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ABSTRACT Despite intensive study for 50 years, the biochemical and genetic links

between lysine metabolism and central metabolism in Pseudomonas putida remain

unresolved. To establish these biochemical links, we leveraged random barcode

transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of

thousands of genes in parallel, to identify multiple novel enzymes in both L- and

D-lysine metabolism. We first describe three pathway enzymes that catabolize L-2-

aminoadipate (L-2AA) to 2-ketoglutarate (2KG), connecting D-lysine to the TCA cycle.

One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, repre-

senting a family with no previously described biological function. Our work also

identified the recently described coenzyme A (CoA)-independent route of L-lysine

degradation that results in metabolization to succinate. We expanded on previous

findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its

2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expres-

sion of catabolic genes is highly sensitive to the presence of particular pathway me-

tabolites, implying intensive local and global regulation. This work demonstrated the

utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied

bacteria, as well as its utility a powerful tool for validating previous research.

IMPORTANCE P. putida lysine metabolism can produce multiple commodity chemi-

cals, conferring great biotechnological value. Despite much research, the connection

of lysine catabolism to central metabolism in P. putida remained undefined. Here,

we used random barcode transposon sequencing to fill the gaps of lysine metabo-

lism in P. putida. We describe a route of 2-oxoadipate (2OA) catabolism, which uti-

lizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its

prevalence in many domains of life, DUF1338-containing proteins have had no

known biochemical function. We demonstrate that PP_5260 is a metalloenzyme

which catalyzes an unusual route of decarboxylation of 2OA to D-2-hydroxyglutarate

(D-2HG). Our screen also identified a recently described novel glutarate metabolic

pathway. We validate previous results and expand the understanding of glutarate
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hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our

work demonstrated that biological novelty can be rapidly identified using unbiased

experimental genetics and that RB-TnSeq can be used to rapidly validate previous

results.

KEYWORDS biochemistry, biotechnology, genomics, metabolism, transposons

P
seudomonas putida is a ubiquitous saprophytic soil bacterium and is a model

organism for bioremediation (1). Interest in utilizing P. putida KT2440 as a chassis

organism for metabolic engineering has recently surged due to the existence of

well-established genetic tools and to its robust metabolism of aromatic compounds

that resemble lignin hydrolysis products (2–4). As lignin valorization remains essential

for the economic feasibility of cellulosic bioproducts, a nuanced and predictable

understanding of P. putida metabolism is highly desirable (5).

Although its aromatic metabolism has garnered much attention, the lysine metab-

olism of P. putida has also been rigorously studied for over 50 years (6). An under-

standing of lysine metabolism has had biotechnological value, as it has been used to

produce glutarate and 5-aminovalerate (5AVA) as well as valerolactam in P. putida and

in the other bacteria (7–10). However, our current understanding of lysine catabolism

remains incomplete. In particular, the connection between D-lysine metabolism and

central metabolism in P. putida is unclear and has not been fully characterized.

P. putida employs bifurcating pathways to catabolize lysine, separately metabolizing

the L-isomers and D-isomers (see Fig. S1a in the supplemental material) (11). The L-lysine

degradation pathway proceeds to glutarate, which can then be degraded either to

acetyl-coenzyme A (acetyl-CoA) via a glutaryl-CoA intermediate or to succinate without

a CoA-bound intermediate (Fig. S1a) (9). Characterization of the final steps of D-lysine

catabolism remains more elusive. The initial steps of D-lysine catabolism are well

described, but the genetic basis stops at 2-aminoadipate (2AA) (12). Furthermore, 13C

labeling experiments performed by Revelles et al. demonstrated a putative metabolic

connection between the D- and L-lysine pathways at 2AA (11). The subsequent steps to

central carbon metabolism have never been fully validated. (6, 11–13). Given the

importance of lysine metabolism and the recent availability of high-throughput genetic

tools, we sought to identify the steps in D-lysine metabolism that have remained

missing despite 50 years of research.

Random barcode transposon sequencing (RB-TnSeq) is a genome-wide approach

that measures the importance of each gene to growth (or fitness) in a massively parallel

assay (14). RB-TnSeq can identify phenotypes for thousands of previously uncharacter-

ized genes (14, 15), including the levulinic acid degradation pathway in P. putida

KT2440 (16). In this study, we applied RB-TnSeq to uncover multiple novel genes

implicated in L- and D-lysine metabolism in P. putida. We first describe a three-enzyme

route connecting L-2AA to 2-ketoglutarate (2KG) (Fig. S1B). Within this pathway, D-lysine

metabolism connects to central metabolism through a 2-hydroxyglutarate (2HG) inter-

mediate, which is directly produced from 2-oxoadipate (2OA) in a reaction catalyzed by

a DUF1338-containing protein. The function of this protein family, widely distributed

across many domains of life, was previously unknown. Subsequently, we further

characterize the glutarate hydroxylase CsiD by demonstrating its 2-oxoacid promiscuity

during the hydroxylation of glutarate. Finally, we show that the expression levels of all

of the newly discovered enzymes change significantly in response to specific metab-

olites within the two catabolic pathways.

RESULTS

Identification of lysine catabolism genes via RB-TnSeq. To identify mutants

defective in lysine catabolism in P. putida KT2440, an RB-TnSeq library representing this

bacterium (16) was grown on minimal medium supplemented with either D-lysine or

L-lysine as the sole carbon source. To evaluate whether D-lysine metabolism was

required for the metabolism of other downstream metabolites of L-lysine, the library
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was also grown on 5AVA. As a control, we also grew the library on glucose. Fitness was

calculated as the log2 ratio of the strain and gene abundances at the end of selective

growth to the initial abundance (14). Fitness profiling revealed 39 genes with significant

fitness values below �2 for 5AVA, D-lysine, or L-lysine and no lower than �0.5 for

glucose (Fig. 1A; see also Table S1 in the supplemental material). Within this set, 10 of

the 12 known lysine degradation genes were identified, with the exceptions corre-

sponding to the genes encoding two enzymes in the CoA-dependent route of glutarate

degradation (i.e., genes gcdH and gcdG), which both had significant fitness values (t

below �4) but with fitness values greater than �2. Instead, we identified the

recently characterized genes involved in the CoA-independent pathway (namely,

csiD and lghO) (9).

