions.

2 The effective theory

We consider F-theory on an elliptically fibered Calabi-Yau 4-fold X, with the degrees of

freedom of an SU(5) GUT localised on a codimension-2 singularity. In the infrared those

are described by a twisted 8-dimensional N = 1 gauge theory, with gauge group G and

support on R1,3 × S, where S is a 4-dimensional Kähler sub-manifold of X [7, 8].8 In this

section we describe the 8-dimensional effective theory and how its massless and massive

localised spectrum is calculated. Related computations to the ones that we describe here

have also recently appeared in [21].

2.1 The 8-dimensional effective theory

For convenience, we arrange the 8-dimensional fields in adjoint valued, S-valued, 4-dimen-

sional N = 1 multiplets

Am̄ = (Am̄, ψm̄,Gm̄) , (2.1)

Φmn = (ϕmn, χmn,Hmn) ,

V = (η,Aµ,D) .

The subindices on the fields denote their local differential structure on S. Thus, for instance

Am̄ ∈ Ω̄1
S ⊗ ad(P ) where Ωp

S denotes the space of holomorphic p-forms on S and P is the

principal bundle (in the adjoint representation) associated to the gauge group G. Here A

and Φ are chiral multiplets with respective F-terms G and H. V is a vector multiplet with

D-term D. Am̄ and ϕmn are complex scalars while ψm̄, χmn, and η are fermions.

The action for the effective theory was given in [8]. For the bosonic components of the

multiplets it reads,9

S8d = M4
∗

∫

R1,2×S
d4x Tr

[

ω ∧ ω
(

1

2
D2 − 1

4
FµνF

µν

)

−Dµϕ ∧Dµϕ̄+ 2iω ∧ G ∧ G

+H ∧H− F (2,0) ∧H − F (0,2) ∧H − G ∧ ∂Aϕ̄− G ∧ ∂̄Aϕ (2.2)

+2

(

ω ∧ F (1,1) +
i

2
[ϕ, ϕ̄]

)

D − 2iω ∧ F (1,0)
Sµ ∧ F (0,1)µ

S + . . .

]

8If S is shrinkable (more formally it has an ample normal bundle), the resulting 4-dimensional gauge

coupling αGUT can be tuned independently of MPlanck. However we do not necessarily assume this property

in our analysis.
9This action can be shown to be equivalent to 8-dimensional super Yang-Mills theory with a non-trivial

Higgs bundle [19].

– 7 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

where ω is the Kähler form of S. Our conventions are such that ω is dimensionless, A

and ϕ have dimensions of mass and the auxiliary fields D, G and H have dimensions of

(mass)2. M∗ denotes the UV cutoff of the theory. In the weakly coupled type IIB limit

this is related to the string scale as

M4
∗ = (2π)−5α′−2 . (2.3)

Above this scale, corrections to eq. (2.2) in the form of higher derivative couplings become

important and keeping only the leading term in the M∗ expansion, eq. (2.2), is not a

valid approximation. Thus, in what follows we shall stick to the regime where, at every

point of R1,3 × S,

〈∂A〉, 〈∂ϕ〉 ≪M2
∗ . (2.4)

Ideally we would like to dimensionally reduce the 8-dimensional effective action (2.2)

on S in order to obtain the spectrum of 4-dimensional fields with masses smaller than

M∗. However, such a program would require the precise knowledge of the geometry of S,

which in general is only available for few highly symmetric spaces such as T 4, P1 × P1 or

P2 (see for instance [23]). Alternatively, we can solve the equations of motion in a local

patch around a particular point of S where the energy density of a set of charged modes

localises. This approach has been extensively used in recent phenomenological studies of

Yukawa couplings in F-theory GUTs (see e.g. [15–21]). In what follows we describe it in

detail.

2.2 Equations of motion for localised fields

Let us first consider 4-dimensional massless fields. Setting the 4-dimensional variations of

the fields to zero, the equations of motion that follow for their internal wavefunctions are [8]

H− F (2,0) = 0 , (2.5)

i [ϕ, ϕ̄] + 2ω ∧ F (1,1) + ⋆SD = 0 , (2.6)

2iω ∧ Ḡ − ∂̄Aϕ = 0 , (2.7)

−∂H̄ + 2ω ∧ ∂̄D + Ḡ ∧ ϕ̄− χ̄ ∧ ψ̄ − i2
√

2ω ∧ η ∧ ψ = 0 , (2.8)

ω ∧ ∂Aψ +
i

2
[ϕ̄, χ] = 0 , (2.9)

∂̄Aχ− 2i
√

2ω ∧ ∂Aη − [ϕ, ψ] = 0 , (2.10)

∂̄Aψ −
√

2 [ϕ̄, η] = 0 , (2.11)

−
√

2 [η̄, χ̄] − ∂̄AG − 1

2
[ψ, ψ] = 0 . (2.12)

where we have also included the equations of motion for the fermionic fluctuations.

Eqs. (2.5) and (2.6) are usually dubbed as the F-term and the D-term conditions for the

flux, respectively.

Generically, the gauge group G is broken by 〈ϕ〉 and 〈A〉 to a smaller subgroup G′ ⊂ G.

We are interested in vacua where 〈ϕ〉 and 〈A〉 take values in a subgroup GH = U(1)× . . .×
U(1) belonging to the Cartan of G,

G→ G′ ×GH (2.13)

– 8 –
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with G′ the commutant of G and GH . In that case eq. (2.7) can be simply satisfied by

requiring 〈ϕ〉 to be holomorphic

∂̄A〈ϕ〉 = ∂̄〈ϕ〉 + [A, 〈ϕ〉] = ∂̄〈ϕ〉 = 0 . (2.14)

Note also that to preserve 4-dimensional Poincaré invariance we must impose

〈χ〉 = 〈ψ〉 = 〈η〉 = 0 , (2.15)

which, making use of eqs. (2.5)–(2.7), imply that eqs. (2.8) and (2.12) are automatically

satisfied.

Modes charged under GH arrange into Landau levels and are localised around points

in S where 〈ϕ〉 = 〈A〉 = 0. In order to have a description of these modes it therefore

suffices to consider a local patch around a localisation point. We can take the Kähler form

to be given in the local patch by the expansion

ω =
i

2
(dz1 ∧ dz̄1̄ + dz2 ∧ dz̄2̄) + . . . (2.16)

where the dots denote higher order terms in the two local complex coordinates z1 and

z2. Our conventions are such that coordinates are dimensionless, dzi denote local vielbein

1-forms and the origin of coordinates is at the localisation point.

Similarly, we expand10

〈A〉 = −M∗
R‖

Im(Ma
ijzidz̄j)Qa + . . . , (2.17)

〈ϕ〉 = M∗R⊥m
a
i ziQadz1 ∧ dz2 + . . . , (2.18)

where Ma
ij and ma

i are arbitrary numbers related to the quanta of gauge and Higgs fluxes

and Qa denote the different Abelian generators of GH . We have also introduced the stan-

dard lengths R‖ and R⊥ in the local patch and its transverse space respectively, measured

in M−1
∗ units, which for simplicity we have taken to be the same in all directions. Note that

we have chosen to parameterise the dimensionful part of ϕ with the transverse (“winding”)

scale R⊥M∗. This is not an arbitrary choice but follows from embedding the 8-dimensional

theory into a 10-dimensional theory where the Higgs would correspond to deformations of

the 7-brane into the normal directions. In the 8-dimensional theory the Higgs kinetic term

arises from the pull-back of the 10-dimensional metric normal to the brane,

S7−brane ⊃M4
∗

∫

d8x g33̄∂µφ
3∂µφ̄3̄=M4

∗

∫

d8x M2
∗R

2
⊥∂µφ

3∂µφ̄3̄=M4
∗

∫

d4x ∂µϕ ∧ ∂µϕ̄
(2.19)

where g33̄ is the metric transverse to the 7-brane and φ3 is the complex scalar parameteriz-

ing geometric deformations of the 7-brane along the holomorphic normal vector. In order

to have a canonically normalised quasi-topological term (cf. eq. (2.2)), in the last equality

we have redefined,

ϕ ≡M∗R⊥ιφΩ = M∗R⊥φ
3dz1 ∧ dz2 , (2.20)

10Note that in principle we could have also considered constant terms in these local expansions. However,

such terms would not be compatible with a point of SO(12) enhancement at z1 = z2 = 0.
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with Ω the local holomorphic 3-form of the 3-fold base B3 of X. Hence, the factor R⊥M∗ is

the appropriate one for the canonically normalised Higgs field in the 8-dimensional theory.11

Plugging the above local expansions into eqs. (2.9)–(2.11) we obtain that the relevant

F-term equations for a given massless 4-dimensional fermionic field read, to leading order

in the coordinates,

DΨ = 0 , (2.21)

with,

D =











0 D1 D2 D3

−D1 0 D†
3 −D†

2

−D2 −D†
3 0 D†

1

−D3 D†
2 −D†

1 0











, Ψ =











√
2η

ψ1̄

ψ2̄

χ











, (2.22)

and

Di ≡
M∗
R‖

(

∂i −
1

2
qaM

a
ij z̄j

)

D†
i ≡

M∗
R‖

(

∂̄i +
1

2
qa(Ma

ij)
∗zj

)

i = 1, 2 (2.23)

D3 ≡ −M∗R⊥m
a
i z̄i D†

3 ≡M∗R⊥ (ma
i )∗zi . (2.24)

In these expressions ~q is the vector of GH -charges for the localised mode and we have rela-

beled ϕ12 → ϕ and χ12 → χ to simplify the notation. To obtain a finite set of solutions, we

have to supplement these equations with a set of boundary conditions encoding the global

obstruction from the topology of S and which, in particular, determine the degeneracy of

the zero modes.

Massive 4-dimensional fields can similarly be accounted for by the 8-dimensional effec-

tive theory. In that case, one obtains the more general set of equations

D
†
DΨ = |mλ|2Ψ , (2.25)

where mλ is the mass of the 4-dimensional field and the same definitions above hold.

As we explicitly show in next subsection, these are the equations of motion for a set of

three complex quantum harmonic oscillators which can be solved by means of standard

techniques in quantum mechanics.

11The above scalings with R‖ and R⊥ can also be understood from the T-dual setup with magnetised

D9-branes. Indeed, T-dualising along the transverse space to the 7-brane, the Higgs and gauge fluxes are

mapped respectively to gauge fluxes Fiα and Fij on a stack of D9-branes [21]. In a vielbein basis the

components of the flux are respectively,

Fiα ≃
mM2

∗
R‖RD9

⊥
, Fij ≃

MM2
∗

R2
‖

.

T-dualising along the transverse directions, these become the Higgs and gauge fluxes on the 7-brane

∂〈ϕ〉 ≃
mM2

∗R
D7
⊥

R‖
, ∂〈A〉 ≃

MM2
∗

R2
‖

,

where RD7
⊥ =

(

RD9
⊥

)−1
, in agreement with (2.17) and (2.18).
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2.3 Localised fields and supersymmetric quantum mechanics

Let us first solve the equations of motion for 4-dimensional massless fields, eq. (2.21) or

equivalently eq. (2.25) with mλ = 0. For that we closely follow the techniques developed

in [21, 26, 27].12

Different matter representations have different charges under the gauge group gen-

erators and therefore different equations governing their wavefunctions. We take Ψ to

transform in a representation R of the gauge group, with Di the corresponding gauge

covariant derivatives defined in eq. (2.23). From eq. (2.22) we observe that the operator

which appears in the left-hand-side of eq. (2.25) can be written as

D
†
D = −△I + B , (2.26)

where

△ ≡
∑

i=1,2,3

D†
iDi , (2.27)

and

B =











0 0 0 0

0 [D†
2, D2] [D2, D

†
1] [D3, D

†
1]

0 [D1, D
†
2] [D†

1, D1] [D3, D
†
2]

0 [D1, D
†
3] [D2, D

†
3] [D†

2, D2] + [D†
1, D1]











. (2.28)

We have made use of the F-term equations for the background, that we take to preserve N ≥
1 supersymmetry in 4-dimensions, in order to simplify the hermitian matrix B. Imposing

also the D-term condition on the background it is easy to check that B is traceless.

A suitable approach to obtain the zero mode wavefunctions is therefore to make a

change of basis which diagonalises B and to solve the equations of motion in that basis.

Let J be the matrix which diagonalises B and has canonically normalised column vectors,

J
−1 · B · J =

(

M∗
R‖

)2

diag(0, λ1, λ2, λ3) , (2.29)

where λ1 + λ2 + λ3 = 0. The dimensionless eigenvalues λp are given by the three roots of

the characteristic polynomial of the non-trivial part of (R‖/M∗)2B, which is a depressed

cubic equation. We can rotate the operator D to the diagonal basis by taking,

D̃ ≡ (J−1)∗ · D · J . (2.30)

Notice that D̃ has again the same structure as in (2.22) but in the new basis covariant

derivatives are given by

D̃p =
3
∑

k=1

JkpDk =
1

||ξp||
3
∑

k=1

ξp, kDk , (2.31)

12See also [73, 74] for related work.
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with ξp the p-th eigenvector of B and ||ξp|| its norm. In particular, it is simple to check

that the only non-vanishing commutators of the rotated covariant derivatives are the

diagonal ones,

[D̃†
p, D̃p] = −

(

M∗
R‖

)2

λp , p = 1, 2, 3 . (2.32)

As we have advanced, this is the algebra for the ladder operators of a set of three quantum

harmonic oscillators.

Generically we can distinguish four towers of solutions to eq. (2.25), one per eigenvector

of B. These four towers can be identified with the four complex fermions of a (broken)

N = 4 supermultiplet. In particular, if the three non-trivial eigenvalues λp are different

from zero, there is a massless chiral N = 1 supermultiplet in the 4-dimensional spectrum,

which corresponds to the ground state of one of the above four towers. To see this more

explicitly, let us assume for a while that λ1λ2λ3 < 0 with two positive and one negative

real eigenvalues. We take λ1 to be the negative eigenvalue. The localised normalisable

solution satisfies the equations

D̃ ·











0

ϕ

0

0











= 0 ⇔















D̃1ϕ = 0

D̃†
2ϕ = 0

D̃†
3ϕ = 0

. (2.33)

We can identify the raising â† and lowering â operators as,

â1 ≡ iD̃1 , â2 ≡ iD̃†
2 , â3 ≡ iD̃†

3 , (2.34)

â†1 ≡ iD̃†
1 , â†2 ≡ iD̃2 , â†3 ≡ iD̃3 ,

so that the function ϕ in eq. (2.33) is annihilated by the three âi operators. More generically,

for fields transforming in the representation R, we have in the diagonal basis

R : D̃
†
D̃ =

∑

i=1,2,3

â†i âi I +

(

M∗
R‖

)2

diag(−λ1, 0, λ2 − λ1, λ3 − λ1) . (2.35)

Since the ground state in each of the four towers of fermions is by definition annihilated

by all lowering operators âi, the four entries in the last term correspond to the masses of

these ground states. Their wavefunctions are given in terms of the function ϕ as,

Ψp =
ξp
N
ϕ(z1, z2, z̄1, z̄2) , p = 0, 1, 2, 3 (2.36)

where N is a normalisation constant. Similarly, wavefunctions for the heavier modes in

each tower are obtained by acting on the corresponding ground state wavefunction with

the raising operators. We can label these fields by three quantum numbers, n, m and l,

according to

Ψp,(n,m,l) =
(R‖/M∗)n+l+m

√
m!n!l! (−λ1)n/2 λm/2

2 λ
l/2
3

(D̃†
1)

n(D̃2)
m(D̃3)

lΨp , (2.37)
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where the particular pre-factor ensures the correct normalisation. Thus, calculating massive

wavefunctions is a simple task of applying differential operators to functions. The mass of

the resulting 4-dimensional fields is given by

M2
Ψ0,(n,m,l)

=

(

M∗
R‖

)2

[−(n+ 1)λ1 +mλ2 + lλ3] , (2.38)

M2
Ψ1,(n,m,l)

=

(

M∗
R‖

)2

(−nλ1 +mλ2 + lλ3) ,

M2
Ψ2,(n,m,l)

=

(

M∗
R‖

)2

[−(n+ 1)λ1 + (m+ 1)λ2 + lλ3] ,

M2
Ψ3,(n,m,l)

=

(

M∗
R‖

)2

[−(n+ 1)λ1 +mλ2 + (l + 1)λ3] .

