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Characterizing the transcriptome of individual cells is fundamental to understanding complex

biological systems. We describe a droplet-based system that enables 30 mRNA counting of

tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time,

takes place in B6min, with B50% cell capture efficiency. To demonstrate the system’s

technical performance, we collected transcriptome data from B250k single cells across

29 samples. We validated the sensitivity of the system and its ability to detect rare popu-

lations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear

cells to demonstrate the system’s ability to characterize large immune populations. Finally,

we used sequence variation in the transcriptome data to determine host and donor chimerism

at single-cell resolution from bone marrow mononuclear cells isolated from transplant

patients.
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U
nderstanding of biological systems requires the knowledge
of their individual components. Single-cell RNA-sequen-
cing (scRNA-seq) can be used to dissect transcriptomic

heterogeneity that is masked in population-averaged measure-
ments1,2. scRNA-seq studies have led to the discovery of
novel cell types and provided insights into regulatory
networks during development3. However, previously described
scRNA-seq methods face practical challenges when scaling to
tens of thousands of cells or when it is necessary to
capture as many cells as possible from a limited sample4–9.
Commercially available, microfluidic-based approaches have
limited throughput5,6. Plate-based methods often require time-
consuming fluorescence-activated cell sorting (FACS) into many
plates that must be processed separately4,9. Droplet-based
techniques have enabled processing of tens of thousands of
cells in a single experiment7,8, but current approaches require
generation of custom microfluidic devices and reagents.

To overcome these challenges, we developed a droplet-
based system that enables 30 messenger RNA (mRNA) digital
counting of thousands of single cells. Approximately 50% of cells
loaded into the system can be captured, and up to eight samples
can be processed in parallel per run. Reverse transcription takes
place inside each droplet, and barcoded complementary DNAs
(cDNAs) are amplified in bulk. The resulting libraries then
undergo Illumina short-read sequencing. An analysis pipeline,
Cell Ranger, processes the sequencing data and enables
automated cell clustering. Here we first demonstrated comparable
sensitivity of the system to existing droplet-based methods by
performing scRNA-seq on cell lines and synthetic RNAs. Next,
we profiled 68k fresh peripheral blood mononuclear cells
(PBMCs) and demonstrated the scRNA-seq platform’s ability to
dissect large immune populations. Last, we developed a
computational method to distinguish donor from host cells in
bone marrow transplant samples by genotype. We combined this
method with clustering analysis to compare subpopulation
changes in acute myeloid leukemia (AML) patients. This analysis
enables transplant monitoring of the complex interplay between
donor and host cells.

Results
Droplet-based platform enables barcoding of cells. The scRNA-
seq microfluidics platform builds on the GemCode technology,
which has been used for genome haplotyping, structural variant
analysis and de novo assembly of a human genome10–12. The
core of the technology is a Gel bead in EMulsion (GEM).
GEM generation takes place in an 8-channel microfluidic
chip that encapsulates single gel beads at B80% fill rate
(Fig. 1a–c). Each gel bead is functionalized with barcoded
oligonucleotides that consists of: (i) sequencing adapters and
primers, (ii) a 14 bp barcode drawn from B750,000 designed
sequences to index GEMs, (iii) a 10 bp randomer to index
molecules (unique molecular identifier, UMI) and (iv) an
anchored 30 bp oligo-dT to prime polyadenylated RNA
transcripts (Fig. 1d). Within each microfluidic channel,
B100,000 GEMs are formed per B6-min run, encapsulating
thousands of cells in GEMs. Cells are loaded at a limiting
dilution to minimize co-occurrence of multiple cells in the same
GEM.

Cell lysis begins immediately after encapsulation. Gel beads
dissolve and release their oligonucleotides for reverse transcrip-
tion of polyadenylated RNAs. Each resulting cDNA molecule
contains a UMI and shared barcode per GEM, and ends with
a template switching oligo at the 30 end (Fig. 1e). Next,
the emulsion is broken and barcoded cDNA is pooled for
PCR amplification, using primers complementary to the

switch oligos and sequencing adapters. Finally, amplified
cDNAs are sheared, and adapter and sample indices are
incorporated into finished libraries, which are compatible with
next-generation short-read sequencing. Read1 contains the cDNA
insert while Read2 captures the UMI. Index reads, I5 and I7,
contain the sample indices and cell barcodes, respectively.
This streamlined approach enables parallel capture of thousands
of cells in each of the 8 channels for scRNA-seq analysis.

Technical demonstration with cell lines and synthetic RNAs.
To assess the technical performance of our system, we loaded a
mixture of B1,200 human (293T) and B1,200 mouse (3T3)
cells and sequenced the library on the Illumina NextSeq 500 to
yield B100k reads per cell. Sequencing data were processed
by CellRanger (Supplementary Methods and Fig. 1f). Briefly,
98 nucleotides (nt) of Read1s were aligned against the union of
human (hg19) and mouse (mm10) genomes with STAR. Barcodes
and UMIs were filtered and corrected (Supplementary Methods).
PCR duplicates were marked using the barcode, UMI and gene
ID. Only confidently mapped, non-PCR duplicates with valid
barcodes and UMIs were used to generate a gene-barcode matrix
for further analysis. Thirty-eight per cent and 33% of reads
mapped to human and mouse exonic regions, respectively,
and o6% of reads mapped to intronic regions (Supplementary
Table 1). The high mapping rate is comparable to previously
reported scRNA-seq systems4–9.

Based on the distribution of total UMI counts for each barcode
(Supplementary Methods), we estimated that 1,012 GEMs
contained cells, of which 482 and 538 contained reads
that mapped primarily to the human and mouse transcriptome,
respectively (and will be referred to as human and mouse GEMs)
(Fig. 2a). Greater than eighty-three per cent of UMI counts
were associated with cell barcodes, indicating low background of
cell-free RNA. Eight cell-containing GEMs had a substantial
fraction of human and mouse UMI counts (the UMI count
is 41% of each species’ UMI count distribution), yielding
an inferred multiplet rate (rate of GEMs containing 41 cell) of
1.6% (Supplementary Methods and Fig. 2a). A cell titration
experiment across six different cell loads showed a linear relation-
ship between the multiplet rate and the number of recovered
cells ranging from 1,200 to 9,500 (Supplementary Fig. 1a).
The multiplet rate and trend are consistent with Poisson loading
of cells, and have been validated by independent imaging
experiments (Supplementary Methods and Supplementary
Fig. 1b). In addition, we observed B50% cell capture rate,
which is the ratio of the number of cells detected by sequencing
and the number of cells loaded. The capture rate is consistent
across four types of cells with cell loads ranging from B1,000 to
B23,000 (Supplementary Table 2), a key improvement over some
existing scRNA-seq methods5–7. Last, the mean fraction of
UMI counts from the other species was 0.9% in both human
and mouse GEMs, indicating a low level of cross-talk between
cell barcodes (Online Supplementary Methods). This, coupled
with the low multiplet rate and high cell capture rate, is
particularly important when processing samples that are in
extreme limited supply.

The sensitivity of scRNA-seq methods is critical to many
applications. At 100k reads per cell, we detected a median
of B4,500 genes and B27,000 transcripts (UMI counts) in
each human and mouse cell (Fig. 2b,c). UMI counts showed a
standard deviation of B43% of the mean (coefficient of variation
(CV)) in human cells, and B33% of the mean in mouse cells,
where the trend is consistent in four independent human and
mouse mixture experiments (Supplementary Fig. 1c,d). Genes of
different guanine-cytosine (GC) composition and length show
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similar UMI count distributions, suggesting low transcript
bias (Supplementary Fig. 1e–h).

We also directly measured cDNA conversion rate by
loading External RNA Controls Consortium (ERCC) synthetic
RNAs into GEMs in place of cells. We found that mean
UMI counts from sequencing was highly correlated (r¼ 0.96)
with molecule counts calculated from the loading concentration
of ERCC (Fig. 2d and Supplementary Fig. 2a). Furthermore,
we inferred 6.7–8.1% efficiency from both ERCC RNA Spike-in
Mix1 and Mix2 in a 1:50 dilution (Supplementary Fig. 2b),
with minimal evidence of GC bias, and limited bias for transcripts
longer than 500 nt (Supplementary Fig. 2c,d). Additionally, we
estimated the conversion rate of cell transcripts in Jurkat cells by
droplet digital PCR (ddPCR)13. The amount of cDNA of eight
genes obtained from single cells after reverse transcription in
GEMs was compared with the expected RNA inferred from bulk
profiling. The conversion rates among eight genes were between
2.5 and 25.5%, which is consistent with the ERCC data
(Supplementary Methods and Supplementary Fig. 2e).