The fitness data corroborated previous work showing that a functional D-lysine

pathway is required for L-lysine catabolism (6, 11). None of the known L-lysine catabolic

genes showed fitness defects for growth on D-lysine, but transposon insertions in all

previously identified D-lysine genes showed negative fitness scores under conditions of

growth on L-lysine (Fig. 1B). No known D-lysine catabolic enzymes showed fitness

defects when grown on 5AVA, suggesting that the D-lysine dependence of L-lysine

catabolism may occur only for early catabolic steps (Fig. 1C).

FIG 1 Results of RB-TnSeq screen. (A) Genes that showed less than �2 log2 fitness on D-lysine, L-lysine, or 5AVA but showed a fitness defect of no less than
�0.5 log2 when grown on glucose. (B) Plot of genome-wide fitness values of libraries grown on either L-lysine or D-lysine. Genes encoding enzymes known to
be involved in D-lysine metabolism are shown in red, while those known to be involved in L-lysine metabolism are shown in blue. (C) Venn diagram of genes
with significant fitness defects when grown on D-lysine, L-lysine, or 5AVA.
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In addition to catabolic enzymes, lysine transporters and multiple transcriptional

regulators were identified (Fig. 1A). The putative lysine amino acid ABC transporter

system (P. putida 3593 [PP_3593], PP_3394, and PP_3395) showed significant fitness

defects under conditions of growth with either isomer of lysine. Some of the transcrip-

tional regulators were located near known catabolic or transport enzymes (PP_0384,

PP_3592, and PP_3603), while others were not clustered with any obviously related

genes (PP_1109, PP_2868, PP_3649, and PP_4482). Two known global regulators were

identified in our screen: cbrA (PP_4695), encoding a histidine kinase sensor that showed

fitness defects on both lysine isomers, and the alternative sigma factor rpoX (PP_2088)

which had fitness defects only when grown on D-lysine.

Additionally, there were 15 genes which, when disrupted, displayed fitness advan-

tages (values) greater than 2 on 5AVA, D-lysine, or L-lysine and a fitness value of less

than 0.5 when grown on glucose. This positive fitness value indicates that these

mutations confer a competitive advantage compared to other strains when grown on

these carbon sources. Most striking among these genes were the sigma factor rpoS and

the LPS export system (PP_1778/9) genes; when disrupted, both displayed fitness

benefits on all three nonglucose carbon sources (see Fig. S2 in the supplemental

material).

Only one gene (PP_0787, encoding a quinolinate phosphoribosyltransferase)

showed fitness defects on all three nonglucose carbon sources (Fig. 1C). However,

disruption of PP_0787 also showed a significant fitness defect under conditions of

growth on levulinic acid, suggesting that it is unlikely to be uniquely important to lysine

metabolism (16). Only 3 genes shared fitness defects between 5AVA and L-lysine (davT,

davD, and lghO), and all three have been previously implicated in 5AVA metabolism

(Fig. 1C) (9).

PP_4108 is a L-2AA aminotransferase. In humans and other animals, L-lysine

degradation proceeds through a 2AA intermediate, which a transaminase converts to

2OA (9, 11, 17). Yet no such transaminase has been identified in P. putida. We identified

a candidate aminotransferase, PP_4108, for which gene inactivation showed a signifi-

cant growth defect on D-lysine (fitness value of �5.9) and a relatively minor growth

defect on L-lysine (�1.2). To corroborate our RB-TnSeq fitness data, we constructed a

deletion mutant of PP_4108 that failed to grow in a plate reader assay on 10 mM DL-2AA

(Fig. 2A). The mutant showed a severe growth defect on 10 mM D-lysine and an

increased lag time when grown on 10 mM L-lysine (Fig. S3).

To further validate this hypothesis, the ΔPP_4108 strain was subjected to metabo-

lomics analysis to monitor the accumulation of its expected substrate, 2AA, under

conditions of growth on glucose and D-lysine. After 12 h of growth on minimal media

supplemented with 10 mM (each) glucose and D-lysine, the PP_4108 deletion strain

showed a 6.3-fold increase (P � 0.00016) in the normalized concentration of intracel-

lular 2AA compared to the wild-type (WT) strain (Fig. 2B). Next, PP_4108 was expressed

and purified from Escherichia coli for biochemical characterization. After incubation of

the purified enzyme with DL-2AA, 2KG, and pyridoxal phosphate (PLP) for 16 h, the

reaction mixture was analyzed by the use of the liquid chromatography-time of flight

(LC-TOF) method. The expected product, 2OA, was detected in the enzymatic reaction

but not in a boiled enzyme control, confirming PP_4108 to be a transaminase that

converts 2AA to 2OA (Fig. 2C). As many transaminases have broad substrate specificity

(18), we also probed the substrate range of PP_4108 using a colorimetric assay for

glutamate, a stoichiometric product of the transamination reaction (Fig. 2D). The

enzyme was most active on L-2AA and showed only 2.8% relative activity (P � 0.0057)

on its enantiomer, D-2AA. This specificity for the L-2AA isomer may explain why only

50% of the DL-2AA was transformed in the previous experiment (Fig. 2C). No activity

was observed on either lysine isomer; however, the enzyme showed slight activity

toward 4-aminobutyrate/�-aminobutyrate (GABA) (2.8% relative activity, P � 0.0057)

and moderate activity on 5AVA (30.5% relative activity, P � 0.0139). Over smaller time

scales, PP_4108 had no activity on any substrate except L-2AA (Fig. S3c). These results
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suggest that P. putida KT2440 metabolizes D-lysine to L-2AA, which is then converted to

2OA by the transaminase PP_4108.

PP_5260 is a novel DUF1338 family enzyme that catalyzes the conversion of

2OA to 2HG. Early work proposed that 2OA is converted to 2KG via a 2HG intermediate

(13, 19), while later results suggested a direct conversion of 2OA to glutarate (11). Either

route likely requires decarboxylation of 2OA, so we initially searched for decarboxylases

within our data set. Our fitness data on either lysine isomer revealed no obvious

decarboxylases or enzymes likely to contain a thiamine pyrophosphate (TPP) cofactor,

which is commonly employed by decarboxylases. However, a gene near other D-lysine

catabolic genes in the P. putida genome, PP_5260, showed a significant fitness defect.