In particular, Ψ1,(0,0,0) denotes the wavefunction for the massless chiral fermion transform-

ing in the R representation.

Whereas this description is complete for massless chiral fields, massive fields contain

both chiralities and the above wavefunctions only represent half of their degrees of freedom,

namely those transforming in the R representation of the gauge group. Wavefunctions for

the R̄ components of the massive fields can be worked out following the same procedure,

taking care of the change of sign in the charges. One may easily check that the analogous

operator to (2.35) for fields transforming in the R̄ representation is

R̄ : D̃
†
D̃ =

∑

i=1,2,3

â†i âi I +

(

M∗
R‖

)2

diag(−λ1,−2λ1, λ3, λ2) . (2.39)

Wavefunctions are therefore given again by the same functions Ψi
p,(n,m,l), with p = 0, 1, 2, 3,

but the corresponding masses are shifted with respect to eq. (2.38). Massive components

transforming in the R and the R̄ representations pair up non-trivially. For instance, the

first excited states of the massless mode in the R representation pair up with same-mass

ground states in the R̄ representation.13 Note also that there is no massless fermion

transforming in the R̄ representation, as expected.

Wavefunctions for the scalar fields can be worked out in a similar way and, in par-

ticular, they can be shown to be identical to the ones of their corresponding fermionic

superpartners, as a consequence of supersymmetry and flatness of the local patch.

Summarizing, we have shown that at each localisation point in S there are four towers

of fields with equal gauge charges, corresponding to the degrees of freedom of a broken

N = 4 supermultiplet. In these conventions, for λ1λ2λ3 < 0 there is a localised massless

N = 1 chiral supermultiplet transforming in the R representation of the gauge group.

The degeneracy of this field is only globally determined. It is also easy to check that for

λ1λ2λ3 > 0 the roles of R and R̄ are exchanged and there is instead a massless N = 1 chiral

supermultiplet transforming in the R̄ representation. These two possibilities are separated

13This non-trivial pairing has its origin in the fact that the 4-dimensional mass term comes from the

8-dimensional kinetic term, and the latter contains a ΓiDi operator acting non-trivially on Ψ.

– 13 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

by a wall of marginal stability at λ1λ2λ3 = 0. At this wall at least one of the three

eigenvalues λp vanishes and 4-dimensional fields arrange into N = 2 supermultiplets (or

N = 4 supermultiplets if all eigenvalues are zero) with conserved Kaluza-Klein momentum.

In that case, the wavefunction of the fields is no-longer localised along the matter curve, and

their mass is determined by the particular topology of the curve. We present in section 3

an example of this type.

2.4 Validity of the local approach

The wavefunctions and consequently, through their overlaps, the cubic couplings in the

4-dimensional theory depend on the parameters of the 8-dimensional theory such as the

fluxes and the local scales R‖ and R⊥. It is therefore important to quantify the possible

range of these parameters which is consistent with the local effective theory being used.

The first constraint we must impose is (2.4) which ensures that higher derivative cor-

rections to the 8-dimensional effective action are negligible. Using the expressions (2.17)

and (2.18) this gives
Ma

ij

R2
‖

≪ 1 ,
R⊥
R‖

ma
i ≪ 1 . (2.40)

These amount to small intersection angles and small flux densities. The flux parameters

Ma
ij and ma

i would be integer quantised in a homogenous setup but in the local setup need

not be so. However, generically they are expected to be of order one and we shall therefore

take them as so while keeping in mind that the local freedom to adjust the fluxes allows

for some flexibility in satisfying the consistency constraints. Taking the fluxes as such we

can rephrase (2.40) in terms of geometric constraints. We define

R ≡ R‖R⊥ , ε ≡ R⊥
R‖

, (2.41)

using which we can write

ε≪ 1 ,
ε

R
≪ 1 . (2.42)

We can also consider these as constraints on mass scales: it is simple to check that for large

R the eigenvalues λp scale as,

λ1, λ2 ∼ R , λ3 ∼ 1 , (2.43)

and are independent of ε. Therefore, from eqs. (2.38) we observe two types of massive modes

with masses scaling as M ∼M∗/R‖ or M ∼M∗
√
R/R‖. The mass of these modes should be

kept below the cutoff scale of the theory which is consistent with the constraints (2.42). For

generic order one fluxes the two above constraints can be simultaneously satisfied by taking

R‖ ≫ R⊥ , R‖ ≫ 1 . (2.44)

In this limit there is a large number of 4-dimensional massive fields below the cutoff scale

M∗. Note that, although not necessarily required, these constraints also allow for length
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scales R⊥ < 1. The stability of the 8-dimensional effective theory against 1/MPlanck correc-

tions for such small values of R⊥ depends on the particular connection between the local

and global scales, which we now discuss.

The relation between the local scales R‖ and R⊥ and the global ones is model depen-

dent and generically too complicated to be computed explicitly in given models. Whereas

the limit (2.44) can always be taken in the local setup, once we begin to relate local

scales to global ones new phenomenological constraints are expected to arise from the ob-

served values of αGUT and MPlanck. For instance, if S is completely homogenous then

we have approximately

R‖ ∼ α
− 1

4
GUT . (2.45)

Since we observe α−1
GUT ∼ 24 this implies that R‖ cannot be too large. The relation is

approximate and the space S is in general not homogenous, but nonetheless it is difficult

to conceive a departure of the local R‖ scale too far from (2.45). We must therefore keep

in mind that although formally our calculations can be made very precise by taking the

limit (2.44), in a phenomenologically viable setup there will be corrections (essentially

α′ corrections) that are not hugely suppressed. Taking this into account, and that the

constraints are only approximate up to order one factors, in what follows we allow ourselves

to take R in the range 1 < R < 25, with ε also in the range 1 < ε−1 < 25 but chosen

appropriately such that for each value of R eqs. (2.42) are satisfied. Note that the most

natural values are towards the lower end of the range, however, due to the strong model

dependence of the relation between local and global scales this range is only an approximate

one and some flexibility should be allowed.

Similarly, we expect the local scale R⊥ to be related to the global ones and in particular

to MPlanck. The particular relation strongly depends on the geometry of the CY base B3.

In the case of a torus B3 = T 6 we have

R⊥ ∼ gsMPlanckα
1/2
GUT

M∗
. (2.46)

It is therefore important to note that in a torus, and more generally in a near homoge-

neous setup, the observed values of MPlanck and αGUT are not compatible with the con-

straints (2.42) and we expect higher derivative corrections to the effective 8-dimensional

theory coming from large brane intersection angles. At a deeper level this can be taken as

motivation for local models based on contractible cycles as then the scaling with respect to

the Planck scale is expected to be modified to the schematic form R⊥ ∼ (MPlanck/M∗)
1/3.

More generally the geometry can lead to differences between R⊥ and the global scales either

coming from inhomogeneities of the divisors or from the geometry allowing a decoupling

of the intersecting brane setup from the overall volume. Given this in general we do not

attempt to relate the local scales with the global ones.
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3 The SO(12) enhancement point

3.1 The SO(12) point and background fluxes

We now apply the procedure described in the previous section to the point in S where the

down-type Yukawa coupling localises. At that locus there is an SO(12) enhancement of

the gauge symmetry which can be seen by decomposing the adjoint

SO(12) ⊃ SU(5) × U(1)1 × U(1)2 , (3.1)

66 → 24(0,0) ⊕ 1(0,0) ⊕ 1(0,0) ⊕
(

5(−1,0) ⊕ 5(1,1) ⊕ 10(0,1) ⊕ c.c.
)

.

The spontaneous breaking of the SO(12) symmetry away from the enhancement point can

be obtained by turning on a background for the Higgs scalar,

〈ϕ〉 = M∗R⊥

(

z1
v1
Q1 +

z2
v2
Q2

)

, (3.2)

where v1 and v2 are dimensionless parameters. The generators Q1 and Q2 are those corre-

sponding to the U(1) factors in the decomposition of SO(12). This Higgs background de-

scribes three sets of intersecting 7-branes with localised matter on their intersection curves

10M : z2 = 0 ,

5̄M : z1 = 0 ,

5̄H : v2z1 + v1z2 = 0 . (3.3)

We will be solving for the wavefunctions of modes localised along these curves.

In order to get chiral matter, U(1) flux must be turned on along the generators Q1

and Q2. Moreover, to break the GUT group and induce doublet-triplet splitting also flux

must be turned on along the hypercharge direction of SU(5) so that,

SU(5) → SU(3) × SU(2)L × U(1)Y ,

5̄ → (3̄,1)1/3 ⊕ (1,2)−1/2 ,

10 → (3̄,1)−2/3 ⊕ (3,2)1/6 ⊕ (1,1)1 .

The geometric properties of these fluxes are dependent not only on S but also on the

full CY four-fold X. Let us recall some of the defining global properties of the fluxes.

First, the hypercharge flux must be turned on along a cycle which is homologically non-

trivial when pulled back to the GUT divisor S, but trivial in the full CY so that U(1)Y is

massless [7, 9, 10, 68]. Secondly, the fluxes must be turned on such that they induce the

correct chiral matter spectrum, which is determined as

n(3,1)−1/3
− n(3̄,1)1/3 = M5 ,

n(1,2)1/2 − n(1,2)−1/2
= M5 +N , (3.4)

for the 5̄ curves and

n(3,2)1/6 − n(3̄,2)−1/6
= M10 ,

n(3̄,1)−2/3
− n(3,1)2/3 = M10 −N ,

n(1,1)1 − n(1,1)−1
= M10 +N , (3.5)
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for the 10 curves, where nR denotes the number of massless 4-dimensional fields trans-

forming in the R representation of SU(3)×SU(2)L×U(1)Y . Here the fluxes M5, M10 and

N are specified by fractional line-bundles LY , V10 and V5 such that M10 = deg
(

L
1/6
Y ⊗V10

)

,

M5 = deg
(

L
−1/3
Y ⊗ V5

)

and N = deg
(

L
5/6
Y

)

. To maintain complete representations on the

matter curves we want N = 0 for those curves, while to induce doublet-triplet splitting we

want M5 = 0 and N = 1 for the Higgs curve.

Working locally near a point on S we are not sensitive to the full global structure

of the fluxes. Indeed, all the geometry of the cycles locally reduces to the four possible

components of the flux along dz1∧dz̄1, dz2∧dz̄2, dz1∧dz̄2 and dz2∧dz̄1. These components

are constrained by the local D-term condition

ω ∧ F (1,1) = 0 , (3.6)

whereas the F-term condition simply requires F (2,0) = F (0,2) = 0.

We assume that locally the flux takes a constant profile in S, neglecting a possible

spatial dependence of the flux. This can be expected to be a decent approximation if the

curvature around the enhancement point is small, as in that case it can be thought as

the leading term of a Taylor expansion in the local coordinates, as we have argued in the

previous section. Taking varying flux into account would lead to technical difficulties, in

particular D-terms would generally not be solved by a flat-space profile, which would imply

having to work in curved space [19]. Moreover, for simplicity, in the main part of the paper

we do not turn on flux along the oblique components dz1∧dz̄2 and dz2∧dz̄1. Oblique fluxes

turn out to not affect the physics of the wavefunction in a qualitatively important way. We

relegate a treatment of the more general flux including such components to appendix A.

A general suitable choice for the U(1) flux is therefore

F (1,1) =
2iM2

∗
R2

‖
(dz1 ∧ dz̄1 − dz2 ∧ dz̄2)(−M1Q1 +M2Q2 + γQY ) , (3.7)

where M1, M2 and γ are dimensionless real constants and the generator QY is along the

hypercharge direction in SU(5)GUT. The gauge potential associated with this flux reads

A =
iM∗
R‖

(z1dz̄1 − z̄1dz1 − z2dz̄2 + z̄2dz2)(−M1Q1 +M2Q2 + γQY ) . (3.8)

The relation between the local values of the flux M1, M2 and γ and the global inte-

grated values in (3.4) and (3.5) is subtle. The connection is that the local fluxes M1, M2

and γ determine the chirality of the localised fields, which generically arrange in N = 1

supermultiplets as we have described in previous section. At a given localisation point,

eq. (2.21) has an infinite number of solutions. Consistency with the topological data of

the flux and S however selects a finite subset of size given by the global integrated values

in (3.4) and (3.5), in accordance with standard index theorems.
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Using the flux (3.7) the chirality for a given localised mode is determined by the

analogous local expressions to eqs. (3.4) and (3.5). That is, for the 5̄M curve,

δ(3,1)−1/3
= sign

[

−M1 +
1

3
γ

]

,

δ(1,2)1/2 = sign

[(

−M1 +
1

3
γ

)

− 5

6
γ

]

, (3.9)

for the 10M curve,

δ(3,2)1/6 = sign

[

M2 +
1

6
γ

]

,

δ(3̄,1)−2/3
= sign

[(

M2 +
1

6
γ

)

− 5

6
γ

]

,

δ(1,1)1 = sign

[(

M2 +
1

6
γ

)

+
5

6
γ

]

, (3.10)

and for the 5̄H curve,

δ(3,1)−1/3
= sign

[

M1 −M2 +
1

3
γ

]

,

δ(1,2)1/2 = sign

[(

M1 −M2 +
1

3
γ

)

− 5

6
γ

]

. (3.11)

where δR = +1 (δR = −1) means that the corresponding set of localised massless 4-

dimensional fields transforms in the R (R̄) representation of SU(3)×SU(2)L×U(1)Y and we

have taken v2 > v1 without loss of generality.14 In this regard, it is also worth stressing that

if the local flux vanishes along the matter curve for a given representation the wavefunction

does not localise, as we have already commented in the previous section.