The ERCC experiments also allowed us to estimate the
relative proportion of biological and technical variation. Since
ERCCs are in solution, they do not introduce biological variation
related to differences in cell size, RNA content or transcriptional
activity. Thus, technical variation is the only source of variation.
When the ERCCs are dilute (UMI counts are small), sampling
noise dominates; when the UMI counts increase, technical
variations become dominant14 (Supplementary Fig. 2f). These

variations include variation in droplet size, variation in
concentration of reverse transcription reagents in the droplets,
variation in the concentration of sample in the droplets
and variation in RT and/or PCR efficiency of the distinct gel
bead barcode sequences. The squared CV (CV2) is B7% among
all the ERCC experiments. In comparison, CV2 in samples of
mouse and human cells is B11–19% (Supplementary Fig. 1d),
suggesting that technical variance accounts for B50% of total
variance, consistent with the observations from Klein et al.8

Detection of individual populations in mixed samples. We
tested the ability of the system to accurately detect heterogeneous
populations by mixing two cell lines, 293T and Jurkat cells,
at different ratios (Supplementary Table 1). We performed
principal component analysis (PCA) on UMI counts from
all detected genes after pooling all the samples (Suppleme-
ntary Fig. 3a). In the sample where an equal number of 293T
and Jurkat cells was mixed, PC 1 separated cells into two clusters
of equal size (Fig. 2e, Supplementary Fig. 4a and Supplementary
Data 1). Based on the expression of cell type-specific markers,
we infer that one cluster corresponds to Jurkat cells
(preferentially expressing CD3D), and the other corresponds to
293T cells (preferentially expressing XIST, as 293T is a female
cell line, and Jurkat is a male cell line) (Fig. 2e and Supplementary
Fig. 4b). Points located between the two clusters are likely mul-
tiplets, as they expressed both CD3D and XIST (Fig. 2e and

Beads
RT

Construct

Library

Oil

Eight-channel microfluidics chip

×8

Cells + reagents

a

Barcoded primer

gel beads

Single-cell 

GEMs

Barcoded

cDNA

OilCells 

reagents

Collect

b

GEM outlet

Amplify

cDNA
Sequence

d
10×

Barcodes (T)30VN

poly(A)

cDNA

e

Sample 

Index

cDNA

Insert

Break

Emulsion

UMI

10×

Barcodes

(T)30VNUMI0

10

20

30

40

50

60

70

80

90

N=0 N=1 N>1 

RNA

c

%
 o

f 
G

E
M

s

No. of gel beads per GEM 

f
Extract cell-barcode, UMI, RNA read

Correct cell-barcode sequences 

Align reads using STAR

Tag reads with gene, transcript hits

Correct UMI sequences

Count UMIs by (cell, gene)

Select cell-associated barcodes

Gene-barcode matrix

1 Hamming distance 

1 Hamming distance 

Uniquely mapped 

reads only 

P7 R2

P7 R2 P5R1
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Supplementary Fig. 4b). In contrast, PC1 did not separate cells
into two clusters in the 293T- and the Jurkat-only samples
(Fig. 2e). Furthermore, in the sample with 1% 293T and
99% Jurkat cells, the number of cells in each of the two clusters
was observed at the expected ratio (Fig. 2e, Supplementary Fig. 4a
and Supplementary Fig. 4b). A similar trend was observed for
12 independent samples where 293T and Jurkat cells were mixed
at five different proportions, demonstrating the system’s ability
to perform unbiased detection of rare single cells (Supplementary
Fig. 4a).

Our scRNA-seq data not only provides a digital transcript
count but it also provides B250 nt sequence for each cDNA
that could be used for single nucleotide variant (SNV) detection.
On average, there are B350 SNVs detected in each 293T or
Jurkat cell (Supplementary Fig. 4c and Supplementary Table 3),
and we investigated whether the SNVs could be used indepen-
dently to distinguish cells in the mixture. We selected a set of
high-quality SNVs that were only observed in 293T
or Jurkat cells, but not both (Supplementary Methods).

We then scored cells in the mixed samples based on
the number of 293T or Jurkat-enriched SNVs (Supple-
mentary Methods). In the 1:1 mixed sample, 45% 293T cells
primarily (96%) harbored 293T-enriched SNVs, whereas
50% Jurkat cells primarily (94%) harbored Jurkat-enriched
SNVs (Fig. 2f and Supplementary Data 2). Jurkat and 293T
cells inferred from marker-based analysis are 99% consistent
with SNV-based assignment. We observed a multiplet rate
of B3%, accounting for multiplets from Jurkats:293Ts as well
as Jurkats:Jurkats and 293Ts:293Ts. The multiplet rate is
consistent with that predicted from the human and mouse
mixing experiment, when B3,000 cells were recovered (Supple-
mentary Fig. 1a). Our result demonstrates that SNVs
detected from scRNA-seq data can be used to classify indi-
vidual cells.

Subpopulation discovery from a large immune population. The
GemCode single-cell technology can also be used for scRNA-seq
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of primary cells. To study immune populations within PBMCs,
we obtained fresh PBMCs from a healthy donor (Donor A).
8–9k cells were captured from each of 8 channels and pooled to
obtain B68k cells. Data from multiple sequencing runs
were merged using the Cell Ranger pipeline. At B20k reads
per cell, the median number of genes and UMI counts detected
per cell was B525 and 1,300, respectively (Fig. 3a and
Supplementary Fig. 5a). The UMI count is roughly 10% of
that from 293T and 3T3 samples at B20k reads per cell, likely
reflecting the differences in cells’ RNA content (B1 pg RNA
per cell in PBMCs versus B15 pg RNA per cell in 293T and
3T3 cells) (Supplementary Fig. 5a,b).

We performed clustering analysis to examine cellular hetero-
geneity among PBMCs. We applied PCA on the top
1,000 variable genes ranked by their normalized dispersion,
following a similar approach to Macosko et al.7 (Supplementary
Figs 3b and 5c and Supplementary Methods). K-means15

clustering on the first 50 PCs identified 10 distinct cell clusters,
which were visualized in two-dimensional projection of
t-distributed stochastic neighbour embedding (tSNE)16

(Supplementary Methods, Fig. 3b and Supplementary Fig. 5d).

To identify cluster-specific genes, we calculated the expression
difference of each gene between that cluster and average of
the rest of clusters. Examination of the top cluster-specific
genes revealed major subtypes of PBMCs at expected ratios17:
480% T cells (enrichment of CD3D, part of the T-cell receptor
complex, in clusters 1–3 and 6), B6% NK cells (enrichment of
NKG7 (ref. 18) in cluster 5), B6% B cells (enrichment of CD79A
(ref. 19) in cluster 7) and B7% myeloid cells (enrichment of
S100A8 and S100A9 (ref. 20) in cluster 9 (Supplementary
Methods, Fig. 3b–f, Supplementary Fig. 5e and Supplementary
Data 3). Finer substructures were detected within the T-cell
cluster; clusters 1, 4 and 6 are CD8þ cytotoxic T cells, whereas
clusters 2 and 3 are CD4þ T cells (Fig. 3e and Supplementary
Fig. 5f). The enrichment of NKG7 on cluster 1 cells implies a
cluster of activated cytotoxic T cells21 (Fig. 3f). Cells in cluster 3
showed high expression of CCR10 and TNFRSF18, markers
for memory T cells22 and regulatory T cells23 respectively, and
likely consisted of a mixture of memory and regulatory T cells
(Fig. 3c and Supplementary Fig. 5g). The presence of ID3,
which is important in maintaining a naive T-cell state24,
suggests that cluster 2 represents naive CD8 T cells, whereas
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cluster 4 represents naive CD4 T cells (Fig. 3c). To identify
subpopulations within the myeloid population, we further applied
k-means clustering on the first 50 PCs of cluster 9 cells. At
least three populations were evident: dendritic cells
(characterized by the presence of FCER1A25), CD16þ mono-
cytes and CD16� /low monocytes26 (Fig. 3g–i and Suppleme-
ntary Data 3). Overall, these results demonstrate that our
scRNA-seq method can detect all major subpopulations
expected to be present a PBMC sample.

Our analysis also revealed some minor cell clusters, such
as cluster 8 (0.3%) and cluster 10 (0.5%) (Fig. 3b). Cluster 8
showed preferential expression of megakaryocyte markers,
such as PF4, suggesting that it represents a cluster of
megakaryocytes (Fig. 3b,c and Supplementary Fig. 5h). Cells in
cluster 10 express markers of B, T and dendritic cells, suggesting a
likely cluster of multiplets (Fig. 3b,c). The size of the cluster
suggests the multiplets comprises mostly B:dendritic and
B:T:dendritic cells (Supplementary Methods). With B9k cells
recovered per channel, we expect a B9% multiplet rate and
that the majority of multiplets would only contain T cells.
More sophisticated methods will be required to detect multiplets
from identical or highly similar cell types.