A ΔPP_5260 strain was unable to grow on either isomer of lysine, verifying its impor-

tance in lysine degradation (Fig. 3A).

PP_5260 belongs to the DUF1338 protein family (http://pfam.xfam.org/family/

PF07063). Although several unpublished crystal structures of DUF1338 domain-

FIG 2 Identification of PP_4108 as an L-2AA aminotransferase. (A) Growth of wild-type KT2440 and the PP_4108 mutant on 2AA as a sole carbon source. The
shaded area represents the 95% confidence interval (CI); n � 3. (B) In vivo accumulation of 2AA in wild-type KT2440 and a PP_4108 mutant after 12 h of growth
on minimal medium supplemented with 10 mM glucose and 10 mM D-lysine. Bars represent 1og10 transformed spectral counts; error bars show 95% CI; n � 3.
(C) In vitro transamination reactions of PP_4108 with 2KG as an amino acceptor. Bars represent metabolite concentrations (in micromoles) of either 2OA (black)
or 2AA (white) in either boiled or native protein reactions. Error bars show 95% CI; n � 3. (D) In vitro transaminations of PP_4108 incubated with different
possible amino donors and 2KG as the acceptor. Bars represent relative activity levels of enzyme standardized to L-2AA after 16 h of incubation. Error bars show
standard deviations; n � 2.
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FIG 3 Identification of ydcJ (PP_5260) as a 2OA decarboxylase/hydroxylase. (A) Growth of the wild-type strain (black) and the PP_5260 mutant (red) on D-lysine
(line) or L-lysine (dashed line) as a sole carbon source. The shaded area represents 95% CI; n � 3. (B) HPLC traces representing results of in vitro reactions run
with apo PP_5260 with exogenous metals added at 50 �M. Retention times for 2OA and 2HG are shown by vertical dashed lines. Metal or EDTA control is
indicated to the right of traces. (C) In vitro assay of 2OA conversion to 2HG by purified PP_5260 protein analyzed via the LC-TOF method. 2OG in white, 2HG
in black. (D) In vitro assay of purified PP_5260 protein with 2OA as the substrate. The black bar represents the concentration of D-2HG measured by enzyme
coupled assay. The white bar represents the total 2HG concentration as measured by the LC-TOF method. Error bars represent 95% CI; n � 3. (E) Initial velocity
of reaction catalyzed by PP_5260 as a function of 2OA concentration. Blue dots represent individual measurements, while the black fit line represents a
Michaelis-Menten fit. (F) Chemical reaction catalyzed by PP_5260; 2OA is decarboxylated to D-2HG.
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containing proteins have been deposited into the Protein Data Bank, characterizations

of their biological function remain elusive. However, these structures, combined with

protein sequence alignments, suggest that a putative metal binding site is conserved

throughout the DUF1338 family. As we had hypothesized PP_5260 serves as the

missing decarboxylase in D-lysine metabolism, we purified the enzyme for biochemical

analysis. Enzymatic activity on 2OA was probed and analyzed via the LC-TOF method.

After incubation of 2OA with PP_5260, we observed an �92% (P � 0.00034) reduction

in the abundance of 2OA, whereas no 2OA was consumed in a boiled enzyme control

or in an enzyme treated with EDTA, confirming it to be a metalloenzyme (Fig. S4a). We

initially believed that the product would be either glutarate or glutarate semialdehyde;

however, neither of these was detected in the reaction. Early biochemical work sug-

gested that 2HG is a potential intermediate in pipecolate metabolism (19), and when

the enzymatic product was compared to a racemic 2HG standard, they were found to

share the same mass, retention time, and mass-to-charge ratio (Fig. S4b), as well as

identical isotopic distributions of [M-H] peaks in the mass spectra (Fig. S4c).

To identify the metal cofactor, the enzyme was dialyzed against EDTA to remove

metals, and individual divalent metals were added back. Only the addition of Fe(II)

restored enzymatic activity, as measured by high-performance liquid chromatography

(HPLC) (Fig. 3B). Subsequent reactions quenched after 5 min showed 200 �M 2HG

formed and 800 �M 2OA remaining, demonstrating 1:1 2OA-to-2HG reaction stoichi-

ometry (Fig. 3C). Whether the product of the PP_5260 reaction is L-2HG or is D-2HG is

critical to understanding the eventual fate of D-lysine, as lghO is specific for L-2HG

(Fig. S1a). An enzyme coupled assay specific for the detection of D-2HG was used to

assess the stereochemistry of the PP_5260 product. Standard curves of D-2HG and

L-2HG showed that the assay was responsive only to D-2HG (Fig. S4d). The concentra-

tions of in vitro PP_5260 reaction mixtures were then measured by both the LC-TOF

method and the enzyme coupled assay, revealing that all of the 2HG present repre-

sented the D-isomer (Fig. 3D).

Kinetic parameters of PP_5260 were determined using an enzyme-coupled assay to

spectrophotometrically measure CO2 evolution via NADH oxidation (20). PP_5260

displayed a Vmax of 0.33 mM/min (� 0.08 mM), a Km of 0.06 mM (� 0.03 mM), and a Kcat
of 330 m�1 using 2OA as the substrate. Taken together, these results reveal that

PP_5260 is a novel Fe(II)-dependent decarboxylase that converts 2OA to D-2HG (Fig. 3F),

a chemical reaction not previously observed in nature.

DUF1338 proteins represent a widely distributed enzyme family with a puta-

tive conserved role in amino acid catabolism. After functional characterization of

PP_5260, we use phylogenomics to propagate the annotation and to further explore

the biological role of DUF1338 proteins found in other organisms. We found that

DUF1338 proteins are widely distributed across the tree of life, with homologs of

PP_5260 found in plants and green algae (21), fungi, and bacteria, though they were

not found in animals or archaea (Fig. 4A). Homologs are widely distributed among

bacteria, with the Firmicutes being a notable exception. PP_5260 homologs within the

plant group Streptophyta, as well as the bacterial groups Actinobacteria, Cyanobacteria,

and Bacteroidetes, formed monophyletic clades, while homologs from other taxonomic

groups were not monophyletic (Fig. 4A). DUF1338 homologs are found in bacteria

important to biotechnology (Corynebacterium glutamicum), the environment (Nostoc

punctiforme), and medicine (Yersinia pestis, Mycobacterium tuberculosis, Burkholderia

pseudomallei).

