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Abstract Advances in computer technologies have enabled corporations to accumulate data

at an unprecedented speed. Large-scale business data might contain billions of observations

and thousands of features, which easily brings their scale to the level of terabytes. Most tra-

ditional feature selection algorithms are designed and implemented for a centralized com-

puting architecture. Their usability significantly deteriorates when data size exceeds tens of

gigabytes. High-performance distributed computing frameworks and protocols, such as the

Message Passing Interface (MPI) and MapReduce, have been proposed to facilitate software

development on grid infrastructures, enabling analysts to process large-scale problems effi-

ciently. This paper presents a novel large-scale feature selection algorithm that is based on

variance analysis. The algorithm selects features by evaluating their abilities to explain data

variance. It supports both supervised and unsupervised feature selection and can be readily

implemented in most distributed computing environments. The algorithm was implemented

as a SAS High-Performance Analytics procedure, which can read data in distributed form

and perform parallel feature selection in both symmetric multiprocessing mode (SMP) and

massively parallel processing mode (MPP). Experimental results demonstrated the superior

performance of the proposed method for large scale feature selection.
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1 Introduction

Feature selection is an effective technique for dimensionality reduction and relevance de-

tection (Liu and Motoda 1998b; Guyon and Elisseeff 2003). It improves the performance of

learning models in terms of their accuracy, efficiency, and model interpretability (Zhao and

Liu 2011). As an indispensable component for successful data mining applications, feature

selection has been used in a variety of fields, including text mining (Forman 2003), image

processing (Manikandan and Rajamani 2008), and genetic analysis (Saeys et al. 2007), to

name a few. Continual advances in computer-based technologies have enabled corporations

and organizations to collect data at an increasingly fast pace. Business and scientific data

from many fields, such as finance, genomics, and physics, are often measured in terabytes

(1012 bytes). The enormous proliferation of large-scale data sets brings new challenges to

data mining techniques and requires novel approaches to address the big-data problem (Zaki

and Ho 2000) in feature selection. Scalability is critical for large-scale data mining. Un-

fortunately, most existing feature selection algorithms are implemented for serial comput-

ing, and their efficiency significantly deteriorates or even becomes inapplicable, when the

data size reaches tens of gigabytes (109 bytes). Scalable distributed programming proto-

cols and frameworks, such as the Message Passing Interface (MPI) (Snir et al. 1995) and

MapReduce (Dean and Ghemawat 2010), are proposed to facilitate programming on high-

performance distributed computing infrastructures to handle very large-scale problems.

This paper presents a novel distributed parallel algorithm for handling large-scale prob-

lems in feature selection. The algorithm can select a subset of features that best explain

(preserve) the variance contained in the data. According to how data variance is defined,

the algorithm can perform either unsupervised or supervised feature selection. And for the

supervised case, the algorithm also supports both regression and classification. Redundant

features increase data dimensionality unnecessarily and worsen the learning performance

(Hall 1999; Ding and Peng 2003). The proposed algorithm selects features by evaluating

feature subsets and can therefore handle redundant features effectively. Determining how

many features to select is an important problem in feature selection. When target informa-

tion is available, the proposed algorithm can automatically determine the number of features

to select by using effective model selection techniques, such as the Akaike information

criterion (AIC) (Akaike 1974), the Bayesian information criterion (BIC) (Schwarz 1978),

and the corrected Hannan–Quinn information criterion (HQC) (Hannan and Quinn 1979).

For parallel feature selection, the computation of the proposed algorithm is fully optimized

and parallelized based on data partitioning. The algorithm is implemented as a SAS High-

Performance Analytics procedure,1 which can read data in a distributed form and perform

parallel feature selection in both symmetric multiprocessing (SMP) mode via multithreading

and massively parallel processing (MPP) mode via MPI.

A few approaches have been proposed for parallel feature selection. In Lopez et al.

(2006), Melab et al. (2006), Souza et al. (2006), Garcia et al. (2006), Guillen et al. (2009),

parallel processing is used to speed up feature selection by evaluating multiple features or

feature subsets simultaneously. Since all these algorithms require each parallel processing

unit to access the whole data, they do not scale well when the sample size is huge. To handle

large scale problems, an algorithm needs to rely on data partitioning to ensure its scalability

(Kent and Schabenberger 2011). In Singh et al. (2009), a parallel feature selection algorithm

is proposed for logistic regression. The algorithm is implemented under the MapReduce

1A SAS procedure is a c-based routine for statistical analysis in the SAS system.
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framework and can evaluate features using a criterion obtained by approximating the objec-

tive function of the logistic regression model. After selecting each new feature, the algorithm

needs to retrain its model, which is an iterative process. In contrast, the proposed algorithm

solves a problem with a closed form solution in each step and therefore might be more ef-

ficient. Parallel algorithms have also been designed to generate sparse solution by applying

L1-regularization (Bradley et al. 2011) in an SMP environment. Compared to the proposed

algorithm, these algorithms only support supervised learning. While the proposed approach

supports both supervised and unsupervised feature selection. To the best knowledge of the

authors, all existing parallel feature selection algorithms are supervised, while the proposed

algorithm supports both supervised and unsupervised learning.

The contributions of this paper are: (1) The proposed algorithm provides a unified ap-

proach for both unsupervised and supervised feature selection. For supervised feature selec-

tion, it also supports both regression and classification. (2) It can effectively handle redun-

dant features in feature selection. (3) It can automatically determine how many features to

select when target information is available for model selection. (4) It is fully optimized and

parallelized based on data partitioning, which ensures its scalability for handling large-scale

problems. To the best knowledge of the authors, this is the first distributed parallel algorithm

for unsupervised feature selection. This paper is a significantly expanded version of a pa-

per (Zhao et al. 2012) that appeared in the Proceedings of the 2012 European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML-PKDD 2012). Compared to the conference version, the following major improve-

ments have been made: (1) The proposed feature selection algorithm is improved by using

effective model selection techniques to allow it to automatically determine the number of

features to select. (2) Extra experiments are conducted to evaluate the scalability of the pro-

posed algorithm using real large scale data sets on a bigger cluster system. (3) Full revision

has been made to adjust the paper structure, add clarifications, proofs, figures, details, and

discussions to help readers to understand the proposed algorithm in a better way.

2 Maximum variance preservation for feature selection

This section presents a multivariate formulation for feature selection based on maximum

variance preservation. It first shows how to use the formulation to perform unsupervised

feature selection, then extends it to support supervised feature selection in both regression

and classification (categorization) settings.

2.1 Unsupervised feature selection

When label information is unavailable, feature selection becomes challenging. To address

this issue, researchers propose various criteria for unsupervised feature selection. For exam-

ple, in Dy and Brodley (2004), the performance of a clustering algorithm is used to evaluate

the utility of a feature subset; in He et al. (2005), Zhao and Liu (2007), each feature’s ability

to preserve locality is evaluated and used to select features; and in Dash et al. (2002) an

entropy-based criterion is proposed and used for feature selection. This paper proposes a

multivariate formulation for feature evaluation in a distributed computing environment. The

criterion is based on maximum variance preservation, which promotes the selection of the

features that can best preserve data variance.