With these relations we see that there are some constraints on the local fluxes that

one has to satisfy in order to properly model the massless spectrum. In particular, we shall

require that the expressions in (3.9) are all negative and that the expressions in (3.10) are

all positive. This can be implemented by taking M1 and M2 positive and much larger than

γ. On the Higgs curve we require that the second expression of (3.11) is negative. The

sign of the first expression of (3.11) determines whether locally there is a massless triplet,

a massless anti-triplet or a vector-like pair, with the mass of the latter depending on the

particular topology of the matter curve,

M1 −M2 +
1

3
γ > 0 , Massless (3,1)−1/3 (3.12)

M1 −M2 +
1

3
γ < 0 , Massless (3̄,1)1/3

M1 −M2 +
1

3
γ = 0 , Massless or massive (3̄,1)1/3 ⊕ (3,1)−1/3 .

14The relative signs between the components in expressions (3.9), (3.10) and (3.11) are determined from

the group theory charges of the states while the overall sign for each curve is determined by studying the

form of the wavefunctions in section 3.2, such that given the sign of the fluxes the correct state localises.
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We will study all three possibilities in the next sections. The most appealing case is the

third one, as the mass of such a vector-like mode is only determined globally. If the

flux vanishes not only locally but everywhere along the matter curve the vector-like pair

is massless whenever h0

(

Σ,K
1/2
Σ

)

6= 0, where Σ denotes the matter curve and K its

canonical bundle [7, 8]. In the interesting case where the 5̄H curve is a P1 on a del-Pezzo

such a vector-like pair is massive because of the twisting. The other two cases in (3.12) are

different from the third in that the only way to give them a mass would be to somehow

deform the local geometry. Such a deformation could be due, for instance, to the presence

of another nearby enhancement point with a localised massless triplet of opposite chirality,

such that the massless mode (and their Landau replicas) develop a supersymmetric µ-term.

If the shift in the masses is much smaller than M∗/R‖ we may think of the first two cases

in eq. (3.12) as a good approximation to that setup.

3.2 Wavefunctions for the SO(12) point

We now determine the wavefunctions for the fields localised near an SO(12) enhance-

ment point. For that we solve eq. (2.25) with the above background, closely following the

method described in section 2.3. The solution to eqs. (2.33) can be shown to have the

general expression

ϕ = f (−k2z1 + k1z2) e
−p1|z1|2−p2|z2|2+p3z̄1z2+p4z̄2z1 , (3.13)

where km, m = 1, 2, and pi, i = 1, 2, 3, 4, are constants depending on the background.

In this expression f is a general holomorphic function of the particular combination of

variables that is denoted. In particular, depending on the form of f , the wavefunction can

become delocalised along one real direction within the matter curve. We return to this

point soon but first we note that locally we can always take f to be of the form

f(z) = zl , (3.14)

where l counts the massless Landau level degeneracy, which is the number of generations

and so ranges over l = 0, 1, 2. This choice is well-motivated from the existence of local

geometric selection rules in the evaluation of cubic superpotential couplings, as we discuss

in section 4.

Thus, from eq. (2.36) we have that the ground state wavefunctions can be generically

expressed as,

Ψl
p =

ξp
N l

p

(−k2z1 + k1z2)
l e−p1|z1|2−p2|z2|2+p3z̄1z2+p4z̄2z1 (3.15)

where N l
p is such that

∫

S
Ψi

p

(

Ψj
q

)†
= δijδpq . (3.16)

This normalisation factor can be evaluated using standard gaussian formulae, a particularly

useful such integral takes the form

I (n1, n2, n3, n4; p1, p2, p3, p4) ≡
∫

S
(ww̄)n1 (uū)n2 (uw̄)n3 (wū)n4 e−p1|w|2−p2|u|2+p3uw̄+p4wū

(3.17)
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where the ni are positive integers. This integral is simply evaluated to be

I (n1, n2, n3, n4; p1, p2, p3, p4) = π2R4
‖

(

4
∏

i=1

(∂pi)
ni

)

(−1)n1+n2

p1p2 − p3p4
. (3.18)

In particular,

N l
p =

πR2
‖
√
l!

2
2+l
2

(

|k1|2Re(p1) + |k2|2Re(p2) − Re
[

k̄1k2(p̄3 + p4)
]) l

2

(

Re(p1)Re(p2) − 1
4 |p3 + p̄4|2

)
1+l
2

||ξp|| . (3.19)

An important observation regarding the form of the wavefunction (3.13), with f given

in eq. (3.14), is that the combined effect of the Higgs profile and the flux generically induces

localisation along all directions in S. However, complete localisation does not always occur

and this can be seen by the fact that the arbitrary holomorphic function when extended over

the full matter curve can cancel the exponential localisation in one real direction thereby

delocalising the wavefunction along that direction. The expression (3.14) is obtained as

the leading term of a local expansion of the holomorphic prefactor of the wavefunctions. It

is still valid for use within the triple overlap since the combination of the wavefunctions of

different matter curves completely localises that integral. However, for the wavefunction

normalisation this potential partial delocalistion introduces an ambiguity. As we discuss

in appendix B, for fluxes of order one, as we take in our examples, this ambiguity in

the amount of localisation along the curve is not very large. Therefore in the main text

we use the normalisation form (3.19) and in appendix B we present a more quantitative

analysis of the effect on our results that a possible wavefunction delocalisation along one

real direction can have.

In what follows we work out the precise expression for km and pi in eq. (3.15) in terms

of the background, for each of the curves in the SO(12) enhancement point. Since we

have already described the procedure with great detail in section 2.3, here we are rather

schematic. Readers which are not interested in the precise form of the parameters may

want to skip the remaining of this section and jump directly to section 4.

3.2.1 Wavefunctions for the 5̄M matter curve

For matter localised on the curve z1 = 0 the gauge covariant derivatives appearing in

eq. (2.25) are

D1 =
M∗
R‖

(

∂1 + M̃1z̄1

)

, D2 =
M∗
R‖

(

∂2 − M̃1z̄2

)

, D3 = −M∗R⊥
v1

z̄1 , (3.20)

where M̃1 ≡ M1 + qY γ, and qY denotes the hypercharge of the localised state. Hermitian

conjugation is obtained in these conventions by complex conjugation in addition to flipping

the charge of the mode, q → −q.
The matrix B, defined in eq. (2.28), reads

B =
M2

∗
R2

‖











0 0 0 0

0 −2M̃1 0 R
v1

0 0 2M̃1 0

0 R
v1

0 0











(3.21)
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with dimensionless eigenvalues

λ5̄M
0 = 0 , λ5̄M

1 = −ρ1 − M̃1 , λ5̄M
2 = ρ1 − M̃1 , λ5̄M

3 = 2M̃1 , (3.22)

and where ρ1 ≡
√

M̃2
1 +

(

R
v1

)2
. The corresponding eigenvectors are,

ξ5̄M
0 =











1

0

0

0











, ξ5̄M
1 =











0

−ρ1 − M̃1

0
R
v1











, ξ5̄M
2 =











0

ρ1 − M̃1

0
R
v1











, ξ5̄M
3 =











0

0

1

0











. (3.23)

Solving for eqs. (2.33) then leads to the wavefunctions for the ground state of each of the

four towers of fields localised in the 5̄M matter curve, which are given by eq. (3.15) with

p5̄M
1 = ρ1 , p5̄M

2 = M̃1 , k5̄M
1 = 1 , p5̄M

3 = p5̄M
4 = k5̄M

2 = 0 , (3.24)

where, following the discussion in the previous subsection, we have assumed M̃1 to be

positive.

3.2.2 Wavefunctions for the 10M matter curve

The simplest way to deduce the wavefunctions for the 10M curve along z2 = 0, is to use a

particular symmetry of the equations of motion (2.22) for our choice of background. This

symmetry acts with the following transformations

z1 ↔ z2 , M̃1 ↔ M̃2 , v1 ↔ v2 , D1 ↔ D2 , (3.25)

where M̃2 ≡M2 + qY γ. Acting with this symmetry on the 5̄M wavefunctions directly gives

the wavefunctions for the 10M curve. These are given by eq. (3.15) with

p10M
1 = M̃2 , p10M

2 = ρ2 , k10M
2 = 1 , p10M

3 = p10M
4 = k10M

1 = 0 (3.26)

and ρ2 ≡
√

M̃2
2 +

(

R
v2

)2
. We have assumed M̃2 to be positive, following again the discus-

sion in the previous subsection.

Dimensionless eigenvalues and their corresponding eigenvectors are given respectively

by

λ10M
0 = 0 , λ10M

1 = −ρ2 − M̃2 , λ10M
2 = ρ2 − M̃2 , λ10M

3 = 2M̃2 , (3.27)

and,

ξ10M
0 =











1

0

0

0











, ξ10M
1 =











0

0

−ρ2 − M̃2
R
v2











, ξ10M
2 =











0

0

ρ2 − M̃2
R
v2











, ξ10M
3 =











0

1

0

0











.

(3.28)
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3.2.3 Wavefunctions for the 5̄H Higgs curve: non-vanishing flux density

As we have already commented, we should consider three different possibilities for the

wavefunctions localised in the 5̄H Higgs curve, depending on whether M̃12 is smaller,

bigger or equal to zero, with

M̃12 ≡M1 −M2 − qY γ . (3.29)

In this subsection we compute the wavefunctions for the first two cases, whereas the third

case is addressed in the next subsection. For concreteness we take M̃12 < 0 in eqs. (3.11).

We follow exactly the same procedure as in previous subsections. However, we find conve-

nient to express the result in a different coordinate system

w =
1√
2

(z1 + z2) , ψw̄ =
1√
2

(ψ1̄ + ψ2̄) , (3.30)

u =
1√
2

(z1 − z2) , ψū =
1√
2

(ψ1̄ − ψ2̄) .

In these coordinates the Higgs curve is given by the equation v+u+v−w = 0. The equations

of motion in the (u,w)-basis are again given by eq. (2.25) but

D =











0 Du Dw D3

−Du 0 D†
3 −D†

w

−Dw −D†
3 0 D†

u

−D3 D†
w −D†

u 0











, Ψ =











√
2η

ψū

ψw̄

χ











. (3.31)

Gauge covariant derivatives are,

Du =
M∗
R‖

(

∂u − M̃12w̄
)

, Dw =
M∗
R‖

(

∂w − M̃12ū
)

, D3 = M∗R⊥

(

w̄

v+
+

ū

v−

)

,

(3.32)

where we have introduced the following definition

1

v±
≡ 1√

2

(

1

v1
± 1

v2

)

. (3.33)

Recall that the orientation is fixed as v2 > v1 so that v− > 0. In this basis the matrix B

reads

B =
M2

∗
R2

‖











0 0 0 0

0 0 2M̃12 − R
v−

0 2M̃12 0 − R
v+

0 − R
v−

− R
v+

0











, (3.34)

with eigenvalues given by the three roots of the cubic equation,

(

λ5̄H
p

)3
− λ5̄H

p

(

R2

v2+
+
R2

v2−
+ 4M̃2

12

)

− 4R2

v+v−
M̃12 = 0 , p = 1, 2, 3 (3.35)
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and λ5̄H
0 = 0. The corresponding eigenvectors are,

ξ5̄H
0 =











1

0

0

0











, ξ5̄H
p =















0

k5̄H

(p,u)

k5̄H

(p,w)

−4M̃2
12 +

(

λ5̄H
p

)2















, p = 1, 2, 3 (3.36)

where

k5̄H

(p,u) = −R
(

2M̃12

v+
+
λ5̄H
p

v−

)

, k5̄H

(p,w) = −R
(

2M̃12

v−
+
λ5̄H
p

v+

)

. (3.37)

With this information at hand we can solve eqs. (2.33). For M̃12 < 0 we find that the

ground state wavefunctions for each of the four towers of fields localised in the 5̄H curve

are given by

Ψ5̄H , l
p =

ξ5̄H
p

N l
p

(

−k5̄H
u w + k5̄H

w u
)l
e−p

5̄H
1 |w|2−p

5̄H
2 |u|2+p

5̄H
3 w̄u+p

5̄H
4 ūw (3.38)

with k5̄H
u = k5̄H

(1,u), k
5̄H
w = k5̄H

(1,w) and

p5̄H
1 = − (2M̃12v+v− + λ5̄H

1 v2−)λ5̄H
1

4M̃12v+v− + (v2+ + v2−)λ5̄H
1

, p5̄H
2 = − (2M̃12v+v− + λ5̄H

1 v2+)λ5̄H
1

4M̃12v+v− + (v2+ + v2−)λ5̄H
1

, (3.39)

p5̄H
3 =

(2M̃12v
2
+ + λ5̄H

1 v+v−)λ5̄H
1

4M̃12v+v− + (v2+ + v2−)λ5̄H
1

− M̃12 , p5̄H
4 =

(2M̃12v
2
− + λ5̄H

1 v+v−)λ5̄H
1

4M̃12v+v− + (v2+ + v2−)λ5̄H
1

− M̃12 .

Wavefunctions for heavier modes can be obtained by acting with the gauge covariant

derivatives (3.32) on the ground state wavefunctions, as in eq. (2.37). The corresponding

masses are given in eqs. (2.38). Thus, for M̃12 < 0 there is a massless chiral fermion coming

from the 5̄H . Wavefunctions for fields in the 5H representation are also given by the same

expressions, but their masses are shifted in such a way that there is no zero mode, in

agreement with the general discussion of subsection 2.3.

Similarly we can work out the wavefunctions for the case on which M̃12>0. In that case,

λ5̄H
1 λ5̄H

2 λ5̄H
3 =

4M̃12R
2

v+v−
> 0 , (3.40)

as can be deduced from the determinant of the non-trivial part of eq. (3.34), and there

are one positive and two negative eigenvalues. Thus, wavefunctions are again given by the

same expressions as in the case M̃12 < 0, but with the change M̃12 → −M̃12 and where

λ5̄H
1 now denotes the positive eigenvalue. The roles of the 5̄H and the 5H representations

is also exchanged in such a way that the massless chiral multiplet now comes from the 5H
representation.
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3.2.4 Wavefunctions for the 5̄H Higgs curve: vanishing flux density

Let us now consider the case on which M̃12 = 0 for the triplet mode on the 5̄H curve. In

that case the eigenvalues of the matrix (R‖/M∗)2B in eq. (3.34) become

λ5̄H
0 = λ5̄H

3 = 0 , λ5̄H
1 = −R

√

1

v2+
+

1

v2−
, λ5̄H

2 = R

√

1

v2+
+

1

v2−
, (3.41)

and the corresponding eigenvectors

ξ5̄H
0 =











1

0

0

0











, ξ5̄H
1 =













0

v+
v−

√

v2+ + v2−













, ξ5̄H
2 =













0

v+
v−

−
√

v2+ + v2−













, ξ5̄H
3 =











0

−v−
v+
0











.

(3.42)

In particular, [D̃†
3, D̃3] = 0 and there is a conserved complex Kaluza-Klein momentum

associated to that commutator instead of a quantum harmonic oscillator. We denote by

kKK the conserved quantum number.