Publicly available fitness data show that both Pseudomonas fluorescens FW300-N2C3

and Sinorhizobium meliloti PP_5260 homologs have L-lysine-specific defects when

interrupted (15). Genomic contexts within other bacteria suggest that many DUF1338-

containing enzymes may be involved in the metabolism of lysine or other amino acids

(Fig. 4B). Within the Actinobacteria, DUF1338 homologs are often found adjacent to

sarcosine oxidases, aldehyde dehydrogenases, and transaminases, implying an addi-

tional catabolic amino acid function. In both the oleaginous bacterium Rhodococcus

opacus B4 and M. tuberculosis, DUF1338 homologs are found next to predicted L-lysine
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aminotransferases, suggesting that an ancestral homolog functioned in lysine catabo-

lism. Interestingly, the R. opacus B4 genome has three DUF1338 homologs, only one of

which corresponds to genes predicted to be specific to lysine catabolism. The other two

gene neighborhoods are similar in their functional content, mainly differing by encod-

ing an oxidoreductase or glycolate dehydrogenase, either of which may perform the

same biochemical function. In Alphaproteobacteria, Betaproteobacteria, and Cyanobac-

teria, the presence of aldehyde dehydrogenases, oxidoreductases, glycolate dehydro-

genases, and aminotransferases implies a metabolic function similar to that of PP_5260.

PP_4493 putatively oxidizes D-2HG to 2KG and connects D-lysine to central

metabolism. In the CoA-independent route of glutarate metabolism, LghO oxidizes

L-2HG to 2KG; however, this enzyme is highly specific to the L-2HG isomer and showed

no fitness defect on D-lysine in our RB-TnSeq data (Fig. S1a). A putative flavin adenine

dinucleotide (FAD)-dependent and 4Fe-4S cluster-containing glycolate dehydrogenase,

PP_4493, did show fitness defects on both D-lysine and L-lysine (fitness scores of �5.4

and �2.7, respectively) (Fig. 1A). Glycolate dehydrogenases are members of a larger

family of enzymes that oxidize the alcohol group of an alpha-hydroxyacid to the

corresponding alpha-ketoacid (Fig. 5A). Therefore, we hypothesized that PP_4493 could

potentially oxidize a similar 2-hydroxyacid, 2HG, to the corresponding alpha-ketoacid,

2KG. Moreover, many PP_5260 homologs were located next to or near putatively

annotated glycolate dehydrogenases in other bacteria, underscoring their potential

metabolic link (Fig. 4B). To confirm these hypotheses, we again constructed a deletion

strain, P. putida ΔPP_4493, which could not grow on D-lysine as a sole carbon source

(Fig. 5B) and which showed attenuated growth on L-lysine (Fig. S5). Furthermore, when

grown on 10 mM glucose and 10 mM D-lysine, the mutant accumulated �500 �M 2HG

(normalized to optical density [OD]), whereas wild-type P. putida did not accumulate

any detectable 2HG (Fig. 5C). Subsequent analysis of accumulated 2HG via the use of

a D-2HG-specific detection kit revealed that this accumulated 2HG was indeed D-2HG

(Fig. 5C). These data and the conserved function and genomic context of glycolate

dehydrogenases strongly suggest tha PP_4493 catalyzes the last step of L-2AA metab-

olism, oxidizing D-2HG to 2KG (Fig. S1b).

CsiD is highly specific for glutarate hydroxylation but promiscuous in

2-oxoacid selectivity. During the initial preparation of the manuscript, Zhang et al.

discovered a novel pathway of glutarate metabolism in P. putida (9). They described a

FIG 4 Phylogenomics of the DUF1338 enzyme family. (A) Phylogenetic relationships among DUF1338 homologs and their distribution among major phyla.
Branches in the tree are colored by phylum. DUF1338 is found in most bacterial phyla as well as in plants and fungi. Nonmonophyletic clades suggest pervasive
horizontal gene transfer events in the family. (B) Phylogenomics of selected DUF1338 homologs in bacteria. The phylogeny at the left shows the phylogenetic
relationships between selected homologs; the branches have been colored according to their adscription to a given phylum, and the support values are shown
at the nodes. The boxes in the right represent the gene neighborhood for each homolog. The genes have been colored to represent their annotated functions.
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cyclic reaction cascade wherein a novel 2KG-dependent nonheme Fe(II) oxygenase,

PP_2909 (CsiD), hydroxylates glutarate to form 2HG and succinate using 2KG as a

cosubstrate. PP_2910 (LghO), a putative L-2HG oxidase, then subsequently converts

L-2HG to 2KG, regenerating the 2KG consumed in the initial reaction. These reactions

result in the net incorporation of succinate into central metabolism (Fig. S1). Our fitness

results of the library grown on 5AVA also identified both csiD and lghO, in addition to

the two enzymes from the CoA-dependent glutarate pathway, glutaryl-CoA ligase

(gcdG) and glutaryl-CoA dehydrogenase (gcdH), mutants of which showed mild fitness

defects when grown on 5AVA (Fig. 6A). We also purified csiD and confirmed that it

hydroxylated glutarate in a 2KG-dependent manner (Fig. S6a). HPLC analysis demon-

strated that as glutarate was consumed, equimolar quantities of succinate and L-2HG

were produced (Fig. S6b). Additionally, a csiD deletion mutant showed an increased lag

time when grown on either L-lysine or 5AVA. By deleting the glutaryl-CoA ligase gcdG

and disrupting the CoA-dependent glutarate pathway, we completely prevented

growth on 5AVA or L-lysine (Fig. S6c). These results are in agreement with those

reported by Zhang et al. (9).