To further characterize the heterogeneity among 68k PBMCs,
we generated reference transcriptome profiles through scRNA-
seq of 10 bead-enriched subpopulations of PBMCs from Donor A
(Supplementary Figs 6 and 7 and Supplementary Table 4).
Clustering analysis revealed a lack of substructure in most
samples, consistent with the samples being homogenous popula-
tions, and in agreement with FACS analysis (Supplementary
Methods and Supplementary Figs 6 and 7). However, substruc-
tures were observed in CD34þ and CD14þ monocyte samples
(Supplementary Methods and Supplementary Fig. 7b,j). In
the CD34þ sample, B70% cell clusters show expression of
CD34 (Supplementary Fig. 7j). In the CD14þ sample, the minor
population showed marker expression for dendritic cells
(for example, CLEC9A), providing another reference transcrip-
tome to classify the 68k PBMCs (Supplementary Fig. 7b). This
result also demonstrates the power of scRNA-seq in selecting
appropriate cells for further analysis.

We classified 68k PBMCs based on their best match to
the average expression profile of 11 reference transcriptomes
(Supplementary Methods and Fig. 3j). Cell classification
was largely consistent with previously described marker-based
classification, although the boundaries among some of the
T-cell subpopulations were blurred. Namely, part of the inferred
CD4þ naive T population was classified as CD8þ T cells. We
have also tried to cluster the 68k PBMC data with Seurat27

(Supplementary Methods). While it was able to distinguish
inferred CD4þ naive from inferred CD8þ naive T cells, it
was not able to cleanly separate out inferred activated cytotoxic
T cells from inferred NK cells (Supplementary Fig. 5i). Such
populations have overlapping functions, making separation at the
transcriptome level particularly difficult and even unexpected.
However, the complementary results of Seurat’s and our analysis
suggest that more sophisticated clustering and classification
methods can help address these problems.

Single-cell RNA profiling of cryopreserved PBMCs. To
determine the effect that a freeze-thaw might have on gene
expression and thus on the ability of our scRNA-seq pipeline to
classify cell type in frozen repository specimens, we froze the
remaining fresh PBMCs from Donor A, and made a scRNA-seq
library from gently thawed cells 3 weeks later where B3k cells
were recovered (Supplementary Methods). The two data sets
(fresh and frozen) showed a high similarity between their average

gene expression (r¼ 0.96; Supplementary Methods and
Supplementary Fig. 8a). Fifty-seven genes showed twofold upre-
gulation in the frozen sample, with B50% being ribosomal
protein genes, and the rest not enriched in any pathways
(Supplementary Table 5). In addition, the number of genes and
UMI counts detected from fresh and frozen PBMCs was very
similar (P¼ 0.8 and 0.1, respectively), suggesting that the
conversion efficiency of the system is not compromised when
profiling frozen cells (Supplementary Fig. 8b). Furthermore,
subpopulations were detected from frozen PBMCs at a
similar proportion to that of fresh PBMCs, demonstrating the
applicability of our method on frozen samples (Supplementary
Methods and Supplementary Fig. 8c).

Genotype-based method to detect individual cell populations.
Next, we applied the GemCode technology to study host
and donor cell chimerism in an allogeneic hematopoietic
stem cell transplant (HSCT) setting. Following a stem cell
transplant, it is important to monitor the proportion of donor
and host cells in major cell lineages to ensure complete engraft-
ment and as a sensitive means of detecting impending relapse.
Currently, the amount of host and donor chimerism is often
measured from flow-sorted cell populations using PCR assays
with a panel of SNV-specific primers. Current clinical chimerism
tests have a number of limitations28, namely (1) the flow-sorted
cell populations are limited by cell surface markers, (2) only
populations with sufficient cell counts can be used for PCR assays
and (3) they are not intended for the detection of minimal
residual disease. Here we present a simple method that addresses
these limitations, resolves host and donor chimerism at
single-cell resolution and enables extensive characterization
of cell subtypes by integrating scRNA-seq with de novo
SNV calling.

While previous studies have used existing SNVs from
DNA sequencing or large-scale copy number changes in the
transcriptome data to distinguish cells by genotype29–32, these
methods cannot be applied to transplant samples where donor
and host genotype is not known a priori, and when donor
and host are closely matched in genotype. To address
these limitations, we first developed a method to infer
the relative presence of host and donor genotypes in a mixed
population based on SNVs directly predicted from
the transcriptome data. The method identifies SNVs and
infers a genotype at each SNV. It then classifies cells based
on their genotypes across all SNVs (Supplementary Methods).

To evaluate the technical performance of this method,
we generated scRNA-seq libraries from PBMCs of two healthy
Donors B and C, with B8k cells captured for each
sample (Supplementary Table 1). We first performed in silico
mixing of PBMCs B and C at 12 mixing ratios ranging from
0 to 50%. Only confidently mapped reads from samples B
and C were used, and a total of 6,000 cells were selected
(Supplementary Methods). There were B15k reads per cell,
with B50 filtered SNVs per cell (Supplementary Methods,
Supplementary Fig. 9a,b, and Supplementary Tables 1 and 3).
We then classified the cells based on variants detected from
the mixed transcriptome. Sensitivity and positive predictive
values (PPV) were calculated by comparing the predicted call of
each cell against its true labelling. Our method was able to
identify minor genotypes as low as 3% at 495% sensitivity
and PPV (Fig. 4a,b). A minor population could not be detected
when the mixed ratio was below 3% (Fig. 4c). The accuracy of this
method is affected by the number of observed SNVs per cell,
which is dependent on cell types, diversity between subjects and
variant calling sensitivity. Nevertheless, the base error rate and
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variant calling errors have a limited effect on the accuracy of the
method, as the method uses all instead of a small subset of SNVs
(Supplementary Fig. 9c).

We further validated the performance of the method
in experiments where PBMCs from Donors B and C were mixed
at three ratios, 50:50, 90:10 and 99:1, before scRNA-seq. In
the 50:50 mixture sample, cells from Donors B and C were almost
indistinguishable by RNA expression (Supplementary Fig. 9d,e).
However, they can be separated by their genotype at the
correct proportion (Table 1). In addition, the genotype overlap
between genotype group 1 and Donor C is 94%, whereas
the overlap between genotype group 1 and Donor B is only 63%,
both within the range of positive and negative controls,
suggesting that group 1 comes from Donor C (Supplementary
Methods and Table 1). Similarly, genotype group 2 was inferred
to be from Donor B (Supplementary Methods and Table 1).
The proportions of the minor genotype were accurately predicted
at the 90:10 mixing ratio. Consistent with the in silico
mixing results, the minor population could not be detected when
B and C were mixed at 99:1 ratio (Table 1).

Single-cell analysis of transplant bone marrow samples. Single-
cell RNA-seq libraries were generated from cryopreserved
bone marrow mononuclear cell (BMMC) samples obtained from

two patients before and after undergoing HSCT for
AML (AML027 and AML035) (Supplementary Table 2).
Since HSCT samples are fragile, cells were carefully washed in
PBS with 20% fetal bovine serum (FBS) before loading them
into chips. Relative to BMMCs from two healthy controls, we
found the median number of UMI counts per cell to be 3–5 times
higher in AML samples at B15k reads per cell, suggesting
their vastly abnormal transcriptional programs (Supplementary
Fig. 10a). Approximately 35 and 60 SNVs per cell were detected
from AML027 and AML035 pre-transplant samples, respectively
(Supplementary Table 3 and Supplementary Fig. 10b,c). Our
SNV analysis detected the presence of two genotypes in the
post-transplant sample of AML027: one at 13.8% and one at
86.2% (Table 2). As expected, there was no evidence of multiple
genotype groups in the pre-transplant host sample. We compared
the major and minor inferred genotypes present in the
post-transplant sample to the genotype found in the host cells.
The major inferred genotype in the post-transplant sample
was 97% similar to that inferred from the host sample, while
the minor inferred genotype was only 52% similar to that of
the host sample (Table 2). The observed range of genotype
overlap between the same individuals is B98% (Supplementary
Methods), indicating errors in the genotypes inferred from
individual SNVs. Ninty-seven per cent is within the observed
range, and this result suggests that the post-transplant sample
consists mainly (86.2%) of host cells. This observation is
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Table 1 | Genotype comparison of predicted genotype groups

to purified populations.

Sample Observed
% of
minor

population

Expected
% of
minor

population

Genotype
group

%
Genotype
overlap
with

Donor B
PBMCs

%
Genotype
overlap
with

Donor C
PBMCs

B only 0 0 1 100 77
C only 0 0 1 77 100

B:C¼ 50:50 43 50 1 63 94
2 96 58

B:C¼ 90:10 12 10 1 47 97
2 82 74

B:C¼ 99:1 Not
detected

1 1 97 77

Table 2 | Predicted genotype groups and their genotype

overlap with pre-transplant samples.