Assume that k features need to be selected. Let X ∈ R
n×m be a data set that contains n

instances, x1, . . . ,xn, and m features, f1, . . . , fm. In this work, it is assumed that all features
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have been centralized to have zero mean, 1⊤f = 0, where 1 is a column vector with all its

elements being 1. Let X = (X1,X2), where X1 ∈ R
n×k contains the k selected features and

X2 ∈ R
n×(m−k) contains the remaining ones. The proposed maximum variance preservation

criterion selects features by minimizing the following expression:

arg min
X1

Trace
(

X⊤
2

(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

X2

)

(1)

Let X1 = UΣV⊤ be the singular value decomposition (SVD) (Golub and Van Loan 1996)

of X1, and let U = (UR,UN ), where UR contains the left singular vectors that correspond to

the nonzero singular values and UN contains the left singular vectors that correspond to the

zero singular values. It can be verified that I − X1(X
⊤
1 X1)

−1X⊤
1 = UN UN

⊤. Therefore,

Trace
(

X⊤
2

(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

X2

)

= Trace
((

U⊤
N X2

)⊤(

U⊤
N X2

))

(2)

The columns of UN span the null space of XT
1 , that is X⊤

1 UN = 0. Since each row of X⊤
1

corresponds to a feature in X1, it holds that ∀fi ∈ X1 ⇒ f⊤i UN = 0. Therefore, UN also spans

the null space of all the features in X1. Taking UN as a projection matrix, U⊤
NX2 effectively

project X2 to the null space of the features in X1. And Trace((U⊤
NX2)

⊤(U⊤
N X2)) measures the

variance of X2 in the null space of X⊤
1 , which is the variance of X2 that cannot be explained

by the features in X1. Therefore, minimizing Expression (1) leads to the selection of the

features that can jointly explain the maximum amount of the data variance.

2.2 Supervised feature selection

When target information is available, Expression (1) can be extended to support supervised

feature selection for both regression and classification.

2.2.1 The regression case

In a regression setting, all responses are numerical. Let Y ∈R
n×t be the response matrix that

contains t response vectors, and X1 and X2 are defined as before. Assume that k features

need to be selected. In a regression setting, feature selection can be achieved by minimizing:

arg min
X1

Trace
(

Y⊤(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

Y
)

(3)

where (I − X1(X
⊤
1 X1)

−1X⊤
1 ) = UN U⊤

N , and U⊤
N Y projects Y to the null space of X⊤

1 . Ex-

pression (3) measures the response variance in the null space of X⊤
1 , which is the variance of

Y that cannot be explained by the features in X1. Clearly, minimizing the expression leads

to selecting features that can jointly explain the maximum amount of the response variance.

2.2.2 The classification case

In a classification setting, one categorical response is specified. Let the response vector be

y ∈ R
n×1 with C different values, yi ∈ {1, . . . ,C}. A response matrix Y ∈ R

n×C can be

created from y using the following equation:

Yi,j =

⎧

⎨

⎩

(
√

1
nj

−
√

nj

n
), yi = j

−
√

nj

n
, yi �= j

(4)

where nj is the number of instances in class j , and yi = j denotes that the ith instance

belongs to the j th class. This Y is first used in Ye (2007) for least square linear discriminant
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analysis (LSLDA). Let Sb be the between-class scatter matrix in linear discriminant analysis

(LDA) (Fisher 1936), which is defined as below:

Sb = 1

n

C
∑

j=1

nj (cj − c)(cj − c)⊤ (5)

where c is the mean of all the instances and cj is the mean of the instances in class j . Sb can

be computed based on Y and X using the following equation:

Sb = X⊤YY⊤X (6)

The following theorem shows that applying this Y in Expression (3) enables feature

selection in a classification setting, which leads to the selection of a set of features that

maximize the discriminant criterion of LDA.

Theorem 1 Assume that features have been centralized to have zero mean and that the

response matrix Y is defined by (4). Minimizing Expression (3) is equivalent to maximizing

the discriminant criterion of LDA,

max Trace
(

S−1
t Sb

)

(7)

where St and Sb are the total and the between-class scatter matrices computed based on X1.

Proof Let Y be defined in (4), and all features have zero mean. It can be verified that the

following two equations hold.

1

n
X⊤X = St = 1

n

n
∑

i=1

(xi − c)(xi − c)⊤ (8)

X⊤YY⊤X = Sb = 1

n

C
∑

j=1

nj (cj − c)(cj − c)⊤ (9)

In the preceding equations, xi is the ith instance. c is the mean of the whole data. Since

features have been centralized to have zero mean, c = 0. The theorem can be proved by

plugging (8) and (9) into Expression (7). �

The discriminant criterion of LDA measures the separability of the instances from dif-

ferent classes. For example, Expression (7) achieves a large value when instances from the

same class are close, while instances from different classes are far away from each other.

When (4) is applied in Expression (3) for feature selection, it leads to the selection of the

features that maximize the separability of the instances from different classes. This is a

desirable property for classifiers to achieve good classification performance.

3 The computation

Given m features, finding the k features minimizing Expressions (1) and (3) is a combi-

natorial optimization problem, which is NP-hard (nondeterministic polynomial-time hard;

Garey and Johnson 1979). The sequential forward selection (SFS) strategy is an efficient

way of generating a suboptimal solution for the problem (Liu and Motoda 1998b). To se-

lect k features, the SFS strategy applies k steps of greedy search and selects one feature in

each step. This section derives closed form solutions for selecting the best feature in each



200 Mach Learn (2013) 92:195–220

SFS step. The closed form solutions significantly improve the efficiency of feature selec-

tion by eliminating the redundant computations in computing feature scores. This section

also presents efficient algorithms to compute solutions for feature selection with different

learning settings in a distributed parallel computing environment.

3.1 Closed form solutions for each SFS step

3.1.1 Solution for unsupervised feature selection

Assume that q features have been selected. Let X1 contain the q selected features, and let

X2 contain the remaining ones. In the q + 1 step, a feature f is selected by

arg min
f

Trace
(

X̂⊤
2

(

I − X̂1

(

X̂⊤
1 X̂1

)−1
X̂⊤

1

)

X̂2

)

(10)

where X̂1 contains f and the q selected features, and X̂2 contains the remaining ones. Com-

puting Expression (10) for all m features can be prohibitively expensive, when m is large.

Let U⊤
N = (I − X1(X

⊤
1 X1)

−1X⊤
1 )

1
2 , Theorem 2 shows that it can be significantly simplified.

Theorem 2 Solving the problem specified in Expression (10) is equivalent to maximizing:

arg max
f

‖X⊤
2 (I − X1(X

⊤
1 X1)

−1X⊤
1 )f‖2

2
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⊤
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1 )
1
2 f‖2

2

(11)

Proof It is easy to verify that

Trace
(

X̂⊤
2 X̂2

)

= Trace
(

X⊤
2 X2

)

− f⊤f (12)

Let X̂1 = (X, f). Since f is in the range (column space) of X̂1, the following equation holds:

Trace
(

f⊤X̂1

(

X̂⊤
1 X̂1

)−1
X̂⊤

1 f
)

= f⊤f (13)

Substituting (12) and (13) into Expression (10) yields

Trace
(
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2
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)
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= Trace
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− Trace
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(14)

Let A = X⊤
1 X, b = X⊤

1 f, and c = f⊤f. Then,

X̂⊤
1 X̂1 = (X1, f)⊤(X1, f) =

(

A b

b⊤ c

)

(15)

Inverting this block matrix (Petersen and Pedersen 2008) yields:

(

X̂⊤
1 X̂1

)−1 =
(

A−1 + 1
w

A−1bb⊤A−1 − 1
w

A−1b

− 1
w

b⊤A−1 1
w

)

(16)

where w = c−b⊤A−1b. Let d = X⊤
2 f, and let h = X⊤

2 X1A−1b. By substituting (16) into (14)

and simplifying, it can be shown that

Trace
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)
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)

− Trace
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The theorem can then be proved by verifying that

d − h = X⊤
2

(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

f (18)

and

w = f⊤
(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

f (19)

�

Assuming that all features have zero mean, ‖X⊤
2 (I − X1(X

⊤
1 X1)

−1X⊤
1 )f‖2

2 in (11) is the

summation of the squares of the covariance between the feature f and all the unselected fea-

tures (columns of X2) in the null space of X⊤
1 . ‖(I − X1(X

⊤
1 X1)

−1X⊤
1 )

1
2 f‖2

2 is the square of

the variance of the feature f in the null space of X⊤
1 , which is used for normalization. Essen-

tially, Expression (11) measures how well the feature f can explain the variance that cannot

be explained by the q selected features. Compared to Expression (10), Expression (11) sin-

gles out the computations that are common for evaluating different features. This makes it

possible to compute them only once in each step and therefore significantly improves the

efficiency for solving the problem.

Let m be the number of all features, n the number of instances, and k the number of

features to select. Also assume that m ≫ k. In a centralized computing environment, the

time complexity for selecting k features by solving Expression (11) is:

O
(

m2
(

n + k2
))

(20)

In the preceding expression, m2n corresponds to the complexity for computing the covari-

ance matrix. And m2k2 corresponds to selecting k features out of m.

3.1.2 Solution for supervised feature selection

The following theorem enables efficient feature selection with Expression (3):

Theorem 3 When the problem specified in Expression (3) is solved by sequential forward

selection, in each step the selected feature f must maximize:

arg max
f

‖Y⊤(I − X1(X
⊤
1 X1)

−1X⊤
1 )f‖2

2

‖(I − X1(X
⊤
1 X1)−1X⊤

1 )
1
2 f‖2

2

(21)

Proof It can be proved in the same way as Theorem 2. �

Let C be the number of columns in Y. In a centralized computing environment, the time

complexity of selecting k features using Expression (21) is

O
(

mk
(

n + k2
))

(22)

To obtain Expression (22), it is assumed that m ≫ k > C.

3.2 Parallel computation through MPP and SMP

The operations for computing Expression (11) and (21) need to be carefully ordered, opti-

mized, and parallelized in a distributed computing environment to ensure the efficiency and

scalability of the proposed algorithm for different learning contexts.
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3.2.1 Massive parallel processing (MPP)

The master-worker/slave architecture based on MPI is used to support massive parallel pro-

cessing. In this architecture, given p + 1 parallel processing units, one unit is used as the

master for control, and the remaining p units is used as workers for computation. In the im-

plementation, all expensive operations for computing feature relevance are properly decom-

posed, so that they can be computed in parallel based on data partitioning. Assume that a data

set has n instances and m features, and p homogeneous computers (the workers) are avail-

able. A data partitioning technique evenly distributes instances to the workers, so that each

worker obtain n
p

instances for computation. It is shown in Chu et al. (2007) that any opera-

tion fitting the Statistical Query model2 can be computed in parallel based on data partition-

ing. Studies also showed that when data size is large enough, parallelization based on data

partitioning can result in linear speedup as computing resources increase (Chu et al. 2007;

Kent and Schabenberger 2011). Good examples on how to parallelize computation based on

data partitioning and the Statistical Query model can be found in Chu et al. (2007).

3.2.2 Symmetric multiprocessing (SMP)

Solving the problems specified in Expression (11) and (21) involves a series of matrix-

vector operations. These operations are packed together and rewritten in the matrix-

matrix operation form. This effectively simplifies programming and allows developers to

use a highly optimized threaded BLAS library to speed up computation on the work-

ers through multi-threading. As an example, in unsupervised feature selection, let tir,j =
f⊤ir,j X1(X

⊤
1 X1)

−1X⊤
1 fir,j , where fir,j is the j -th feature on the r-th worker. (tir,1 , . . . , tir, m

p
) can

be computed as

(tir,1 , . . . , tir, m
p
) = 1⊤(Br ⊗ Er),

where ⊗ denotes element-wise matrix multiplication. Let Xr = (fir,1 , . . . , fir, m
p
) and A =

X⊤
1 X1, it can be verified that Br = X⊤

1 Xr , and Er = A−1Br .

Figure 1 illustrates how feature scores are computed in parallel on three workers for

unsupervised feature selection. Assume that the data set contains n instances and m features.

In Fig. 1(a), the n instances are evenly partitioned to three segments (X1,X2,X3) and each

worker obtains one segment of the data. Given this data distribution, Chu et al. (2007) show

that the covariance matrix C can be computed in parallel on the workers by first computing

a local covariance matrix on each worker, and then aggregating the local covariance matrix

on the master to obtain the global covariance matrix. After C is computed on the master,

it is again evenly partitioned to three segments (C1,C2,C3), and each worker obtains one

segment of the covariance matrix. Ci ∈ R
m
3

,m, i ∈ {1,2,3}, and each row of Ci corresponds

to one of the m features. After C is distributed, feature scores can be computed in parallel

on the three workers in each SFS step. The computation involves partitioning the Ci on

each worker into Br and Dr , constructing A−1 and C2,1, and applying matrix computation to

calculate feature scores on each worker (see Fig. 1(b)). If the workers support SMP, matrix

computation can be done in parallel on each worker through multithreading. Each worker

computes the scores for m
3

features and sends these scores to the master, which selects the

best feature in the current SFS step. Section 3.3.1 provides the details of this process.

2An operation fits the Statistical Query model if it can be decomposed and written in summation forms over

the instances.
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Fig. 1 Feature scores are computed in parallel on three workers for unsupervised feature selection

3.3 The implementations

Algorithms 1 and 2 contain the pseudocode for unsupervised and supervised feature selec-

tion respectively. Both algorithms assume that the data have been properly partitioned and

distributed to p workers. In the algorithms, ⊗ and ⊘ denote element-wise matrix multipli-

cation and division, respectively.

3.3.1 Unsupervised feature selection

For unsupervised feature selection, the covariance among features is used repeatedly in the

evaluation process. Therefore, it is more efficient to compute the whole covariance matrix C

before feature selection. In Algorithm 1, Line 1 computes the covariance matrix, C ∈ R
m×m.

Given X1, . . . ,Xp located on p workers, the covariance matrix can be computed efficiently

using mature distributed matrix-matrix multiplication techniques (Alonso et al. 2009). For

brevity, the detail for the distributed covariance matrix computation is omitted. Assuming

that grid nodes are homogeneous, given p nodes and on each node there is one worker,

C is partitioned to p parts, C = (C1, . . . ,Cp), and Cr ∈ R
m× m

p is stored on the r th node.