Because nonheme Fe(II) oxidases can be promiscuous with respect to the 2-oxoacid

cosubstrate (21, 22), we evaluated the 2-oxoacid specificity of CsiD. First, we evaluated

the hydroxyl acceptor substrate specificity of CsiD family proteins by purifying two

additional homologs from E. coli and a halophilic bacterium, Halobacillus sp. BAB-2008

(Fig. 6B). We probed the activity of the homologs against a panel of 3 to 6 carbon fatty

acids and diacids in the presence of 2KG and found that only glutarate served as a

hydroxylation substrate (Fig. 6C). These results are consistent with the work recently

reported by Zhang et al. (9) and further suggest that the specificity of CsiD homologs

is conserved across phyla. Although extremely specific for the hydroxylation substrate,

all three CsiD homologs could utilize both 2OA and 2KG, but not oxaloacetate, as a

cosubstrate for L-2HG formation (Fig. 6D). The coproduct of the reaction using 2OA as

a 2-oxoacid would be glutarate rather than succinate. This result is particularly inter-

FIG 5 Identification of PP_4493 as a putative D-2HG dehydrogenase. (A) General chemical reaction of a dehydrogenase converting a 2-hydroxyacid to a
2-ketoacid. (B) Growth of P. putida KT2440 and the PP_4108 mutant on D-lysine as a sole carbon source. The shaded area represents 95% CI; n � 3. (C) In vivo

accumulation of 2HG in wild-type KT2440 and a PP_4108 mutant after 12 h of growth on minimal medium supplemented with 10 mM glucose and 10 mM
D-lysine. The white bar represents the concentration of D-2HG measured by enzyme coupled assay. The black bar represents the total 2HG concentration as
measured by the LC-TOF method. Red line represents the limit of detection of the enzyme coupled assay for D-2HG. Bars represent 1og10 transformed spectral
counts; error bars show 95% CI; n � 3.
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esting as it provides a possible mechanism for the previously observed metabolic link

between D-lysine catabolism and L-lysine catabolism. Growth defects observed in a

ΔPP_2909 ΔPP_0158 double mutant grown on D-lysine also support this hypothesis

(Fig. S7a).

Expression of lysine metabolic proteins is responsive to pathway metabolites.

Multiple studies have demonstrated that the expression of lysine catabolic genes is

upregulated in the presence of pathway metabolites (9, 12, 23). To investigate the

regulation of the newly discovered lysine catabolic enzymes from this study, wild-type

P. putida KT2440 was grown in minimal media on glucose or a single lysine metabolite

(e.g., D-lysine, L-lysine, 5AVA, 2AA, or glutarate) as a sole carbon source until the cultures

reached an optical density at 600 nm (OD600) of 1.0. We then quantified the relative

abundances of D-lysine and L-lysine catabolic proteins via targeted proteomics (Fig. 7).

All pairwise statistical comparisons of different carbon sources for each protein can be

found in Table S2. All five D-lysine pathway proteins examined (AmaA [PP_5257], AmaB

[PP_5258], PP_4108, YdcJ [PP_5260], and YdiJ [PP_4493[) were upregulated when

grown on L-lysine, D-lysine, or 2AA compared to the glucose control. Neither 5AVA nor

glutarate significantly induced expression of any of the D-lysine proteins analyzed. Of all

the targeted proteins, the three identified in this study that directly degraded 2AA were

most strongly induced by 2AA. Somewhat surprisingly, we also found that the two

FIG 6 Role of CsiD in P. putida lysine metabolism. (A) Plot of genome-wide fitness values of libraries grown on either 5AVA or glucose. CoA-dependent glutarate
degradation genes are shown in red, while those known to be involved succinate producing metabolism are shown in blue. (B) Phylogenetic tree of bacterial
CsiD homologs. Homologs used in in vitro assays are highlighted in red. (C) In vitro reactions of CsiD with different substrates using 2KG as a 2-oxoacid. Bars
show the peak area of 2-hydroxyacid; error bars show 95% CI; n � 3. (D) In vitro reactions of CsiD homologs with different 2-oxoacids. Bars represent spectral
counts of L-2HG. Error bars show 95% CI; n � 3.
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enzymes involved in 2AA formation, AmaA and AmaB, were also more highly expressed

in the presence of 2AA, suggesting the possible involvement of a global regulator. An

interesting finding from our initial screen was that sigma factor RpoX (PP_2088) was

required for fitness on D-lysine (Fig. 1A). Deletion mutants of rpoX were severely

attenuated in their ability to grown on D-lysine as a sole carbon source (Fig. S7b).

Further work will be necessary to examine the complex regulatory network that

controls D-lysine metabolism.

The initial two enzymes from L-lysine metabolism, DavA and DavB, were most highly

expressed in the presence of L-lysine but also were also significantly expressed in the

presence of D-lysine. As previously observed, DavT and DavD were most strongly

upregulated on 5AVA, moderately upregulated on L-lysine, and upregulated to a lesser

extent on D-lysine. The induction levels of LhgO and CsiD were highest when grown on

glutarate, although these proteins were also moderately upregulated by 5AVA and

L-lysine. By comparison, PP_0159 (GcdG) expression in the presence of glutarate was

stimulated to a lesser extent than LhgO and CsiD expression; in addition, GcdG was

slightly upregulated on 5AVA and L-lysine.

DISCUSSION

Despite intensive study, complete biochemical and genetic understanding of

D-lysine catabolism in P. putida has remained elusive. A 2OA degradation pathway has

been extensively characterized in mammals, because of its implications in human

FIG 7 Expression of lysine degradation pathways in response to different lysine metabolites. Data represent the relative abundances of selected lysine
degradation enzymes expressed in wild-type KT2440 in response to different carbon sources. Bars show spectral counts of proteins after 36 h of growth on
10 mM glucose (black), 5AVA (purple), D-lysine (green), L-lysine (red), glutarate (blue), or 2AA (yellow). Error bars show 95% CI; n � 3.
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disease (24). In the mammalian pathway, L-lysine is metabolized to 2OA and eventually

converted to acetyl-CoA via a glutaryl-CoA intermediate (24). However, this pathway

has not been observed in bacteria. Previous work suggested that 2OA is converted

either via decarboxylation to glutarate or through several enzymatic steps to 2HG (11,

19, 25), and yet none of those studies conclusively demonstrated a genetic and

biochemical basis for those hypotheses. In this work, we demonstrated plausible

biochemical routes to account for both of these previously hypothesized pathways.