Wavefunctions are obtained by following the same procedure as in previous sections.

Thus, we obtain

Ψp,(n,m,kKK) =
(R‖/M∗)m+n(D̃†

1)
n(D̃2)

m

√
m!n!(−λ5̄H

1 )n/2
(

λ5̄H
2

)m/2
Ψp,(0,0,kKK) , (3.43)

with ground state wavefunction

Ψp,(0,0,kKK) =
ξp
Np

exp





1
√

v2+ + v2−

(

− R

v+v−
|v+u+ v−w|2 + 2iIm [kKK(−v−u+ v+w)]

)





(3.44)

where Np is the normalisation constant. The masses of these modes are

M2
Ψ0,(n,m,kKK)

=

(

M∗
R‖

)2
[

−(m+ n+ 1)λ5̄H
1 + |kKK|2

]

, (3.45)

M2
Ψ1,(n,m,kKK)

=

(

M∗
R‖

)2
[

−(m+ n)λ5̄H
1 + |kKK|2

]

,

M2
Ψ2,(n,m,kKK)

=

(

M∗
R‖

)2
[

−(m+ n+ 2)λ5̄H
1 + |kKK|2

]

,

M2
Ψ3,(n,m,kKK)

=

(

M∗
R‖

)2
[

−(m+ n+ 1)λ5̄H
1 + |kKK|2

]

.

Wavefunctions are only localised along the directions which are transverse to the Higgs

curve and arrange in vector-like pairs. Thus, the normalisation constant Np and the correct

quantisation of kKK are only globally determined. A rough estimate of Np can be given by

assuming the Higgs curve to be a completely homogeneous space, resulting in

Np ≃ R‖

(

πv+v−Vol5̄H

2R

)1/2

||ξp|| ≃
1

ε

(

πv+v−R
2

)1/2

||ξp|| (3.46)

where Vol5̄H
denotes the volume of the Higgs curve and ε was defined in eqs. (2.42).
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4 Wavefunction overlaps

Our aim is now to compute the coefficient of the cubic couplings in the 4-dimensional

effective action which results from dimensionally reducing the 8-dimensional theory of

section 2.1. The relevant operator in the 8-dimensional theory is given by [8]

W ⊃
∫

S
A ∧A ∧Φ . (4.1)

Thus, having calculated the wavefunctions for the massless and massive charged fields,

cubic couplings in the 4-dimensional effective theory are given by integrating the triple

overlap of the associated wavefunctions over the internal 4-cycle S. Since wavefunctions

are localised within the local patch so is their overlap, which means that effectively we can

perform the integral over S as an integral over C2.

Physical cubic couplings are determined from overlaps of normalised wavefunctions,

the normalisation condition assuring 4-dimensional canonically normalised kinetic terms.

Wavefunctions for the charged fields are given by

A1̄ = ψ5̄M

1̄
t5̄M + ψ10M

1̄
t10M + ψ5̄H

1̄
t5̄H ,

A2̄ = ψ5̄M

2̄
t5̄M + ψ10M

2̄
t10M + ψ5̄H

2̄
t5̄H ,

Φ12 = χ5̄M t5̄M + χ10M t10M + χ5̄H t5̄H , (4.2)

where the matrices t5̄M , t10M and t5̄H are along the corresponding bi-fundamental gener-

ators in su(5) × u(1) × u(1) ⊂ so(12). Substituting into (4.1) we get

Y
(i,j)
p,(n,m,l) =

1

6

∫

S

[

ψ5̄H

1̄ p,(n,m,l)
ψ10M ,j
2̄

χ5̄M ,i + ψ5̄H

2̄ p,(n,m,l)
ψ5̄M ,i
1̄

χ10M ,j

−χ5̄H

p,(n,m,l)ψ
5̄M ,i
1̄

ψ10M ,j
2̄

− ψ5̄H

1̄ p,(n,m,l)
ψ5̄M ,i
2̄

χ10M ,j

−ψ5̄H

2̄ p,(n,m,l)
χ5̄M ,iψ10M ,j

1̄
+ χ5̄H

p,(n,m,l)ψ
5̄M ,i
2̄

ψ10M ,j
1̄

]

. (4.3)

In this expression we have dropped the overall group theory factor Tr
{[

t5̄M , t10M

]

t5̄H

}

and reinstated the generation indices i and j counting the massless Landau level degeneracy

and the quantum numbers (n,m, l) labeling massive modes on each of the three towers p =

1, 2, 3 of fields localised in the 5̄H curve.15 For the case discussed in subsection 3.2.4 where

the effective local flux density vanishes, relabeling (n,m, l) → (n,m, kKK) is understood in

the above expression.

Note that Y
(i,j)
p,(n,m,l) implicitly depends on the hypercharge of the fields involved in

the coupling. Yukawa couplings correspond to the case of three massless fields and are

thus given by Y
(i,j)
1,(0,0,0), where the wavefunctions ψ5̄H

1̄ 1,(0,0,0)
, ψ5̄H

2̄ 1,(0,0,0)
and χ5̄H

1,(0,0,0) have

qY = −1/2. On the other hand, triple couplings between two massless matter fields and

one heavy coloured triplet are given by Y
(i,j)
p,(m,n,l), where now ψ5̄H

1̄ 1,(0,0,0)
, ψ5̄H

2̄ 1,(0,0,0)
and

15Cubic couplings between two massless matter fields and the vector multiplets Ψ0,(n,m,l) vanish because of

the N ≥ 1 supersymmetry preserved by the background. They can only be generated after supersymmetry

breaking.
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χ5̄H

1,(0,0,0) have qY = 1/3. Integrating out the three towers of massive (anti-)triplets leads to

non-renormalisable operators in the infrared, which often put strong experimental bounds

on the particular F-theory GUT model. Performing this integration is however beyond

the scope of this work, especially since for the case of proton decay through dimension-

five operators it would also require knowledge of the up-type cubic couplings localised at

E6 enhancement points of S. Instead, in this section we analyze the down-type cubic

couplings, eq. (4.3), between two massless matter fields and the leading contributors in the

three towers of massive triplets. We split the analysis into two subsections, concerning the

cases where the Higgs curve has non-vanishing flux density and where it has vanishing flux

density and therefore massive fields carry some conserved KK momentum.

4.1 5̄H Higgs curve with non-vanishing flux density

We first consider the case where triplets feel a non-vanishing flux density and therefore

all massive modes are localised Landau levels with no conserved KK momentum. The

relevant wavefunctions were presented in subsection 3.2.3 (and the more general versions

in appendix A).

In order to evaluate eq. (4.3), it is useful to recall some geometric selection rules that

identify the particular Landau levels coupling to each matter generation. For that, we can

assign a global U(1) charge to each 4-dimensional field corresponding to the following local

holomorphic rotation of the internal space

z1 → eiθz1 , z2 → eiθz2 . (4.4)

For constant fluxes M1, M2 and γ, the exponential factor of the wavefunctions is invariant

under this transformation and so the wavefunctions transform with a phase. The charge

of the wavefunction is such that in the polynomial prefactor each power of a holomorphic

coordinate z1 or z2, contributes a +1 charge while each power of an anti-holomorphic

coordinate contributes a −1 charge.

Massless wavefunctions only involve holomorphic prefactors and so can only have pos-

itive charges. The charge is essentially labeled by the generation number since the holo-

morphic polynomial prefactors are given by holomorphic coordinates raised to the power

of the generation index. As studied in [15, 17–19, 21] the heaviest generation is usually

associated to the constant prefactor and so to vanishing charge, whereas second and first

generations are associated to charges +1 and +2 respectively.16

Massive Landau replicas are obtained by acting with the raising operators on the

massless fields, as described in subsection 2.3. Ladder operators carry a definite charge

under the above U(1) symmetry. More precisely, for creation operators we have

QU(1)

(

D̃†
1

)

= +1 , QU(1)

(

D̃2

)

= −1 , QU(1)

(

D̃3

)

= −1 , (4.5)

16Another theory of flavour was proposed in [48] for which the generation structure cannot be studied

locally at an SO(12) point. We discuss the implications for this model in subsections 4.2 and 5.2.
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ũR c̃R t̃R

dR T(0,4,0), T(0,3,1), T(0,2,2), T(0,1,3), T(0,0,4) T(0,3,0), T(0,2,1), T(0,1,2), T(0,0,3) T(0,2,0), T(0,1,1), T(0,0,2)

sR T(0,3,0), T(0,2,1), T(0,1,2), T(0,0,3) T(0,2,0), T(0,1,1), T(0,0,2) T(0,1,0), T(0,0,1)

bR T(0,2,0), T(0,1,1), T(0,0,2) T(0,1,0), T(0,0,1) T(0,0,0)

Table 1. Non-vanishing cubic couplings Y
(i,j)
p,(n,m,l) between right-handed quarks and squarks and

the lowest laying massive anti-triplets Tp,(n,m,l) according to the geometric U(1) selection rule.

We have omitted the subindex p in order to simplify the notation. Similar couplings are possible

between up-quarks, sleptons and the lowest laying massive anti-triplets.

with opposite charges for the annihilation operators. Thus, the global U(1) charge of a

massive field is given by17

QU(1)

(

Ψi
p,(n,m,l)

)

= i+ n−m− l . (4.6)

The usefulness of assigning such charges becomes apparent when considering the triple

wavefunction overlap integral. Since the integration measure is invariant under this sym-

metry, the product of the three wavefunctions must also be invariant in order for the

integral to be non-vanishing. Thus, the only non-vanishing couplings Y
(i,j)
p,(n,m,l) are such

that i + j + n −m − l = 0. This in particular implies that all Yukawa couplings vanish

except for the one of the b quark, that is Y
(0,0)
1,(0,0,0) [15, 18, 19]. It is however important to

emphasise that this U(1) symmetry is broken by non-trivial local metric or flux profiles,

closed string fluxes [18] or non-perturbative effects [47]. We should therefore think of this

symmetry as applying at leading order in an expansion in the spatial variation of the metric

and fluxes.

The above selection rule also constrains the possible couplings between two massless

matter fields and one heavy (anti-)triplet. We have summarised in table 1 the allowed

cubic couplings between right-handed quarks and squarks and the lightest massive anti-

triplets Tp,(n,m,l). The remaining couplings to heavy anti-triplets allowed by the selection

rule are formed by acting on these lightest states with ‘vector-like’ combinations of raising

operators, in the sense of adding no net U(1) charge. Thus, for instance t̃RbR couples to

the infinite set of heavy anti-triplets

Tp,(0,0,0) , Tp,(1,1,0) , Tp,(1,0,1) , Tp,(2,2,0) , Tp,(2,1,1) , Tp,(2,0,2) , . . . (4.7)

and similarly for other pairs of right-handed quarks and squarks.

In what follows we perform the explicit calculation of the couplings which are shown

in table 1. For large values of R, these are the most relevant couplings, not only because

they involve the lightest triplets but also because cubic couplings to fields involving a larger

number of raising operators are suppressed by higher powers of R, as we show below.

It is worth noting that in the limit where the local U(1) symmetry is exact, and where

the up-type triplet coupling associated to a point of E6 and the down-type coupling of

17Note that, since we only require one generation for the 5̄H curve, we assume that the global structure

is such that the generation index vanishes for this curve.
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the SO(12) point are completely coincident, so that they obey the same local geometric

selection rules, we expect that dimension-five proton decay operators do not arise. This is

because all the massless modes have a positive or vanishing charge, which means that only

the dimension-five operator involving the heaviest generations can be U(1) neutral (or put

another way, the coupling between massive up-type and down-type triplets is forbidden

by the U(1) selection rules). But this operator vanishes by the anti-symmetrisation of the

colour indices. The relation between the local geometric U(1) symmetries of the SO(12) and

E6 points is beyond the scope of this work and so we cannot quantify this possibility further.

However, we note some general things. Firstly it is natural that the local geometric U(1)

symmetries of the SO(12) and E6 points be strongly correlated as this is required for an

appropriate CKM matrix. However we also know that the U(1) symmetry must be broken

at scales of order ∼ 0.2 in order to induce significant generation mixing in the Yukawa

couplings. Therefore we do not expect a significant suppression from such a symmetry.

Further note that the symmetry may be broken even more strongly in the massive sector:

although in the case studied in this section where the Higgs curve has non-vanishing flux

the massive modes are Landau-levels and so have a definite U(1) charge, in the next section

we study the case where the Higgs curve has vanishing flux and then massive modes carry

a non-trivial conserved KK momentum which completely break the U(1) selection rules. In

that case we expect no suppression of dimension-five operators due to the local geometric

U(1) symmetry.

Starting from (4.3) we can pull out an overall factor by expressing the wavefunctions

ψ1̄, ψ2̄ and χ in terms of their respective functions ϕ, as in eq. (2.36). This gives

Y
(i,j)
p,(n,m,l) =

N cubic
p (R‖/M∗)n+m+l

N 5̄M ,i
1 N10M ,j

1 N 5̄H ,0
p

√
n!m!l!

(

−λ5̄H
1

)n/2 (

λ5̄H
2

)m/2 (

λ5̄H
3

)l/2

∫

S
ϕ5̄M ,iϕ10M ,jϕ5̄H

(n,m,l) , (4.8)

where we have defined

ϕ5̄H

(n,m,l) = (D̃5̄H†
1 )n(D̃5̄H

2 )m(D̃5̄H
3 )lϕ5̄H , (4.9)

and the overall factor N cubic
p is given by

N cubic
p =

1

6

[

− R√
2v1

(

k5̄H

(p,u) + k5̄H

(p,w)

)(

ρ2 + M̃2

)

− R√
2v2

(

−k5̄H

(p,u) + k5̄H

(p,w)

)(

ρ1 + M̃1

)

+

(

4M̃2
12 −

(

λ5̄H
p

)2
)

(

ρ1 + M̃1

)(

ρ2 + M̃2

)

]

. (4.10)

To calculate the couplings of table 1 we rewrite the polynomial prefactor of the wavefunc-

tions ϕ5̄M ,i, ϕ10M ,j , ϕ5̄H

(n,m,l) in the (u,w) coordinate basis (cf. eq. (3.30)) and collect powers
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of ww̄, uū, uw̄ and wū. Making use of the integral (3.17) we can then express the relevant

coupling constant as

Y
(p,q)
r,(0,m,l) =

N cubic
r (−1)p+q

N 5̄M ,p
1 N10M ,q

1 N 5̄H ,0
r

√
2p+qm!l!