Line 2 to Line 5 compute feature scores to select the first feature. Since no feature has been

selected, Expression (11) can be simplified to
‖X⊤fi‖2

2

f⊤
i

fi
= ‖ci‖2

2

ci,i
, where ci is the ith column of

C, and ci,i is the ith diagonal element. Let Cr contain the ir,1, . . . , ir, m
p

columns of C. In

Line 2, vr = (cir,1,ir,1 , . . . , cir, m
p

,ir, m
p
) contains the diagonal elements of C that corresponds to

the variance of features from Fir,1 to Fir, m
p

. The vector sr contains the scores of features from

Fir,1 to Fir, m
p

. After a feature Fi has been selected, Line 8 broadcasts ci , since it is needed

for updating A−1 and C2,1 on each worker. After a feature Fi has been selected, each worker

updates A−1, Br , Dr , vr , and C2,1 in Line 9. Let L contain the index of selected features, Lr

contain the index of unselected features on the r th worker, and Lu contain the index of all

unselected features. Then A−1 = (X⊤
1 X1)

−1 = CL×L is a symmetric matrix that contains the

covariance of the selected features, Br = X1Xr = CL×Lr contains the covariance between

the selected features and the unselected features on the r th worker, Dr = X⊤
2 Xr = CLu×Lr

contains the covariance between all unselected features and the unselected features on the

r th worker, vr contains the variance of the unselected features on the r th worker; and C2,1 =
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Input: X1, . . . ,Xp,∈ R

n
p ×m

; k

Output: L, a list of k selected features

1 Compute the r th section of the covariance matrix, Cr ∈ R
m× m

p , on the r th worker, r = 1, . . . , p;

2 Compute local feature scores on each worker

sr = 1⊤(Cr ⊗ Cr ), sr = sr ⊘ vr ; (23)

3 Workers send sr to the master via MPI_Gather;

4 On the master, select i = arg max(si | si ∈ (s1, . . . , sp));

5 Initialization, L = {Fi}, l = 1;

6 while l < k do

7 The master sends L to all workers via MPI_Bcast;

8 The worker that contains ci , the ith column of C, sends ci to all other workers via

MPI_Bcast;

/* ---------------------------------- */

/* simultaneously, all workers do */

9 Workers construct A−1 ∈ R
l×l , Br ∈ R

l×tr , Dr ∈ R
(m−l)×tr , vr ∈ R

tr×1 , C2,1 ∈
R

(m−l)×l ;

10 Workers compute local feature scores

Er = A−1Br , Hr = C2,1Er , Gr = Dr − Hr , (24)

gr = 1⊤(Gr ⊗ Gr ), wr = vr − 1⊤(Br ⊗ Er ), (25)

sr = gr ⊘ wr (26)

11 Workers send sr to the master via MPI_Gather;

/* ---------------------------------- */

12 On the master, select i = arg max(si | si ∈ (s1, . . . , sp));

13 On the master, L= L∪ {Fi }, l + +;

14 end

Algorithm 1: Distributed parallel unsupervised feature selection

X⊤
2 X1 contains the covariance between all selected and unselected features. The scores of

the features on the r th worker can be computed using the equations specified in Line 10.

The master selects the feature with the maximum score in Line 12 and updates the list L

accordingly in Line 13. The matrix A−1 in Line 9 can be computed by applying rank-one

update using Equation (16).

Let CPU(·) and NET(·) denote the time used for computation and for network commu-

nication, respectively. Assume that a tree-based mechanism is used to develop the collective

operations, such as MPI_Bcast and MPI_Reduce, in the MPI implementation. The time

complexity for computing and distributing the covariance matrix C is

CPU

(

m2n

p
+ m2 logp

)

+ NET
(

m2 logp
)

(27)

After obtained C, time complexity of selecting k features using Algorithm 1 is

CPU

(

m2k2

p

)

+ NET(mk) (28)

Therefore, the total time complexity of Algorithm 1 is

CPU

(

m2(n + k2)

p
+ m2 logp

)

+ NET
(

m2 logp
)

(29)
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3.3.2 Supervised feature selection

Algorithm 2 performs supervised feature selection. For supervised feature selection, only a

small portion of the covariance matrix is needed for feature evaluation. Therefore, the co-

variance matrix is not computed before feature selection. In Algorithm 2, Line 1 to Line 3

compute feature scores to select the first feature. Since no feature has been selected, Expres-

sion (21) simplifies to
‖Y⊤f‖2

2

f⊤f
. Line 1 computes the local feature-response covariance Er and

the local feature variance vr on p workers, which are then sent to the master to compute

the global E and v using MPI_REDUCE(MPI_SUM). E and v can be computed in this way,

since

Y⊤X =
(

Y⊤
1 , . . . ,Y⊤

p

)

⎛

⎜

⎝

X1

...

Xp

⎞

⎟

⎠
=

p
∑

r=1

Y⊤
r Xr (30)

After E and v are obtained, feature scores are computed in Line 3 and a feature is selected in

Line 4. Let Fi be the selected feature, which has been partitioned into p segments and stored

on p nodes. Line 7 to Line 9 compute the covariance between Fi and all other features,

ci = X⊤fi =
(

X⊤
1 , . . . ,X⊤

p

)

⎛

⎜

⎝

f i
1

...

fip

⎞

⎟

⎠
=

p
∑

r=1

ci
r (31)

Line 10 constructs A−1 = (X⊤
1 X1)

−1, CY,1 = Y⊤X1, CY,2 = Y⊤X2, C1,2 = X⊤
1 X2, and v2.

Here v2 contains the variance of the unselected features, and the v obtained in Line 2 can be

used to construct it. The ci obtained in Line 9 can be used to construct A−1 and C1,2 incre-

mentally from their former versions, and the E obtained in Line 2 can be used to construct

CY,1 and CY,2 incrementally from their previous versions, too. After these components are

obtained, Line 11 to Line 14 compute feature scores and select a feature with the highest

score. The process (Line 7 to Line 15) is repeated until k features have been selected.

Because both A−1 and B can be obtained by incrementally updating their previous ver-

sions, the time complexity for selecting k features using Algorithm 2 is

CPU

(

mk

(

n

p
+ k2

))

+ NET
(

m(C + k) logp
)

(32)

In the preceding equation, C is the number of columns in Y.

Expression (29) and Expression (32) suggest that when the number of instances is large

and the network is fast enough, Algorithm 1 and Algorithm 2 can speed up feature selection

linearly as the number of available workers increases.

4 Connections to existing methods

4.1 Unsupervised feature selection

In an unsupervised setting, principal component analysis (PCA) (Jolliffe 2002) also re-

duces dimensionality by preserving data variance. The key difference between PCA and

the proposed method is that PCA is for feature extraction (Liu and Motoda 1998a;

Lee and Seung 1999; Saul et al. 2006), which reduce dimensionality via generating a small

set of new features by linearly combining the original features, while the proposed method
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Input: X1, . . . ,Xp ∈R

n
p
×m

, Y1, . . . ,Yp ∈R

n
p

×C
, k

Output: L, a list of k selected features

1 On each worker, compute Er ∈R
C×m, vr ∈ R

1×m:

Er = Y⊤
r Xr , vr = 1⊤(Xr ⊗ Xr ); (33)

2 Send Er and vr to the master via MPI_Reduce with MPI_SUM option. On the master, obtain E

and v:

E =
p

∑

r=1

Er , v =
p

∑

r=1

vr ; (34)

3 On the master, compute feature scores

s = 1⊤(E ⊗ E), s = s ⊘ v; (35)

4 On the master, select i = arg max(si | si ∈ s);

5 Initialization, L = {Fi}, l = 1;

6 while l < k do

7 The master sends L to all workers via MPI_Bcast;

8 Workers compute ci
r = X⊤

r fir , ci
r ∈R

m×1;