The first route, catalyzed by the DUF1338-containing metalloenzyme PP_5260,

involves the direct conversion of 2OA to D-2HG. The formation of the D-2HG isomer by

PP_5260 maintains stereochemical separation from the L-2HG formed by L-lysine

degradation, thus requiring the dehydrogenase PP_4493 gene rather than the L-2HG-

specific oxidase lghO gene. This transformation seemingly involves two separate reac-

tions: a decarboxylation and a hydroxylation. Hydroxymandelate synthase has been

shown to catalyze a similar enzymatic reaction, via an intramolecular oxidative decar-

boxylation, similarly to 2KG dependent Fe(II) oxidases (26). PP_5260 is also a Fe(II)-

dependent decarboxylase, and the two share similar Kcat values for their given sub-

strates (330 m�1 for PP_5260 and 270 m�1 for hydroxymandelate synthase) (27).

Though PP_5260 and hydroxymandelate synthase share little sequence homology, this

enzyme may give us insight into the molecular mechanism of DUF1338 enzymes. We

have given PP_5260 the tentative title of 2-hydroxyglutarate synthase (hglS) and will

use that name until further mechanistic studies (under way in our group) are completed

and a more accurate enzyme name can be assigned.

In bacteria, homologs of PP_5260 appear widely distributed with their genomic

contexts, suggesting functions both within and beyond lysine metabolism. Genomic

contexts in other bacteria, particularly Actinobacteria, suggest that these homologs may

be involved in other amino acid catabolic pathways. Unfortunately, there is scant

evidence for homologous function in model organisms. For example, although

DUF1338 proteins are present in other Ascomycota, there is no homolog in Saccharo-

myces cerevisiae. Interestingly, the E. coli homolog of PP_5260 is located next to a

potential glucan biosynthesis gene: glucan biosynthesis protein D (28). Another

DUF1338-containing protein from rice has been characterized and was implicated in

starch granule formation (29). These results suggest that DUF1338 proteins could play

a role in sugar metabolism.

Recently, Zhang et al. thoroughly characterized a CoA-independent glutarate ca-

tabolism route ending at succinate and involving the Fe(II)-dependent oxygenase CsiD

(9). Our RB-TnSeq screening convergently uncovered this pathway, and our biochem-

ical and physiological results fully corroborate their findings. While both works showed

that multiple CsiD homologs from divergent bacteria are highly specific to glutarate as

a hydroxyl acceptor, all three homologs that we tested showed promiscuous activity

toward 2-oxoacid cosubstrates. The ability of the P. putida CsiD to utilize 2OA as a

cosubstrate is particularly interesting as it may directly connect L-lysine metabolism and

D-lysine metabolism. The promiscuity of CsiD may explain reports of glutarate forma-

tion from D-lysine in earlier studies (11). Further studies involving labeled substrates

may help elucidate the potential link between the two pathways. While CsiD plays a

clear role in L-lysine metabolism in P. putida, its role in other organisms remains a

mystery. In E. coli, RpoS controls the expression of CsiD, but rpoS mutants showed

fitness benefits on all three lysine metabolites tested in our RB-TnSeq data (30). Recent

work has shown that E. coli also uses CsiD to metabolize lysine, suggesting a possible

conserved role for this pathway across bacteria (31).

Work presented here and previous reports have shown the expression levels of both

lysine catabolism pathways are highly responsive to their respective metabolites. While

this metabolism appears highly coordinated, the genes themselves are dispersed across

the genome, with both PP_4018, and PP_4493 found at locations that were outside

operons and relatively distant from other lysine catabolic genes. At least two global

regulators appeared to be important for lysine metabolism based on our Rb-TnSeq

data, namely, cbrA (PP_4695) and rpoX (PP_2088). The two-component system CbrAB
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has been implicated in catabolite repression and C/N balance in Pseudomonas aerugi-

nosa, with mutants unable to grown on multiple amino acids (32). Further work in P.

putida KT2440 showed that the CbrAB system behaved similarly to that in P. aeruginosa

(33). It would be unsurprising if this regulator were found to control the expression of

various genes within lysine catabolism; more work into uncovering the regulon is

warranted. RpoX, on the other hand, has been implicated in osmotic tolerance in P.

aeruginosa (34, 35). This is interesting, as lysine metabolism, and, specifically, pipecolate

metabolism, has been found to be associated with osmotic tolerance across multiple

bacteria (36). As an rpoX deletion mutant was unable to grow on D-lysine, these results

suggest that D-lysine metabolism of P. putida may be involved in adaptation to saline

conditions or to other osmotically stressful environments.

Interesting issues remain as to why P. putidamaintains separate metabolic pathways

for D- and L-lysine and why L-lysine metabolism seems dependent on the presence of

an intact D-lysine metabolism. Previously work proposed that the D-lysine pathway may

provide a way of resolving the C/N imbalance that may occur when L-lysine is metab-

olized. However, we believe that this is unlikely, as both lysine degradation pathways

contain one deamination reaction and one transamination reaction (11). Our fitness

results indicate that D-lysine metabolism is dispensable for growth on 5AVA. This would

suggest that only the initial two steps of L-lysine metabolism, the oxidation of lysine to

5-aminopentanamide by DavB and its subsequent deamination to 5AVA by DavA, are

dependent on D-lysine catabolism. We propose that the adjacent AsnC family regulator

PP_0384 likely responds to L-lysine, given that many proteins within this family respond

to amino acids, including lysine (37, 38), and that expression of these two enzymes is

most responsive to L-lysine. To our knowledge, there has been no rigorous character-

ization of the regulation of the davAB operon or of the biochemical activities of these

two enzymes in vitro. Future studies to uncover the mechanistic regulation at the

transcriptional and posttranslational levels in these two steps may uncover the neces-

sity of D-lysine dependency of the L-lysine catabolic pathway. Overall, our work high-

lights the utility of global fitness profiling for discovering novel, complex metabolic

pathways in even well-characterized bacteria.