(

λ5̄H
2

)m/2 (

λ5̄H
3

)l/2
×

p
∑

ka=0

q
∑

kb=0

m
∑

kc=0

l
∑

kd=0

[

(−1)ka

(

p

ka

)(

q

kb

)(

m

kc

)(

l

kd

)

(

d̃2w

)m−kc (

d̃2u

)kc (

d̃3w

)n−kd
(

d̃3u

)kd

I (p+ q − max [ka + kb, kc + kd] ,min [ka + kb, kc + kd] , δkΘ (δk) ,

−δkΘ (−δk) ; p1, p2, p3, p4)

]

(4.11)

where Θ is the Heaviside theta function, δk ≡ ka + kb − kc − kd and we have defined the

quantities

p1 ≡ p5̄H
1 +

1

2

(

ρ1 + ρ2 + M̃1 + M̃2

)

, p2 ≡ p5̄H
2 +

1

2

(

ρ1 + ρ2 + M̃1 + M̃2

)

, (4.12)

p3 ≡ p5̄H
3 +

1

2

(

−ρ1 + ρ2 + M̃1 − M̃2

)

, p4 ≡ p5̄H
4 +

1

2

(

−ρ1 + ρ2 + M̃1 − M̃2

)

,

as well as

d̃iw ≡ 1

||ξ5̄H
i ||

[

k5̄H

(i,u)

(

p5̄H
3 − M̃12

)

− p5̄H
1 k5̄H

(i,w) −
R

v+

(

4M̃2
12 −

(

λ5̄H
i

)2
)]

, (4.13)

d̃iu ≡ 1

||ξ5̄H
i ||

[

k5̄H

(i,w)

(

p5̄H
4 − M̃12

)

− p5̄H
2 k5̄H

(i,u) −
R

v−

(

4M̃2
12 −

(

λ5̄H
i

)2
)]

.

This expression specifies the cubic couplings to the lightest fields localised in the 5̄H Higgs

curve. Given some matter generation choice specified by (p, q) the relevant couplings are all

the combinations of (m, l) such that m+ l = p+ q, as summarised in table 1. Although the

expressions are rather cumbersome they are simple to evaluate with the aid of a computer.

It is interesting to recall the dependence of eq. (4.11) on the local scales R‖ and R⊥
or, equivalently, on the parameters ε and R introduced in eqs. (2.42). Such dependence

can be obtained from the expression of the normalisation constants, raising operators and

the integral (3.17). In particular, in the limit R≫ 1 ≫ ε where the local approach that we

are using becomes reliable, λr eigenvalues scale as in eq. (2.43) and it is possible to show

that the above cubic couplings scale as

Y
(p,q)
r,(0,m,l) ∼

ε

R
3
2
+l+m

2

. (4.14)

The fact that cubic couplings to heavy triplets are suppressed by higher powers of R‖R⊥
than the Yukawa couplings has important phenomenological consequences for proton decay,

as we discuss in detail in subsection 5.1.18

18Since the suppression of lighter generations coupling is related to the higher Landau-level number of the

massive mode it is natural to question how this would be modified by fluxes which do not have a constant
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4.2 5̄H Higgs curve with vanishing flux density

In the case where the effective local density of flux felt by the triplets in the 5̄H curve

vanishes, the triplets carry some conserved KK momentum, as discussed in subsection 3.2.4.

Their wavefunction overlap with massless matter fields may therefore differ significantly

from the case with only Landau levels that we have discussed in the previous subsection.

There are two key differences: the first is that geometric U(1) selection rules no longer apply

since KK wavefunctions explicitly break this symmetry. Moreover, the overlap integral now

includes a new exponential factor depending on the KK momentum.

The relevant triple overlaps are given by

Y
(p,q)
r,(n,m,kKK) =

N cubic
r (R‖/M∗)n+m

N 5̄M ,p
1 N10M ,q

1 N 5̄H
r

√
n!m!

(

−λ5̄H
1

)n/2 (

λ5̄H
2

)m/2

∫

S
ϕ5̄M ,iϕ10M ,jϕ5̄H

(n,m,kKK) ,

(4.15)

where we define

ϕ5̄H

r,(n,m,kKK) = (D̃5̄H†
1 )n(D̃5̄H

2 )mϕ5̄H
kKK

, (4.16)

and the overall factor N cubic
r is now given by

N cubic
r ≡ 1

6

[

− R√
2v1

(v+ + v−)
(

ρ2 + M̃2

)

− R√
2v2

(v− − v+)
(

ρ1 + M̃1

)

+(−1)r
(

v2+ + v2−
)

1
2

(

ρ1 + M̃1

)(

ρ2 + M̃2

)]

, r = 1, 2

N cubic
3 ≡ 1

6

[

− R√
2v1

(v+ − v−)
(

ρ2 + M̃2

)

− R√
2v2

(v− + v+)
(

ρ1 + M̃1

)

]

. (4.17)

To evaluate the above expression it is convenient to introduce the integral

IKK (n1, n2, n3, n4 ; p1, p2, p3, p4 ; a1, a2)

≡
∫

S
wn1w̄n2un3 ūn4e−p1|w|2−p2|u|2+p3uw̄+p4ūw+2iIm(a1w+a2u)

= R4
‖ (−1)n2+n4 ∂n1

a1 ∂̄
n2
ā1 ∂

n3
a2 ∂̄

n4
ā2

[

π2

p1p2 − p3p4
e
− |a1|2p2+|a2|2p1+a1ā2p3+a2ā1p4

p1p2−p3p4

]

. (4.18)

In order not to overload this section, here we just present the explicit analytic expres-

sion for the particular case on which one of the two quantum numbers of the heavy

local profile and therefore break the local geometric U(1) selection rules allowing the lighter generations

to couple to lower Landau-levels. We expect that the coupling would still be suppressed in a similar, and

slightly stronger due to the small parameter associated to the flux spatial variation, fashion. Evidence

for this can be found in section 4.2 where there is no local U(1) selection rule and we indeed find such a

suppression for the lighter generations.
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triplet vanishes,19

Y
(p,q)
r,(n,0,kKK) =

N cubic
r (−1)p+q

N 5̄M ,p
1 N10M ,q

1 N 5̄H
r

√
2p+qn!

(

−λ5̄H
1

)n/2
×

p
∑

ka

q
∑

kb

n
∑

kc

[

(−1)ka

(

p

ka

)(

q

kb

)(

n

kc

)

(

d̃1u

)n−kc (

d̃1w

)kc

IKK



p+q−ka−kb+kc, 0, ka+kb+n−kc, 0; p1, p2, p3, p4;
kKKv+
√

v2++v2−

,
−kKKv−
√

v2++v2−









where have introduced the quantities

d̃iu ≡ −
2R
√

v2+ + v2−

v−||ξ5̄H
i ||

, d̃iw ≡ −
2R
√

v2+ + v2−

v+||ξ5̄H
i ||

, i = 1, 2 (4.19)

and pk are given as in eqs. (4.12) with the replacements

p5̄H
1 → Rv−

v+

√

v2− + v2+

, p5̄H
2 → Rv+

v−
√

v2− + v2+

, p5̄H
3 , p5̄H

4 → − R
√

v2− + v2+

. (4.20)

Explicit analytic expressions for the couplings to other heavy triplets can be worked out

in a similar fashion starting from eq. (4.15).

An important qualitative feature of the coupling constants (4.18) is that there is an ad-

ditional exponential suppression with respect to the case with no KK momentum discussed

in the previous subsection. This suppression, however, cannot be significant for the lightest

KK modes if we are to keep within the local approximation, as studied in section 2.4. It

is simple to check this explicitly by varying the parameters. Nevertheless, a more intuitive

understanding is as follows. The exponential suppression comes from the oscillations of the

5̄H wavefunction with KK momentum. If the gaussian decay envelope of the matter wave-

functions is much larger than the oscillation frequency of the KK state then the oscillations

cancel, leading to an exponentially suppressed overlap integral. However, within the local

approximation the gaussian width must be less than the length of the 5̄H curve and so the

lightest KK state should have at most one oscillation within the gaussian envelope. Thus,

for the range of validity of the local approach, this extra exponential suppression on top of

the polynomial one of eq. (4.14) is rather mild.

19The expression for Y
(p,q)

r,(n,0,kKK) follows from this one by making the replacements d̃1{u,w} → d̃2{u,w} and

using the function

IKK



p+ q − ka − kb, kc, ka + kb, n− kc ; p1, p2, p3, p4 ;
kKKv+

√

v2+ + v2−

,−
kKKv−

√

v2+ + v2−



 .

– 31 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

5 Phenomenological implications

We now address a more quantitative analysis of the cubic couplings that we have presented

in the previous section and discuss their possible phenomenological implications. The

primary application of our results is to proton decay induced by dimension-five operators.

More precisely we have computed the coupling of the right-handed quarks and squarks

(or equivalently of the up-quarks and sleptons) to the massive down-type coloured triplets

which mediate proton decay. Although this coupling does not contain the full information

needed to calculate the coefficient of the dimension-five operator, it plays a key role in such

a calculation. Suppressing this coupling is a sufficient but not necessary condition to avoid

the present strong experimental bounds on such dimension-five operators. One of the most

important attributes of the coupling is that it is a superpotential term, which means that

due to its holomorphic nature it cannot involve string oscillators. The latter therefore can

only enter in the physical coupling through the normalisation of the fields.

Besides the most direct application to proton stability, the coupling of matter fields to

heavy modes is also important in the context of other non-renormalisable operators of phe-

nomenological interest. For instance, in F-theory implementations of the Froggatt-Nielsen

mechanism [48] Yukawa couplings arise from higher dimension superpotential couplings.

Similarly, FCNC operators can often be induced by integrating out heavy fields and may

play an important role in studies of supersymmetry breaking. We further discuss the im-

plications of our results for these non-renormalisable operators in subsections 5.2 and 5.3

respectively.

5.1 Coupling to heavy modes: proton decay

As discussed in section 3, the nature of heavy triplets differs according to whether or not

they feel a non-vanishing flux density on the curve. We consider these two possibilities in

subsections 5.1.1 and 5.1.2. In both cases the strategy is similar: we evaluate the leading

couplings of interest and study their behaviour as we vary the input parameters. Although

there are many input parameters that go into the calculation, we find that the qualitative

behaviour depends primarily on the ratio of the fluxes to the parameter R defined in

eqs. (2.42). Hence, a simplified strategy that we adopt here is to fix the flux parameters to

some O(1) values and to study the behaviour of the coupling as we vary R for some fixed

ε < 1. The scanning range for R is set by the limits for which the effective theory is under

control, as studied in section 2.4, keeping in mind their approximate nature. For R < 1 the

local approach that we have adopted in our computations breaks down and higher derivative

corrections to the 8-dimensional effective action (in the type IIB language, corrections from

string oscillators to the normalisation of the fields) become important. On the other hand,

too large values of R are in tension with the observed value of αGUT, requiring values of

ε close to the unity, for which higher derivative corrections become again relevant. Thus,

given some region of values for R, the value of ε is fixed within a range by the validity of

the 8-dimensional effective theory and the relation between the local scales and αGUT in

that particular model.
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5.1.1 Coupling for Higgs curve with non-vanishing flux

The first case that we model is where the flux density on the 5̄H Higgs curve is such that

there is a massless anti-triplet. Without any other extra ingredient, this scenario therefore

does not fully account for doublet-triplet splitting. The massless anti-triplet would have

to be lifted by some deformation of the geometry, which in the effective field theory would

correspond to a supersymmetric µ-term or to a vev for a GUT singlet. If the resulting mass

is well below the local KK scale we expect this to only induce a small correction to our

calculations. The lifted massless anti-triplet, however, leads to a new extra contribution to

proton decay which can in particular dominate over the one of the massive modes that we

are computing. In this sense the contributions that we consider in this subsection should

be regarded as only part of the total one in a complete model.20

The relevant coupling was calculated in section 4.1. As discussed in the introduction

our primary interest is in the ratios of the heaviest generation Yukawa coupling to the cubic

couplings to heavy anti-triplets. This measures the departure from the naive 4-dimensional

equality of Yukawa couplings and cubic couplings to heavy triplets. In order to present the

results most concisely we define an average coupling to the dominant massive modes for

each pair of generations

〈

Ŷ (r)
pq

〉

≡ 1

1 + p+ q

∑

n,m,l

Y
(p,q)
r,(n,m,l) , (5.1)

where the sum runs over the dominant massive anti-triplets in the r-th tower of localised

heavy fields in the 5̄H Higgs curve. See table 1 for an explicit list of the terms.

In figure 2 we plot the average coupling to the first tower of massive anti-triplets, the

one generated by acting with raising operators on the massless modes, for values of the

flux of order one. Since doublet-triplet splitting is not fully accounted for in this case we

turn off the hypercharge flux for simplicity γ = 0. The plot shows the coupling to the

leading massive modes for different generations. The dashed line shows the triple coupling

of massless modes, i.e. the Yukawa coupling of the heaviest generation. The couplings to

the other two towers, which do not have a zero mode, are similar in nature and are shown

in figure 3.21 For completeness we also plot in figure 4 the masses of the different coloured

anti-triplets that participate in the average couplings (5.1).

The behaviour of the cubic couplings to massive modes is relatively universal and

robust with respect to small variations of the flux and R. We find that for small values

of R, such that it is of order the flux parameters, the coupling to massive anti-triplets

for the lighter generations is only slightly suppressed compared to the Yukawa coupling.

This means that for this region of the parameter space the constraints on proton decay

20Nevertheless, the wavefunctions and overlaps for this setup are identical to an analogous setup where

this problem is avoided. This is where the hypercharge flux is such that there is a massless triplet rather

than anti-triplet. Still some deformation of the geometry is required in order to lift the massless mode, but

now since it is a triplet rather than anti-triplet it does not couple to the massless matter fields through

down-type Yukawa couplings and does not enhance the rate of proton decay. Therefore we regard this

calculation as still useful for realistic examples.
21The dip seen in the couplings to the third tower shown in figure 3 goes all the way to zero, although

due to the resolution of the plot it is not completely captured. The origin of this dip is on the overall

factor (4.10) which develops a zero as a function of R for that particular tower. A similar feature occurs in

figure 6.
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Figure 2. Average couplings of different generations to massive anti-triplets in the first tower of

localised fields, for flux values v1 = 5/6, v2 = 5/4, M1 = 1.6, M2 = 2, γ = 0 and ε = 1/10. For

reference, we also show the Yukawa coupling for the b quark (dashed line).
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Figure 3. Average couplings of different generations to massive anti-triplets in the second (left)

and third (right) towers of localised modes, for flux values v1 = 5/6, v2 = 5/4, M1 = 1.6, M2 = 2,

γ = 0 and ε = 1/10.

are stronger than the naive 4-dimensional field theory result using (1.3). As we increase R

relative to the flux the lighter generation couplings decrease more steeply than the heavier

generations, such that for large enough values of R the couplings of the lighter generations

are significantly suppressed compared to the minimal 4-dimensional field theory guess.

However, note that the bottom Yukawa coupling also decreases for large R leading to very

small tan β which eventually becomes incompatible with gauge coupling unification, which

favours tan β > 1. Therefore in such a setup we expect that from the Yukawa coupling

not being too suppressed that smaller values of R are favoured.
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Figure 4. Masses of the anti-triplets participating in the average couplings (5.1), as summarised

in table 1, for the first tower of modes with flux values v1 = 5/6, v2 = 5/4, M1 = 1.6, M2 = 2,

γ = 0 and ε = 1/10.