Sample Genotype

group

% of

Genotype

group

% of Genotype

overlap with

pre-transplant

sample (host)

Likely

identity

AML027

post-transplant

1 13.8 52 Donor

2 86.2 97 Host

AML035

post-transplant
1 100 78 Donor

AML, acute myelod leukaemia.
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consistent with the clinical chimerism assay, which demonstrated
only 12% donor in the post-transplant sample. In contrast,
SNV analysis on the post-HSCT sample from AML035 did not
detect the presence of two genotype groups. The sample only
shared 78% similarity with AML035 host cells, suggesting that the
post-HSCT sample was all donor-derived (Table 2). This finding
was validated by the independent clinical chimerism assay.

SNV and scRNA-seq analyses enable subpopulation compar-
ison between individuals within and across multiple samples.
We applied these analyses on BMMC scRNA-seq data from
healthy controls and AML patients (Supplementary Methods),
and observed subpopulation differences in AML patients after
HSCT. First, while T cells dominate the healthy BMMCs
and donor cells of the AML027 post-transplant sample as
expected, erythroids constitute the largest population among
AML samples (Fig. 5a). Different sets of progenitor and
differentiation markers (for example, CD34, GATA1, CD71 and
HBA1) were detected among the erythroids, indicating popula-
tions at various stages of erythroid development (Supplementary
Methods and Supplementary Fig. 10d–f). AML027 showed
the highest level of erythroid cells (480%, consist of mostly
mature erythroids) before transplant, consistent with

the erythroleukaemia diagnosis of AML027 (Fig. 5b). In contrast,
after transplant, AML027 showed the highest level of blast
cells and immature erythroids (CD34þ , GATA1þ ), consistent
with the relapse diagnosis and return of the malignant host
AML (Fig. 5b). These observations would have been difficult to
make with FACS analysis, with limited number of markers
for early erythroid lineages. Second, B20% cells in the AML027
post-transplant sample show markers of immature granu-
locytes (AZU1, IL8; Fig. 5b and Supplementary Fig. 10d–f),
which are absent in AML035 post-transplant sample, and
generally low among AML patients31. These cells lack marker
expression for mature cells, suggesting the presence of residual
precursor cells that may be part of the leukemic clone. Third,
monocytes are abundant in both AML patients before transplant
(10% and 25% in AML027 and AML035 respectively), but are not
detectable after transplant (Fig. 5b). Monocytes have been
previously identified in post-transplant samples, and the
unexpected monocytopenia needs to be followed up with
additional studies. Taken together, the analysis provided
insights into the cellular composition and possible presence
of residual disease in the bone marrows of HSCT recipients that
was not available from routine clinical assays.
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Discussion
Here we present a droplet-based scRNA-seq technology
that enables encapsulation of tens of thousands of single cells
within minutes. We demonstrated the scalability and robustness
of the system through transcriptome analysis of B250k single
cells across 29 samples. scRNA-seq of cell lines and synthetic
RNAs showed the system’s comparable sensitivity to other
droplet-based methods7,8.

The GemCode technology platform enables high-throughput
scRNA-seq with rapid cell encapsulation and a high cell
capture rate that addresses the challenges associated with existing
scRNA-seq platforms (Supplementary Table 6). Single gel beads
are encapsulated into GEMS at B80% fill rate. This fill rate
combined with Poisson loading of cells results in B50% cell
capture rate, enabling the processing of samples with limited cell
input material. We demonstrate the ability to load from 1,000 to
23,000 cells per well, from four different cell lines and two
primary cell types (PBMCs and BMMCs), illustrating the
applicability of the GemCode platform to a wide variety of cell
types. The GEM-based encapsulation of single cells within the
microfluidics platform reduces the need for expensive sorting
equipment and complicated workflows involving large numbers
of plates (Supplementary Table 6). The scalability and high-
throughput nature of the GemCode platform is achieved in two
ways: hundreds to thousands of cells can be encapsulated per
channel, and each chip has eight channels. Therefore, a large
number of cells can be processed within a very short period of
time, minimizing the perturbation of the cellular transcriptome.
In addition, multiple samples can be processed simultaneously,
a key advantage for experimental setups that involve a time
course or multiple treatments.

The speed, reproducibility and high cell capture rate of
GemCode technology allowed us to profile the transcriptome of
B17,000 single BMMCs, which are notoriously fragile and
difficult to work with, as these cells are isolated from patients that
have undergone multiple rounds of high-intensity chemotherapy,
transplant conditioning and immunosuppression. Other existing
single-cell RNA-seq methods would take significantly more time
to capture the comparable number of cells (Supplementary
Table 6), which could lead to RNA degradation and vast cell lysis,
compromising the ability to analyse the cellular transcriptome
of leukemic BMMCs.

We also developed a novel method to infer cell origin
in transplant bone marrow samples by using SNVs identified
from scRNA-seq data, without prior knowledge of either
individual’s genotype. To our knowledge, this is the first report
of a high-throughput method to determine chimerism of immune
cell populations. This allowed us to discover new insights into
the disease state of the host before and after transplant that were
not readily achievable with traditional PCR, FACS-based analysis
or any other methodology described to date. For example, in
one patient, AML027, we detected a population of atypical blast
and granulocyte precursors that were likely refractory
to chemotherapy before transplantation and thus responsible
for disease relapse. As information on erythrocyte precursors
is not easy to obtain because of limited number of surface
markers for these populations, the current clinical means to assess
the presence of atypical myeloid blasts by flow and morphology
failed to detect the expanded erythroid precursor population.
While this proof-of-principle study only contained BMMCs
from two transplant patients, it highlights the potential clinical
impact of the technology, and lays the foundation for more
extensive studies involving larger numbers of patient samples.
It is our belief that the GemCode single-cell RNA-seq technology
coupled with de novo chimerism testing will, in the near
future, greatly expand research possibilities for clinicians and

basic scientists, and ultimately lead to improved patient care
and survival.

Methods
High-speed imaging of gel beads and cells in GEMs. A microscope
(Nikon Ti-E, � 10 objective) and a high-speed video camera (Photron SA5,
frame rate¼ 4,000 s� 1) were used to image every GEM as they were generated
in the microfluidic chip. A custom analysis software was used to count the
number of GEMs generated and the number of beads present in each GEM,
based on edge detection and the contrast between bead edges and GEM edges
and the adjacent liquid. The results of the analysis are summarized in Fig. 1c.
To estimate the distribution of cells in GEMs, manual counting was used for
B28k frames of one video on a subset of GEMs. The results indicate an
approximate adherence to a Poisson distribution. However, the percentage of
multiple cell encapsulations was 16% higher than the expected value, possibly
due to subsampling error or to cell–cell interactions (some two-cell clumps
were observed during the manual count) (Supplementary Fig. 1b).

Cell lines and transplant patient samples. Jurkat (ATCC TIB-152), 293T
(ATCC CRL-11268) and 3T3 (ATCC CRL-1658) cells were acquired from
ATCC and cultured according to ATCC guidelines. Fresh PBMCs, frozen PBMCs
and BMMCs were purchased from ALLCELLS. Frozen PBMCs from Donor A were
made from fresh PBMCs from Donor A by mixing 1e6 cells in freezing medium
(15% dimethylsulphoxide (DMSO) in Iscove’s modified Dulbecco’s media
containing 20% FBS) gently, and chilled in CoolCell FTS30 (BioCision) in
� 80 �C for at least 4 h before transferring to liquid nitrogen for storage
for 3 weeks.

The Institutional Review Board at the Fred Hutchinson Cancer Research
Center approved the study on transplant samples. The procedures followed
were in accordance with the Declaration of Helsinki of 1975 and the Common
Rule. Samples were obtained after patients had provided written informed
consent on molecular analyses. We identified patients with AML undergoing
allogeneic hematopoietic stem cell transplant at the Fred Hutchinson Cancer
Research Center. The diagnosis of AML was established according to the
revised criteria of the World Health Organization33.

Bone marrow aspirates were obtained for standard clinical testing
20–30 days before transplant and serially post-transplanted according to the
treatment protocol. Bone marrow aspirate aliquots were processed within
2 h of the draw. The BMMCs were isolated using centrifugation through a
Ficoll gradient (Histopaque-1077; Sigma Life Science, St Louis, MO, USA).
The BMMCs were collected from the serum-Ficoll interface with a disposable
Pasteur pipette and transferred to the 50ml conical tube with 2% patient serum
in 1� PBS. The BMMCs were counted using a haemacytometer and viability
was assessed using Trypan blue. The BMMCs were resuspended in 90% FBS,
10% DMSO freezing media and frozen using a Thermo Scientific Nalgene
Mr Frosty (Thermo Scientific) in a � 80 �C freezer for 24 h before being
transferred to liquid nitrogen for long-term storage.