MATERIALS AND METHODS

Media, chemicals, and culture conditions. Bacterial cultures were routinely grown in Luria-Bertani

(LB) Miller medium (BD Biosciences, USA). E. coli was grown at 37°C, while P. putida was grown at 30°C

unless otherwise noted. When indicated, P. putida was grown on modified MOPS (morpholinepropane-

sulfonic acid) minimal medium (39). Cultures were supplemented with kanamycin (Sigma-Aldrich, USA)

(50 mg/liter), gentamicin (Fisher Scientific, USA) (30 mg/liter), or carbenicillin (Sigma-Aldrich, USA)

(100 mg/liter) when indicated. D-2AA was purchased from TaKaRa Bioscience (USA). All other compounds

were purchased through Sigma-Aldrich.

Strains and plasmids. All bacterial strains and plasmids used in this work are listed in Table 1. All

strains and plasmids created in this work are publicly available through the Joint BioEnergy Institute

(JBEI) registry (https://public-registry.jbei.org/folders/391). All plasmids were designed using Device

Editor and Vector Editor software, while all primers used for the construction of plasmids were designed

using j5 software (40–42). Synthetic DNA coding for the Halobacillus sp. BAB-2008 csiD homolog was

purchased from Integrated DNA Technologies (IDT, Coralville, IA). Plasmids were assembled via Gibson

assembly using standard protocols (43) or via Golden Gate assembly using standard protocols (44).

Plasmids were isolated routinely using a Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were

purchased from Integrated DNA Technologies (IDT, Coralville, IA).

Random barcode TnSeq experiments. P. putida RB-TnSeq library JBEI-1 was created by diluting a

1-ml aliquot of the previously described P. putida RB-TnSeq library (16) in 500 ml of LB media supple-

mented with kanamycin; the library was then grown to an OD600 of 0.5 and frozen as 1-ml aliquots after

adding glycerol to reach a final concentration of 20% (vol/vol). Libraries were stored at �80°C until use.

A 1-ml aliquot of P. putida RB-TnSeq library JBEI-1 was thawed on ice and diluted in 25 ml of LB

supplemented with kanamycin. The culture was grown until it reached an OD600 of 0.5, at which point

three 1-ml aliquots were removed, pelleted, decanted, and then stored at �80°C for use as a time zero

control. The library was then washed once in MOPS minimal medium without any carbon source and

then diluted 1:50 into 10 ml MOPS minimal medium supplemented with 10 mM glucose or 5AVA or

D-lysine or L-lysine. Cells were grown in 50-ml culture tubes for 48 h at 30°C with shaking at 200 rpm. After

growth, 2-ml aliquots from the culture tubes were pelleted, decanted, and frozen at �80°C for barcode

sequencing (BarSeq). We performed DNA barcode sequencing as previously described (14, 16). The

fitness of a strain is defined here as the normalized log2 ratio of barcode reads in the experimental

sample to barcode reads in the time zero sample. The fitness of a gene is defined here as the weighted
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average of the strain fitness for insertions in the central 10% to 90% of the gene. The gene fitness values

are normalized such that the typical gene has a fitness of zero. The primary statistic t value represents

the form of fitness divided by the estimated variance across different mutants of the same gene. Statistic

t values of �|4| were considered significant. All experiments described here passed testing using the

quality metrics described previously unless noted otherwise. All fitness data in this work is publicly

available at http://fit.genomics.lbl.gov.

Construction of deletion mutants. Deletion mutants in P. putida were constructed by homologous

recombination and sacB counterselection using allelic exchange vector pMQ30 (45). Briefly, homology

fragments ranging in size from 1 kbp to 2 kbp upstream and downstream of the target gene, including

the start and stop codons, respectively, were cloned into pMQ30. An exception to these design

parameters was plasmid pMQ-PP_5260, which maintained an additional 21 nucleotides (nt) at the 5= end

of the gene in addition to the stop codon. Plasmids were then transformed via electroporation into E. coli

S17 and then mated into P. putida via conjugation. Transconjugants were selected for on LB agar plates

supplemented with 30 mg/ml gentamicin and 30 mg/ml chloramphenicol. Transconjugants were then

grown overnight on LB media also supplemented with 30 mg/ml gentamicin and 30 mg/ml chloram-

phenicol and were then plated on LB agar with no NaCl that was supplemented with 10% (wt/vol)

sucrose. Putative deletions were restreaked on LB agar with no NaCl supplemented with 10% (wt/vol)

sucrose and then were screened via PCR with primers flanking the target gene to confirm gene deletion.

Plate-based growth assays. Growth studies of bacterial strains were conducted using microplate

reader kinetic assays. Overnight cultures were inoculated into 10 ml of LB medium from single colonies

and were grown at 30°C. These cultures were then washed twice with MOPS minimal media without any

added carbon and diluted 1:100 into 500 �l of MOPS medium with a 10 mM concentration of a carbon

source in 48-well plates (Falcon; catalog no. 353072). Plates were sealed with a gas-permeable microplate

adhesive film (VWR, USA), and then optical density was monitored for 48 h using a BioTek Synergy 4 plate

reader (BioTek, USA) at 30°C with fast continuous shaking. Optical density was measured at 600 nm, and

all OD600 measurements are reported without path length corrections.

Expression and purification of proteins. A 5-ml overnight culture of E. coli BL21(DE3) containing

the expression plasmid was used to inoculate a 500-ml culture of LB. Cells were grown at 37°C to an

OD600 of 0.6 and were then induced with isopropyl-�-D-1-thiogalactopyranoside to reach a final con-

centration of 1 mM. The temperature was lowered to 30°C, and cells were allowed to express for 18 h

before being harvested via centrifugation. Cell pellets were stored at �80°C until purification. For

purification, cell pellets were resuspended in lysis buffer (50 mM sodium phosphate, 300 mM sodium

chloride, 10 mM imidazole, 8% glycerol, pH 7.5) and sonicated to lyse cells. Insoluble content was

TABLE 1 Strains and plasmids used in this studya

Strains or plasmid JBEI part ID

Source or

reference Genotype

Strains
E. coli DH10B Thermo Fisher
E. coli S17 ATCC 47055
E. coli BL21(DE3) Novagen
P. putida KT2440 ATCC 47054
P. putida ΔPP_0158 JPUB_010967 This work
P. putida ΔPP_2088 JPUB_013224 This work
P. putida ΔPP_2909 JPUB_010968 This work
P. putida ΔPP_2910 JPUB_010969 This work
P. putida ΔPP_0158 ΔPP_2909 JPUB_010970 This work
P. putida ΔPP_4108 JPUB_010971 This work
P. putida ΔPP_4493 JPUB_010972 This work
P. putida ΔPP_5260 JPUB_010973 This work