5.1.2 Coupling for Higgs curve with vanishing flux

We study now the case where triplets in the 5̄H Higgs curve feel a vanishing total effec-

tive flux and therefore, given the appropriate topology, there are no massless triplets and

doublet-triplet splitting is accounted for. Massive vector-like pairs of triplets carry a con-

served KK charge and their wavefunctions are delocalised along the Higgs matter curve.

This means that we cannot calculate the wavefunction normalisation explicitly and have to

estimate it, as we did in eq. (3.46). However, this is not a particularly serious shortcoming

given the accuracy at which we are working, and we refer to appendix B for a more detailed

study of this issue.

We plot in figure 5 the coupling of the different matter generations to the lightest

massive vector-like pair of triplets in the first tower of localised fields, for values of the flux

of order one. The flux is chosen such that there is no total effective flux for the triplets,

so that M̃12 as defined in (3.29) vanishes. The massless chiral spectrum is determined by

the expressions (3.9)–(3.11) and is such that that there is a massless chiral Higgs doublet

as well as the appropriate chiral matter fields. The massive vector-like pair of triplets that

we consider is the lowest KK mode with vanishing Landau-level quantum numbers. As

discussed in section 3, the presence or absence of a vector-like pair of massless triplets is

only determined by the global geometry. From the local approach we assume that such

a massless pair is absent and therefore all triplets carry non-zero KK momentum. The

coupling to the lightest vector-like pair of triplets in the other two towers of localised fields

is plotted in figure 6.
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Figure 5. Couplings to the lightest massive vector-like pair of triplets in the first tower of fields

localised in the Higgs curve, for flux values v1 = 5/6, v2 = 5/4, M1 = 1.6, M2 = 2, γ = 1.2,

ε = 1/10, kKK = 1 and trivial Landau-level quantum numbers. For reference, we also show

the Yukawa coupling for the b quark (dashed line). Note that, since hypercharge flux is non-

vanishing the coupling is not GUT group universal. The coupling to the triplets that we plot is

(3̄, 1)1/3 ⊗ (1, 2)
−1/2 ⊗ (3, 2)1/6 while the Yukawa coupling plotted for comparison is (1, 2)

−1/2 ⊗
(3̄, 1)1/3 ⊗ (3, 2)1/6.
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Ŷ
(3)
~cdh i

Ŷ
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Figure 6. Couplings to the lightest massive vector-like pair of triplets in the second (left) and third

(right) towers of fields localised in the Higgs curve, for flux values v1 = 5/6, v2 = 5/4, M1 = 1.6,

M2 = 2, γ = 1.2, ε = 1/10, kKK = 1 and trivial Landau-level quantum numbers.

The general behaviour of the couplings is similar to the setup discussed in the previous

subsection. The more detailed differences being that the Yukawa coupling is slightly less

sensitive to the values of R, allowing for a larger viable range. Also the suppression of the

lighter generations is stronger than that in figure 2. Both of these changes improve the

prospects for suppressing proton decay operators.
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5.1.3 General overview

Having studied both the possible cases for the Higgs triplets in the last two subsections

we can attempt to draw some general conclusions from our analysis of the coupling of the

heavy triplets to the different generations. Of course all conclusions are qualified with

the fact that our analysis can only be taken to hold up to order 1 factors or so. Also

the possible parameter space is restricted by our use of a local 8-dimensional field theory

as discussed in section 2.4 and it may be that leaving this framework could change the

results in a quantitative and perhaps even qualitative way. With this in mind however

it is also important to note that the behaviour we observe, up to order 1 factors, is quite

robust against variations of the flux parameters and geometric scales within their respective

allowed regimes that allow for the perturbative field theory analysis we have performed.

Perhaps the most general and important property of the couplings we have calculated

is that there is a suppression of the coupling of lighter generations to the heavy triplets

in analogy with the minimal 4-dimensional field theory GUTs behaviour, and which for

large enough values of R can lead to substantial suppressions of the couplings. Another

general pattern we find is that the bottom quark Yukawa coupling is small, implying a small

tan β regime is perhaps more natural. Both of these properties are favourable in terms

of suppressing dimension-five proton decay. The suppression for the lighter generations

is particularly important, allowing to generate the small numbers needed to qualitatively

match dimension-five proton stability constraints (assuming that a similar suppression for

up-type couplings holds).

A quantitatively precise examination of these results would require the precise knowl-

edge of the model dependent relation between the local scales R⊥ and R‖ and the global

compactification scales parameterised by MPlanck and αGUT. For nearly homogeneous com-

pactifications, where small values of R are most natural, such analysis reveals that within

the bulk of the allowed local parameter space it is quite difficult to suppress the coupling

to triplets sufficiently to weaken the proton stability constraints of minimal 4-dimensional

GUTs that result from eqs. (1.3). The strongest constraints on the parameter space come

from the relation to αGUT and from the requirement of a sufficiently large bottom Yukawa

to be compatible with tan β > 1. Both of these are approximate and if we allow our-

selves to go to the edge of parameter space, say with R ∼ 25, then further suppression is

possible. This suppression of the couplings relative to the expected 4-dimensional values

is most significant for the lighter generations which means that the strongest constraints

would come from superpotential couplings involving as many heavier generations as pos-

sible, such as the presented in figure 7.22 We cannot rule out that allowing for order 1

factors and going to the edge of allowed parameter space, as well as assuming a similar

suppression to the up-type Higgs triplet couplings, all the proton decay diagrams could be

suppressed sufficiently to avoid experimental constraints in this class of models. However,

while keeping this possibility in mind, within the framework we have used the most natural

conclusion is that in F-theory models that are based on nearly homogeneous manifolds the

22This information is particularly non-trivial in the presence of additional selection rules which may, for

example, forbid only the operators involving heavier generations but not lighter ones.
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Figure 7. Proton decay superpotential couplings involving only one lightest generation of quarks.

The diagrams involving these operators are expected to dominate in the bulk of parameter space

where the coupling to the heavier generations are only mildly suppressed.

coupling of the heavy triplets is of the same order as, or even more enhanced than, in min-

imal 4-dimensional field theory GUTs and further suppression of proton decay operators

is required through additional mechanisms.

5.2 Relation to Yukawa couplings

We have computed the coupling of massless chiral modes to localised massive modes using

wavefunction overlaps. So far our primary application of this calculation has been to

proton decay through dimension-five operators. However the couplings we have calculated

are important also for other physical quantities. In this section we present a brief discussion

of their application to Yukawa couplings.

The nature of Yukawa couplings in F-theory GUTs depends on how the multiplicity

of the generations arises. So far we have considered the case where the three matter

generations arise from the multiplicity of Landau-level zero modes of a single curve. Yukawa

couplings are obtained from zero-mode wavefunction overlaps and, as we have seen, for

this setup they have a rank one structure due to the local U(1) symmetries [15]. Yukawa

couplings for the second and third generations should then arise from deformations of this

structure. It was shown in [17–19] that such deformations cannot arise from worldvolume

gauge fluxes, which are the only ingredients that we have included so far in our analysis.

Instead, to generate a higher rank structure locally what is required is a non-commutative

deformation of the local gauge theory. This can arise from two sources: either through

Imaginary-Anti-Self-Dual (IASD) closed string fluxes of type (2, 1) [18], or through non-

perturbative effects such as instantons or gaugino condensation on some distant brane [47].

In [69] it was argued that in fact the two possibilities are equivalent when it comes to their

effect on the local theory since non-perturbative effects source IASD fluxes.

Calculations of Yukawa couplings within this framework were performed in [18, 21].

In particular it was shown in [21] that the deformed Yukawa couplings can be written as

Ytotal = Y
(0)
tree + ǫ

(

Y
(1)
tree + Y (0)

n.p.

)

+ . . . . (5.2)

Here the subscripts on the Yukawa coupling contributions denote the type of operator

in the gauge theory, with ‘tree’ denoting the usual Yukawa coupling arising from F ∧ Φ
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as studied in this paper, and ‘n.p.’ denoting the higher dimension operator induced by

the non-perturbative effect (which takes the schematic form ΦF ∧ F ). The parameter ǫ

is related to the non-commutative deformation or, equivalently, to the non-perturbative

scale. The superscripts on the operators denote to which order in the deformation of the

wavefunctions the operators are evaluated at. Thus, a superscript 0 denotes the unde-

formed wavefunctions, while a superscript 1 denotes that one of the three wavefunctions in

the triple overlaps is the first order deformed one. It was further shown that the deformed

wavefunction can be written as an explicit linear combination of the massive wavefunctions

of the undeformed theory. These wavefunctions are exactly the wavefunctions we have been

calculating and the resulting coupling Y
(1)
tree is directly given by the appropriate linear com-

bination of the couplings of two massless and one massive modes which we have calculated.

Therefore the calculations of massless and massive wavefunction overlaps presented play an

important role in calculating also the Yukawa couplings. There are two direct applications

of our results. The first is to use within a Yukawa coupling calculation analogous to [21] but

for the more realistic SO(12) rather than U(3) setting (though in practice wavefunctions

of both setups turn out to be rather similar). Secondly we see that there is a connection

between Yukawa couplings and proton decay. In particular, within the region of parameter

space where proton decay operators are suppressed also this contribution to the Yukawa

coupling would be suppressed. Yukawa couplings would then primarily have to arise from

the last term in (5.2).23

This model of flavour that we have been using is elegant and has attractive features.

Besides its simplicity, it provides a very natural explanation for the observed hierarchy

between the Yukawa couplings of the third and the two lighter generations. It suffers, how-

ever, from a number of difficulties in attempting a realistic implementation. In particular,

no global compact stable backgrounds are known, either in IIB or F-theory, which support

the required non-commutative deformation. Moreover, in order to obtain a realistic flavour

structure the Yukawa deformation should arise at order ∼ 0.2, which seems too large to

have a non-perturbative origin while still maintaining a perturbative expansion. Our re-

sults showing that within the local perturbative regime R > 1 wavefunction overlaps are

generally suppressed are likely to make this problem even more severe.24

An alternative model of flavour was proposed in [48] where each generation arises

on a different matter curve and the flavour structure comes from embedding the SU(5)

GUT into E8 through the Froggatt-Nielsen mechanism. The calculations that we have

performed in the previous sections are also relevant for these models, as Yukawa couplings

in this case arise from higher dimension operators which, in turn, come from integrating

23Actually, as noticed in [21], the coefficient of the last term in (5.2) vanishes for an SO(12) enhance-

ment point and the non-trivial contribution to the Yukawa couplings is generated at higher order in the

deformation. In that sense the suppression of the first term may be quite important.
24There is also a potential difficulty discussed in [20] which is that the initial rank one structure applies

only locally to a single enhancement point of say SO(12). However, in concrete compactifications there are

many such enhancement points, which are spatially separated, generically leading to a higher rank structure

and destroying the hierarchical nature. The presence of a number of enhancement points however is not a

no-go theorem as not all say SO(12) points must correspond to the down-type Yukawa but can amount to

intersections of different curves.
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out heavy modes. For example, starting from a bottom-type coupling to heavy modes and

integrating out those, generates the s quark Yukawa coupling. The relevant operators are

W ⊃ 5̄Hd
5̄KK
b 10t +X5̄s5

KK
b +MKK5̄

KK
b 5KK

b , (5.3)

where we have denoted the heavy modes with the superscript ‘KK’. Integrating out the

heavy modes gives
X

MKK
5̄Hd

5̄s10t , (5.4)

where X is a GUT singlet that develops a vev. The first coupling of (5.3) is of the

type we have been studying, with the small difference that the massive mode is taken

for the matter curve rather than the Higgs curve. Since the flavour structure in the models

of [48] comes from the additional U(1) symmetries, it would require a large coupling to the

massive modes and so in this case the, more natural, small R region of parameter space

is preferred.25 The second term in eq. (5.3) is the type of coupling that we study in the

next section. Finally note that in the context of proton decay the singlet vevs already

account for the 4-dimensional coupling suppression as in (1.3), and so only a further mild

suppression, coming for the difference between the doublet and triplet coupling as we have

been studying, is required to avoid proton decay constraints. Given our results, which

showed that couplings to heavy modes can be easily and generically much smaller than 1,

such a possibility seems quite natural. However an explicit computation of the dependence

on the generation structure would require going beyond the local SO(12) framework we

have been using.

5.3 Soft masses and FCNC

As another application of the type of computations we have performed we study a set of

operators which may be responsible for soft masses after supersymmetry breaking. This

is a particularly interesting set of operators to investigate because a well-known criticism

of gravity mediated supersymmetry breaking is that FCNCs are expected to be generated

after integrating out heavy modes. The coupling of the massless matter sector to heavy

modes is therefore crucial in calculating this effect.26

More precisely, let X = . . . + θ2FX be a supersymmetry breaking superfield and Qi

a chiral matter superfield (baryonic or leptonic) belonging to the i-th generation. If the

Kähler potential contains dimension-six operators of the type

K ⊃ KijXX̄

∫

d4θ X†XQ†
jQi , (5.5)

then soft masses are generated

m̃2
ij = KjiXX̄ |FX |2 . (5.6)

25Note that in the limit of constant fluxes, due to the local geometric U(1) selection rules, the leading

such coupling would involve one of the massive towers which does not have a massless mode.
26For non-perturbatively generated FCNC in string theory see [72].
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Figure 8. Feynman diagrams leading to dimension-six operators of the type (5.5) by exchange of

massive U(1) gauge bosons (left) or massive scalars (right).

Denoting by Vq,ij ≃ δij +ǫij the unitary matrix which diagonalises the fermion mass matrix

(with ǫij ≪ 1 and ǫij = 0 for i = j), the scalar soft masses in the basis where fermion

masses and gaugino-fermion-scalar matrices are diagonal are

m2
ij ≃ m̃2

ij + ǫikm̃
2
kj − m̃2

ilǫlj . (5.7)

Experimental results on flavour violation in the Standard Model set severe bounds on the

off-diagonal terms in the family space m2
ij [70, 71].

There are various possible sources for the dimension-six operators (5.5) within the F-

theory GUTs context. In figure 8 we present the leading such contributions. The first type

of contribution, introduced in [54], is obtained by integrating out a massive U(1) gauge

boson. This contribution has been argued to be flavour universal. However, besides this

contribution there can also be non-universal contributions arising from the exchange of

heavy Landau or KK states Φn, which we study in what follows.