Estimation of RNA content per cell. The amount of RNA per cell type was
determined by quantifying (Qubit; Invitrogen) RNA extracted (Maxwell RSC
simplyRNA Cells Kit) from several different known numbers of cells.

Cell preparation. Fresh cells were harvested, washed with 1� PBS and
resuspended at 1� 106 cells per ml in 1� PBS and 0.04% bovine serum albumin.
Fresh PBMCs were frozen at 10� by resuspending PBMCs in DMEMþ 40%
FBSþ 10% DMSO, freezing to � by �C in a CoolCells FTS30 (BioCision) and
then placed in liquid nitrogen for storage.

Frozen cell vials from ALLCELLS and transplant studies were rapidly thawed
in a 37 �C water bath for B2min. Vials were removed when a tiny ice crystal was
left. Thawed PBMCs were washed twice in the medium and then resuspended
in 1� PBS and 0.04% bovine serum albumin at room temperature. Cells were
centrifuged at 300 r.c.f. for 5min each time. Thawed BMMCs were washed and
resuspended in 1� PBS and 20% FBS. The final concentration of thawed cells was
1� 106 cells per ml.

Sequencing library construction using the GemCode platform. Cellular
suspensions were loaded on a GemCode Single-Cell Instrument (10x Genomics,
Pleasanton, CA, USA) to generate single-cell GEMs. Single-cell RNA-Seq
libraries were prepared using GemCode Single-Cell 30 Gel Bead and Library
Kit (now sold as P/N 120230, 120231, 120232, 10x Genomics). GEM-RT was
performed in a C1000 Touch Thermal cycler with 96-Deep Well Reaction Module
(Bio-Rad; P/N 1851197): 55 �C for 2 h, 85 �C for 5min; held at 4 �C.
After RT, GEMs were broken and the single-strand cDNA was cleaned up with
DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; P/N 37002D)
and SPRIselect Reagent Kit (0.6� SPRI; Beckman Coulter; P/N B23318).
cDNA was amplified using the C1000 Touch Thermal cycler with 96-Deep
Well Reaction Module: 98 �C for 3min; cycled 14� : 98 �C for 15 s, 67 �C for 20 s,
and 72 �C for 1min; 72 �C for 1min; held at 4 �C. Amplified cDNA product
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was cleaned up with the SPRIselect Reagent Kit (0.6� SPRI). The cDNA
was subsequently sheared to B200 bp using a Covaris M220 system (Covaris; P/N
500295). Indexed sequencing libraries were constructed using the reagents in
the GemCode Single-Cell 30 Library Kit, following these steps: (1) end repair and
A-tailing; (2) adapter ligation; (3) postligation cleanup with SPRIselect; (4) sample
index PCR and cleanup. The barcode sequencing libraries were quantified by
quantitative PCR (KAPA Biosystems Library Quantification Kit for Illumina
platforms P/N KK4824). Sequencing libraries were loaded at 2.1 pM on an Illumina
NextSeq500 with 2� 75 paired-end kits using the following read length: 98 bp
Read1, 14 bp I7 Index, 8 bp I5 Index and 10 bp Read2. Some earlier libraries were
made with 5 nt UMI, and 5 bp Read2 was obtained instead. These libraries have
been documented in Supplementary Table 1.

ERCC assay. ERCC synthetic spike-in RNAs (Thermo Fisher Scientific;
P/N 4456740) were diluted (1:10 or 1:50) and loaded into a GemCode Single-Cell
Instrument, replacing cells normally used to generate GEMs. Spike-in Mix1 and
Mix2 were both tested. A slightly modified protocol was used as only a small
fraction of GEMs were collected for RT and cDNA amplification. After the
completion of GEM-RT, 1.25 ml of the emulsion was removed and added
to a biphasic mixture of Recovery Agent (125 ml) (P/N 220016) and 25mM
additive 1 (30 ml) (P/N 220074, 10x Genomics). The recovery agent was then
removed and the remaining aqueous solution was cleaned up with the SPRISelect
Reagent Kit (0.8� SPRI). cDNA was amplified using the C1000 Touch
Thermal cycler with 96-Deep Well Reaction Module: 98 �C for 3min; cycled
14� : 98 �C for 15 s, 67 �C for 20 s, and 72 �C for 1min; 72 �C for 1min; held at
4 �C. Amplified cDNA product was cleaned up with the SPRIselect Reagent Kit
(0.8� ) cDNA was subsequently sheared to B200 bp using a Covaris M220
system to construct sample-indexed libraries with 10x Genomics adapters.
Expected ERCC molecule counts were calculated based on the amount of
ERCC molecules used and sample dilution factors. The counts were compared to
detected molecule counts (UMI counts) to calculate conversion efficiency.

ddPCR assay. Jurkat cells were used in ddPCR assays to estimate conversion
efficiency as follows: (1) the amount of RNA per Jurkat cell was determined by
quantifying (Qubit, Invitrogen) RNA extracted (Maxwell RNA Purification Kits)
from several different known number of Jurkat cells. (2) Bulk RT-ddPCR
(Bio-Rad One-Step RT-ddPCR Advanced Kit for Probes 1864021) was performed
on the extracted RNA to determine the copy number per cell of eight selected
genes. (3) Approximately 5,000 Jurkat cells were processed using the GemCode
Single-Cell 30 platform, and single-stranded cDNA was collected after RT in GEMs
following the protocols listed in the section ‘Sequencing library construction using
the GemCode platform’. cDNA copies of the eight genes were determined using
ddPCR (Bio-Rad ddPCR Supermix for Probes (no dUTP) P/N 1863024). The
actual Jurkat cell count was found by sequencing a subset of the GEM-RT reactions
on a MiSeq. The conversion efficiency is the ratio between cDNA copies per
cell (step 3) and RNA copies per cell from bulk RT-ddPCR (step 2), assuming a
50% efficiency in RT-ddPCR34.

The probe sequences for the ddPCR assay are as follows: SERAC1_f,
50-CACGAGCCGCCAGC-30 and SERAC1_r, 50-TCTGCAACAGATGAC
GCAATAAG-30 ; SERAC1_p: /56-FAM/CGCCTGCCG/ZEN/GCAGAATGTC/
3IABkFQ/. AP1S3_f, 50-GAAGCAGCCATGGTCTAAGC-30 and AP1S3_r,
50-CCTTGTCGACTGAAGAGCAATATG-30 ; AP1S3_p: /56-FAM/CGGCCC
AGC/ZEN/CACGATGATACAT/3IABkFQ/OR. AOV1_f, 50-CCGGAAGTG
GGTCTCGTOR-30 and AOV1_r, 50-TTCTTCATAGCCTTCCCGATACCOR-30 ;
AOV1_p: /56-FAM/TCGTGATGG/ZEN/CGGATGAGAGGTTTCA/3IABkFQ/.
DOLPP1_f, 50-ATGGCAGCGGACGGA-30 and DOLPP1_r, 50-GGCTCAG
GTAGGCAAGGA-30 ; DOLPP1_p: /56-FAM/CCACGTCGA/ZEN/ATATCCT
GCAGGTGATCT/3IABkFQ/. KPNA6_f, 50-TGAAAGCTGCCGCTGAAG-30

and KPNA6_r, 50-CCCTGGGCTCGCCAT-30; KPNA6_p: /56-FAM/CGGACCCG
C/ZEN/GATGGAGACC/3IABkFQ/. ITSN2_f, 50-GTGACAGGCTACGCAA
CAG-30 and ITSN2_r, 50-TCCTGAGTTTTCCTTGCTAGCT-30 ;
ITSN2_p: /56-FAM/AGGGCGCCA/ZEN/GATGGCTGA/3IABkFQ/. LCMT1_f,
50-GTCGACCCCGCTTCCA-30 and LCMT1_r, 50-GGTCATGCCAGTA
GCCAATG-30 ; LCMT1_p: /56-FAM/ATGCTTCCC/ZEN/TGTGCAAGAGG
TTTGC/3IABkFQ/. AP2M1_f, 50-GCAGCGGGCAGACG-30 and AP2M1_r,
50-ATGGCGGCAGATCAGTCT-30; AP2M1_p: /56-FAM/CATCGCTCT/ZEN/
GAGAACAGACCTGGTG/3IABkFQ/.

Cell capture efficiency calculation. The efficiency is calculated by taking the ratio
of the number of cells detected by sequencing versus the number of cells loaded
into the chip. The latter is determined from (volume added� input concentration
of cells). The input concentration of cells was determined using a Countess II
Automated Cell Counter (Thermo Fisher Scientific). It is worth noting that there is
a 15–20% error in cell counts, which could account for at least some of the
variability in the calculated efficiencies.

Chimerism assay. PowerPlex 16 System (Promega) was used in conjunction
with an Applied Biosystems (Life Technologies) 3130xl Genetic Analyzer. Donor
BMMCs were used as the reference baseline.