Plasmids
pMQ30 45 Gm, SacB
pET28 Novagen Kan
pET21b Novagen Amp
pMQ30-PP_0158 JPUB_010989 This work Gm, SacB
pMQ30-PP_2088 JPUB_013222 This work Gm, SacB
pMQ30-PP_2909 JPUB_010991 This work Gm, SacB
pMQ30-PP_2910 JPUB_010995 This work Gm, SacB
pMQ30-PP_4108 JPUB_010981 This work Gm, SacB
pMQ30-PP_4493 JPUB_010979 This work Gm, SacB
pMQ30-PP_5260 JPUB_010977 This work Gm, SacB
pET28-CsiD_Halo JPUB_010987 This work Kan
pET28-CsiD_Ecoli JPUB_010993 This work Kan
pET28-CsiD_Pput JPUB_010975 This work Kan
pET21b-PP_4108 JPUB_010983 This work Amp
pET21b-PP_5260 JPUB_010985 This work Amp

aID, identifier; Amp, ampicillin; Gm, gentamicin; Kan, kanamycin.
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pelleted via centrifugation (30 min at 40,000 � g). The supernatant was applied to a fritted column

containing nickel-nitrilotriacetic acid (Ni-NTA) resin (Qiagen, USA) which had been preequilibrated with

several column volumes of lysis buffer. The resin was washed with lysis buffer containing 50 mM

imidazole, and then the protein was eluted using a stepwise gradient of lysis buffer containing increasing

imidazole concentrations (100 mM, 200 mM, and 400 mM). Fractions were collected and analyzed via

SDS-PAGE. Purified protein was dialyzed overnight at 4˚C against 50 mM HEPES (pH 7.5)–5% glycerol.

CsiD in vitro assays. The activity of purified CsiD homologs was analyzed in 100-�l reaction mixtures

containing 50 mM HEPES (pH 7), 5 mM glutarate, 5 mM 2KG, 25 �M FeSO4, 0.1 mM ascorbate, and 0.5 mM

dithiothreitol. For negative-control reactions, each of the respective reaction components was omitted.

To initiate reactions, CsiD was added to reach a final concentration of 7 �M. For the no-enzyme control,

CsiD was denatured at 98°C for 10 min prior to addition to the reaction mix. Reactions were allowed to

proceed at 22°C for 3 h. Products were analyzed via LC-TOF method 3 after quenching was performed

via the addition of acetonitrile and methanol for a final ACN/H2O/MeOH ratio of 6:3:1 To analyze products

from the substrate range as well as the 2-oxoacid specificity experiments, reactions were measured via

LC-TOF method 1.

Transamination assays. To determine product formation via PP_4108, assays were conducted using

50 mM HEPES (pH 7.5) with 5 mM 2KG, 0.1 mM PLP, 5 mM substrate, and 10 �M purified enzyme or boiled

enzyme control in 100-�l volumes. Reaction mixtures were incubated at 30°C for 16 h and quenched via

the addition of ACN and MeOH for a final ACN/H2O/MeOH ratio of 6:3:1 for LC-TOF method 3. To

determine substrate specificity, reactions were set up at the 75-�l scale and carried out at 30°C for up

to 16 h before freezing. For analysis, reaction mixtures were diluted 15-fold in water and assessed by a

colorimetric assay for glutamate (Sigma MAK004) in 96-well format via the use of a Spectramax M4 plate

reader (Molecular Devices, USA).

PP_5260 in vitro assays. The activity of PP_5260 was initially assessed using 50 mM HEPES with

5 mM 2OA as the substrate and 10 �M purified enzyme or boiled enzyme control. Reaction mixtures were

incubated for 16 h at 30°C. To test the necessity of metal cofactors, EDTA was added to reach a final

concentration of 50 �M. Reactions were quenched via the addition of ACN and methanol MeOH for a

final ACN/H2O/MeOH ratio of 6:3:1 for LC-TOF analysis using method 3 or via the addition of an equal

volume of ice-cold methanol for HPLC analysis and LC-TOF using method 2.

To determine the metal cofactor, after purification over Ni-NTA resin, the protein was concentrated

and dialyzed overnight against 50 mM HEPES–100 mM NaCl (pH 7.5). To generate apo-enzyme, the

protein was then dialyzed four times at a protein/dialysis buffer ratio of 1:300 against the same buffer

containing 5 mM EDTA in order to remove any bound metal. The enzyme was dialyzed once more

against buffer without EDTA overnight in order to remove any remaining chelating reagent. The

apo-enzyme was then assayed in the presence of 50 �M concentrations of a variety of potential metal

cofactors using 50 mM HEPES with 10 mM 2OA as the substrate and 10 �M purified enzyme. Reaction

mixtures were incubated for 30 min at 30°C, and activity was assessed via HPLC analysis.

Determination of enzyme stoichiometry was performed in 50 mM HEPES–50 �M FeCl2 with 1 mM

2OA as the substrate and 0.1 �M purified enzyme or boiled enzyme control. Reaction mixtures were

incubated for 5 min at 30°C and then quenched with an equal volume of ice-cold methanol and

quantified using LC-TOF method 2.

Enzyme coupled decarboxylation assays were carried out as previously described (20). Reaction

mixtures contained 100 mM Tris-HCl (pH 7), 10 mM MgCl2, 0.4 mM NADH, 50 �M FeCl2, 4 mM phosphoe-

nol pyruvate (PEP), 100 U/ml pig heart malate dehydrogenase (Roche), 2 U/ml microbial PEP carboxylase

(Sigma), and 10 mM 2OA. Reactions were initiated by the addition of purified PP_5260 or boiled enzyme

controls, and absorbance at 340 nm was measured using a Spectramax M4 plate reader (Molecular

Devices, USA). Michaelis-Menten behavior was formulated as previously described (46). Least-squares

minimization was used to derive Km and Kcat values. Determination of D-2HG concentration was

performed with a D-2-hydroxyglutarate (D-2HG) assay kit (Sigma MAK320).
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