The relevant cubic coupling constants λjn involved in the diagram of figure 8 (right)

are given by the overlap integral

λjn =

∫

S
ΨXΨjΨn = 〈n|XQj〉 . (5.8)

In this expression we have used a convenient Dirac notation, where actually 〈x|n〉 = Ψ̄n

denotes the complex conjugate of the wavefunction Ψn. Hence, the coefficient of the

dimension-six operator eq. (5.5) which results from these contributing diagrams is

KjiXX̄ =
∑

n

λ̄inλjn
M2

n

=
∑

n

〈XQi|n〉〈n|XQj〉
M2

n

, (5.9)

with Mn the mass of the state Φn. Such a sum over mediating states has a lower bound

obtained by keeping the lightest state Φ1 with mass M1,

KjiXX̄ ≥ λ̄i1λj1
M2

1

. (5.10)

Similarly, an upper bound can be obtained by using the inequality

KjiXX̄ =
∑

n

〈XQi|n〉〈n|XQj〉
M2

n

≤ 〈XQi|XQj〉
M2

1

=
1

M2
1

∫

S
|ΨX |2Ψ̄iΨj , (5.11)
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which results from making use of Mn ≥ M1 and the completeness of Landau levels. It is

important to recall here that eqs. (5.10) and (5.11) put bounds on the particular contribu-

tion of the Landau states Φn to the operator (5.5), and not on the operator itself, which in

general may receive other contributions (for instance from string oscillators) not accounted

for by these expressions.

In order to perform a more precise estimation of the quantities appearing in eqs. (5.10)

and (5.11) we have also to specify the origin of the SUSY breaking fieldX. If it is a modulus-

like field, singlet under the Abelian symmetries we are considering, local considerations do

not determine its wavefunction and we cannot say much by using the methods of this

paper. However, if X is a charged field then it actually experiences the Higgs vev and/or

the Abelian fluxes and it has some degree of localisation. This is the case we consider in

what follows.

Since the cubic coupling we are interested in involves two fields charged under the GUT

group and one GUT singlet, the SO(12) model that we have been considering in previous

sections is not accurate for this case. A more suitable toy model based on the gauge group

U(3) and containing all the necessary ingredients was studied in [21], that we consider in

what follows.

In this model massive Φn states27 are actually labeled by three quantum numbers

|Φn〉 → |Φ(m,n,l)〉. Their masses are given by

M2
(m,n,l) =

M2
∗

R2
‖

(mλ+ + n|M | + l|λ−|) , (5.12)

where λ± ≡ 1
2

(

M ±
√

M2 + 4R2m4
φ

)

, M and mφ are respectively flux and Higgs param-

eters and we have made explicit the dependence on the local scales R‖ and R⊥ introduced

in section 2. We consider the minimal case in which the multiplicity of X and Φn is one,

whereas the multiplicity of Qi is taken to be three, i = 0, 1, 2 with i = 0 labeling the

heaviest generation.

We denote by λi(m,n,l) the cubic coupling between X, Φ(m,n,l) and Qi. As it was the

case in the SO(12) setup, the local geometric U(1) charge conservation (4.4) only allows

for couplings which satisfy i−m− n + l = 0. Thus, the lightest fields coupling to X and

to different generations of squarks and sleptons are

1st generation: Φ(2,0,0) , Φ(0,2,0) , Φ(1,1,0) , . . .

2nd generation: Φ(1,0,0) , Φ(0,1,0) , . . .

3rd generation: Φ(0,0,0) , . . .

In the toy model that we are considering Φ(0,0,0) is massless. However, we expect that in

a more realistic setup there would not be such massless exotic state. This mass lifting is

not under control locally and therefore we have nothing to say about it here.

27We identify our fields X,Qi and Φn with the fields in [21] according to

X → c
+

, Qi → b
i,+

, Φn → a
+
m,n,l ,

and Mx = −My = M < 0.
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For simplicity we choose the fluxes of the model to be small enough 2M2 < R2m4
φ,

such that the states with m = l = 0 are lighter than the other states. In that case cubic

couplings are of the form

λi(0,n,0) =
1

6

∫

S

[

(ψQi

1̄
ψX
2̄ − ψX

1̄ ψ
Qi

2̄
)ψΦn

3̄
− (ψQi

1̄
ψΦn

2̄
− ψΦn

1̄
ψQi

2̄
)ψX

3̄

+(ψX
1̄ ψ

Φn

2̄
− ψΦn

1̄
ψX
2̄ )ψQi

3̄

]

(5.13)

and, in particular, the leading couplings to massive states for the first two generations are

λ2(0,2,0) and λ1(0,1,0). Making use of the explicit expression of the wavefunctions in [21] we

find

λ1(0,1,0) = −
|M |1/2λ−(λ− −

√
2Rm2

φ)

NΦN1
QNXR2m4

φ

∫

S
z1z̄2 e

λ−|z1|2+λ−|z2|2−
m2

φ√
2
|z1−z2|2 , (5.14)

λ2(0,2,0) =
|M |λ−(λ− −

√
2Rm2

φ)
√

2NΦN2
QNXR2m4

φ

∫

S
z21 z̄

2
2 e

λ−|z1|2+λ−|z2|2−
m2

φ√
2
|z1−z2|2 ,

where NΦ, N j
Q and NX are wavefunction normalisation constants. Using the integral (3.18),

together with eqs. (5.10) and (5.12), the corresponding terms in the Kähler potential are

then readily found to be

K11̄XX̄ ≃
|λ1(0,1,0)|2

M2
(0,1,0)

=
π4R10

‖
2M2∗ (NΦN1

QNX)2R2m4
φλ

2(λ−
√

2Rm2
φ)2

, (5.15)

K22̄XX̄ ≃
|λ2(0,2,0)|2

M2
(0,2,0)

=
π4R10

‖ |M |
4M2∗ (λ−)4(NΦN2

QNX)2(λ− −
√

2Rm2
φ)4

.

Hence, due to conservation of the geometric U(1) charge no off-diagonal terms are generated

in the Kähler potential. We know however from eq. (5.7) that this is not enough to suppress

FCNCs, since unequal terms on the diagonal do generate FCNCs after diagonalising the

fermion mass matrices.

Indeed, from eqs. (5.15) we obtain

m̃2
22−m̃2

11 ∼
R2m4

φM
3R2

‖
8N2

XM
2∗ (λ−)6(λ−−

√
2Rm2

φ)4

[

−M2R2m4
φ+4(λ−)2(λ−−

√
2Rm2

φ)2
]

|FX |2,

(5.16)

where we have used the normalisation of the wavefunctions

NΦ ≃ N j
Q ≃ R2

‖

(

j!

|M |j
π2λ−

R2m4
φM

)1/2

. (5.17)

For a suppression of the FCNCs the two mass terms m̃2
11 and m̃2

22 would have to be equal

to a high accuracy.
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A similar reasoning can be followed for the upper bound (5.11) on the Kähler term.

Starting from the cubic couplings (5.13) and integrating out over the massive states, one has

KijXX̄ ≤ Kmax
ijXX̄ =

1

M(0,i,0)M(0,j,0)

∫

S

[

(ψQi

1̄
ψX
2̄ − ψX

1̄ ψ
Qi

2̄
)(ψ

Qj

1̄
ψX
2̄
− ψX

1̄
ψ
Qj

2̄
)

+(ψQi

2̄
ψX
3̄ − ψX

2̄ ψ
Qi

3̄
)(ψ

Qj

2̄
ψX
3̄
− ψX

2̄
ψ
Qj

3̄
) + (ψQi

3̄
ψX
1̄ − ψX

3̄ ψ
Qi

1̄
)(ψ

Qj

3̄
ψX
1̄
− ψX

3̄
ψ
Qj

1̄
)

]

,

(5.18)

which, making use the explicit form of the wavefunctions, becomes

Kmax
ijXX̄ =

1

M(0,i,0)M(0,j,0)N
2
XN

i
QN

j
Q

[

3(λ−)2

2R2m4
φ

−
√

2λ−

Rm2
φ

+ 1

]

×
∫

S
zi1z̄

j
1 e

M |z1|2−
√

M2+4R2m4
φ|z2|2−

√
2Rm2

φ|z1−z2|2
(5.19)

This integral can be computed as before. We do not write here its explicit analytic expres-

sion. Notice however that, similarly to the lower bound that we have just discussed, the

resulting Kähler terms are again diagonal in the generation space due to geometric U(1)

charge conservation, but, importantly, not degenerate.

Since this is a toy model we do not perform an analysis of eqs. (5.15) and (5.19) on

their parameter space. Our main emphasis is to show how contributions of the form (5.5)

can be calculated and that indeed for generic parameters they are not flavour-universal

and lead to large FCNCs. In particular, there is a priori no natural reason why the flavour-

universal contributions from U(1) gauge boson exchange should dominate the contributions

studied here, since the masses of the corresponding gauge bosons and of the scalar fields

are expected to be at the same scale. However, having shown how such contributions can

be explicitly calculated, it would be very interesting to explore the full parameter space,

particularly within a more realistic model, and see if there are regions where the FNCN

operators can be sufficiently suppressed.

Finally, let us raise a further point regarding the U(1) boson exchange contribution

itself. The flavour universality in this case arises because the gauge boson is taken to

couple in the Kähler potential in such way that diagonalising the kinetic terms for the

matter fields also diagonalises the coupling to the gauge boson. However, in general this

is only possible if the wavefunction profile of the gauge boson is constant. We therefore

expect flavour non-universal couplings to higher KK states of the U(1) gauge boson, as the

wavefunctions of these states are not constant. Once more studying the nature of these

FCNCs reduces to studying massive mode wavefunction integrals, but this time for the

U(1) gauge bosons. Such studies are however beyond the scope of this work.

6 Summary

In this work we have studied the coupling of matter fields to heavy modes through cubic

superpotential interactions in the context of SU(5) F-theory GUTs. We have considered, in
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particular, fields that are localised within a patch around a point of SO(12) enhancement

and computed the local form of their wavefunctions, for both massless and massive modes.

Down-type Yukawa couplings are obtained by integrating overlaps of three massless wave-

functions, whereas couplings of two matter fields to the heavy coloured triplets are given

by integrating overlaps of one massive and two massless wavefunctions.

The coupling of MSSM fields to heavy triplets is an important ingredient in the study

of proton stability through dimension-five effective operators that result from integrating

out the heavy triplets. In this context our calculations are a prerequisite to constraining F-

theory GUTs through dimension-five proton stability. We find that, analogously to minimal

4-dimensional GUTs, the coupling of the heaviest generation to the massive triplets is of

the same order as the Yukawa coupling, and that the coupling of the lighter generations

to the triplets are suppressed with respect to the heavier ones. The quantitative analysis

depends on few local parameters associated to the flux and geometry, which are in turn

constrained by the measured values of αGUT and MPlanck and also by keeping the bottom

quark Yukawa not too small so that we can remain within the tan β > 1 regime favoured by

unification. The detailed relation between the local scales and the global ones is however

very complicate and model dependent, and given a particular compactification it is in

general out of the scope of the present techniques to obtain such relation in a precise way.

Once the relation between local and global scales is understood in a given model, the

constraints on the local parameter space coming from the observed values of MPlanck and

αGUT would be made precise within that model.

For the particular case of nearly homogeneous compactifications we find that the re-

lation between local and global scales is such that for the most natural values of the local

parameters the couplings to the heavy triplets is typically the same or, in the case of the

heaviest generations, stronger than in minimal 4-dimensional GUTs. Thus, constraints

on the coefficient of dimension-five proton decay operators involving heavy generations in

this class of models are stronger than in minimal 4-dimensional GUTs. We can also iden-

tify regions on the edge of local parameter space where the couplings to the triplets are

more suppressed than in 4-dimensional GUTs for the lighter generations, thus weakening

constraints from proton decay on those operators. However, within these region tan β is

expected to be very small.

The computation that we have performed is only a part of the complete computation

for dimension-five proton stability since cubic couplings to up-type triplets localised at

points of E6 enhancement also participate in the above operators. We expect a similar

computation of those couplings to be technically more involved than the one that we have

carried out here, mainly because of the presence of local monodromies. It would certainly

be very interesting to perform such a computation. In particular, note that the up-type

ratios of couplings analogous to eqs. (1.3) are actually significantly smaller than the down-

type ones, and therefore even stronger suppression in the F-theory couplings near an E6

point would be required to match or to overcome the suppression in minimal 4-dimensional

field theory GUTs.

The coupling of massive modes to massless ones has a number of phenomenologically

interesting applications, some of which we have already discussed. Within flavour physics
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the computation features in that of Yukawa couplings as studied in [21]. It is also a key

computation in realising the Froggatt-Nielsen model of flavour proposed in [48], where

the higher dimension operators come from coupling of two massless modes to one heavy

mode. Interestingly, since in the above model of flavour the suppression of the coupling

to the heavy Higgs triplets is due to the U(1) symmetries at least as strong as in minimal

4-dimensional GUTs, only a slight suppression of the coupling to the triplets relative to the

doublets is required to evade constraints from proton decay. Given that the coupling to

heavy triplets can be naturally suppressed it would be interesting to study if the required

small suppression could be realised within this framework.

Another application of this type of couplings that we have discussed is in understanding

FCNCs induced by supersymmetry breaking. Within a toy model we were able to give

expressions for the magnitude of FCNCs induced by integrating out heavy modes. We find

that FCNCs are induced by tree-level diagrams and are suppressed by the mass scale of the

heavy modes. In particular we find no natural suppression relative to the flavour-universal

contribution coming from heavy U(1) gauge bosons studied in [54].

There are further phenomenological applications that one might think of, such as the

generation of neutrino masses through the seesaw mechanism. Since the right-handed

neutrinos are GUT singlets the neutrino Dirac masses would be of the same form as the

coupling studied in section 5.3.28 More generally, we believe that the local approach opens

up a calculational framework for studying the interactions with massive modes within

a phenomenologically realistic and very general setting. This is important because it is

precisely in understanding the interaction between infrared and ultraviolet physics that

string phenomenology as a subject has its strongest claim as a necessary tool in physics.
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A Wavefunctions for oblique hypercharge flux

In this appendix we consider a slightly more general set of U(1) fluxes, which in addition

to eq. (3.7) includes also an oblique component for the hypercharge flux, given by

F Y
obliq. =

αM2
∗

R2
‖

(dz1 ∧ dz̄2 + dz̄1 ∧ dz2)QY . (A.1)

28For the type I seesaw mechanism the Majorana nature of right-handed neutrinos would however require

different techniques to the ones that we have been using in this work.
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We choose to integrate this flux as,

AY
obliq. =

αM∗
2R‖

(z1 ∧ dz̄2 + z̄1 ∧ dz2 − z̄2 ∧ dz1 − z2 ∧ dz̄1)QY . (A.2)

Wavefunctions can be solved by following the general procedure described in subsection 2.3.

We find that oblique fluxes do not affect the physics of the wavefunction in a qualitatively

important way.