Alignment, barcode assignment and UMI counting. The Cell Ranger Single-Cell
Software Suite was used to perform sample demultiplexing, barcode processing and
single-cell 30 gene counting (http://software.10xgenomics.com/single-cell/overview/
welcome). First, sample demultiplexing was performed based on the 8 bp sample
index read to generate FASTQs for the Read1 and Read2 paired-end reads, as
well as the 14 bp GemCode barcode. Ten basepair UMI tags were extracted from
Read2 (14 libraries were made with 5 bp UMI tags, as noted in Supplementary
Table 1, due to an earlier iteration of the methods. For these samples, 5 bp UMI
tags were extracted from Read2.). Then, Read1, which contains the cDNA insert,
was aligned to an appropriate reference genome using STAR35. For mouse cells,
mm10 was used and for human cells, hg19 was used. For samples with mouse
and human cell mixtures, the union of hg19 and mm10 were used. For
ERCC samples, ERCC reference (https://tools.thermofisher.com/content/sfs/
manuals/cms_095047.txt) was used.

Next, GemCode barcodes and UMIs were filtered. All of the known listed of
barcodes that are 1-Hamming-distance away from an observed barcode are
considered. Then, the posterior probability that the observed barcode was
produced by a sequencing error is computed, given the base qualities of the
observed barcode and the prior probability of observing the candidate barcode
(taken from the overall barcode count distribution). If the posterior probability
for any candidate barcode is at least 0.975, then the barcode is corrected to the
candidate barcode with the highest posterior probability. If all candidate
sequences are equally probable, then the one appearing first by lexical
order is picked.

UMIs with sequencing quality score 410 were considered valid if they were
not homopolymers. Qual¼ 10 implies 90% base call accuracy. A UMI that is
1-Hamming-distance away from another UMI (with more reads) for the same
cell barcode and gene is corrected to the UMI with more reads. This approach
is nearly identical to that in Jaitin et al.4, and is similar to that in Klein et al.8

(although Klein et al.8 also used UMIs to resolve multimapped reads, which
was not implemented here).

Last, PCR duplicates were marked if two sets of read pairs shared a
barcode sequence, a UMI tag, and a gene ID (Ensembl GTFs GRCh37.82,
ftp://ftp.ensembl.org/pub/grch37/release-84/gtf/homo_sapiens/
Homo_sapiens.GRCh37.82.gtf.gz and GRCm38.84, ftp://ftp.ensembl.org/pub/
release-84/gtf/mus_musculus/Mus_musculus.GRCm38.84.gtf.gz, were used).
Only confidently mapped (MAPQ¼ 255), non-PCR duplicates with valid
barcodes and UMIs were used to generate gene-barcode matrix.

Cell barcodes were determined based on distribution of UMI counts. All top
barcodes within the same order of magnitude (410% of the top nth barcode,
where n is 1% of the expected recovered cell count) were considered cell barcodes.
Number of reads that provide meaningful information is calculated as the product
of four metrics: (1) valid barcodes; (2) valid UMI; (3) associated with a cell barcode;
and (4) confidently mapped to exons.

In the mouse and human mixing experiments, multiplet rate was defined as
twice the rate of cell barcodes with significant UMI counts from both mouse and
human, where top 1% of UMI counts was considered significant. The extent of
barcode crosstalk was assessed by the fraction of mouse reads in human barcodes,
or vice versa.

Samples processed from multiple channels can be combined by concatenating
gene-cell-barcode matrices. This functionality is provided in the Cell Ranger
R Kit (http://support.10xgenomics.com/single-cell/software/pipelines/latest/rkit).
Sequencing data from multiple sequencing runs of a library can be combined
by counting non-duplicated reads. This functionality is provided in the Cell Ranger
pipeline. In addition, sequencing data can be subsampled to obtain a given
number of UMI counts per cell. This functionality is also provided in the Cell
Ranger R Kit, and is useful when combining data from multiple samples for
comparison.

PCA analysis of mixing of Jurkat and 293T cells. Gene-cell-barcode matrix
from each of the four samples was concatenated. Only genes with at least one
UMI count detected in at least one cell are used. UMI normalization was
performed by first dividing UMI counts by the total UMI counts in each cell,
followed by multiplication with the median of the total UMI counts across cells.
Then, we took the natural log of the UMI counts. Finally, each gene was
normalized such that the mean signal for each gene is 0, and standard
deviation is 1. PCA was run on the normalized gene-barcode matrix. The
normalized UMI counts of each gene are used to show expression of a
marker in a tSNE plot.

SNV analysis of Jurkat and 293T scRNA-seq data. SNVs were called by
running Freebayes 1.0.2 (ref. 36) on the genome BAM produced by Cell Ranger.
High-quality SNVs (SNV calling Qual4¼ 100 with at least 10 UMI counts from at
least two cells; indels are ignored) that were only observed in Jurkat or 293T cells
(but not both) were selected. Cells were labelled as Jurkat or 293T based
on Jurkat- and 293T-specific SNV counts, where the fraction of counts
from the other species is o0.2. Cells with a fraction of SNV from either
species between 0.2 and 0.8 are considered multiplets. The inferred multiplet
rate is 2* observed multiplet rate (to account for Jurkat:Jurkat and
293T:293T multiplets).
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PCA and tSNE analysis of PBMCs. Genes with at least one UMI count detected
in at least one cell are used. The top 1,000 most variable genes were identified
based on their mean and dispersion (variance/mean), which is similar to the
approach used by Macoscko et al.7 Genes were placed into 20 bins based on
their mean expression. Normalized dispersion is calculated as the absolute
difference between dispersion and median dispersion of the expression mean,
normalized by median absolute deviation within each bin.

PCA was run on the normalized gene-barcode matrix of the top
1,000 most variable genes to reduce the number of feature (gene) dimensions.
UMI normalization was performed by first dividing UMI counts by the total
UMI counts in each cell, followed by multiplication with the median of the total
UMI counts across cells. Then, we took the natural log of the UMI counts. Finally,
each gene was normalized such that the mean signal for each gene is 0, and
standard deviation is 1. PCA was run on the normalized gene-barcode matrix.
After running PCA, Barnes-hut37 approximation to t-SNE16 was performed on
the first 50 PCs to visualize cells in a two-dimensional space. Fifty PCs were
used because: (1) using all PCs would take a very long time with tSNE analysis;
(2) they explained B25% of total variance. K-means15 clustering was run to
group cells for the clustering analysis. k¼ 10 was selected based on the sum of
squared error scree plot (Supplementary Fig. 5d).

Identification of cluster-specific genes and marker-based classification. To
identify genes that are enriched in a specific cluster, the mean expression of each
gene was calculated across all cells in the cluster. Then each gene from the cluster
was compared to the median expression of the same gene from cells in all other
clusters. Genes were ranked based on their expression difference, and the top
10 enriched genes from each cluster were selected. For hierarchical clustering,
pair-wise correlation between each cluster was calculated, and centred
expression of each gene was used for visualization by heatmap.

Classification of PBMCs was inferred from the annotation of cluster-specific
genes. In the case of cluster 10, marker expression of multiple cell types
(for example, B, dendritic and T) was detected. Since the relative cluster
size of B, dendritic and T is 5.7%, 6.6% and 81%, respectively, we would expect
cluster 10 (which is only 0.5%) to contain multiplets consisting mostly from
B:dendritic (0.36%) and B:dendritic:T (0.3%).

Selection of purified subpopulations of PBMCs. Each population of purified
PBMCs was downsampled to B16k reads per cell. PCA, tSNE and k-means
clustering were performed for each downsampled matrix, following the same
steps outlined in PCA and t-SNE analysis of PBMCs. Only one cluster was detected
in most samples, consistent with the FACS analyses (Supplementary Fig. 6).
For samples with more than one cluster, only clusters that displayed the
expected marker gene expression were selected for downstream analysis. For
CD14þ monocytes, two clusters were observed and identified as CD14þ
monocytes and dendritic cells based on expression of marker genes FTL and
CLEC9A, respectively.

Cell classification analysis using purified PBMCs. Each population of purified
PBMCs was downsampled to B16k confidently mapped reads per cell. Then, an
average (mean) gene expression profile across all cells was calculated. Next, gene
expression from every cell of the complex population was compared with the
gene expression profiles of purified populations of PBMCs by Spearman’s
correlation. The cell was assigned the ID of the purified population if it had the
highest correlation with that population. Note that the difference between the
highest and second highest correlation was small for some cells (for example,
the difference between cytotoxic T and NK cells), suggesting that the cell assign-
ment was not as confident for these cells. A few of the purified PBMC populations
overlapped with each other. For example, CD4þ T-helper cells include all
CD4þ cells. This means that cells from this sample will overlap with cells
from samples that contain CD4þ cells, including CD4þ /CD25þ T reg,
CD4þ /CD45ROþ T memory, CD4þ /CD45RAþ /CD25� naive T. Thus, when
a cell was assigned the ID of CD4þ T-helper cell based on the correlation score,
the next highest correlation was checked to see if it was one of the CD4þ samples.
If it was, the cell’s ID was updated to the cell type with the next highest
correlation. The same procedure was performed for CD8þ cytotoxic T and
CD8þ /CD45RAþ naive cytotoxic T (which is a subset of CD8þ cytotoxic T).