9 Workers send ci
r to the master via MPI_Reduce with MPI_SUM option. The master obtains

ci ,

ci =
p

∑

r=1

ci
r , ci ∈R

m×1; (36)

10 On the master, construct

A−1 ∈R
l×l , CY,1 ∈ R

C×l , C1,2 ∈R
l×(m−l),

CY,2 ∈ R
C×(m−l), v2 ∈ R

1×(m=1);

11 On the master, compute

B = A−1C1,2, B ∈R
l×(m−l); (37)

12 On the master, compute

H = CY,1B, G = CY,2 − H, g = 1⊤(G ⊗ G); (38)

13 On the master, compute

w = v2 − 1⊤(C1,2 ⊗ B), s = g ⊘ w; (39)

14 On the master, select i = arg max(si | si ∈ s);

15 On the master, L= L∪ {Fi }, l + +;

16 end

Algorithm 2: Distributed parallel supervised feature selection

is for feature selection, which reduce dimensionality by selecting a small set of the origi-

nal features. The features returned by the proposed method are the original ones. And this

is very important in applications where retaining the original features is useful for model

exploration or interpretation (for example, in genetic analysis and text mining).

Sparse principal component analysis (SPCA) (Zou et al. 2004; d’Aspremont et al. 2007;

Zhang and d’ Aspremont 2011) has been studied in recent years to improve the interpretabil-

ity of PCA. The principal components generated by SPCA are sparse, i.e., only a few fea-
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tures are assigned nonzero weights in each of the principal components computed by SPCA.

However, different sparse principal components may have different sparsity patterns. When

multiple sparse principal components are considered together, there may still be many fea-

tures assigned nonzero weights. And it is not straightforward to precisely control the number

of selected features in SPCA. Compared to SPCA, the proposed method can precisely con-

trol it. Also, since the optimization technique utilized in the proposed method is simple, it is

easy to distribute and parallelize it for achieving better efficiency and scalability.

4.2 Supervised feature selection, regression

In a regression setting, let f be a feature vector, it can be shown that

f⊤
(

I − X1

(

X⊤
1 X1

)−1
X⊤

1

)

Y = f⊤(Y − X1W1) (40)

where W1 = (X⊤
1 X1)

−1X⊤
1 Y is the solution of a least squares regression based on X1. Let R

be the residual, R = Y − X1W1. Expression (21) can be simplified to

arg max
f

‖f⊤R‖2
2

‖(I − X1(X
⊤
1 X1)−1X⊤

1 )
1
2 f‖2

2

(41)

Therefore, in each step the proposed method selects the feature that has the largest normal-

ized correlation with the current residual. This shows that in a regression setting the method

forms a special type of stepwise regression with Expression (21) as the selection criterion.

4.3 Supervised feature selection, classification

When used in a classification setting, the proposed method selects features by maximizing

the discriminant criterion of LDA. LDA also reduces dimensionality. As for PCA, the key

difference is that LDA generates a small set of new features, while the proposed method

selects a small set of the original features.

5 Automatically determine k

In Algorithms 1 and 2, k is the number of features to select. However, in real applications

this number might not always be known. Determine how many features to select is an im-

portant research problem in feature selection. In a supervised learning setting, some very

effective model selection techniques can be conveniently used in the proposed algorithm to

automatically determine the number of features to select. These techniques include Akaike’s

information criterion (AIC), small-sample-size corrected version of AIC (AICC) (Sugiura

1976), Bayesian information criterion (BIC), and corrected Hannan-Quinn information cri-

terion (HQC). Assume that the model errors are normally and independently distributed.

Also assume that when k features are selected, the sum of squared errors of the model is

ssek . Let C be the number of the columns in the response matrix Y. Al-Subaihi (2002) shows

that for multivariate linear regression the, AIC, AICC, BIC, and HQC can be computed as

AICk = log(ssek) + 2kC + (C + 1)C

n
(42)

AICCk = log(ssek) + (n + k)C

n − k − C − 1
(43)
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BICk = log(ssek) + k log(n)

n
(44)

HQCk = log(ssek) + 2 log(log(n))kC

n − k − C − 1
(45)

The preceding equations suggest that computing ssek plays a central role in estimating

AIC, AICC, BIC and HQC. The following theorem shows that ssek can be computed con-

veniently by using the intermediate result that is generated by the proposed algorithm.

Theorem 4 Let Xk be the data set that contain the k selected features. Also, let ssek be the

sum of squared errors that are achieved by applying regression on Xk . Assume that in step

k + 1, the proposed algorithm selects f∗ and its feature score is s∗
k+1. The sum of squared

errors achieved by applying regression on the data set (Xk, f∗) can be computed as

ssek+1 = ssek − s∗
k+1 (46)

s.t. s∗
k+1 = arg max

f∗

‖Y⊤(I − X1(X
⊤
1 X1)

−1X⊤
1 )f∗‖2

2

‖(I − X1(X
⊤
1 X1)−1X⊤

1 )
1
2 f∗‖2

2

Proof Let Y be the target matrix. The closed form solution of a linear least square regression

is Wk = (XkX⊤
k )−1X⊤

k Y, and the residual matrix is R = Y − XkWk . The sum of squared

errors of applying regression on Xk can be computed as

ssek = Trace
(

R⊤R
)

= Trace
((

Y − Xk

(

X⊤
k Xk

)−1
X⊤

k Y
)⊤(

Y − Xk

(

X⊤
k Xk

)−1
X⊤

k Y
))

= Trace
(

Y⊤(

I − Xk

(

X⊤
k Xk

)−1
X⊤

k

)

Y
)

(47)

Similar to (17), it can be verified that

ssek − ssek+1 = s∗
k+1 = ‖Y⊤(I − Xk(X

⊤
k Xk)

−1X⊤
k )f∗‖2

2

‖(I − Xk(X
⊤
k Xk)−1X⊤

k )
1
2 f∗‖2

2

(48)

When no feature is selected, it is easy to verify that sse0 = Trace(Y⊤Y). �

The preceding theorem shows that in each SFS step the sum of squared errors of the

current step can be computed incrementally by deducting the score of the selected feature

from the sum of squared errors of the previous step. The score of features is an intermedi-

ate result for feature selection and has already been computed by the proposed algorithm.

Therefore, computing the sum of squared errors in each SFS step does not incur additional

computational complexity.

6 Experimental study

The proposed method was implemented as the HPREDUCE procedure in the SAS High-

Performance Analytics server. This section evaluates its performance for both supervised

and unsupervised feature selection.
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Table 1 Summary of the benchmark data sets

Data set Features Instances Classes Data set Features Instances Classes

RELATH 4,322 1,427 2 ORL 10,000 100 10

PCMAC 3,289 1,943 2 CRIME 147 2,215 –

AR 2,400 130 10 SLICELOC 386 53,500 –

PIE 2,400 210 10 EPSILON 2,000 900,000 2

PIX 10,000 100 10 OCR 1,156 5,670,000 2

6.1 Experiment setup

In the experiment, 12 representative feature selection algorithms are used for compari-

son. For unsupervised feature selection, six algorithms are selected as baselines: Lapla-

cian score (He et al. 2005), SPEC-1 and SPEC-3 (Zhao and Liu 2007), trace-ratio (Nie

et al. 2008), HSIC (Song et al. 2007), and SPFS (Zhao et al. 2011). For supervised fea-

ture selection, in the classification setting, seven algorithms are compared: ReliefF (Sikonja

and Kononenko 2003), Fisher Score (Duda et al. 2001), trace-ratio, HSIC, mRMR (Ding

and Peng 2003), AROM-SVM (Weston et al. 2003), and SPFS. In the regression setting,

LARS (Efron et al. 2004), and LASSO (Tibshirani 1994) are compared. Among the 12

baseline feature selection algorithms, AROM-SVM, mRMR, SPFS, LARS, and LASSO

can handle redundant features.