A.1 Wavefunctions for the 5̄M matter curve

In this case the gauge covariant derivatives appearing in eq. (2.25) get modified to

D1 =
M∗
R‖

(

∂1 +
1

2
Re(α1)z̄1 −

i

2
Im(α1)z̄2

)

, (A.3)

D2 =
M∗
R‖

(

∂2 −
1

2
Re(α1)z̄2 +

i

2
Im(α1)z̄1

)

,

D3 = −M∗R⊥
v1

z̄1

where we have defined α1 ≡ 2M̃1 − iqY1 α. The corresponding matrix B reads

B =
M2

∗
R2

‖











0 0 0 0

0 −Re(α1) −iIm(α1)
R
v1

0 iIm(α1) Re(α1) 0

0 R
v1

0 0











(A.4)

with dimensionless eigenvalues given by the roots of the following depressed cubic equation,

(

λ5̄M
p

)3
− λ5̄M

p

(

R2

v21
+ |α1|2

)

+
R2

v21
Re(α1) = 0 , p = 1, 2, 3 (A.5)

and by λ5̄M
0 = 0. The eigenvectors are,

ξ5̄M
0 =











1

0

0

0











, ξ5̄M
p =













0

k5̄M

(p,1)

k5̄M

(p,2)
2iR
v1

Im(α1)













, p = 1, 2, 3 (A.6)

where

k5̄M

(p,1) = 2iλ5̄M
p Im(α1) ,

k5̄M

(p,2) = −2
(

λ5̄M
p

)2
− 2λ5̄M

p Re(α1) +
2R2

v21
. (A.7)

– 47 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

In terms of these quantities the solution to eqs. (2.33) for M̃1 > 0 leads to the wavefunctions

for the ground state of each of the four towers of fields localised in the 5̄M matter curve in

the presence of oblique hypercharge flux. The expressions are given by eq. (3.15) with,

p5̄M
1 = −λ5̄M

1 − 1

2
Re(α1) , p5̄M

2 =
1

2
Re(α1) , (A.8)

p5̄M
3 =

i

2
Im(α1) , p5̄M

4 =
i

2

λ5̄M
1 + Re(α1)

λ5̄M
1 − Re(α1)

Im(α1)

and k5̄M
i = k5̄M

(1,i), i = 1, 2.

A.2 Wavefunctions for the 10M matter curve

Wavefunctions for the 10M matter curve can be obtained from the 5̄M wavefunctions by

applying the transformations (3.25). We obtain that the ground state wavefunctions for

M̃2 > 0 are given by the general expression eq. (3.15) with

p10M
1 =

1

2
Re(α2) , p10M

2 = −λ10M
1 − 1

2
Re(α2) , (A.9)

p10M
3 =

i

2

λ10M
1 + Re(α2)

λ10M
1 − Re(α2)

Im(α2) , p10M
4 =

i

2
Im(α2) , (A.10)

where we have defined α2 ≡ 2M̃2 + iqY α. Eigenvalues are given by the roots of the cubic

equation,

(

λ10M
p

)3 − λ10M
p

(

R2

v22
+ |α2|2

)

+
R2

v22
Re(α2) = 0 , p = 1, 2, 3 (A.11)

and by λ10M
0 = 0. The corresponding eigenvectors are

ξ10M
0 =











1

0

0

0











, ξ5̄M
p =











0

k10M

(p,2)

k10M

(p,1)
2iR
v2

Im(α2)











, p = 1, 2, 3 (A.12)

where we have defined

k10M

(p,1) = 2iλ10M
p Im(α2) ,

k10M

(p,2) = −2
(

λ10M
p

)2 − 2λ10M
p Re(α2) +

2R2

v22
(A.13)

and k10M
1 = k5̄M

(1,2), k
10M
2 = k5̄M

(1,1).

A.3 Wavefunctions for the 5̄H Higgs curve

In the presence of oblique hypercharge flux the gauge covariant derivatives in the (u, v)-

basis are deformed to,

Du =
M∗
R‖

(

∂u − 1

2
αhw̄

)

, Dw =
M∗
R‖

(

∂w − 1

2
ᾱhū

)

, D3 = M∗R⊥

(

w̄

v+
+

ū

v−

)

,

(A.14)
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where αh = 2M̃12 − iqY α. The matrix B now reads

B =
M2

∗
R2

‖











0 0 0 0

0 0 α∗
h − R

v−

0 αh 0 − R
v+

0 − R
v−

− R
v+

0











(A.15)

The eigenvalues are given by the roots of

(

λ5̄H
p

)3
− λ5̄H

p R2

(

1

v2+
+

1

v2−
+ |αh|2

)

− 2R2

v+v−
Re(αh) = 0 , p = 1, 2, 3 (A.16)

and by λ5̄H
0 = 0. The corresponding eigenvectors are,

ξ5̄H
0 =











1

0

0

0











, ξ5̄H
p =















0

k5̄H

(p,u)

k5̄H

(p,w)

−|αh|2 +
(

λ5̄H
p

)2















, p = 1, 2, 3 (A.17)

where now,

k5̄H

(p,u) = −R
(

α∗
h

v+
+
λ5̄H
p

v−

)

, k5̄H

(p,w) = −R
(

αh

v−
+
λ5̄H
p

v+

)

, (A.18)

With this information we can solve eqs. (2.33) and look for the wavefunctions of the ground

state fields localised in the 5̄H curve. For simplicity here we only solve for the case M̃12 > 0.

However, note from eq. (A.15) that

λ5̄H
1 λ5̄H

2 λ5̄H
3 =

4M̃12R
2

v+v−
(A.19)

is independent of the oblique components of the hypercharge flux, and therefore the latter

do not affect the chirality of the zero mode and therefore to double-triplet splitting. We find

that in the presence of oblique hypercharge flux the ground state wavefunctions for each of

the four towers of fields in the 5̄H are given by eq. (3.38) with k5̄H
u = k5̄H

(1,u), k
5̄H
w = k5̄H

(1,w)

and

p5̄H
1 = − (αhv+v− + λ5̄H

1 v2−)λ5̄H
1

2Re(αh) + (v2+ + v2−)λ5̄H
1

, p5̄H
2 = − (ᾱhv+v− + λ5̄H

1 v2+)λ5̄H
1

2Re(αh) + (v2+ + v2−)λ5̄H
1

, (A.20)

p5̄H
3 =

(αhv
2
+ + λ5̄H

1 v+v−)λ5̄H
1

2Re(αh) + (v2+ + v2−)λ5̄H
1

− αh

2
, p5̄H

4 =
(ᾱhv

2
− + λ5̄H

1 v+v−)λ5̄H
1

2Re(αh) + (v2+ + v2−)λ5̄H
1

− ᾱh

2
.

– 49 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

A.4 Wavefunction overlaps

The wavefunction overlaps are calculated as in the main text and we simply display the

results here.

N cubic
1 =

i
√

2k10M

(1,1)R

v1

(

k5̄H

(1,u) + k5̄H

(1,w)

)

Im(α1) −
i
√

2k5̄M

(1,1)R

v2

(

k5̄H

(1,u) − k5̄H

(1,w)

)

Im(α2)

+R2

(

α∗
h

v2+
− αh

v2−

)

k5̄M

(1,1)k
10M

(1,1) −
i
√

2k5̄M

(1,2)R

v2

(

k5̄H

(1,u) + k5̄H

(1,w)

)

Im(α2)

+
i
√

2k10M

(1,2)R

v1

(

k5̄H

(1,u) − k5̄H

(1,w)

)

Im(α1) −R2

(

α∗
h

v2+
− αh

v2−

)

k10M

(1,2)k
5̄M

(1,2) . (A.21)

To calculate the leading contribution triple couplings we rewrite the polynomial prefactors

in the wavefunctions in the coordinates u and w and then expand them collecting factors

of ww̄, uū, uw̄ and wū. Then making use of the integral (3.17) we can write this as

Y
(p,q)
1,(0,m,l) =

N cubic
r

N 5̄M ,p
1 N10M ,q

1 N 5̄H ,0
1

√
2p+qm!l!

(

λ5̄H
2

)m/2 (

λ5̄H
3

)l/2
×

p
∑

ka=0

q
∑

kb=0

m
∑

kc=0

n
∑

kd=0

(−1)ka

(

p

ka

)(

q

kb

)(

m

kc

)(

n

kd

)

(

d̃2w

)m−kc (

d̃2u

)kc (

d̃3w

)n−kd
(

d̃3u

)kd

(

k5̄M

(1,1) − k5̄M

(1,2)

)p−ka (

k5̄M

(1,1) + k5̄M

(1,2)

)ka (

k10M

(1,1) − k10M

(1,2)

)q−kb
(

k10M

(1,1) + k10M

(1,2)

)kb

I(p+q−max [ka+kb, kc+kd] ,min [ka+kb, kc+kd] , δkΘ(δk),−δkΘ(−δk); p1, p2, p3, p4)

(A.22)

Where Θ is the Heaviside theta functions, δk ≡ ka + kb − kc − kd and we have defined the

quantities

p1 = p5̄H
1 +

1

2

[(

p5̄M
1 + p5̄M

2 − p5̄M
3 − p5̄M

4

)

+
(

p10M
1 + p10M

2 − p10M
3 − p10M

4

)]

,

p2 = p5̄H
2 +

1

2

[(

p5̄M
1 + p5̄M

2 + p5̄M
3 + p5̄M

4

)

+
(

p10M
1 + p10M

2 + p10M
3 + p10M

4

)]

,

p3 = p5̄H
3 +

1

2

[(

−p5̄M
1 + p5̄M

2 − p5̄M
3 + p5̄M

4

)

+
(

−p10M
1 + p10M

2 − p10M
3 + p10M

4

)]

,

p4 = p5̄H
4 +

1

2

[(

−p5̄M
1 + p5̄M

2 + p5̄M
3 − p5̄M

4

)

+
(

−p10M
1 + p10M

2 + p10M
3 − p10M

4

)]

,

and

d̃iw =
1

||ξ5̄H
i ||

[

k5̄H

(i,u)

(

p5̄H
3 − 1

2
αh

)

− p5̄H
1 k5̄H

(i,w) +
R3

v−

(

αh

v2−
− α∗

h

v2+

)]

,

d̃iu =
1

||ξ5̄H
i ||

[
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B Delocalisation and normalisation of wavefunctions

The local form of the wavefunctions (3.14) exhibits exponential localisation along all four

real directions in S. Localisation onto a complex curve is induced by the Higgs vev, while

localisation within the curve is induced by the flux. However the general form of the wave-

function (3.13) need not be fully localised in this way. Indeed the arbitrary holomorphic

prefactor can include an exponential so as to cancel the flux induced exponential localisation

along one real direction of the matter curve. This situation is rather general for instance

in toroidal compactifications [14]. It is clear that such delocalisation cannot occur over

the full complex curve since a holomorphic function cannot cancel the non-holomorphic

flux induced localisation. The local form of the wavefunctions (3.14) are defined as the

appropriate linear combinations of the, possibly delocalised, wavefunctions such that their

expansion around the origin begins with increasing powers of z. This is a valid form to

take for calculating the triple overlap since then the localisation of the other wavefunctions

ensures that only this local form of the wavefunction contributes to the integral. However,

for calculating the normalisation of the wavefunction the possible delocalisation can affect

the results. Indeed the normalisation integral can diverge as an integral over C2 and must

be cutoff at the KK scale of S which for a homogenous manifold matches the local scale R‖.

Determining whether a wavefunction delocalises along one real direction in this way is

of course a global question and not answerable in general from a local perspective. There-

fore the normalisation integral of the wavefunctions carries an ambiguity. In this appendix

we study this ambiguity quantitatively. Our aim is to quantify how much the normalisation

integral can change when a wavefunction delocalises in this way. We do this by plotting

the normalisation integral as evaluated in (3.19) for the different generations for different

values of the flux and of R. We also plot for the same values of flux and R the normalisa-

tion integral but with the exponential localisation factor along the curve dropped, thereby

modeling the delocalisation effect. Of course dropping the exponential factor causes the

wavefunction to delocalise along the full curve while we expect only a possible delocalisation

along one real direction. But then this half-delocalistion can be expected to be somewhere

close to the geometric average of the fully localised wavefunction and the wavefunctions

with the exponential localisation along the curve dropped. Dropping the exponential lo-

calisation along the curve means that we perform the normalisation integral by explicit

integration perpendicular to the curve while for the integral along the curve we simply

take the homogenous answer of R2
‖, similarly to the Higgs case in (3.46). We plot the

resulting normalisation factors in figure 9. As can be seen the ratio of the delocalised

wavefunction to the localised ones does not depend strongly on R. The dependence on M

however is stronger which is expected given that the amplitude of the flux measures the

degree of localisation along the curve. For large flux values the delocalised normalisation

and localised ones, particularly for the lighter generations, differ significantly. However in

the actual models we study the fluxes are fixed to be of order one, which means that the

wavefunctions are already spread out to a significant fraction of R‖ and hence, as can be

seen in the plot, the normalisations do not differ significantly. This means that we can be

confident that the normalisation of the wavefunctions that we use are correct up to order
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Ŷ
(1)
~csh i

Ŷ
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Figure 10. Plot showing the coupling as in figure 5 but with the normalisation of the matter curve

wavefunctions calculated using the geometric average of the localised and delocalised normalisations.

one factors even if the wavefunctions delocalise. To illustrate this we plot in figure 10 the

same couplings as in figure 5 except now we take the geometric average of the localised nor-

malisation and the completely delocalised one, this being a good measure of delocalisation

along one real direction. We see that the results do not differ significantly from figure 5.

Note however that if taking the delocalised integral to be of order R‖ is not accurate up

to order one factors then these results may be modified. This can occur if the manifold

is strongly inhomogeneous. In that case a more global calculation would be required to

obtain more accurate results.

– 52 –



J
H
E
P
1
2
(
2
0
1
1
)
1
1
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A. Uranga, Intersecting brane worlds,

JHEP 02 (2001) 047 [hep-ph/0011132] [INSPIRE].

[2] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[3] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1,

Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

[4] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2.,

Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

[5] M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov, et al., Geometric

singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215

[hep-th/9605200] [INSPIRE].

[6] S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146

[hep-th/9606086] [INSPIRE].

[7] R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [INSPIRE].

[8] C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I,

JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

[9] C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II:

experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

[10] R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [INSPIRE].

[11] F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].

[12] J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. (2010)

[arXiv:1001.0577] [INSPIRE].

[13] T. Weigand, Lectures on F-theory compactifications and model building,

Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

[14] D. Cremades, L. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized

extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].

[15] J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, Nucl. Phys. B 837 (2010) 137

[arXiv:0811.2417] [INSPIRE].

[16] H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa

couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].
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proton decay: where do we stand?, hep-ph/0210374 [INSPIRE].

[40] S. Raby, Proton decay, hep-ph/0211024 [INSPIRE].

[41] D. Emmanuel-Costa and S. Wiesenfeldt, Proton decay in a consistent supersymmetric SU(5)

GUT model, Nucl. Phys. B 661 (2003) 62 [hep-ph/0302272] [INSPIRE].

[42] J.P. Conlon and D. Cremades, The neutrino suppression scale from large volumes,

Phys. Rev. Lett. 99 (2007) 041803 [hep-ph/0611144] [INSPIRE].

[43] J.P. Conlon, Gauge threshold corrections for local string models, JHEP 04 (2009) 059

[arXiv:0901.4350] [INSPIRE].

[44] J.P. Conlon and E. Palti, Gauge threshold corrections for local orientifolds,

JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].

[45] J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs,

Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].
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[58] J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact

three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].
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