The R code used to analyse 68k PBMCs and purified PBMCs can be found here:
https://github.com/10XGenomics/single-cell-3prime-paper.

Cell clustering and classification with Seurat. The gene-cell-barcode matrix of
68k PBMCs was log-transformed as an input to Seurat. The top 469 most variable
genes selected by Seurat were used to compute the PCs. The first 22 PCs were
significant (Po0.01) based on the built-in jackstraw analysis, and used
for tSNE visualization. Cell classification was taken from Cell classification
analysis using purified PBMCs.

Comparison between fresh and frozen PBMCs. The sequencing data of 68k fresh
PBMCs and 3k frozen PBMCs were down-sampled such that each sample has

B14k confidently mapped reads per cell. Only genes that are detected in at
least one cell were included for the comparison, which uses the mean of each gene
across all cells.

For cell classification comparison between purified and frozen PBMCs, we
pooled all the cells labelled as T or natural killer cells together. This is because
the subpopulations within T and between T and natural killer cells are sometimes
difficult to cluster separately. We did not want the comparison between fresh and
frozen cells to be affected by the clustering methods used.

SNV-based genotype assignment. SNVs were called by running Freebayes 1.0.2
(ref. 36) on the genome BAM produced by Cell Ranger. Only SNVs with support
from at least two cell barcodes, with a minimal SNV Qual score 4¼ 30, minimal
SNV base Qual4¼ 1 were included. Reference (R) and alternate (A) allele counts
were computed at each SNV, producing a matrix of cell-reference UMI counts and
cell-alternate-allele UMI counts. These matrices were modeled as a mixture of two
genomes where the likelihood of any of the three genotypes (R/R, R/A or A/A) at a
site was taken to be binomially distributed with a fixed error rate of 0.1%. For each
sample, two models were inferred in parallel, one where only one genome is present
(K¼ 1) and another where two genomes are present (K¼ 2). Inference of the
model parameters (cell-to-genome assignments and the K sets of genotypes) was
performed by using a Gibbs sampler to approximate their posterior distributions.
To ameliorate the label-switching problem in Monte Carlo inference of mixture
models, relabelling of the sampled cell-to-genome assignments was performed as
per Stephens et al.38

In in silico cell mixing experiments, when the K¼ 2 model failed to adequately
separate the two genomes, it reported a distribution of posterior probabilities near
0.5 for the cell-genome calls, indicating a lack of confidence in those calls. We
applied a requirement that 90% of the cells have a posterior probability 475% to
select the K¼ 2 model over the K¼ 1 model. Selecting K¼ 1 indicates that the
mixture fraction is below the level of detection of the method, which in in silico
mixing experiments was determined to be 4% of 6,000 cells.

Genotype comparison with the pure sample. To ascertain the assignment of
genotypes to individuals, only shared SNVs between the genotype group and the
pure sample were considered. Then, the average genotype of all the cells was
compared to that of the pure sample. To obtain some baseline for the % genotype
overlap among different individuals, we performed pairwise comparison of
genotypes called from the same individuals (11 pairwise comparisons) or from
different individuals (15 pairwise comparisons). The per cent genotype overlap
between the same individuals averages B98±0.3%, whereas the per cent genotype
overlap between the different individuals averages B73±2%.

PCA and tSNE analysis of BMMCs. Data from six samples were used: two healthy
controls, AML027 pre- and post-transplant, and AML035 pre- and post-transplant.
Each sample was downsampled to B10k confidently mapped reads per cell. Then
the gene-cell barcode matrix from each sample was concatenated. PCA, tSNE and
k-means clustering were performed on the pooled matrix, following the same steps
outlined in PCA and tSNE analysis of PBMCs. For k-means clustering, K¼ 10 was
used based on the bend in the sum of squared error scree plot.

Cluster-specific genes were identified following the steps outlined in
‘Identification of cluster-specific genes and marker-based classification’.
Classification was assigned based on cluster-specific genes, and based on expression
of some well-known markers of immune cell types. ‘Blasts and Immature Ery 1’
refers to cluster 4, which expresses CD34, a marker of hematopoietic progenitors39,
and Gata2, a marker for early erythroids40. ‘Immature Ery 2’ refers to
clusters 5 and 8, which show expression of Gata1, a transcription factor essential
for erythropoiesis41, but not CD71, which are often found in more committed
erythroid cells39. ‘Immature Ery 3’ refers to cluster 1, which show expression
of CD71. ‘Mature Ery’ refers to cluster 2. HBA1, a marker of mature erythroid
cells, is preferentially detected in cluster 2. Cluster 3 was assigned as ‘Immature
Granulocytes’ because of the expression of early granulocyte markers such as
AZU1 and IL8 (ref. 42), and the lack of expression of CD16. Cluster 7 was assigned
as ‘Monocytes’ because of the expression of CD14 and FCN1, for example. ‘B’ refers
clusters 6 and 9 because of markers such as CD19 and CD79A. ‘T’ refers to cluster
10, because of markers such as CD3D and CD8A.

Data availability. All relevant data are available from the authors. Single-cell
RNA-seq data have been deposited in the Short Read Archive under accession
number SRP073767. Data are also available at http://support.10xgenomics.com/
single-cell/datasets. The analysis code for the 68k PBMC analysis is available at
https://github.com/10XGenomics/single-cell-3prime-paper.

References
1. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression

and splicing in immune cells. Nature 498, 236–240 (2013).
2. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations

masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14049 ARTICLE

NATURE COMMUNICATIONS | 8:14049 | DOI: 10.1038/ncomms14049 |www.nature.com/naturecommunications 11

https://github.com/10XGenomics/single-cell-3prime-paper
http://support.10xgenomics.com/single-cell/datasets
http://support.10xgenomics.com/single-cell/datasets
https://github.com/10XGenomics/single-cell-3prime-paper
http://www.nature.com/naturecommunications


3. Liu, S. & Trapnell, C. Single-Cell Transcriptome Sequencing: Recent Advances
and Remaining Challenges Vol. 5 F1000 Research (2016).

4. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free
decomposition of tissues into cell types. Science 343, 776–779 (2014).

5. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular
heterogeneity and activated signaling pathways in developing cerebral cortex.
Nat. Biotechnol. 32, 1053–1058 (2014).

6. Fluidigm. Single-cell whole genome sequencing on the C1 System: a
performance evaluation https://www.fluidigm.com/binaries/content/
documents/fluidigm/marketing/single-cell-whole-genome-sequencing/single-
cell-whole-genome-sequencing/fluidigm%3Afile (2016).

7. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

8. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161, 1187–1201 (2015).

9. Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. S.
Characterization of directed differentiation by high-throughput single-cell RNA-seq.
Preprint at http://biorxiv.org/content/early/2014/03/05/003236 (2016).

10. Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-
throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016).

11. Narasimhan, V. M. et al. Health and population effects of rare gene knockouts
in adult humans with related parents. Science 352, 474–477 (2016).

12. Mostovoy, Y. et al. A hybrid approach for de novo human genome sequence
assembly and phasing. Nat. Methods 13, 587–590 (2016).

13. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute
quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

14. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10, 1093–1095 (2013).

15. Sherlock, G. Analysis of large-scale gene expression data. Curr. Opin. Immunol.
12, 201–205 (2000).

16. van der Maaten, L. J. P. & Hinton, G. E Visualizing high-dimensional data
using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

17. Stem Cell Technologies. Frequencies of cell types in human peripheral blood.
Available at: http://www.stemcell.com/media/files/wallchart/WA10006-
Frequencies_Cell%20Types_Human_Peripheral_Blood.pdf (2016).

18. Borrego, F., Masilamani, M., Marusina, A. I., Tang, X. & Coligan, J. E The
CD94/NKG2 family of receptors: from molecules and cells to clinical relevance.
Immunol. Res. 35, 263–278 (2006).

19. Chu, P. G. & Arber, D. A CD79: a review. Appl. Immunohistochem. Mol.
Morphol. 9, 97–106 (2001).

20. Schiopu, A. & Cotoi, O. S S100A8 and S100A9: DAMPs at the crossroads
between innate immunity, traditional risk factors, and cardiovascular disease.
Mediat. Inflamm. 2013, 828354 (2013).