Ten benchmark data sets are used in the experiment. Four are face image data: AR,3 PIE,4

PIX,5 and ORL6 (images from 10 persons are used). Two are text data extracted from the 20-

newsgroups data:7 RELATH (BASEBALL vs. HOCKEY) and PCMAC (PC vs. MAC). Two

are UCI data: CRIME (Communities and Crime Unnormalized) and SLICELOC (relative

location of CT slices on axial axis).8 And two are large-scale data sets from the Pascal large

scale learning challenge9 for performance tests. Compared to the u10mf5k and s25mf5k data

sets used in Zhao et al. (2012), the EPSILON and OCR data sets are dense, therefore their

size (#features×#instances) provides a more precise view on the amount of computation

involved in the feature selection process.

Among the ten data sets used in the experiment, the first eight data sets are small-scale.

They are used to compare the performance of the HPREDUCE procedure to existing feature

selection algorithms, since the implementations of the existing algorithms cannot handle

large scale problems. The last two data sets are large-scale and are used to evaluate the

scalability of the HPREDUCE procedure in a distributed computing environment. Among

the eight small-scale data sets used for comparison, the first six data sets are used to test

unsupervised feature selection and supervised feature selection for classification. And the

seventh and the eighth data sets are used to test feature selection for regression. Details on

the ten data sets can be found in Table 1.

3http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.

4http://peipa.essex.ac.uk/ipa/pix/faces/manchester/.

5http://www.ri.cmu.edu/projects/project_418.html.

6http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

7http://qwone.com/~jason/20Newsgroups/.

8http://archive.ics.uci.edu/ml/index.html.

9http://largescale.ml.tu-berlin.de.

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://peipa.essex.ac.uk/ipa/pix/faces/manchester/
http://www.ri.cmu.edu/projects/project_418.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://qwone.com/~jason/20Newsgroups/
http://archive.ics.uci.edu/ml/index.html
http://largescale.ml.tu-berlin.de
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Assume that L is the set of selected features and that XL is the data set that contains only

features in L. For the classification setting, algorithms are compared on (1) classification

accuracy. and (2) redundancy rate which is defined as:

RED(L) = 1

m(m − 1)

∑

Fi ,Fj ∈L,i>j

|ρi,j | (49)

where |ρi,j | returns the absolute value of the correlation between features Fi and Fj . Equa-

tion (49) assesses the average correlation among all feature pairs. A large value indicates

that features in L are strongly correlated and thus redundant features might exist. In the

regression setting, algorithms are compared on (1) rooted mean square error (RMSE) and

(2) redundancy rate. For unsupervised feature selection, algorithms are compared on: (1) re-

dundancy rate and (2) percentage of the total variance explained by features in L,

PCTVAR(L) = Trace(X⊤XL(X⊤
L

XL)−1X⊤
L

X)

Trace(X⊤X)
(50)

For each data set, half of the instances are randomly sampled for training and the remain-

ing are used for test. The process is repeated 20 times, which results in 20 different partitions

of the data set. Each feature selection algorithm is used to select 5,10, . . . ,100 features on

each partition. The obtained 20 feature subsets are then evaluated using a criterion C. By

doing this, a score matrix S ∈ R
20×20 is generated for each algorithm, where each row of S

corresponds to a data partition and each column corresponds to a size of the feature sub-

set. The average score of C is obtained by s = 1⊤S1
20×20

. To calculate classification accuracy, a

linear support vector machine (SVM) is used. The parameters of SVM and all feature selec-

tion algorithms are tuned via 5 fold cross-validation on the training data. Let s = 1⊤S
20

. The

elements of s corresponds to the average score achieved when different numbers of features

are selected. The paired Student’s t test is applied to compare the s achieved by different

algorithms to s∗, the best s measured by 1⊤s. And the threshold for rejecting the null hy-

pothesis is set to 0.05. Rejecting the null hypothesis means that s and s∗ are significantly

different, and suggests that the performance of the algorithm is consistently different to the

best algorithm when different numbers of features are selected.

6.2 Study of unsupervised cases

Percentage of explained variance Figure 2 shows the percentage of explained variance of

algorithms when different numbers of features are selected. Table 2 presents the average

results which are computed by averaging the results obtained when different numbers of

features are selected. The results show that compared with the baselines, the HPREDUCE

procedure achieved the best performance on all six data sets. This is to be expected, since

the HPREDUCE procedure is designed to preserve data variance. The result demonstrates

the strong capability of the proposed algorithm for preserving variance in feature selection.

It also suggests that using Expression (11) with the sequential forward selection strategy is

effective for minimizing Expression (1).

Redundancy rate Table 3 presents the average redundancy rates achieved by algorithms,

which is computed by averaging the results obtained when different numbers of features

are selected. It shows that SPFS and the HPREDUCE procedure achieved much better re-

sults than other algorithms. This is also to be expected, since they are designed to handle

redundant features, while the others are not.
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Fig. 2 Unsupervised feature selection: explained variance achieved by algorithms when different numbers

of features are selected. In the plots, the x-axis corresponds to the number of selected features, and the y-axis

corresponds to the explained variance (higher is better)
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Table 2 Unsupervised feature selection: average explained variance achieved by algorithms (higher is bet-

ter). The number in parentheses is the p-value that is computed using the Student’s t -test by comparing each

algorithm to the one with the highest explained variance. Bold font indicates the explained variance that is

the highest in each column or is not significantly different to the highest one according to p-value > 0.05

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.16 (0.0) 0.21 (0.0) 0.74 (0.0) 0.86 (0.0) 0.72 (0.0) 0.65 (0.0) 0.557 0

SPEC-1 0.16 (0.0) 0.21 (0.0) 0.73 (0.0) 0.85 (0.0) 0.72 (0.0) 0.65 (0.0) 0.553 0

SPEC-3 0.16 (0.0) 0.21 (0.0) 0.76 (0.0) 0.88 (0.0) 0.74 (0.0) 0.71 (0.0) 0.577 0

Trace-ratio 0.18 (0.0) 0.23 (0.0) 0.73 (0.0) 0.86 (0.0) 0.72 (0.0) 0.65 (0.0) 0.562 0

HSIC 0.18 (0.0) 0.22 (0.0) 0.76 (0.0) 0.85 (0.0) 0.72 (0.0) 0.65 (0.0) 0.563 0

SPFS 0.17 (0.0) 0.22 (0.0) 0.84 (.01) 0.93 (0.0) 0.84 (.01) 0.77 (.01) 0.628 0

HPREDUCE 0.27 0.34 0.91 0.96 0.90 0.84 0.703 6

Table 3 Unsupervised feature selection: redundancy rates achieved by algorithms (lower is better). The

number in parentheses is the p-value that is computed using the Student’s t -test by comparing each algorithm

to the one with the lowest redundancy rate. Bold font indicates the redundancy rates that are the lowest in

each column or are not significant different from the lowest one according to p-value > 0.05

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

Laplacian 0.23 (0.0) 0.28 (0.0) 0.93 (0.0) 0.85 (0.0) 0.82 (0.0) 0.86 (0.0) 0.662 0

SPEC-1 0.23 (0.0) 0.28 (0.0) 0.93 (0.0) 0.88 (0.0) 0.81 (0.0) 0.87 (0.0) 0.667 0

SPEC-3 0.28 (0.0) 0.37 (0.0) 0.93 (0.0) 0.80 (0.0) 0.77 (0.0) 0.73 (0.0) 0.647 0

Trace-ratio 0.13 (0.0) 0.21 (0.0) 0.93 (0.0) 0.88 (0.0) 0.81 (0.0) 0.87 (0.0) 0.638 0

HSIC 0.11 (0.0) 0.21 (0.0) 0.93 (0.0) 0.83 (0.0) 0.80 (0.0) 0.87 (0.0) 0.625 0

SPFS 0.08 (0.0) 0.11 (0.0) 0.36 (0.0) 0.33 0.25 0.27 (0.0) 0.233 2

HPREDUCE 0.02 0.03 0.25 0.35 (0.0) 0.28 (0.0) 0.23 0.193 4

6.3 Study of supervised cases

Classification, accuracy Figure 3 shows the accuracy achieved by SVM using different

numbers of features selected by algorithms. Table 4 presents the average results which are

computed by averaging the accuracy obtained when different numbers of features are se-

lected. The last column of Table 4 shows that the HPREDUCE procedure achieved the best

results on five data sets, which is followed by SPFS (three data sets) and Arom-SVM (two

data sets). According to the average accuracy, the HPREDUCE procedure also performed

the best (0.880), followed by SPFS (0.869) and HSIC (0.813). This result demonstrates the

good performance of the HPREDUCE procedure in the classification setting.

Classification, redundancy rate The average redundancy rates achieved by algorithms are

presented in Table 5. Among the eight algorithms in the table, mRMR, Arom-SVM, SPFS,

and the HPREDUCE procedure are designed to handle redundant features. In the experi-

ment, on average these algorithms achieved redundancy rates at the level of 0.2. In con-

trast, the other four algorithms had much higher redundancy rates. The result shows that the

HPREDUCE procedure is effective in handling redundant features.

Regression In the regression setting, the HPREDUCE procedure is compared to LARS

and LASSO. The average RMSE and average redundancy rate results are presented in Ta-
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Fig. 3 Supervised feature selection for classification: accuracy achieved by algorithms when different num-

bers of features are selected. In the plots, the x-axis corresponds to the number of selected features, and the

y-axis corresponds to the accuracy ( higher is better)
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Table 4 Supervised feature selection for classification: average accuracy achieved by algorithms (higher is

better). The number in parentheses is the p-value that is computed using the Student’s t -test by comparing

each algorithm to the one with the highest average accuracy. Bold font indicates the accuracy that is the

highest in each column or is not significantly different from the highest one according to p-value > 0.05

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.70 (.00) 0.66 (.00) 0.92 (.00) 0.92 (.00) 0.76 (.00) 0.78 (.00) 0.789 0

Fisher Score 0.86 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1

Trace-ratio 0.86 0.73 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.73 (.00) 0.810 1

HSIC 0.85 (.14) 0.75 (.00) 0.92 (.00) 0.90 (.01) 0.72 (.00) 0.74 (.00) 0.813 1

mRMR 0.84 (.00) 0.79 (.81) 0.85 (.00) 0.92 (.02) 0.64 (.00) 0.68 (.00) 0.787 1

Arom-SVM 0.85 (.14) 0.75 (.00) 0.80 (.00) 0.90 (.09) 0.55 (.00) 0.71 (.00) 0.761 2

SPFS 0.85 (.32) 0.78 (.02) 0.95 (.02) 0.94 (.14) 0.80 (.13) 0.89 (.00) 0.869 3

HPREDUCE 0.84 (.00) 0.80 0.96 0.95 0.81 0.92 0.880 5

Table 5 Supervised feature selection for classification: redundancy rates achieved by algorithms (lower is

better). The number in parentheses is the p-value that is computed using the Student’s t -test by comparing

each algorithm to the one with the lowest redundancy rate. Bold font indicates redundancy rates that are the

lowest in each column or are not significantly different from the lowest one according to p-value > 0.05

Algorithm PCMAC RELATH PIX PIE AR ORL AVE Best

ReliefF 0.10 (.00) 0.09 (.00) 0.78 (.00) 0.38 (.00) 0.76 (.00) 0.89 (.00) 0.501 0

Fisher Score 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0

Trace-ratio 0.07 (.00) 0.15 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.481 0

HSIC 0.13 (.00) 0.10 (.00) 0.83 (.00) 0.40 (.00) 0.67 (.00) 0.77 (.00) 0.483 0

mRMR 0.04 0.04 (.00) 0.33 (.00) 0.26 (.46) 0.25 0.25 0.194 4

Arom-SVM 0.05 (.00) 0.07 (.00) 0.26 0.29 (.02) 0.25 (.22) 0.25 (.35) 0.196 3

SPFS 0.11 (.00) 0.07 (.00) 0.45 (.00) 0.25 0.31 (.03) 0.36 (.00) 0.260 1

HPREDUCE 0.05 (.00) 0.03 0.32 (.00) 0.31 (.00) 0.31 (.00) 0.27 (.00) 0.214 1

ble 6. The results suggest that in terms of RMSE and redundancy rate, the performance

of the three algorithms are largely comparable on the benchmark data sets. Compared to

LARS and LASSO, the HPREDUCE procedure is a general method for both supervised and

unsupervised feature selection, while LARS and LASSO are for supervised regression only.

6.4 Study of model selection criteria

Table 7 shows the results of using different model selection criteria to determine how many

features to select. In the experiment, PCMAC and RELATHE are used for classification,

and CRIME and SLICELOC are used for regression. The four image data sets are not used,

because compared to the number of features their sample sizes are too small for the four

model selection criteria to provide reliable estimation10 (Yang and Barron 1998; Casella

et al. 2009). For each data set, the four model selection criteria are used to determine the

number of features to select on each of its 20 partitions. The selected features are then used

10As a distributed parallel feature selection algorithm, the HPREDUCE procedure is usually used to handle

large scale problems with huge sample size.
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Table 6 Supervised feature selection for regression, RMSE (col 2–col 4) and redundancy rate (column 5–

column 7) achieved by algorithms (both lower is better). The number in parentheses is the p-value that

computed using the Student’s t -test by comparing each algorithm to the one with the lowest RMSE or re-

dundancy rate. Bold font indicates the RMSE or redundancy rates that are the lowest in each row or are not

significantly different from the one according to p-value > 0.05

DATA RMSE Redundancy rate

LARS LASSO HPREDUCE LARS LASSO HPREDUCE

CRIME 1.91e–2 1.91e–2 1.94e–2 (.00) 0.23 (0.46) 0.23 (0.46) 0.22

SLICELOC 2.9e–3 (.00) 2.9e–3 (.00) 2.6e–3 0.19 (.00) 0.19 (.00) 0.14

Average 1.10e–2 1.10e–2 1.10e–2 0.210 0.210 0.180

Best 1 1 1 1 1 2

Table 7 Model selection, automatically determine the number of features to select. In the classification

case (PCMAC and RELATHE) the performance measurement is classification accuracy (higher is better).