21. Turman, M. A., Yabe, T., McSherry, C., Bach, F. H. & Houchins, J. P
Characterization of a novel gene (NKG7) on human chromosome 19 that
is expressed in natural killer cells and T cells. Hum. Immunol. 36, 34–40
(1993).

22. Lubberts, E The IL-23-IL-17 axis in inflammatory arthritis. Nat. Rev.
Rheumatol. 11, 562 (2015).

23. Ronchetti, S. et al. Glucocorticoid-induced tumour necrosis factor receptor-
related protein: a key marker of functional regulatory T cells. J. Immunol. Res.
2015, 171520 (2015).

24. Lin, Y. Y. et al. Transcriptional regulator Id2 is required for the CD4 T cell
immune response in the development of experimental autoimmune
encephalomyelitis. J. Immunol. 189, 1400–1405 (2012).

25. Greer, A. M. et al. Serum IgE clearance is facilitated by human FcepsilonRI
internalization. J. Clin. Invest. 124, 1187–1198 (2014).

26. Harman, A. N. et al. Identification of lineage relationships and novel markers of
blood and skin human dendritic cells. J. Immunol. 190, 66–79 (2013).

27. Satija, R. Seurat: R toolkit for single cell genomics. http://www.satijalab.org/
seurat.html (2016).

28. Seattle Cancer Care Alliance. Chimerism testing/engraftment analysis.
http://www.seattlecca.org/healthcare-professionals/clinical-labs/clinical-
immunogenetics-laboratory/chimerism-testing (2016).

29. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396–1401 (2014).

30. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science 352, 189–196 (2016).

31. Lee, M. C. et al. Single-cell analyses of transcriptional heterogeneity during
drug tolerance transition in cancer cells by RNA sequencing. Proc. Natl. Acad.
Sci. USA 111, E4726–E4735 (2014).

32. Kim, K. T. et al. Single-cell mRNA sequencing identifies subclonal
heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.
Genome Biol. 16, 127 (2015).

33. Vardiman, J. W. et al. The 2008 revision of the World Health Organization
(WHO) classification of myeloid neoplasms and acute leukemia: rationale and
important changes. Blood 114, 937–951 (2009).

34. Zhong, J. F. et al. A microfluidic processor for gene expression profiling of
single human embryonic stem cells. Lab Chip 8, 68–74 (2008).

35. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

36. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read
sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).

37. van der Maaten, L. Barnes-Hut-SNE Preprint at arXiv:1301.3342 [cs.LG] (2013).
38. Stephens, M. Dealing with label switching in mixture models. J. R. Stat. Soc. Ser.

B 62, 795–809 (2000).
39. Liu, Q. et al. Significance of CD71 expression by flow cytometry in diagnosis of

acute leukemia. Leuk. Lymphoma 55, 892–898 (2014).
40. Novershtern, N. et al. Densely interconnected transcriptional circuits control

cell states in human hematopoiesis. Cell 144, 296–309 (2011).
41. Bonora, M. et al. Molecular mechanisms of cell death: central implication of ATP

synthase in mitochondrial permeability transition. Oncogene 34, 1475–1486 (2015).
42. Schinke, C. et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy

against MDS and AML stem cells. Blood 125, 3144–3152 (2015).

Acknowledgements
We thank Deanna Church for critical reading of the manuscript, and members of the

Bielas laboratory and 10x Genomics for helpful discussions. We thank members of the

clinical immunogenetics laboratory at the Fred Hutchinson Cancer Research Center for

their assistance in sample preparation and data review: David Wu, Debra Cordell, Aida

Guzman, Reena Patel, Ada Ng, Chuck Kellum and Gana Balgansuren. We acknowledge

support from the Canary Foundation (to J.H.B.), an Ellison Medical Foundation New

Scholar Award (AG-NS-0577-09 to J.H.B.), the National Cancer Institute (R01 CA

175215-01 and U10CA180861 to J.P.R.), an Outstanding New Environmental Scientist

Award (ONES) (R01) from the National Institute of Environmental Health Sciences

(R01ES019319 to J.H.B.), a grant from the Congressionally Directed Medical Research

Programs/US Department of Defense (W81XWH-10-1-0563 to J.H.B.) and the Pacific

Ovarian Cancer Research Consortium Ovarian Cancer SPORE Award (P50 CA083636).

W.J.V is supported by an Achievement Rewards for College Scientists (ARCS)

Foundation Fellowship, and a Ruth L. Kirschstein National Research service F30

Award for Individual Predoctoral MD/PhD Degree Fellows (NCI F30CA200247).

Author contributions
G.X.Y.Z., J.M.T., P.B., P.R., Z.W.B., T.S.M., B.J.H., J.H.B., E.A.S. and J.P.R. designed

experiments. J.M.T., P.B., Z.W.B., S.B.Z., T.D.W., G.P.M., J.S., L.M., S.Y.N., E.A.S.,

N.G.E., L.W.B., H.J.D., C.M., K.R.L. and W.J.V. conducted experiments. T.D.W., D.A.M.,

R.B., K.D.N. and B.J.H. designed the instrument. G.P.M., Z.W.B., S.Y.N., C.M.H.,

P.W.W. and K.D.N. designed the reagents. P.R., R.W., A.W., G.X.Y.Z., J.J.Z., T.S.M.

and M.S.L. wrote the analysis software. G.X.Y.Z., P.R., T.S.M., J.Z., K.R.L. and M.T.G.

analysed the data. G.X.Y.Z., E.A.S., J.P.R., T.S.M., B.J.H. and J.H.B. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/

naturecommunications

Competing financial interests: G.X.Y.Z., J.M.T., P.B., P.R., Z.W.B., R.W., S.B.Z., T.D.W.,

J.J.Z., G.P.M., J.S., L.M., D.A.M., S.Y.N., M.S.L., P.W.W., C.M.H., R.B., A.W., K.D.N.,

T.S.M. and B.J.H. are employees of 10x Genomics.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

How to cite this article: Zheng, G. X. Y. et al. Massively parallel digital transcriptional

profiling of single cells. Nat. Commun. 8, 14049 doi: 10.1038/ncomms14049 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14049

12 NATURE COMMUNICATIONS | 8:14049 |DOI: 10.1038/ncomms14049 |www.nature.com/naturecommunications

https://www.fluidigm.com/binaries/content/documents/fluidigm/marketing/single-cell-whole-genome-sequencing/single-cell-whole-genome-sequencing/fluidigm&percnt;3Afile
https://www.fluidigm.com/binaries/content/documents/fluidigm/marketing/single-cell-whole-genome-sequencing/single-cell-whole-genome-sequencing/fluidigm&percnt;3Afile
https://www.fluidigm.com/binaries/content/documents/fluidigm/marketing/single-cell-whole-genome-sequencing/single-cell-whole-genome-sequencing/fluidigm&percnt;3Afile
http://biorxiv.org/content/early/2014/03/05/003236
http://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell&percnt;20Types_Human_Peripheral_Blood.pdf
http://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell&percnt;20Types_Human_Peripheral_Blood.pdf
http://www.satijalab.org/seurat.html
http://www.satijalab.org/seurat.html
http://www.seattlecca.org/healthcare-professionals/clinical-labs/clinical-immunogenetics-laboratory/chimerism-testing
http://www.seattlecca.org/healthcare-professionals/clinical-labs/clinical-immunogenetics-laboratory/chimerism-testing
https://arxiv.org/abs/1207.3907
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Massively parallel digital transcriptional profiling of single cells
	Introduction
	Results
	Droplet-based platform enables barcoding of cells
	Technical demonstration with cell lines and synthetic RNAs
	Detection of individual populations in mixed samples
	Subpopulation discovery from a large immune population
	Single-cell RNA profiling of cryopreserved PBMCs
	Genotype-based method to detect individual cell populations
	Single-cell analysis of transplant bone marrow samples

	Discussion
	Methods
	High-speed imaging of gel beads and cells in GEMs
	Cell lines and transplant patient samples
	Estimation of RNA content per cell
	Cell preparation
	Sequencing library construction using the GemCode platform
	ERCC assay
	ddPCR assay
	Cell capture efficiency calculation
	Chimerism assay
	Alignment, barcode assignment and UMI counting
	PCA analysis of mixing of Jurkat and 293T cells
	SNV analysis of Jurkat and 293T scRNA-seq data
	PCA and tSNE analysis of PBMCs
	Identification of cluster-specific genes and marker-based classification
	Selection of purified subpopulations of PBMCs
	Cell classification analysis using purified PBMCs
	Cell clustering and classification with Seurat
	Comparison between fresh and frozen PBMCs
	SNV-based genotype assignment
	Genotype comparison with the pure sample
	PCA and tSNE analysis of BMMCs
	Data availability

	Additional information
	Acknowledgements
	References