In the regression case (CRIME and SLICELOC) the performance measurement is RMSE (lower is better).

The number in parentheses is the averaged number of selected features

DATA AIC AICC BIC HQC

PCMAC 0.81 (400) 0.82 (203) 0.83 (197) 0.87 (52)

RELATHE 0.82 (400) 0.81 (230) 0.82 (399) 0.81 (71)

CRIME 1.94e–2 (50) 1.94e–2 (48) 1.91e–2 (12) 1.91e–2 (24)

SLICELOC 2.30e–3 (240) 2.30e–3 (240) 2.31e–3 (167) 2.30e–3 (206)

in SVM and linear regression for computing classification accuracy and RMSE, respectively.

The obtained results are averaged and reported in Table 7 .

AIC, AICC, BIC, and HQC all aim to minimize the combination of a goodness-of-fit

measurement and a model complexity measurement. Compared to BIC, AIC tends to fa-

vor more complicated models (Wagenmakers and Farrel 2004). In the experiment, AIC se-

lected more features on all benchmark data sets. In contrast, BIC selected fewer features but

achieved higher accuracy and lower RMSE. AICC is the corrected AIC, which improves

AIC when the sample size is small compared to the number of features. For PCMAC and

RELATHE which contain more features than instances, AICC selected fewer features than

AIC while achieved comparable accuracy and RMSE. For CRIME and SLICELOC which

contain more instances than features, AICC and AIC act the same. HQC is similar to BIC,

but its model complexity measurement also considers C, the number of columns in Y.

Table 7 shows that in terms of classification accuracy and RMSE, HQC performed best

on three of the four benchmark data sets. In terms of the number of selected features, both

HQC and BIC selected the smallest sets on two of the four benchmark data sets. The results

suggest that when used in the HPREDUCE procedure, HQC and BIC might be good model

selection criteria for determining how many features to select. In practice, it can also be

helpful to use multiple model selection criteria to select multiple feature sets and use domain

knowledge to determine which set serves the analysis better.

6.5 Study of scalability

To evaluate the scalability of the HPREDUCE procedure, it was tested in a distributed com-

puting environment. The cluster has 208 blades (nodes), and each blade has 16 GB memory
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Table 8 The large-scale data sets used in the experiment

Data set Features Instances Classes SAS Data File Size

EPSILON-whole 2000 900,000 – 13.7 GB

EPSILON-labeled 2000 500,000 2 7.6 GB

OCR-whole 1156 5,670,000 – 49.4 GB

OCR-labeled 1156 3,500,000 2 30.5 GB

and two Intel L5420 Xeon CPUs (2.5 GHz). Since each L5420 CPU has 4 cores, there are a

total of 8 cores on each node for processing concurrent jobs. In the experiment, there is one

worker on each node, and each worker runs with 8 threads.

The EPSILON and the OCR data are downloaded from the website of the Pascal large

scale learning challenge. The obtained data are converted and stored in SAS data format.

Each dataset contains three parts: the training part, the validation part, and the test part.

Only the training part of each data contains label information. The EPSILON-labeled and

the OCR-labeled data sets are created from the training part of the EPSILON and the OCR

data, respectively. And they are used for testing supervised feature selection. The EPSILON-

whole and the OCR-whole data sets are created by combining the training, the validation,

and the testing parts of the EPSILON and the OCR data, respectively. And they are used for

testing unsupervised feature selection. Details on the four data sets can be found in Table 8.

In the experiment, different numbers of nodes are used for selecting 200 features from the

input data. Compared to the OCR data, the EPSILON data are smaller. Therefore, for the

EPSILON data the maximum number of nodes is set to 50 (50 × 8 = 400 cores), while for

the OCR data, this number is increased to 200 (200 × 8 = 1600 cores).

The running time11 and the speedup results for both supervised and unsupervised feature

selection on the EPSILON data as well as the OCR data are presented in Figs. 4 and 5,

respectively. It shows that the HPREDUCE procedure generally performs faster when more

computing resource is available. For example, on the OCR-whole data set, when only 10

worker nodes are used for computation in the unsupervised case, the HPREDUCE pro-

cedure finishes in 629.0 seconds. When 200 worker nodes are used, it finishes in just

38.1 seconds. On the EPSILON-labeled data set, when only 5 worker nodes are used for

computation in the supervised case, the HPREDUCE procedure finishes in 370.2 seconds.

When 50 worker nodes are used, it finishes in just 42.4 seconds. In general, for both su-

pervised and unsupervised feature selection, the speedup of the HPREDUCE procedure

is high. On the EPSILON data sets, when the number of worker nodes is less than 15,

the speedup ratio (slope of the line) is close to 1. As the number of worker nodes in-

creases, the speedup ratio decreases gradually. And when the number of worker nodes

reaches 50, the speedup ratio is still about 0.9. Similarly, on the OCR data sets, when

the number of worker nodes is less than 60, the speedup ratio of the HPREDUCE proce-

dure is close to 1. As the number of worker nodes increases, the speedup ratio decreases

gradually. When the number of worker nodes reaches 150, the speedup ratio is still about

0.9. And when the number of worker nodes is 200, the speedup ratio is about 0.83. For a

fixed size problem, when more nodes are used, the warm-up and the communication costs

11The running time does not include the time for loading a data set and sending it to the cluster system. In

the experiment, with an Ethernet of a link speed of 1 Gpbs, it takes about 130 seconds to load and send the

EPSILON-whole data set. And for the OCR-whole data set, it is about 470 seconds.
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Fig. 4 EPSILON data sets: runtime and speedup of the HPREDUCE procedure in the unsupervised and

the supervised settings when different numbers of workers are used for feature selection. The result for the

unsupervised setting is obtained using the EPSILON-whole data set, and the result for the supervised setting

is obtained using the EPSILON-labeled data set

start to offset the increase of computing resources, which is inevitable in distributed com-

puting. This explains why the speedup ratio decreases when more worker nodes are used

for computation. The results clearly demonstrate the scalability of the HPREDUCE proce-

dure.

7 Conclusions

This paper presents a distributed parallel feature selection algorithm based on maximum

variance preservation. The proposed algorithm forms a unified approach for feature selec-

tion. By defining the preserving target in different ways, the algorithm can achieve both

supervised and unsupervised feature selection. And for supervised feature selection, it also

supports both regression and classification. The algorithm performs feature selection by

evaluating feature sets and can therefore handle redundant features. It can also automatically
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Fig. 5 OCR data sets: runtime and speedup of the HPREDUCE procedure in the unsupervised and the

supervised settings when different numbers of workers are used for feature selection. The result for the unsu-

pervised setting is obtained using the OCR-whole data set, and the result for the supervised setting is obtained

using the OCR-labeled data set

determine the number of features to selected using effective model selection techniques for

supervised learning. The computation of the algorithm is optimized and parallelized to sup-

port both MPP an SMP. As illustrated by an extensive experimental study, the proposed algo-

rithm can effectively remove redundant features and achieve superior performance for both

supervised and unsupervised feature selection. The study also shows that given a large-scale

data set, the proposed algorithm can significantly improve the efficiency of feature selec-

tion through distributed parallel computing. Our ongoing work will extend the HPREDUCE

procedure to also support semi-supervised feature selection and sparse feature extraction,

such as sparse PCA and sparse LDA. We will also study how to automatically determine the

number of features to select for unsupervised learning.
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